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IGNORABILITY FOR CATEGORICAL DATA

BY MANFRED JAEGER
Aalborg Universitet

We study the problem of ignorability in likelihood-based inference
from incomplete categorical data. Two versions of the coarsened at random
assumption dar) are distinguished, their compatibility with the parameter
distinctness assumption is investigated and several conditions for ignorability
that do not require an extra parameter distinctness assumption are established.

It is shown thatcar assumptions have quite different implications
depending on whether the underlying complete-data model is saturated or
parametric. In the latter casegr assumptions can become inconsistent with
observed data.

1. Introduction. In a sequence of papers Rubin [15], Heitjan and Rubin [11]
and Heitjan [9, 10] have investigated the question under what conditions a
mechanism that causes observed data to be incomplete or, more geneasd),
can be ignored in the statistical analysis of the data. The key condition that has
been identified is that the data shouldrissing at random (mar), respectively,
coarsened at random (car). Similar conditions were independently proposed by
Dawid and Dickey [4]. A second condition needed in Rubin’s [15] derivation of
ignorability is parameter distinctness ( pd).

A case of particular practical interest is the one of incomplete or coarse
categorical data. Traditionally associated with the analysis of contingency tables in
terms of log-linear models, categorical data today also plays an important role in
learning probabilistic models for artificial intelligence applications [12]. For these
applications graphical models or Bayesian networks are used [2, 3, 13]. Incomplete
data here is particularly prevalent, and the analysis of Rubin and Heitjan is widely
cited in the field.

In this paper we take a closer look at the way ignorability is established for
likelihood-based inference through thar and pd assumptions. It is found that
one has to distinguish a weak versionacaf that is given as a condition on the
joint distribution of complete and coarse data, and a strong versioardhat is
given as a condition on the conditional distribution of the coarse data. The two
versions ofcar lead to quite different theoretical results and practical implications
for likelihood-based inference. We consider in detail the dependencies between
thecar and thepd assumptions, and find that for weedr these two assumptions
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are incompatible unless further assumptions on the parameter of interest, or on the
coarsening process, are made. In contgasts implied by strongear (Section 3).

For the case of an underlying saturated complete-data model ignorability results
can be derived from weakar alone without making theyd assumption. Our

main result identifies the maxima of the observed-data likelihood under either
car assumption as exactly those complete-data distributions that are compatible
with the car assumption and the observed data (Section 4.1). For nonsaturated
complete-data models no analogous results hold. Even for very simple parametric
models car becomes a testable assumption that can be rejected against an
alternative hypothesis (Section 4.2).

2. Coarse data models. We use a very general and abstract model for
categorical data: complete data is taken to consist of realizatigns. , xy of
independent identically distributed random variab¥gs. .., Xy that take values
in afinite setW = {w1, ..., w,}. Thew; can be the cells of a contingency table, for
instance. The distribution of th¥; is assumed to belong to a parametric family
{Py|60 € ©®}, where® C R¥ for somek e N. For this paper the analytic form of
a parametric family will not be important, and only the subset of distributions
contained in the family is relevant. For that reason we may generally assume that

Oc A ={(p1,....,p) €10, 11" Y pi =1}
with
Py(w;) = pi, 0= (p1,...,pn) €0O.

Any ® C A" is called acomplete-data model.® = A" is thesaturated complete-

data model. In the saturated model, as well as in most of the important parametric
models for categorical data (e.g., log-linear models), different parantet&rsay
define distributionsy, Py with different sets of support. Most of the results of this
paper address difficulties that arise out of this.

When data is incomplete, then the exact vakjeof X; is not observed.
According to the general coarse data model of Heitjan and Rubin [11] one observes
instead a subséf; of W. More specifically, Heitjan and Rubin model coarse data
by introducing additional coarsening variablg@s, and takingU; to be a function
Y (x;, g;) of the complete data; and the valueg; of the coarsening variable.

In the following definition we take a slightly different approach, and model the
coarsening process directly by a joint distributionXgf and the observed coarse
dataU;. For categorical data this is simpler, and avoids a sometimes artificial
construction of a suitable coarsening variable.

DEFINITION 2.1. LetW ={ws, ..., w,}. Thecoarse data space for W is

QW) ={(w, )lweW, U W:weU}.
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When specific reference t& is not needed, we writ€2 for Q(W). An
element(w, U) € Q stands for the event that the true value d¥avalued random
variable X is w and the coarse valug is observed. A subsdf C W defines
two different subsets iR2: Oy = {(w, U) € Q|w:w € U}, which is the event
that U is observed, and the evefitw, U’) € Q|w,U’:w € U} that the value
of X lies in U (and someU’ is observed). This latter subset ©f is simply
denoted by, and is not strictly distinguished froii as an event in the sample
spaceW. Figure 1 illustrates these definitions for a three-element complete-data
spaceW = {w1, wp, w3}. The elements af2 (W) correspond to the unfilled cells in
this graphical representation. For= {w», w3} the event®)y andU (as a subset
of Q) are outlined.

