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IGNORABILITY FOR CATEGORICAL DATA

BY MANFRED JAEGER

Aalborg Universitet

We study the problem of ignorability in likelihood-based inference
from incomplete categorical data. Two versions of the coarsened at random
assumption (car) are distinguished, their compatibility with the parameter
distinctness assumption is investigated and several conditions for ignorability
that do not require an extra parameter distinctness assumption are established.

It is shown that car assumptions have quite different implications
depending on whether the underlying complete-data model is saturated or
parametric. In the latter case,car assumptions can become inconsistent with
observed data.

1. Introduction. In a sequence of papers Rubin [15], Heitjan and Rubin [11]
and Heitjan [9, 10] have investigated the question under what conditions a
mechanism that causes observed data to be incomplete or, more generally,coarse,
can be ignored in the statistical analysis of the data. The key condition that has
been identified is that the data should bemissing at random (mar), respectively,
coarsened at random (car). Similar conditions were independently proposed by
Dawid and Dickey [4]. A second condition needed in Rubin’s [15] derivation of
ignorability isparameter distinctness ( pd).

A case of particular practical interest is the one of incomplete or coarse
categorical data. Traditionally associated with the analysis of contingency tables in
terms of log-linear models, categorical data today also plays an important role in
learning probabilistic models for artificial intelligence applications [12]. For these
applications graphical models or Bayesian networks are used [2, 3, 13]. Incomplete
data here is particularly prevalent, and the analysis of Rubin and Heitjan is widely
cited in the field.

In this paper we take a closer look at the way ignorability is established for
likelihood-based inference through thecar andpd assumptions. It is found that
one has to distinguish a weak version ofcar that is given as a condition on the
joint distribution of complete and coarse data, and a strong version ofcar that is
given as a condition on the conditional distribution of the coarse data. The two
versions ofcar lead to quite different theoretical results and practical implications
for likelihood-based inference. We consider in detail the dependencies between
thecar and thepd assumptions, and find that for weakcar these two assumptions
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are incompatible unless further assumptions on the parameter of interest, or on the
coarsening process, are made. In contrast,pd is implied by strongcar (Section 3).
For the case of an underlying saturated complete-data model ignorability results
can be derived from weakcar alone without making thepd assumption. Our
main result identifies the maxima of the observed-data likelihood under either
car assumption as exactly those complete-data distributions that are compatible
with the car assumption and the observed data (Section 4.1). For nonsaturated
complete-data models no analogous results hold. Even for very simple parametric
models car becomes a testable assumption that can be rejected against an
alternative hypothesis (Section 4.2).

2. Coarse data models. We use a very general and abstract model for
categorical data: complete data is taken to consist of realizationsx1, . . . , xN of
independent identically distributed random variablesX1, . . . ,XN that take values
in a finite setW = {w1, . . . ,wn}. Thewi can be the cells of a contingency table, for
instance. The distribution of theXi is assumed to belong to a parametric family
{Pθ |θ ∈ �}, where� ⊆ R

k for somek ∈ N. For this paper the analytic form of
a parametric family will not be important, and only the subset of distributions
contained in the family is relevant. For that reason we may generally assume that

� ⊆ �n :=
{
(p1, . . . , pn) ∈ [0,1]n∣∣∑pi = 1

}
with

Pθ(wi) = pi, θ = (p1, . . . , pn) ∈ �.

Any � ⊆ �n is called acomplete-data model.� = �n is thesaturated complete-
data model. In the saturated model, as well as in most of the important parametric
models for categorical data (e.g., log-linear models), different parametersθ, θ ′ may
define distributionsPθ,Pθ ′ with different sets of support. Most of the results of this
paper address difficulties that arise out of this.

When data is incomplete, then the exact valuexi of Xi is not observed.
According to the general coarse data model of Heitjan and Rubin [11] one observes
instead a subsetUi of W . More specifically, Heitjan and Rubin model coarse data
by introducing additional coarsening variablesGi , and takingUi to be a function
Y(xi, gi) of the complete dataxi and the valuegi of the coarsening variable.
In the following definition we take a slightly different approach, and model the
coarsening process directly by a joint distribution ofXi and the observed coarse
dataUi . For categorical data this is simpler, and avoids a sometimes artificial
construction of a suitable coarsening variable.

DEFINITION 2.1. LetW = {w1, . . . ,wn}. Thecoarse data space for W is

�(W) := {(w,U)|w ∈ W,U ⊆ W :w ∈ U}.
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FIG. 1. Coarse data space.

When specific reference toW is not needed, we write� for �(W). An
element(w,U) ∈ � stands for the event that the true value of aW -valued random
variableX is w and the coarse valueU is observed. A subsetU ⊆ W defines
two different subsets in�: OU := {(w,U) ∈ �|w :w ∈ U}, which is the event
that U is observed, and the event{(w,U ′) ∈ �|w,U ′ :w ∈ U} that the value
of X lies in U (and someU ′ is observed). This latter subset of� is simply
denoted byU , and is not strictly distinguished fromU as an event in the sample
spaceW . Figure 1 illustrates these definitions for a three-element complete-data
spaceW = {w1,w2,w3}. The elements of�(W) correspond to the unfilled cells in
this graphical representation. ForU = {w2,w3} the eventsOU andU (as a subset
of �) are outlined.

