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OPTIMAL SMOOTHING IN NONPARAMETRIC
MIXED-EFFECT MODELS1

BY CHONG GU AND PING MA

Purdue University and Harvard University

Mixed-effect models are widely used for the analysis of correlated data
such as longitudinal data and repeated measures. In this article, we study
an approach to the nonparametric estimation of mixed-effect models. We
consider models with parametric random effects and flexible fixed effects,
and employ the penalized least squares method to estimate the models.
The issue to be addressed is the selection of smoothing parameters through
the generalized cross-validation method, which is shown to yield optimal
smoothing for both real and latent random effects. Simulation studies are
conducted to investigate the empirical performance of generalized cross-
validation in the context. Real-data examples are presented to demonstrate
the applications of the methodology.

1. Introduction. Mixed-effect models are widely used for the analysis of data
with correlated errors. The linear mixed-effect models, also known as variance
component models, are of the form

Yi = xT
i β + zT

i b + εi,(1.1)

i = 1, . . . , n, wherexT
i β are the fixed effects,zT

i b are the random effects with
b ∼ N(0,B), andεi ∼ N(0, σ 2) are independent ofb and of each other; see, for
example, [5] and [12]. The unknown parameters areβ, B andσ 2, which are to be
estimated from the data. Nonlinear and nonparametric generalizations of (1.1) can
be found in, for example, [8, 11, 17].

In this article, we consider models of the form

Yi = η(xi) + zT
i b + εi,(1.2)

where the regression functionη(x) is assumed to be a smooth function on a generic
domainX. The model termsη(x) or η(x) + zT b will be estimated using the
penalized (unweighted) least squares method through the minimization of

1

n

n∑
i=1

(
Yi − η(xi) − zT

i b
)2 + 1

n
bT �b + λJ (η),(1.3)
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where the quadratic functionalJ (η) quantifies the roughness ofη and the
smoothing parameterλ controls the trade-off between the goodness-of-fit and the
smoothness ofη; note that if one substitutesσ 2B−1 for � in (1.3), then the first
two terms are proportional to the minus log likelihood of(Y,b). We will treat�
as a tuning parameter likeλ, however, and not be concerned with the estimation
of σ 2B−1. Technically, (1.3) resembles a partial spline model, but with the partial
termszT b penalized.

Absent the random effectszT b, penalized least squares regression has been
studied extensively in the literature; see, for example, [16] and [2] for compre-
hensive treatments of the subject. The models of (1.2) were first considered by
Wang [17], who used penalized marginal likelihood (ofY) to estimateη. Smooth-
ing parameter selection in penalized marginal likelihood estimation with correlated
data was studied by Wang [18], who illustrated the middling performance of vari-
ous versions of cross-validation, in contrast to the more reliable performance of the
generalized maximum likelihood method of Wahba [15] derived under the Bayes
model of smoothing splines. Under the Bayes model,η itself is decomposed into
fixed and random effects, withλJ (η) acting as the minus log likelihood of the
random effects; the generalized maximum likelihood method of Wahba [15] is es-
sentially the popular restricted maximum likelihood method widely used for the
estimation of variance component models.

The purpose of this article is to study the estimation of the model terms in
(1.2) through the minimization of (1.3), with the smoothing parameterλ and the
correlation parameters� selected by the standard generalized cross-validation
method of Craven and Wahba [1], which was developed for independent data. In
some applications, the random effectszT b are physically interpretable, or real, and
in some others,zT b are merely a convenient device for the modeling of variance
components, or latent; for the latter case, the estimation through (1.3) turns the
variance components into “mean components.” For both real and latent random
effects, generalized cross-validation will be shown to yield optimal smoothing,
through asymptotic analysis and numerical simulation. Real-data examples are
also presented to illustrate the applications of the methodology.

The rest of this article is organized as follows. In Section 2 the problem is
formulated and preliminary analysis is conducted. Examples are given in Section 3.
Generalized cross-validation and its optimality are discussed in Section 4, followed
by simulation studies in Section 5. Real-data examples are shown in Section 6.
Proofs of the theorems and lemmas in Section 4 are collected in Section 7. A few
remarks in Section 8 conclude the article.