A distribution P on Q is parameterized by the parametérsdefining the
marginal distribution ori, and parameters

)‘-w,U = P((waU)lw)’ (wv U) EQa
defining the coarsening process.

EXAMPLE 2.2. Table 1 specifies distributior3®, i = 1,2,3, on Q({wy,
wp, w3}) through parameter®”) on W and conditional probabilities.®.
For w with Py(w) = O parameters.,, y are shown in brackets. Changing these
parameters to arbitrary other values just leads to a different version of the
conditional distribution of coarse observations given complete data, and has no
influence on the joint distribution.

As in this example, we generally assume that parametggs exist even when
Py(w) = 0 (rather than treating them as undefined), because in that way the
parameter spac&” for the A-parameters does not dependéon

A" Oow, 0 wew.vew:wet wu €[0,1;Vw: Y Apy=
U:weU
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TABLE 1
Parameters for digtributions PV, p@ p®3)

2@
0@ fwy)  fwp) {wz} {wi,wp)  {wy,ws)  {wo,wz)  {wg, wp, ws)
i=1 w; 0 [1/3] [1/3] [0] [1/3]
wy 1 0 13 1/3 1/3
wg 0 [1/3] [0] [1/3] [1/3]
i=2 wy 172 0 2/3 0 1/3
wy 0 [1/3] [2/3] [0] [0]
w3 1/2 0 0 23 1/3
i=3 w; 1/3 1/3 1/3 0 /3
wy  1/3 0 1/3 1/3 1/3
w3 1/3 1/3 0 /3 1/3

Any subsetY € A" x A" is called acoarse data model. Such a model
encodes assumptions both on the underlying complete data distribution and on
the coarsening process. The complete-data model undeiyisg

O@={0ecA"Ar: (0,1 e X

We sometimes writex (®) for ¥ to emphasize the underlying complete-data
model. We denote witlE(®) = ® x A" the saturated coarsening model with
underlying®.

A sample of coarse data itemMi$ = U, ..., Uy (U; € W) is interpreted with

respect to a coarse data model as observations of eggnts €2, and gives rise
to theobserved-data likelihood for 6 andx.,

N
(1) Lop(0, AW := [ ] Po.r(Ov;)-

i=1
When ignoring the coarsening process, the data i@nee simply interpreted as
subsets o#¥ and give rise to théace-value likelihood [4] for 0,

N

2 Lev@|W) =[] Po(Uy).
i=1

3. Ignorability. The question of ignorability is under what conditions infer-
ences abou® based on the face-value likelihood will be the same as obtained
from the observed-data likelihood. These conditions will depend on the inference
methods used [15]. Here we focus on the problem of ignorability for likelihood-
based inference, with special emphasis on maximum likelihood estimation, which
plays an important role in practice through the widespread use of the EM algo-
rithm [6, 14].
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For likelihood-based inference abodt the observed-data likelihood will
typically be reduced to thprofile-likelihood

(3) Lpx(@|U):= max_Lop®,A|U).
A1 (0,0)€T

To make the profile-likelihood well defined for &, we restrict ourselves to
modelsX for which{1|(6, 1) € X} is closed for every € ©, so that the maximum
in (3) is attained. In our notation we make explicit that the profile-likelihood is not
only a function of9 andU, but also of the coarse data modgl

Moving from the observed-data likelihood to the profile-likelihood enables us
to treat inference both with and without taking the coarsening process into account
as inference with a likelihood function of only the parameter of intemstn
particular, we obtain succinct formulations of ignorability questions: under what
conditions onX are likelihood ratiosLp 5 (0)/Lp x(0") and Lry(6)/Lry(0")
equal for allg, 6’; under what conditions aré p > and Lpy maximized by the
same values € ©?

In the following we formulate thear and parameter distinctness assumptions
as such modeling assumptions Bn In the case otar it turns out that we must
distinguish two different versions.

DEerINITION 3.1. The data isveakly coarsened at random (w-car) according
to Py, ifforall U € W and allw, w’ € U

4) Py(w) >0, Pp(w')>0 = Ayu=>~rwu.