A distribution P on � is parameterized by the parametersθ defining the
marginal distribution onW , and parameters

λw,U := P
(
(w,U)|w)

, (w,U) ∈ �,

defining the coarsening process.

EXAMPLE 2.2. Table 1 specifies distributionsP (i), i = 1,2,3, on �({w1,

w2,w3}) through parametersθ(i) on W and conditional probabilitiesλ(i).
For w with Pθ(w) = 0 parametersλw,U are shown in brackets. Changing these
parameters to arbitrary other values just leads to a different version of the
conditional distribution of coarse observations given complete data, and has no
influence on the joint distribution.

As in this example, we generally assume that parametersλw,U exist even when
Pθ(w) = 0 (rather than treating them as undefined), because in that way the
parameter space�n for theλ-parameters does not depend onθ :

�n :=
{
(λw,U )w∈W,U⊆W : w∈U |λw,U ∈ [0,1]; ∀w :

∑
U : w∈U

λw,U = 1

}
.
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TABLE 1
Parameters for distributions P (1),P (2),P (3)

λ(i)

θ(i) {w1} {w2} {w3} {w1,w2} {w1,w3} {w2,w3} {w1,w2,w3}
i = 1 w1 0 [1/3] [1/3] [0] [1/3]

w2 1 0 1/3 1/3 1/3
w3 0 [1/3] [0] [1/3] [1/3]

i = 2 w1 1/2 0 2/3 0 1/3
w2 0 [1/3] [2/3] [0] [0]
w3 1/2 0 0 2/3 1/3

i = 3 w1 1/3 1/3 1/3 0 1/3
w2 1/3 0 1/3 1/3 1/3
w3 1/3 1/3 0 1/3 1/3

Any subset� ⊆ �n × �n is called acoarse data model. Such a model
encodes assumptions both on the underlying complete data distribution and on
the coarsening process. The complete-data model underlying� is

� = {θ ∈ �n|∃λ : (θ, λ) ∈ �}.
We sometimes write�(�) for � to emphasize the underlying complete-data
model. We denote with�sat(�) = � × �n the saturated coarsening model with
underlying�.

A sample of coarse data itemsU = U1, . . . ,UN (Ui ⊆ W ) is interpreted with
respect to a coarse data model as observations of eventsOUi

in �, and gives rise
to theobserved-data likelihood for θ andλ,

LOD(θ, λ|U) :=
N∏

i=1

Pθ,λ

(
OUi

)
.(1)

When ignoring the coarsening process, the data itemsUi are simply interpreted as
subsets ofW and give rise to theface-value likelihood [4] for θ ,

LFV(θ |U) :=
N∏

i=1

Pθ(Ui).(2)

3. Ignorability. The question of ignorability is under what conditions infer-
ences aboutθ based on the face-value likelihood will be the same as obtained
from the observed-data likelihood. These conditions will depend on the inference
methods used [15]. Here we focus on the problem of ignorability for likelihood-
based inference, with special emphasis on maximum likelihood estimation, which
plays an important role in practice through the widespread use of the EM algo-
rithm [6, 14].
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For likelihood-based inference aboutθ , the observed-data likelihood will
typically be reduced to theprofile-likelihood

LP,�(θ |U) := max
λ : (θ,λ)∈�

LOD(θ, λ|U).(3)

To make the profile-likelihood well defined for allθ , we restrict ourselves to
models� for which{λ|(θ, λ) ∈ �} is closed for everyθ ∈ �, so that the maximum
in (3) is attained. In our notation we make explicit that the profile-likelihood is not
only a function ofθ andU, but also of the coarse data model�.

Moving from the observed-data likelihood to the profile-likelihood enables us
to treat inference both with and without taking the coarsening process into account
as inference with a likelihood function of only the parameter of interest,θ . In
particular, we obtain succinct formulations of ignorability questions: under what
conditions on� are likelihood ratiosLP,�(θ)/LP,�(θ ′) and LFV(θ)/LFV(θ ′)
equal for allθ, θ ′; under what conditions areLP,� andLFV maximized by the
same valuesθ ∈ �?

In the following we formulate thecar and parameter distinctness assumptions
as such modeling assumptions on�. In the case ofcar it turns out that we must
distinguish two different versions.

DEFINITION 3.1. The data isweakly coarsened at random (w-car) according
to Pθ,λ, if for all U ⊆ W and allw,w′ ∈ U

Pθ(w) > 0, Pθ (w
′) > 0 �⇒ λw,U = λw′,U .(4)

DEFINITION 3.2. The data isstrongly coarsened at random (s-car) according
to Pθ,λ, if for all U ⊆ W and allw,w′ ∈ U

λw,U = λw′,U .(5)

The difference between weak and strongcar, thus, is thats-car also imposes
a restriction on conditional probabilitiesPθ,λ(OU |w) when P(w) = 0. This is
the version ofcar used by Gill, van der Laan and Robins [7] for categorical
data. Underlying this version ofcar is the notion ofcar being a condition on
the coarsening mechanism alone, which must be formulated without reference to
the underlying complete-data distribution. Weakcar, on the other hand, appears
to be the more appropriate version whencar is seen as a condition on the joint
distribution of complete and coarsened data.