2. Penalized least squares estimation. Consider the minimization of (1.3)
for η in a q-dimensional space span{ξ1, . . . , ξq}. Functions in the space can be
expressed as

η(x) =
q∑

j=1

cj ξj (x) = ξT (x)c.(2.1)
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Plugging (2.1) into (1.3), one minimizes

(Y − Rc − Zb)T (Y − Rc − Zb) + bT �b + nλcT Qc(2.2)

with respect toc andb, where� > 0 is p × p, R is n × q with the (i, j)th entry
ξj (xi), Z = (z1, . . . , zn)

T is n×p andQ is q ×q with the(j, k)th entryJ (ξj , ξk).
Differentiating (2.2) with respect toc andb and setting the derivatives to 0, one
has (

RT R + nλQ RT Z

ZT R ZT Z + �

)(
c
b

)
=

(
RT Y
ZT Y

)
.(2.3)

Assume that the linear system is solvable, that is, the columns of
(RT

ZT

)
are in the

column space of the left-hand side matrix. A solution of (2.3) is then given by
(

ĉ
b̂

)
=

(
RT R + nλQ RT Z

ZT R ZT Z + �

)+ (
RT Y
ZT Y

)
,

where C+ denotes the Moore–Penrose inverse ofC satisfying CC+C = C,
C+CC+ = C+, (CC+)T = CC+ and(C+C)T = C+C.

Write D = ZT Z + � and E = (RT R + nλQ) − RT ZD−1ZT R. With (2.3)
solvable, one has (

RT R + nλQ RT Z

ZT R D

)(
K

L

)
=

(
RT

ZT

)

for someK andL, which, after some algebra, yieldsEK(I −ZD−1ZT )−1 = RT ,
so the columns ofRT are in the column space ofE. It follows thatEE+RT = RT ,
and in turn(

RT R + nλQ RT Z

ZT R ZT Z + �

)+

=
(

E+ −E+RT ZD−1

−D−1ZT RE+ D−1 + D−1ZT RE+RT ZD−1

)
.

It then follows that

η̂ = Rĉ = RE+RT (I − ZD−1ZT )Y = MY.(2.4)

Similarly, one has

Ŷ = Rĉ + Zb̂

= {(I − ZD−1ZT )RE+RT (I − ZD−1ZT ) + ZD−1ZT }Y = A(λ,�)Y,

where

A(λ,�) = (R,Z)

(
RT R + nλQ RT Z

ZT R ZT Z + �

)+ (
RT

ZT

)

(2.5) = (I − ZD−1ZT )RE+RT (I − ZD−1ZT ) + ZD−1ZT
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is known as the smoothing matrix. Alternatively, for̃E = RT R + nλQ and
D̃ = D − ZT RẼ+RT Z, one may write

(
RT R + nλQ RT Z

ZT R ZT Z + �

)+

=
(

Ẽ+ + Ẽ+RT ZD̃−1ZT RẼ+ −Ẽ+RT ZD̃−1

−D̃−1ZT RẼ+ D̃−1

)
,

yielding the expressions

M = Ã(λ) − Ã(λ)Z
(
ZT (

I − Ã(λ)
)
Z + �

)−1
ZT (

I − Ã(λ)
)
,(2.6)

where Ã(λ) = RẼ+RT is the smoothing matrix when the random effects are
absent, and

A(λ,�) = Ã(λ) + (
I − Ã(λ)

)
Z

(
ZT (

I − Ã(λ)
)
Z + �

)−1
ZT (

I − Ã(λ)
)
.(2.7)

The eigenvalues ofA(λ,�) andÃ(λ) are in the range[0,1].
With the standard formulation of penalized least squares regression, the

minimization of (1.3) is performed in a so-called reproducing kernel Hilbert space
H ⊆ {η :J (η) < ∞} in whichJ (η) is a square seminorm, and the solution resides
in the spaceNJ ⊕ span{RJ (xi, ·), i = 1, . . . , n}, whereNJ = {η :J (η) = 0} is the
null space ofJ (η) andRJ (·, ·) is the so-called reproducing kernel inH �NJ . The
solution has an expression

η(x) =
m∑

i=1

dνφν(x) +
n∑

i=1

c̃iRJ (xi, x),(2.8)

where {φν}mν=1 is a basis ofNJ . It follows that R = (S, Q̃), where S is
n × m with the (i, ν)th entry φν(xi) and Q̃ is n × n with the (i, j)th entry
RJ (xi, xj ). From the property of reproducing kernels, it can also be shown
that J (RJ (xi, ·),RJ (xj , ·)) = RJ (xi, xj ), soQ = diag(O, Q̃). See, for example,
[2] and [16]. The linear system (2.3) is thus solvable as long asZ is of full column
rank.