DEeFINITION 3.2. The data istrongly coarsened at random (s-car) according
to Py, ifforall U € W and allw, w’ € U

(5) )‘w,U :)‘w’,U-

The difference between weak and strarag, thus, is thats-car also imposes
a restriction on conditional probabilitieB , (Oy|w) when P(w) = 0. This is
the version ofcar used by Gill, van der Laan and Robins [7] for categorical
data. Underlying this version dfar is the notion ofcar being a condition on
the coarsening mechanism alone, which must be formulated without reference to
the underlying complete-data distribution. Wea, on the other hand, appears
to be the more appropriate version whean is seen as a condition on the joint
distribution of complete and coarsened data.

Gill, van der Laan and Robins ([7], page 274) also give a definitioncéor
in general sample spaces. In contrast to their definitions in the discrete setup,
that definition reduces for finite sample spacesmtoar, not s-car. They pose
as an open problem whether (in the terminology established by our preceding
definitions) it is always possible to turnvecar model into ans-car model by
a suitable setting of thg,, ;-parameters for those with Py(w) = 0. Our next
example shows that this is not the case.
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ExampPLE 3.3. All distributions in Table 1 are-car, but only P and p®
are s-car: to check thew-car condition it only is necessary to verify that all
unbracketedr,, y in a column are pairwise equal. Fercar also equality of
the bracketed parameters is required. This condition is violated in the last two
columns forP@. Moreover, it is not possible to replace the bracket&-values
with different conditional probabilities in a way thstar is satisfied, because the
conditional probabilities for the observatiofisy, w2}, {w2, w3} and{w1, w2, w3}
would have to add up to/3.

In the following we writecar when we wish to refer uniformly to both versions
of car, for example, in definitions that can be analogously given for both versions,
or in statements that hold for both versions.

When Py, satisfiescar we denote parameteks, y simply with iy . In the case
of w-car this denotes the parametgy ; common for allw of positive probability.
When Py (U) = 0, theniy is not well defined fow-car. We denote with ;4 (©)
the subset of;(®) consisting of those parameters according to which the data
is car. For 6 € ® we denote withAy-car (6) the set ofk € A" that satisfy (4).
Thus, Xw-car (®) = {(0,1)|0 € ©, A € Aw-car (0)}. From Definition 3.1 it follows
that suppoitPy) < supportPy) implies Aw-car (0) 2 Aw-car (8). Fors-car we can
simply define the sef\s-car Of coarsening parameters that satisfy (5), and have
Ys-car (©) = O X Agcar.

The following definition provides an important alternative characterization of
w-car.

DEFINITION 3.4. Py, satisfies théair evidence condition if for all w, U with
weU,

(6) Py ;(Oy) >0 = Py ;(w|Oy) = Py(w|U).

The fair evidence condition is necessary to justify updating a probability
distribution by conditioning when an observation is made that establishes the
actual state to be a member®f[8]. We now obtain:

THEOREM3.5. Thefollowing are equivalent for Py :

(a) Py, satisfiesw-car.
(b) Py, satisfies the fair evidence condition.
(c) For all w, U withw € U and Py(w) > 0,

Py ;. (Oylw) = Py ;(Oy)/ Py (U).

PROOF (a)=(b): If Py, (Oylw) = Py, (Oy|w’) for all w,w” € U with
Py(w), Pp(w") > 0, then this value is equal td ,(Oy|U). Assume that
Py(w) > O [otherwise there is nothing to show for (6)]. Usi®g ,(U|Oy) =1,
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then Py (w|Oy) = Py (Oylw)Po(w)/ Py (Oy) = Po;(OylU)Py(w)/
Py 5.(Oy) = Py ;. (U|Oy) Po(w)/Py(U) = Py(w|U).

(b)=(c): Let w € U with Py(w) > 0. Then Py, (Oy|w) = P (w|Oy) x
Py 3 (Oy)/ Po(w) = Pg(w|U) Py 3 (Oy)/ Po(w) = Py ;,(Ov)/Py(U).

(c)=(a): Obvious. I

ExamMpPLE 3.6. To check the fair evidence condition for the distributions
of Table 1, one has to verify that for each observatiOp, normalizing all
nonbracketed entries in thecolumn for Oy yields the conditional distribution
of PyonU.

One might suspect that one can also obtain a “strong fair evidence condition” by
considering the normalization of both the bracketed and the unbracketetties,
and that this strong version of the fair evidence condition would be equivalent to
s-car. However, already foP® (which iss-car), we see that fot/ = {w1, wy} the
normalization of the column fo@y gives(1/2,1/2) on U, which is notPy (-|U).