Gill, van der Laan and Robins ([7], page 274) also give a definition forcar
in general sample spaces. In contrast to their definitions in the discrete setup,
that definition reduces for finite sample spaces tow-car, not s-car. They pose
as an open problem whether (in the terminology established by our preceding
definitions) it is always possible to turn aw-car model into ans-car model by
a suitable setting of theλw,U -parameters for thosew with Pθ(w) = 0. Our next
example shows that this is not the case.
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EXAMPLE 3.3. All distributions in Table 1 arew-car, but onlyP (1) andP (3)

are s-car: to check thew-car condition it only is necessary to verify that all
unbracketedλw,U in a column are pairwise equal. Fors-car also equality of
the bracketed parameters is required. This condition is violated in the last two
columns forP (2). Moreover, it is not possible to replace the bracketedλ(2)-values
with different conditional probabilities in a way thats-car is satisfied, because the
conditional probabilities for the observations{w1,w2}, {w2,w3} and{w1,w2,w3}
would have to add up to 5/3.

In the following we writecar when we wish to refer uniformly to both versions
of car, for example, in definitions that can be analogously given for both versions,
or in statements that hold for both versions.

WhenPθ,λ satisfiescar we denote parametersλw,U simply withλU . In the case
of w-car this denotes the parameterλw,U common for allw of positive probability.
WhenPθ(U) = 0, thenλU is not well defined forw-car. We denote with�car(�)

the subset of�sat(�) consisting of those parameters according to which the data
is car. For θ ∈ � we denote with�w-car(θ) the set ofλ ∈ �n that satisfy (4).
Thus,�w-car(�) = {(θ, λ)|θ ∈ �,λ ∈ �w-car(θ)}. From Definition 3.1 it follows
that support(Pθ ) ⊆ support(Pθ ′) implies�w-car(θ) ⊇ �w-car(θ

′). Fors-car we can
simply define the set�s-car of coarsening parameters that satisfy (5), and have
�s-car(�) = � × �s-car.

The following definition provides an important alternative characterization of
w-car.

DEFINITION 3.4. Pθ,λ satisfies thefair evidence condition if for all w,U with
w ∈ U ,

Pθ,λ(OU) > 0 �⇒ Pθ,λ(w|OU) = Pθ(w|U).(6)

The fair evidence condition is necessary to justify updating a probability
distribution by conditioning when an observation is made that establishes the
actual state to be a member ofU [8]. We now obtain:

THEOREM 3.5. The following are equivalent for Pθ,λ:

(a) Pθ,λ satisfies w-car.
(b) Pθ,λ satisfies the fair evidence condition.
(c) For all w,U with w ∈ U and Pθ(w) > 0,

Pθ,λ(OU |w) = Pθ,λ(OU)/Pθ(U).

PROOF. (a)⇒(b): If Pθ,λ(OU |w) = Pθ,λ(OU |w′) for all w,w′ ∈ U with
Pθ(w),Pθ (w

′) > 0, then this value is equal toPθ,λ(OU |U). Assume that
Pθ(w) > 0 [otherwise there is nothing to show for (6)]. UsingPθ,λ(U |OU) = 1,
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then Pθ,λ(w|OU) = Pθ,λ(OU |w)Pθ(w)/Pθ,λ(OU) = Pθ,λ(OU |U)Pθ(w)/

Pθ,λ(OU) = Pθ,λ(U |OU)Pθ(w)/Pθ (U) = Pθ(w|U).
(b)⇒(c): Let w ∈ U with Pθ(w) > 0. ThenPθ,λ(OU |w) = Pθ,λ(w|OU) ×

Pθ,λ(OU)/Pθ(w) = Pθ(w|U)Pθ,λ(OU)/Pθ(w) = Pθ,λ(OU)/Pθ(U).
(c)⇒(a): Obvious. �

EXAMPLE 3.6. To check the fair evidence condition for the distributions
of Table 1, one has to verify that for each observationOU , normalizing all
nonbracketed entries in theλ-column forOU yields the conditional distribution
of Pθ onU .

One might suspect that one can also obtain a “strong fair evidence condition” by
considering the normalization of both the bracketed and the unbracketedλ-entries,
and that this strong version of the fair evidence condition would be equivalent to
s-car. However, already forP (1) (which iss-car), we see that forU = {w1,w2} the
normalization of the column forOU gives(1/2,1/2) onU , which is notPθ(·|U).

Gill, van der Laan and Robins ([7], page 260) claim the equivalence of the
fair evidence condition ands-car. However, as our results show, fair evidence is
equivalent tow-car, not s-car. (The error in the proof of Gill, van der Laan and
Robins [7] lies in an (implicit) application of Bayes rule to conditioning events
of zero probability.) A correct proof of the equivalence (a)⇔(b) also is given by
Grünwald and Halpern [8]. We consider the equivalence with the fair evidence
condition to be an important point in favor ofw-car as opposed tos-car.