For fast computation, Kim and Gu [9] consider the spaceNJ ⊕ span{RJ (zj , ·),
j = 1, . . . , q̃}, where{zj } are a random subset of{xi}. In that setting,R = (S, R̃),
whereR̃ is n × q̃ with the (i, j)th entryRJ (zj , xi), andQ = diag(O, Q̃), where
Q̃ is q̃ × q̃ with the (j, k)th entry RJ (zj , zk). SinceJ (η) is a square norm in
span{RJ (zj , ·), j = 1, . . . , q̃}, it can be shown that the columns ofR̃T are in the
column space of̃Q. It then follows that the linear system (2.3) is solvable whenZ

is of full column rank.
The formulation of (2.1) and (2.2) also covers general penalized regression

splines, so long as (2.3) is solvable. A sufficient condition is for bothR andZ

to be of full column rank.
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3. Examples. A few examples are in order to illustrate the formulation of the
problem and the potential applications of the method under study. The examples
will be employed in the simulation study of Section 5 and the data analysis of
Section 6.

EXAMPLE 3.1 (Growth curves). Consider the “growth” over time of a certain
quantity associated withp subjects,

Yi = η(xi) + bsi + εi,

where Yi is the ith observation taken at timexi ∈ [0, a] from subject si ∈
{1, . . . , p}, andbs ∼ N(0, σ 2

s ) are the subject random effects, independent of the
measurement errorεi and of each other. In this setting,B = σ 2

s I , so thep × p

matrix � is diagonal with only one tunable parameter. The random effectsbs are
real.

TakingJ (η) = ∫ a
0 (d2η/dx2)2 dx, one has the cubic smoothing spline, with the

φν andRJ functions in (2.8) given by

φ1(x) = 1, φ2(x) = x, RJ (x1, x2) =
∫ a

0
(x1 − u)+(x2 − u)+ du,

where(·)+ = max(·,0). See, for example, [2], Section 2.3.1. The null space model
has the expressionη(x) = β0 + β1x.

TakingJ (η) = ∫ a
0 (Lθη)2hθ dx, whereLθ = (d/dx)(d/dx + θ) andhθ = e3θx

for someθ > 0, one has a (negative) exponential spline. The null space model has
the expressionη(x) = β0 + β1e

−θx . Transformingx by x̃ = (1 − e−θx)/θ , it can
be shown that ∫ a

0
(Lθη)2hθ dx =

∫ ã

0
(d2η/dx̃2)2 dx̃,

where ã = (1 − e−θa)/θ , so one has a cubic spline iñx. See, for example, [2],
Example 4.7, Section 4.3.4. Note that the exponential spline reduces to the cubic
spline inx whenθ = 0.

SupposeY is the logarithm of the measurementỸ satisfying a log-normal
distribution withµ = η(x) + bs andσ 2 a constant; the mean of̃Y is known to
be exp(µ + σ 2/2). The null space model of the cubic spline characterizes an
exponential growth curve for̃Y , and the null space model of the exponential spline
corresponds to a Gompertz growth curve forỸ . The splines allow departures from
these parametric growth curves.

EXAMPLE 3.2 (Growth under treatment). Consider the setting of Exam-
ple 3.1, but with thep subjects divided intot treatment groups. The fixed effect
becomesη(x, τ ), whereτ ∈ {1, . . . , t} denotes the treatment level. For the identifi-
ability of η(x, τ ) andbs , one needs more than one subject per treatment level. One
may decompose

η(x, τ ) = η∅ + η1(x) + η2(τ ) + η1,2(x, τ ),
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whereη∅ is a constant,η1(x) is a function ofx satisfyingη1(0) = 0, η2(τ ) is a
function of τ satisfying

∑t
τ=1 η2(τ ) = 0, andη1,2(x, τ ) satisfiesη1,2(0, τ ) = 0,

∀ τ , and
∑t

τ=1 η1,2(x, τ ) = 0, ∀x. The termη∅ + η1(x) is the “average growth”
and the termη2(τ ) + η1,2(x, τ ) is the “contrast growth.”