Gill, van der Laan and Robins ([7], page 260) claim the equivalence of the
fair evidence condition angtcar. However, as our results show, fair evidence is
equivalent tow-car, nots-car. (The error in the proof of Gill, van der Laan and
Robins [7] lies in an (implicit) application of Bayes rule to conditioning events
of zero probability.) A correct proof of the equivalence<g(p) also is given by
Grunwald and Halpern [8]. We consider the equivalence with the fair evidence
condition to be an important point in favor wfcar as opposed te-car.

Weak and strongar are modeling assumptions that identify certain coarse data
distributions for inclusion in our model. The second condition usually required for
ignorability, parameter distinctness, on the other hand, is a global condition on the
structure of the coarse data model.

DEFINITION 3.7. A coarse data modé&l satisfiesparameter distinctness
(pd) iff ¥ =G x A forsome® C A", A C A".

From car and pd ignorability for likelihood-based inference can be derived.
We next restate Rubin’s proof of this result, in a way that clearly separates the
contributions made byar and pd. To begin, assume th&X C X, and let
(0, 1) € X. Let U be a sample withPy(U;) >0fori=1,..., N. Now

N N
Lop®, AW =[] Por(Ov) =[] D Posr((w.Up)

i=1 i=lwelU;

N N
=TTre: 3 Pow) = [ hus Po(U).
i=1 i=1

welU;
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Thus
(7) Lps@|U) =cx (@, WLrv(O|W),
where
N
(8) ez (6, U) ;= max ]‘[ Ay,

AL, X)EE

Now assume, too, thagtd holds, that is,x = ® x A. The right-hand side of (8)
then simply becomes max, l_[lN:]_)»Ui, which no longer depends @h L p 5 and

Lrv, thus, differ only by a constant, so that inferences based on likelihood ratios
of Lry are justified.

This derivation also provides the answer to a somewhat subtle question that
arises out of our analysis so far: we have assumed throughout that the coarse
data will be analyzed correctly in the coarse data spacsing the observed-data
likelihood Lop. However, interpreting the data §ameans that we still are dealing
with coarse data, because it now is seen to consist of observations of sQpsets
of €, not of complete observationsw, U) € Q. The question then is whether
we have gained anythind:pp really is nothing but the face-value likelihood of
incomplete data in the more sophisticated complete-data spde we thus have
to build a second-order coarse data model on tof2,0dnd so on? The answer is
no, because the coarsening process that turns completéuwddid from 2 into
coarse observation®y always is ignorable: in the second-order coarsening model
we havei, v, 0, = 1iff U’ = U, which means that here the dataés, and the
factorc(6, W) in (7) is always equal to 1.

How can this ignorability result be used in practice? In most cases it is
appealed to simply by stating that tlear and pd assumptions are made,
and that this justifies the use of the face-value likelihood. This, however, is a
rather incomplete justification, becaus# andpd together are not well-defined
modeling assumptions that determine a unique coarse data modelmake the
car and pd assumptions only means to assume that the coarse data mddel
some subset oEq4 (®), and has product forr®” x A’. In the case ofv-car
nontrivial further modeling assumptions may have to be made to ensurpdhat
holds, becaus&.-ca (®) itself usually is not a product. The following example
illustrates the consequences for likelihood-based inferences uwdar. From
Now on we WriteL p car andccar for Lp s, (@), respectively s, (o), and similarly
for &t (®). The underlying® will always be clear from the context.

ExampLE 3.8. Letd® i =1, 2,3, beasin Example 2.2. L&t be a sample
consisting ofU; = {w1, w2}, U2 = {w2, w3}, Uz = {w1, w2, wa}. It is readily
verified that fori =1, 2, 3,

cw-car (0, U) = )‘gi )‘8; )‘8;
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that is, the coarsening parameters given in Table 1 maxinize Ay, - Ay, over
all parameters i y-car (0. It also follows immediately thats-car (0@, U) =
(1/3)% = 1/27. With thesecar-values one obtains the likelihood values shown in
Table 2.

The first two columns of Table 2 show that likelihood ratiodef, andL p w-car
do not coincide. Also the weaker ignorability condition of identical likelihood
maxima does not apply: p w-car has the two maxim®® and P® (Theorem 4.4
below will show that these are indeed global maximalgfy-car), but of these
only P also maximized.ry. It is not surprising that ignorability here cannot
be established on the basiswfcar alone, becaus&-cor does not satisfyd,
and hence the factots-car (0, U) in (7) are different for differen®. However, in
Section 4.1 we will see that even on the basisvafar alone a useful ignorability
result can be obtained.

Thes-car assumption, on the other hand, yields ignorability in the strong sense
of equal likelihood ratios, becaud®-car = © x As-car Satisfiegpd.