Weak and strongcar are modeling assumptions that identify certain coarse data
distributions for inclusion in our model. The second condition usually required for
ignorability, parameter distinctness, on the other hand, is a global condition on the
structure of the coarse data model.

DEFINITION 3.7. A coarse data model� satisfiesparameter distinctness
( pd) iff � = � × � for some� ⊆ �n,� ⊆ �n.

From car and pd ignorability for likelihood-based inference can be derived.
We next restate Rubin’s proof of this result, in a way that clearly separates the
contributions made bycar and pd. To begin, assume that� ⊆ �car, and let
(θ, λ) ∈ �. Let U be a sample withPθ(Ui) > 0 for i = 1, . . . ,N . Now

LOD(θ, λ|U) =
N∏

i=1

Pθ,λ

(
OUi

) =
N∏

i=1

∑
w∈Ui

Pθ,λ

(
(w,Ui)

)

=
N∏

i=1

λUi

∑
w∈Ui

Pθ (w) =
N∏

i=1

λUi
Pθ (Ui).
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Thus

LP,�(θ |U) = c�(θ,U)LFV(θ |U),(7)

where

c�(θ,U) := max
λ : (θ,λ)∈�

N∏
i=1

λUi
.(8)

Now assume, too, thatpd holds, that is,� = � × �. The right-hand side of (8)
then simply becomes maxλ∈�

∏N
i=1 λUi

, which no longer depends onθ . LP,� and
LFV, thus, differ only by a constant, so that inferences based on likelihood ratios
of LFV are justified.

This derivation also provides the answer to a somewhat subtle question that
arises out of our analysis so far: we have assumed throughout that the coarse
data will be analyzed correctly in the coarse data space� using the observed-data
likelihoodLOD. However, interpreting the data in� means that we still are dealing
with coarse data, because it now is seen to consist of observations of subsetsOU

of �, not of complete observations(w,U) ∈ �. The question then is whether
we have gained anything:LOD really is nothing but the face-value likelihood of
incomplete data in the more sophisticated complete-data space�. Do we thus have
to build a second-order coarse data model on top of�, and so on? The answer is
no, because the coarsening process that turns complete data(w,U) from � into
coarse observationsOU always is ignorable: in the second-order coarsening model
we haveλ(w,U ′),OU

= 1 iff U ′ = U , which means that here the data iscar, and the
factorc(θ,U) in (7) is always equal to 1.

How can this ignorability result be used in practice? In most cases it is
appealed to simply by stating that thecar and pd assumptions are made,
and that this justifies the use of the face-value likelihood. This, however, is a
rather incomplete justification, becausecar andpd together are not well-defined
modeling assumptions that determine a unique coarse data model�. To make the
car andpd assumptions only means to assume that the coarse data model� is
some subset of�car(�), and has product form�′ × �′. In the case ofw-car,
nontrivial further modeling assumptions may have to be made to ensure thatpd
holds, because�w-car(�) itself usually is not a product. The following example
illustrates the consequences for likelihood-based inferences underw-car. From
now on we writeLP,car andccar for LP,�car(�), respectivelyc�car(�), and similarly
for �sat(�). The underlying� will always be clear from the context.

EXAMPLE 3.8. Letθ(i), i = 1,2,3, be as in Example 2.2. LetU be a sample
consisting ofU1 = {w1,w2}, U2 = {w2,w3}, U3 = {w1,w2,w3}. It is readily
verified that fori = 1,2,3,

cw-car
(
θ(i),U

) = λ
(i)
U1

· λ(i)
U2

· λ(i)
U3

,
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that is, the coarsening parameters given in Table 1 maximizeλU1 · λU2 · λU3 over
all parameters in�w-car(θ

i). It also follows immediately thatcs-car(θ
(i),U) =

(1/3)3 = 1/27. With theseccar-values one obtains the likelihood values shown in
Table 2.

The first two columns of Table 2 show that likelihood ratios ofLFV andLP,w-car
do not coincide. Also the weaker ignorability condition of identical likelihood
maxima does not apply:LP,w-car has the two maximaP (1) andP (2) (Theorem 4.4
below will show that these are indeed global maxima ofLP,w-car), but of these
only P (1) also maximizesLFV. It is not surprising that ignorability here cannot
be established on the basis ofw-car alone, because�w-car does not satisfypd,
and hence the factorscw-car(θ,U) in (7) are different for differentθ . However, in
Section 4.1 we will see that even on the basis ofw-car alone a useful ignorability
result can be obtained.

Thes-car assumption, on the other hand, yields ignorability in the strong sense
of equal likelihood ratios, because�s-car = � × �s-car satisfiespd.