For flexible models one may use

J (η) = θ−1
1

∫ a

0
(d2η1/dx2)2 dx + θ−1

1,2

∫ a

0

t∑
τ=1

(d2η1,2/dx2)2 dx,

which has a null spaceNJ of dimension 2t . A set ofφν is given by
{
1, x, I[τ=j ] − 1/t,

(
I[τ=j ] − 1/t

)
x, j = 1, . . . , t − 1

}
,

and the functionRJ is given by

RJ (x1, τ1;x2, τ2) = θ1

∫ a

0
(x1 − u)+(x2 − u)+ du

+ θ1,2
(
I[τ1=τ2] − 1/t

) ∫ a

0
(x1 − u)+(x2 − u)+ du.

See, for example, [2], Section 2.4.4, Problem 2.14(c). To force an additive model
η(x, τ ) = η∅ + η1(x) + η2(τ ), which yields parallel growth curves at different
treatment levels, one may setθ1,2 = 0 and remove(I[τ=j ] − 1/t)x from the list
of φν . One may also choose to transformx through x̃ = (1 − e−θx)/θ and fit
models on thẽx scale.

EXAMPLE 3.3 (Clustered observations). Consider observations fromp clus-
ters, such as in multicenter studies,Yi = η(xi) + ε̃i , whereYi is taken from clus-
terci with covariatexi . Observations from different clusters are independent, while
observations from the same cluster may be correlated to various degrees. The in-
tracluster correlation may be modeled viaε̃i = bci

+ εi , whereb ∼ N(0,B), with
B = diag(σ 2

1 , . . . , σ 2
p), andε ∼ N(0, σ 2I ), independent of each other; the intra-

cluster correlation in clusterci is given byσ 2
i /(σ 2 +σ 2

i ). In this setting, thep ×p

matrix � involvesp tunable parameters on the diagonal. The random effectsbc

are latent.
Note that the covariatex is generic, which can be univariate as in Example 3.1,

or multivariate as in Example 3.2.

4. Optimality of generalized cross-validation. For the selection of the
smoothing parameterλ (and others such as theθ in Example 3.1 and theθ1 andθ1,2
in Example 3.2, if present) and the correlation parameters�, we propose to
minimize the generalized cross-validation score

V (λ,�) = n−1YT (I − A(λ,�))2Y
{n−1 tr(I − A(λ,�))}2 ;(4.1)
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� may involve less thanp(p + 1)/2 tunable parameters. It will be shown in this
section that the minimizers ofV (λ,�) yield optimal smoothing asymptotically,
in the sense to be specified. Numerical verifications of the asymptotic analysis
will be presented in the next section. Generalized cross-validation was proposed
by Craven and Wahba [1] for independent data, with the asymptotic optimality
established by Li [10] in that setting; see also [13].

First consider the mean square error at the data points,

L1(λ,�) = 1

n

n∑
i=1

(
Ŷi − η(xi) − zT

i b
)2

,(4.2)

which is a natural loss when the random effectszT b are real. Simple algebra yields

L1(λ,�) = 1

n
(AY − η − Zb)T (AY − η − Zb)

= 1

n
(η + Zb)T (I − A)2(η + Zb)

− 2

n
(η + Zb)T (I − A)Aε + 1

n
εT A2ε,

whereη = (η(x1), . . . , η(xn))
T , Y = η + Zb + ε and the arguments(λ,�) are

dropped from the notation of the smoothing matrixA. Taking expectation with
respect tob andε, the risk is seen to be

R1(λ,�) = E[L1(λ,�)]
(4.3)

= 1

n
ηT (I − A)2η + 1

n
tr

(
(I − A)2ZBZT ) + σ 2

n
trA2.

Now define

U(λ,�) = 1

n
YT (I − A)2Y + 2

n
σ 2 trA.(4.4)

It follows that

U(λ,�) − L1(λ,�) − 1

n
εT ε

(4.5)
= 2

n
(η + Zb)T (I − A)ε − 2

n
(εT Aε − σ 2 trA).

We shall establish the optimality ofU(λ,�) under the following conditions.

CONDITION C.1. The eigenvalues of�(ZT (I − Ã(λ))Z + �)−1� are
bounded from above.