We thus obtain the following picture on the interdependence betweecathe
and pd assumptionss-car as the only modeling assumption on the coarsening
process impliegpd. To obtain ignorability, it therefore is sufficient to stipulate
s-car. When one stipulatesv-car as a modeling assumption, then additional
assumptions are required to make the resulting model also sptisfy must be
realized thapd is itself not a well-defined modeling assumption, because it does
not identify any particular subset of distributions for inclusion in the model. A joint
assumption ofv-car andpd only is possible if suitable further restrictions on either
the complete-data modél or on the coarsening process are made. One possible
restriction on® is to assume a fixed set of support for the distributi®aslf, for
example,® C {#|supportPy) = W}, then Xy-car (®) haspd. However, in most
cases it is not possible to determine a priori the set of support of a categorical data
distribution under investigation, and hence models allowing for different sets of
support have to be used.

A further assumption one can make on the coarsening mechanism is that the
data iscompletely coarsened at random (ccar) [9]. We do not give the precise
definitions here, but only note th&@iccy (@) C Xscar(®) for any ©®, and that
Yecar (@) haspd. Thus ccar, too, guarantees ignorability when it is the only

TABLE 2
Likelihood values

i LFV(O(i)Iu) LP,w'Car(o(i)lcu) LP,s-car(a(i)lcu)

1 1 1-1/27 1-1/27
2 1/4 1/4-4/27 14.1/27
3 4/9 4/9.1/27 4/9.1/27
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modeling assumption on the coarsening mechanism. Howenagrjs considered
to be an unrealistically strong assumption for most applications.

4. Ignorability without parameter distinctness. In the preceding section
we have seen that standard ignorability conditions cannot be established from
the w-car assumption alone, becaudgy-coy does not havepd. In this section
we pursue the question whether some ignorability results can nevertheless be
obtained fromw-car. It turns out that in the case of the saturated complete-data
model® = A" a fairly strong ignorability result for maximum likelihood inference
can be obtained (Section 4.1). For nonsaturated complete-data nsechelss
needed for ignorability. However, with nonsaturated modaidecomes a testable
assumption that, based on the observed data, may have to be rejected against the
not-car alternative (Section 4.2).

The following simple lemma pertains to both saturated and nonsaturated
complete-data models. For the formulation of the lemma we introduce the notation
cw-car (V, W) for ew-car (0, U), whered € © is such that suppaify) =V C W.

As cw-car (0, U) depends ord only through suppo(y), this is unambiguous.
Identity (7) then becomes

9 L p w-car (0|U) = cw-car (SUPPOItPy), U)Lrv (0| U).
The following lemma is immediate from the definitions.

4.1. The saturated model. For this section let® = A" be the saturated
complete-data model. We immediately obtain a weak ignorability result.

THEOREM4.2. Letd € A" bea local maximum of Ley(-|U). Then § is also
alocal maximumof L p w-car (:-|U).

PROOF.  Let 6 be a local maximum ofLpy(0|U). There exists a neighbor-
hood ® of # such that for every € ® we have suppo(¥;) 2 supportr;).
With (9) and Lemma 4.1 the theorem then follows§.

We next show that local maxima @fy are, in fact, global maxima df p w-car,
thus establishing ignorability in a strong sense for maximum likelihood inference
in the saturated model. For the characterization of the maxim&pQaf-car the
following definitions are needed. The terminology here is adopted from [5].

DEFINITION 4.3. LetQ(W) be as in Definition 2.1. We denote with the
partition {Oy |2 # U € W} of Q. Let m be a probability distribution o and
let Py be a probability distribution ofiV. We say thain and P, arecompatible,
written m ~ Py, if there exist parametevse A", such thatPy ,(Oy) = m(Oy)
for all Oy € ©. We say thain and Py arecar-compatible (written m ~cgr Py) if
there exists suchiae Acyr (0).
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THEOREM4.4. Let ‘uAbeaset of data, and let m be the empirical distribution
induced by U on ©. For 6 € A" with supportP;) =V C W the following are
equivalent:

(@) m ~w-car Pj.

(b) § isaglobal maximumof L p y-car (9] U) in A”.

(¢) Lev(6|U) > 0, and 6 is a local maximum of Lgy(0|U) within {6 €
A" supportPy) = V}.

Theorem 4.4 establishes ignorability for maximum likelihood inference in a
slightly different version from our original formulation in Section 3: it is not the
case thaL p w-car andLpy are (globally) maximized by the samies ©; however,
maximization of Lgy will nevertheless produce the desired maxima @fw-car,
and, moreover, only a local maximum bfy must be found.

The proof of the theorem is preceded by two lemmas. The first one characterizes
maxima of the observed-data likelihood in the saturated coarse data model.