We thus obtain the following picture on the interdependence between thecar
and pd assumptions:s-car as the only modeling assumption on the coarsening
process impliespd. To obtain ignorability, it therefore is sufficient to stipulate
s-car. When one stipulatesw-car as a modeling assumption, then additional
assumptions are required to make the resulting model also satisfypd. It must be
realized thatpd is itself not a well-defined modeling assumption, because it does
not identify any particular subset of distributions for inclusion in the model. A joint
assumption ofw-car andpd only is possible if suitable further restrictions on either
the complete-data model� or on the coarsening process are made. One possible
restriction on� is to assume a fixed set of support for the distributionsPθ . If, for
example,� ⊆ {θ |support(Pθ ) = W }, then�w-car(�) haspd. However, in most
cases it is not possible to determine a priori the set of support of a categorical data
distribution under investigation, and hence models allowing for different sets of
support have to be used.

A further assumption one can make on the coarsening mechanism is that the
data iscompletely coarsened at random (ccar) [9]. We do not give the precise
definitions here, but only note that�ccar(�) ⊆ �s-car(�) for any �, and that
�ccar(�) has pd. Thus ccar, too, guarantees ignorability when it is the only

TABLE 2
Likelihood values

i LFV(θ(i)|U) LP,w-car (θ(i)|U) LP,s-car (θ(i)|U)

1 1 1· 1/27 1· 1/27
2 1/4 1/4 · 4/27 1/4 · 1/27
3 4/9 4/9 · 1/27 4/9 · 1/27
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modeling assumption on the coarsening mechanism. However,ccar is considered
to be an unrealistically strong assumption for most applications.

4. Ignorability without parameter distinctness. In the preceding section
we have seen that standard ignorability conditions cannot be established from
the w-car assumption alone, because�w-car does not havepd. In this section
we pursue the question whether some ignorability results can nevertheless be
obtained fromw-car. It turns out that in the case of the saturated complete-data
model� = �n a fairly strong ignorability result for maximum likelihood inference
can be obtained (Section 4.1). For nonsaturated complete-data modelss-car is
needed for ignorability. However, with nonsaturated modelscar becomes a testable
assumption that, based on the observed data, may have to be rejected against the
not-car alternative (Section 4.2).

The following simple lemma pertains to both saturated and nonsaturated
complete-data models. For the formulation of the lemma we introduce the notation
cw-car(V ,U) for cw-car(θ,U), whereθ ∈ � is such that support(Pθ ) = V ⊆ W .
As cw-car(θ,U) depends onθ only through support(Pθ ), this is unambiguous.
Identity (7) then becomes

LP,w-car(θ |U) = cw-car
(
support(Pθ ),U

)
LFV(θ |U).(9)

The following lemma is immediate from the definitions.

LEMMA 4.1. Let V ⊆ V ′ ⊆ W . Then cw-car(V ,U) ≥ cw-car(V
′,U).

4.1. The saturated model. For this section let� = �n be the saturated
complete-data model. We immediately obtain a weak ignorability result.

THEOREM 4.2. Let θ̂ ∈ �n be a local maximum of LFV(·|U). Then θ̂ is also
a local maximum of LP,w-car(·|U).

PROOF. Let θ̂ be a local maximum ofLFV(θ |U). There exists a neighbor-
hood �̃ of θ̂ such that for everyθ̃ ∈ �̃ we have support(Pθ̃ ) ⊇ support(P

θ̂
).

With (9) and Lemma 4.1 the theorem then follows.�

We next show that local maxima ofLFV are, in fact, global maxima ofLP,w-car,
thus establishing ignorability in a strong sense for maximum likelihood inference
in the saturated model. For the characterization of the maxima ofLP,w-car the
following definitions are needed. The terminology here is adopted from [5].

DEFINITION 4.3. Let�(W) be as in Definition 2.1. We denote withO the
partition {OU |∅ �= U ⊆ W } of �. Let m be a probability distribution onO and
let Pθ be a probability distribution onW . We say thatm andPθ arecompatible,
written m ∼ Pθ , if there exist parametersλ ∈ �n, such thatPθ,λ(OU) = m(OU)

for all OU ∈ O. We say thatm andPθ arecar-compatible (written m ∼car Pθ ) if
there exists such aλ ∈ �car(θ).
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THEOREM 4.4. Let U be a set of data, and let m be the empirical distribution
induced by U on O. For θ̂ ∈ �n with support(P

θ̂
) = V ⊆ W the following are

equivalent:

(a) m ∼w-car P
θ̂
.

(b) θ̂ is a global maximum of LP,w-car(θ |U) in �n.
(c) LFV(θ̂ |U) > 0, and θ̂ is a local maximum of LFV(θ |U) within {θ ∈

�n|support(Pθ ) = V }.

Theorem 4.4 establishes ignorability for maximum likelihood inference in a
slightly different version from our original formulation in Section 3: it is not the
case thatLP,w-car andLFV are (globally) maximized by the sameθ ∈ �; however,
maximization ofLFV will nevertheless produce the desired maxima ofLP,w-car,
and, moreover, only a local maximum ofLFV must be found.

The proof of the theorem is preceded by two lemmas. The first one characterizes
maxima of the observed-data likelihood in the saturated coarse data model.

LEMMA 4.5. Let U and m be as in Theorem 4.4. For θ̂ ∈ �n then the
following are equivalent:

(i) m ∼ P
θ̂
.