Condition C.1 holds for� with eigenvalues bounded from above, and for�

of magnitude up to the order ofO(
√

n ) when the magnitude ofZT (I − Ã(λ))Z

grows at the rate ofO(n).
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CONDITION C.2. Asn → ∞, nR1(λ,�) → ∞.

The condition simply concedes that the parametric rate ofO(n−1) is not
achievable. In the absence of random effects, forη satisfyingJ (η) < ∞ or more
stringent smoothness conditions, it typically holds thatn−1ηT (I − Ã(λ))2η =
O(λs) for somes ∈ [1,2], and trÃ2(λ) 
 λ−1/r asλ → 0 andnλ1/r → ∞ for
somer > 1, at least for univariate smoothing splines; see, for example, [1, 15]
and [2], Section 4.2.3. For the cubic splines of Example 3.1,r = 4.

LEMMA 4.1. Under Condition C.1, if n−1ηT (I − Ã(λ))2η = O(λs) and
tr Ã2(λ) = O(λ−1/r ) as λ → 0 and nλ1/r → ∞, then R1(λ,�) = O(λs +
n−1λ−1/r + n−1p).

See Section 7 for the proof of the lemma. For fixedp, the random effects add
little to the equation, and Condition C.2 is satisfied forλ → 0, nλ1/r → ∞ and�

of magnitude up to orderO(
√

n ); the optimalλ 
 n−r/(sr+1) is well within the
domain. In fact, the restriction on� is not really necessary for Condition C.2 but
to assure thatR1 → 0. Whenp grows withn, Condition C.2 clearly holds, though
one may need to scale back the domain of� for R1 = o(1) to remain true.

THEOREM 4.1. Under Conditions C.1and C.2,as n → ∞, one has

U(λ,�) − L1(λ,�) − 1

n
εT ε = op

(
L1(λ,�)

)
.

The proof of the theorem is given in Section 7. When the conditions of the
theorem hold in a neighborhood of the optimal(λ,�), the minimizer ofU(λ,�)

will deliver nearly the minimum loss.
The use ofU(λ,�) requires knowledge ofσ 2, which usually is not available in

practice. With an extra condition, the result also holds forV (λ,�).

CONDITION C.3. Asn → ∞, {n−1 trA(λ,�)}2/{n−1 trA2(λ,�)} → 0.

In the absence of random effects, Condition C.3 generally holds in most
settings of interest. In fact, it typically holds that trÃ(λ) 
 λ−1/r asλ → 0 and
nλ1/r → ∞, of the same order as tr̃A2(λ). See, for example, [1, 10, 15] and [2],
Section 4.2.3.

LEMMA 4.2. If tr Ã(λ) = O(λ−1/r ) and tr Ã2(λ) 
 λ−1/r as λ → 0 and
nλ1/r → ∞, then Condition C.3holds for p up to order O(

√
n ).

The proof is to be found in Section 7.
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THEOREM 4.2. Under Conditions C.1, C.2and C.3,as n → ∞, one has

V (λ,�) − L1(λ,�) − 1

n
εT ε = op

(
L1(λ,�)

)
.

PROOF. Given Theorem 4.1, the proof follows that of Theorem 3.3 in [2],
page 66. �

We now turn to the case with latent random effectszT b, for which the loss
L1(λ,�) of (4.2) may not make much practical sense. WritePZ = Z(ZT Z)+ZT

andP ⊥
Z = I − PZ . We consider the estimation ofP ⊥

Z η by P ⊥
Z η̂, whereη̂ is given

in (2.4); the projection ensures the identifiability of the target function. Accounting
for the error covarianceσ 2I +ZBZT , one may assess the estimation precision via
the loss

L̃2(λ,�) = 1

n
(η̂ − η)T P ⊥

Z (σ 2I + ZBZT )−1P ⊥
Z (η̂ − η).