LEMMA 4.5. Let U and m be as in Theorem 4.4. For § € A" then the
following are equivalent:

(i) m~ P,.
(i) 6 isaglobal maximum of L p s (6] U).

PROOF The likelihood Lop(8, A|U) only depends on the marginal &
on @, and is thus maximized whenever this marginal agrees with the empirical
distribution.

The equivalence (&> (ii) follows, because for every empirical distributiem
there exists at least one parame{éari) € Yst(A™) such that the marginal d*é,i
on@ism. O

LEMMA 4.6. Thefollowing are equivalent:

(i) m ~w-car Po.

(i) Forallwe W:Py(w)>0= >y per Vg(&z//)) -1

The proof follows easily from Theorem 3.5.
PROOF OFTHEOREM 4.4.  (a)=(b): m ~w-car P trivially implies m ~ P;.

By Lemma 4.5L p s5t IS maximized byé. Also, Lp st(6|U) > Lp w-car (0|U)
with equality for6 = 6. Henced maximizesL p w-car -

(b)=(c): Immediate from (9).
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(c)=(a): Recall that € A" is written ash = (p1, ..., pn) With p; = Py(w;).
Let D:=1{0 € A"|Lry(@|U) > 0}. Foré € D then

1
§09Lev@W =" > m(Oy)logPy(U)
UCSW :m(Oy)>0

= > m<0U>Iog< > p,-).

UCW:m(0Oy)>0 itwieU
This is differentiable orD, and withU(w;) :={U € W|m(Oy) > 0, w; € U},

SN 0GLevOIU) _ - m(OU)< 5 pv)‘l_ 5 ™00
_ =

api UeU(w;) jiwjeu UeU(w;) Py (U)

[the sum on the right-hand side being interpreted as 0 viltén;) = &)]. For §

as in (c) we have thaf(V) := {0 € A"[supportPy) = V} C D, and the gradient
of (1/N)log Lry(0]U) is orthogonal taS(V) at6. This can be expressed as the
condition that for every’ = (p}, ..., p;,) € S(V)

" m(O . ,
Z( > —PE 5)>(pi—p,->=o,
i=1\UeUw;) (V)
which is equivalent to
m<0U>)A ( m<0U>> ,
> X pi= | X pi-
i:w,«ev(Ueu(wi) Py (U) itwieV \UeU(w;) P3(U)

This implies thatd "y cq;(,,) m(Ov)/P;(U) is a constank that does not depend
on w;, and furthermore

. m(Oy) m(Oy) .
AR PP DD D TG KR PN DI Y
itw;eV itweVUeU(w;) =0 U:m(Oy)>0i:w;jeU "0
= > mOy=L
U:m(Oy)>0

Now (a) follows from Lemma 4.6. O

We remark that (a)—(c) in Theorem 4.4 also are equivalent to:
(d) 4 is a stationary point for the EM algorithm.

We do not give a formal proof here, but emphasize that in the current context
we assume the saturated complete-data model, and thus in (d) also assume that
the EM algorithm operates on the unrestricted parameter spédcerhen the
equivalence (ad>(d) easily follows from the equivalence @f-car and the fair
evidence condition.

For s-car one obtains the following analogue of Theorem 4.4.
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THEOREM4.7. Let U, m beasin Theorem4.4.For RN the following are
equivalent:

(a.) m ~s-car Pé
(b) § isaglobal maximumof L p s-car (9| U) in A”.
(c) 6 isaglobal maximumof Lry(|U) in A”.

The equivalence (-(c) here is immediate from the equality of likelihood
ratios of L p s-car andLpy. The nontrivial implication is (c}>(a). It has (implicitly)
been shown by Gill, van der Laan and Robins [7] in the proof of their first theorem.

EXAMPLE 4.8. Let U be as in Example 3.8. Them(Oy,) = 1/3 for
i =1,2,3. PD and PP arew-car distributions with marginaln on 9. By
Theorem 4.49Y andg@ are global maxima of. p y-car. PV also iss-car, and
thereforedV is a global maximum of. p s car .

In the preceding example we found a single maximunLefscar, and two
distinct maxima ofL p w-car. Gill, van der Laan and Robins [7] showed that for
everym there exist®) with m ~s.car Py, andé is essentially unique [for ang’
with m ~g-car Py it must be the case thadly (U) = Py(U) for all U € U]. Thus
L p scar has an essentially unique maximum. kecar we obtain the following
result on the existence of maximabp w-car -

THEOREM4.9. Let U and m beasin Theorem4.4.Let V € W such that for
alucw

(10) mOy)>0 = VNU#2.