(ii) θ̂ is a global maximum of LP,sat(θ |U).

PROOF. The likelihoodLOD(θ, λ|U) only depends on the marginal ofPθ,λ

on O, and is thus maximized whenever this marginal agrees with the empirical
distribution.

The equivalence (i)⇔(ii) follows, because for every empirical distributionm
there exists at least one parameter(θ̂ , λ̂) ∈ �sat(�

n) such that the marginal ofP
θ̂,λ̂

onO is m. �

LEMMA 4.6. The following are equivalent:

(i) m ∼w-car Pθ .
(ii) For all w ∈ W :Pθ(w) > 0⇒ ∑

U : w∈U
m(OU)
Pθ (U)

= 1.

The proof follows easily from Theorem 3.5.

PROOF OFTHEOREM 4.4. (a)⇒(b): m ∼w-car P
θ̂

trivially implies m ∼ P
θ̂
.

By Lemma 4.5LP,sat is maximized byθ̂ . Also, LP,sat(θ |U) ≥ LP,w-car(θ |U)

with equality forθ = θ̂ . Henceθ̂ maximizesLP,w-car.

(b)⇒(c): Immediate from (9).
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(c)⇒(a): Recall thatθ ∈ �n is written asθ = (p1, . . . , pn) with pi = Pθ(wi).
Let D := {θ ∈ �n|LFV(θ |U) > 0}. Forθ ∈ D then

1

N
logLFV(θ |U) = ∑

U⊆W : m(OU)>0

m(OU) logPθ(U)

= ∑
U⊆W : m(OU)>0

m(OU) log

( ∑
i : wi∈U

pi

)
.

This is differentiable onD, and withU(wi) := {U ⊆ W |m(OU) > 0,wi ∈ U},
∂(1/N) logLFV(θ |U)

∂pi

= ∑
U∈U(wi)

m(OU)

( ∑
j : wj∈U

pj

)−1

= ∑
U∈U(wi)

m(OU)

Pθ(U)

[the sum on the right-hand side being interpreted as 0 whenU(wi) = ∅)]. For θ̂

as in (c) we have thatS(V ) := {θ ∈ �n|support(Pθ ) = V } ⊆ D, and the gradient
of (1/N) logLFV(θ |U) is orthogonal toS(V ) at θ̂ . This can be expressed as the
condition that for everyθ ′ = (p′

1, . . . , p
′
n) ∈ S(V )

n∑
i=1

( ∑
U∈U(wi)

m(OU)

P
θ̂
(U)

)
(p̂i − p′

i ) = 0,

which is equivalent to

∑
i : wi∈V

( ∑
U∈U(wi)

m(OU)

P
θ̂
(U)

)
p̂i = ∑

i : wi∈V

( ∑
U∈U(wi)

m(OU)

P
θ̂
(U)

)
p′

i .

This implies that
∑

U∈U(wi)
m(OU)/P

θ̂
(U) is a constantk that does not depend

onwi , and furthermore

k = k
∑

i : wi∈V

p̂i = ∑
i : wi∈V

∑
U∈U(wi)

m(OU)

P
θ̂
(U)

p̂i = ∑
U : m(OU)>0

∑
i : wi∈U

m(OU)

P
θ̂
(U)

p̂i

= ∑
U : m(OU)>0

m(OU) = 1.

Now (a) follows from Lemma 4.6. �

We remark that (a)–(c) in Theorem 4.4 also are equivalent to:

(d) θ̂ is a stationary point for the EM algorithm.

We do not give a formal proof here, but emphasize that in the current context
we assume the saturated complete-data model, and thus in (d) also assume that
the EM algorithm operates on the unrestricted parameter space�n. Then the
equivalence (a)⇔(d) easily follows from the equivalence ofw-car and the fair
evidence condition.

For s-car one obtains the following analogue of Theorem 4.4.
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THEOREM 4.7. Let U,m be as in Theorem 4.4.For θ̂ ∈ �n the following are
equivalent:

(a) m ∼s-car P
θ̂
.

(b) θ̂ is a global maximum of LP,s-car(θ |U) in �n.
(c) θ̂ is a global maximum of LFV(θ |U) in �n.

The equivalence (b)⇔(c) here is immediate from the equality of likelihood
ratios ofLP,s-car andLFV. The nontrivial implication is (c)⇒(a). It has (implicitly)
been shown by Gill, van der Laan and Robins [7] in the proof of their first theorem.

EXAMPLE 4.8. Let U be as in Example 3.8. Thenm(OUi
) = 1/3 for

i = 1,2,3. P (1) and P (2) are w-car distributions with marginalm on O. By
Theorem 4.4,θ(1) andθ(2) are global maxima ofLP,w-car. P (1) also iss-car, and
thereforeθ(1) is a global maximum ofLP,s-car.

In the preceding example we found a single maximum ofLP,s-car, and two
distinct maxima ofLP,w-car. Gill, van der Laan and Robins [7] showed that for
everym there existsθ with m ∼s-car Pθ , andθ is essentially unique [for anyθ ′
with m ∼s-car Pθ ′ it must be the case thatPθ ′(U) = Pθ(U) for all U ∈ U]. Thus
LP,s-car has an essentially unique maximum. Forw-car we obtain the following
result on the existence of maxima ofLP,w-car.