Then there exists § with supportP;) C V and m ~y-car P;.

PrOOF From (10) it follows that.py (6 |U) > 0 for 6 with supportPy) = V.
In particular, Ley(@|U) is not identically zero on the compact séf|
supportPy) € V} and attains a positive maximum at someThe theorem now
follows from Theorem 4.4. (I

Theorem 4.4 in conjunction with Lemma 4.5 provides yet another ignorability
result: maximization ofLgy will yield a parameted with m ~ P;, and thus a
global maximum of_ p s5t. Thus, the use of the face-value likelihood instead of the
observed-data likelihood also is justified when we assume the saturated coarse data
model i (A"). In other words, ignorability holds when the coarsening process
is treated as completely unknown (and the saturated model also is assumed for the
underlying complete data). However, it turns out that ignorability is not really the
issue here, as maximum likelihood solutions for the observed-data likelihood in
the modelZ: (A™) can be found directly without optimizingry: Dempster [5]
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gives an explicit construction of the s@ € A"|m ~ Py}, which briefly is as
follows.

Consider any ordering;,, w;,, ..., w;, of the elements of¥. Now transform
the coarse datd/y, ..., Uy into a sample of complete-data items by interpret-
ing U; as an observation of the firat;, in the given ordering that is an element
of U;. Let Py be the empirical distribution of this completed sample. By consider-
ing all possible orderings dV, one obtains in this way distributior%,, ..., Py,
onW.The set{# € A" |m ~ Py} now is the convex hull of all thesg,,. Moreover,
the empirical distribution of any completion of the data lies in the convex hull of
the Py, .

It thus is very easy to directly determine some maximal likelihood solutions
of Lp s, Simply as the empirical distribution of an arbitrary completion of the
data. An explicit representation of all solutions is obtained by computingall

The problem here is that the Sgte A" |m ~ Py} typically will be very large
(much larger than the s¢b € A"|m ~cr Py}), and therefore inferences based
on the coarse data modEk;(A”™) will be too weak for practical purposes. We
thus see that making tt@ar assumption really serves a second purpose besides
justifying the use of the face-value likelihood: we need to make some assumptions
on the coarsening mechanism, because otherwise our model will be too weak to
support practically useful inferences.

Figure 2 summarizes some of our results in terms of our running example.
Shown is the polytopeA® with the potential lines of the face-value likelihood
Ley(-|W) for U as in Example 3.8. The two distributio®?, P are marked
by circles. They correspond to nonzero maximalLef; relative to distributions
with the same set of support. Marked as diamonds are the distributions obtained
from the extremal data completions for the five possible ordering® off heir
convex hull is the set d compatible with.

From the results of this section we can also retrieve Gill, van der Laan and
Robins’ [7] result that tar is everything,” that is, thecar assumption cannot

(0,0,1)

(1,0,0) (0,1,0)

FIG. 2. Summary of running example.
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be rejected against theot-car alternative based on any observed coarse data
(assuming an underlying saturated complete-data model). This is because by
Theorem 4.9 [and the corresponding result in [7] $arar] there exists for any
observed coarse datacar model with the observed marginal ¢h Gill, van der

Laan and Robins [7] show that the same need not hold for infinite sample spaces.
Further results on the nontestability of ttee assumption in general sample spaces
have been obtained by Cator [1]. In the next section we will seeddratlso
becomes testable for finite sample spaces with a parametric complete-data model.

4.2. Nonsaturated models. Most of the preceding ignorability results are no
longer valid when the complete-data model is Adt Only the weak ignorability
result of Theorem 4.2 can be retained for a wide class of complete-data models.

DEFINITION 4.10. A complete-data modéPy |6 € ©} is support-continuous
if for all 6 € ® there exists a neighborhoady € ® such that suppofP,/) 2
supportPy) for all 8" € Gy.

Virtually all natural parametric models are support-continuous. The proof of
Theorem 4.2 actually has established the following:

THEOREM 4.11. Let {P|0 € ©} be a support-continuous complete-data
model. Every local maximum 6 € ® of Lry(-|U) then is a local maximum of
LP,W‘CaI’(‘lu)-

The following example shows that other results of Section 4.1 cannot be
extended to parametric models.

ExXAMPLE 4.12. LetA and B be two binary random variables. L& =
{AB, AB, AB, AB}, where, for exampleA B represents the state whese= 1
and B = 0. We represent a probability distributioR on W as the tuple
(P(AB), P(AB), P(AB), P(AB)). Define

® ={0 =(a,b)la €[0,1],b €0, 1]},
Py =(ab,a(1—b),(1—a)(1—b), (1—a)b).