THEOREM 4.9. Let U and m be as in Theorem 4.4.Let V ⊆ W such that for
all U ⊆ W

m(OU) > 0 �⇒ V ∩ U �= ∅.(10)

Then there exists θ̂ with support(P
θ̂
) ⊆ V and m ∼w-car P

θ̂
.

PROOF. From (10) it follows thatLFV(θ |U) > 0 for θ with support(Pθ ) = V .
In particular, LFV(θ |U) is not identically zero on the compact set{θ |
support(Pθ ) ⊆ V } and attains a positive maximum at someθ̂ . The theorem now
follows from Theorem 4.4. �

Theorem 4.4 in conjunction with Lemma 4.5 provides yet another ignorability
result: maximization ofLFV will yield a parameterθ̂ with m ∼ P

θ̂
, and thus a

global maximum ofLP,sat. Thus, the use of the face-value likelihood instead of the
observed-data likelihood also is justified when we assume the saturated coarse data
model�sat(�

n). In other words, ignorability holds when the coarsening process
is treated as completely unknown (and the saturated model also is assumed for the
underlying complete data). However, it turns out that ignorability is not really the
issue here, as maximum likelihood solutions for the observed-data likelihood in
the model�sat(�

n) can be found directly without optimizingLFV: Dempster [5]
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gives an explicit construction of the set{θ ∈ �n|m ∼ Pθ }, which briefly is as
follows.

Consider any orderingwi1,wi2, . . . ,win of the elements ofW . Now transform
the coarse dataU1, . . . ,UN into a sample of complete-data items by interpret-
ing Uj as an observation of the firstwih in the given ordering that is an element
of Uj . Let Pθ be the empirical distribution of this completed sample. By consider-
ing all possible orderings ofW , one obtains in this way distributionsPθ1, . . . ,Pθn!
onW . The set{θ ∈ �n|m ∼ Pθ } now is the convex hull of all thesePθi

. Moreover,
the empirical distribution of any completion of the data lies in the convex hull of
thePθi

.
It thus is very easy to directly determine some maximal likelihood solutions

of LP,sat, simply as the empirical distribution of an arbitrary completion of the
data. An explicit representation of all solutions is obtained by computing allPθi

.
The problem here is that the set{θ ∈ �n|m ∼ Pθ } typically will be very large

(much larger than the set{θ ∈ �n|m ∼car Pθ }), and therefore inferences based
on the coarse data model�sat(�

n) will be too weak for practical purposes. We
thus see that making thecar assumption really serves a second purpose besides
justifying the use of the face-value likelihood: we need to make some assumptions
on the coarsening mechanism, because otherwise our model will be too weak to
support practically useful inferences.

Figure 2 summarizes some of our results in terms of our running example.
Shown is the polytope�3 with the potential lines of the face-value likelihood
LFV(·|U) for U as in Example 3.8. The two distributionsP (1),P (2) are marked
by circles. They correspond to nonzero maxima ofLFV relative to distributions
with the same set of support. Marked as diamonds are the distributions obtained
from the extremal data completions for the five possible orderings ofW . Their
convex hull is the set ofθ compatible withm.

From the results of this section we can also retrieve Gill, van der Laan and
Robins’ [7] result that “car is everything,” that is, thecar assumption cannot

FIG. 2. Summary of running example.
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be rejected against thenot-car alternative based on any observed coarse data
(assuming an underlying saturated complete-data model). This is because by
Theorem 4.9 [and the corresponding result in [7] fors-car] there exists for any
observed coarse data acar model with the observed marginal onO. Gill, van der
Laan and Robins [7] show that the same need not hold for infinite sample spaces.
Further results on the nontestability of thecar assumption in general sample spaces
have been obtained by Cator [1]. In the next section we will see thatcar also
becomes testable for finite sample spaces with a parametric complete-data model.

4.2. Nonsaturated models. Most of the preceding ignorability results are no
longer valid when the complete-data model is not�n. Only the weak ignorability
result of Theorem 4.2 can be retained for a wide class of complete-data models.

DEFINITION 4.10. A complete-data model{Pθ |θ ∈ �} is support-continuous
if for all θ ∈ � there exists a neighborhoodGθ ⊆ � such that support(Pθ ′) ⊇
support(Pθ ) for all θ ′ ∈ Gθ .

Virtually all natural parametric models are support-continuous. The proof of
Theorem 4.2 actually has established the following:

THEOREM 4.11. Let {Pθ |θ ∈ �} be a support-continuous complete-data
model. Every local maximum θ̂ ∈ � of LFV(·|U) then is a local maximum of
LP,w-car(·|U).

The following example shows that other results of Section 4.1 cannot be
extended to parametric models.

EXAMPLE 4.12. LetA and B be two binary random variables. LetW =
{AB,AB̄, ĀB, ĀB̄}, where, for example,AB̄ represents the state whereA = 1
and B = 0. We represent a probability distributionP on W as the tuple
(P (AB),P (AB̄), P (ĀB),P (ĀB̄)). Define

� = {θ = (a, b)|a ∈ [0,1], b ∈ [0,1]},
Pθ = (

ab, a(1− b), (1− a)(1− b), (1− a)b
)
.

Now assume that the dataU consists of six observations ofA (i.e., the set
{AB,AB̄}), three observations ofB, three observations of̄B and one observation
of ĀB̄.

Figure 3(a) shows a plot ofLFV(θ |U). We can numerically determine the
unique maximum aŝθ ≈ (0.845,0.636), which corresponds toP

θ̂
≈ (0.54,0.31,

0.05,0.1). Restricted to the subset�1 := {θ ∈ �|0 < a < 1, b = 1} a local maxi-
mum is attained atθ∗ ≈ (0.69,1), which corresponds toPθ∗ ≈ (0.69,0,0,0.31).

The set�1 corresponds to the set of supportV = {AB, ĀB̄} of Pθ , that
is, θ ∈ �1 ⇔ support(Pθ ) = V . Similarly, the set�2 := {θ ∈ �|0 < a < 1,
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FIG. 3. LFV and LP,w-car in Example 4.12.

0 < b < 1} contains the parametersθ that define distributions with full set
of support W . LP,w-car(θ |U), therefore, is given by multiplyingLFV(θ |U)

by cw-car(V ,U) when θ ∈ �1, and by cw-car(W,U) when θ ∈ �2. For all
θ /∈ �1 ∪ �2 we obtainLFV(θ |U) = 0, so that further constantscw-car(V

′|U) do
not matter. The approximate values for the relevant constants arecw-car(V ,U) ≈
0.0003 andcw-car(W,U) ≈ 0.0001.

A plot of LP,w-car(θ |U) as given by (9) is shown in Figure 3(b). Note the
discontinuity at the boundary between�1 and �2 due to the different factors
cw-car(V ,U) andcw-car(W,U). It turns out that the global maximum now isθ∗,
rather thanθ̂ .

Theorem 4.4 allows us to analyze the situation more clearly. It is easy to see
that P = (9/13,0,0,4/13) is a distribution that isw-car-compatible with the
empirical distributionm induced byU. We find thatP = Pθ∗ for θ∗ = (9/13,1) =
(0.6923,1), which thus turns out to be the precise value ofθ∗ which initially was
determined numerically. From Theorem 4.4 it now follows thatPθ∗ has maximal
LP,w-car-likelihood score even within the class of all distributions onW , so that
not only is θ∗ a global maximum in�, but no better solution can be found by
changing the parametric complete-data model.

Under thes-car assumption the maximum likelihood estimate isθ̂ . Thus,
the two versions ofcar here lead to quite different inferences. There also is a
fundamental difference with respect to testability: whileθ∗ is w-car-compatible
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with m, θ̂ is nots-car-compatible withm. Consequently, thes-car hypothesis, but
not thew-car hypothesis, can be rejected against the unrestricted alternative�sat

by a likelihood ratio test (whenm is induced by a sufficiently large sample).

We can summarize the results for nonsaturated models as follows: since
�s-car(�) satisfiespd for any parametric model�, ignorability for likelihood-
based inference is guaranteed bys-car.

For w-car, even the weak ignorability condition that maximization ofLFV will
give a maximum ofLP,w-car does not hold. The apparent advantage ofs-car has to
be interpreted with caution, however: whenever a maximumθ̂ of LFV maximizes
LP,s-car, but notLP,w-car, thenP

θ̂
cannot bes-car-compatible withm. Loosely

speaking, this means that we obtain ignorability for maximum likelihood inference
through s-car but not throughw-car only when the data contradicts thes-car
assumption. The same data, on the other hand, might be consistent withw-car,
but for inference under thew-car assumption the face-value likelihood has to be
corrected with thecw-car factors.

5. Conclusion. We can summarize the results of Sections 3 and 4 as follows:
ignorability for maximum likelihood inference and categorical data holds under
any of the following four modeling assumptions: 1. Thew-car assumption for
the coarsening mechanism and additional assumptions, such that the resulting
coarse data model satisfiespd. 2. Thes-car assumption as the sole assumption
on the coarsening process. 3. The saturated complete-data model andw-car as the
sole assumption on the coarsening process. 4. The saturated model for both the
complete data and the coarsening mechanism (but here there are more efficient
ways of finding likelihood maxima than by maximizing the face-value likelihood).
In particular, one must be aware of the fact that the joint assumptioncar + pd
is ambiguous and can be inconsistent. This is becausepd is not a well-defined
modeling assumption one is free to make, but amodel property one has to ensure
by other assumptions.

Overall the ignorability results obtained froms-car are somewhat stronger
than those obtained fromw-car. Points in favor ofw-car, on the other hand, are
its equivalence with the fair evidence condition, and the fact that it is invariant
for different versions of the conditional distribution of observed (coarse) data.
Furthermore, thew-car assumption can be consistent with a given parametric
model and observed data whens-car is not (but not vice versa).

Acknowledgments. The author thanks James Robins and Richard Gill for
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