Now assume that the dafd consists of six observations of (i.e., the set
{A@,_AE}), three observations d#, three observations & and one observation
of AB.

Figure 3(a) shows a plot of.py(6|U). We can numerically determine the
unigue maximum a8 ~ (0.845, 0.636), which corresponds t&; ~ (0.54,0.31,
0.05,0.1). Restricted to the subsél; :={# € ©|0 <a < 1, b = 1} a local maxi-
mum is attained a&* ~ (0.69, 1), which corresponds t&+ ~ (0.69, 0, 0, 0.31).

The set®; corresponds to the set of suppdit= {AB, AB} of P, that
is, 6 € ®1 & supportPy) = V. Similarly, the set®; :={# € ®|10 < a < 1,
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FiG. 3. Lpy and L p \-car in Example 4.12.

0 < b < 1} contains the parameters that define distributions with full set
of support W. Lp w-car(6|U), therefore, is given by multiplyingLry(6|U)
by cw-car (V, U) when 6 € ®1, and by cy-car (W, U) when 6 € ®,. For all
0 ¢ ®1 U ®» we obtainLgy(9|U) = 0, so that further constanég-car (V/|U) do
not matter. The approximate values for the relevant constantgate(V, U) ~
0.0003 andy-car (W, U) ~ 0.0001.

A plot of Lpw-car(0|U) as given by (9) is shown in Figure 3(b). Note the
discontinuity at the boundary betweé&my and ®, due to the different factors
cw-car (V, W) and cy-car (W, U). It turns out that the global maximum now4s,
rather thard.

Theorem 4.4 allows us to analyze the situation more clearly. It is easy to see
that P = (9/13,0,0,4/13) is a distribution that isw-car-compatible with the
empirical distributionn induced byU. We find thatP = Py« for 6* = (9/13,1) =
(0.6923 1), which thus turns out to be the precise valu@tfvhich initially was
determined numerically. From Theorem 4.4 it now follows tRat has maximal
L p w-car-likelihood score even within the class of all distributions ¥h so that
not only is6* a global maximum in®, but no better solution can be found by
changing the parametric complete-data model.

Under thes-car assumption the maximum likelihood estimateéis Thus,
the two versions oftar here lead to quite different inferences. There also is a
fundamental difference with respect to testability: whileis w-car-compatible
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with m,  is nots-car-compatible withn. Consequently, the-car hypothesis, but
not thew-car hypothesis, can be rejected against the unrestricted alterraive
by a likelihood ratio test (whem is induced by a sufficiently large sample).

We can summarize the results for nonsaturated models as follows: since
Yecar (@) satisfiespd for any parametric mode®, ignorability for likelihood-
based inference is guaranteedsxsar.

Forw-car, even the weak ignorability condition that maximizationZgfy will
give a maximum of p w-car does not hold. The apparent advantags-cdr has to
be interpreted with caution, however: whenever a maximuoh Lgy maximizes
L p scar, but NotL p w-car, then P, cannot bes-car-compatible withm. Loosely
speaking, this means that we obtain ignorability for maximum likelihood inference
throughs-car but not throughw-car only when the data contradicts ttsecar
assumption. The same data, on the other hand, might be consistert-géih
but for inference under the-car assumption the face-value likelihood has to be
corrected with the-cor factors.

5. Conclusion. We can summarize the results of Sections 3 and 4 as follows:
ignorability for maximum likelihood inference and categorical data holds under
any of the following four modeling assumptions: 1. Twecar assumption for
the coarsening mechanism and additional assumptions, such that the resulting
coarse data model satisfipd. 2. Thes-car assumption as the sole assumption
on the coarsening process. 3. The saturated complete-data modaekands the
sole assumption on the coarsening process. 4. The saturated model for both the
complete data and the coarsening mechanism (but here there are more efficient
ways of finding likelihood maxima than by maximizing the face-value likelihood).

In particular, one must be aware of the fact that the joint assumptona- pd
is ambiguous and can be inconsistent. This is becpadss not a well-defined
modeling assumption one is free to make, butael property one has to ensure
by other assumptions.

Overall the ignorability results obtained frosicar are somewhat stronger
than those obtained fromv-car. Points in favor ofw-car, on the other hand, are
its equivalence with the fair evidence condition, and the fact that it is invariant
for different versions of the conditional distribution of observed (coarse) data.
Furthermore, thev-car assumption can be consistent with a given parametric
model and observed data whenar is not (but not vice versa).

Acknowledgments. The author thanks James Robins and Richard Gill for
valuable discussions that clarified the intricacies of the weak-strongear
relationship. The original motivation for this work was in part provided by lan
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