Since(σ 2I + ZBZT )−1 = σ−2(I − ZD−1
0 ZT ), whereD0 = ZT Z + σ 2B−1, one

may use

L2(λ,�) = σ 2L̃2(λ,�) = 1

n
(η̂ − η)T P ⊥

Z (η̂ − η),(4.6)

which is independent ofB. Write QZ = ZD−1ZT and recallM = RE+RT (I −
QZ) from (2.4). Plugginĝη = M(η + Zb + ε) into (4.6) and taking expectation,
one has the risk

R2(λ,�) = E[L2(λ,�)]
= 1

n
{ηT (I − M)T P ⊥

Z (I − M)η(4.7)

+ tr(MT P ⊥
Z MZBZT ) + σ 2 tr(MT P ⊥

Z M)}.
From (2.5) and (2.4), one has

(I − A)Y = (I − QZ)
(
I − RE+RT (I − QZ)

)
Y

= (P ⊥
Z + PZ − QZ)(η − η̂ + Zb + ε)

= P ⊥
Z (η − η̂) + (PZ − QZ)(η − η̂ + Zb + ε) + P ⊥

Z ε

= P ⊥
Z (η − η̂) + (PZ − QZ)(Y − η̂) + P ⊥

Z ε.

It follows that

YT (I − A)2Y = (η − η̂)T P ⊥
Z (η − η̂) + εT P ⊥

Z ε + 2(η − η̂)T P ⊥
Z ε

+ (Y − η̂)T (PZ − QZ)2(Y − η̂),
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and hence

U(λ,�) − L2(λ,�) − 1

n
εT ε

= 1

n
(Y − η̂)T (PZ − QZ)2(Y − η̂)(4.8)

+ 2

n
(η − η̂)T P ⊥

Z ε − 1

n
εT PZε + 2

n
σ 2 trA.

With an extra condition,U(λ,�) andV (λ,�) can be shown to trackL2(λ,�)

asymptotically.

CONDITION C.4. Asn → ∞, R1(λ,�) − R2(λ,�) = o(R1(λ,�)).

Conditions C.2 and C.4 together imply thatR1(λ,�)−R2(λ,�) = o(R2(λ,�))

andnR2(λ,�) → ∞. Subtracting (4.7) from (4.3), some algebra yields

R1(λ,�) − R2(λ,�)

= 1

n
ηT (I − M)T (PZ − QZ)2(I − M)η

(4.9)
+ 1

n
tr

((
(PZ − QZ) + (PZ − QZ)RE+RT (PZ − QZ)

)2
ZBZT )

+ σ 2

n
tr

((
QZ + (PZ − QZ)M

)T (
QZ + (PZ − QZ)M

))
.

The following lemma confirms the feasibility of Condition C.4 for fixedp.

LEMMA 4.3. For fixed p, if (i) ηT (I − A(λ,�))PZ(I − A(λ,�))η =
o(ηT (I − A(λ,�))2η), (ii) � < ρnZ

T Z for ρ2
n = o(R1), and (iii) tr (ZT Z)/n is

bounded, then R1(λ,�) − R2(λ,�) = o(R1(λ,�)).

The proof of the lemma is given in Section 7. Condition (i) bars(I − A)η from
being overloaded in the column space ofZ; (ii) holds for � of magnitude up to
the orderO(

√
n ) whenZT Z grows at a rateO(n), which is typical for fixedp.

Alternatively, if ρn = o(R1) in (ii), which usually holds for bounded�, then (i)
can be replaced by boundedηT η/n; see the proof in Section 7.

THEOREM 4.3. Under Conditions C.1, C.2and C.4,as n → ∞, one has

U(λ,�) − L2(λ,�) − 1

n
εT ε = op

(
L2(λ,�)

)
.

If, in addition, Condition C.3also holds, then

V (λ,�) − L2(λ,�) − 1

n
εT ε = op

(
L2(λ,�)

)
.
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The proof of the theorem is given in Section 7.
Up to this point, we have considered purely real and purely latent random

effects. In practice, one could have a mixture of real and latent random effects in
the same setting. PartitionZ = (Z1,Z2) andbT = (bT

1 ,bT
2 ) and assumeb1 andb2

are independent soB is block diagonal. Define

L3(λ,�) = 1

n
(η̂ + Z1b̂1 − η − Z1b1)

T P ⊥
Z2

(η̂ + Z1b̂1 − η − Z1b1)(4.10)

andR3(λ,�) = E[L3(λ,�)], whereP ⊥
Z2

= I − Z2(Z
T
2 Z2)

+ZT
2 ; L3(λ,�) is a

natural loss forZ1b1 real andZ2b2 latent. ReplaceR2(λ,�) in Condition C.4
by R3(λ,�).

CONDITION C.5. Asn → ∞, R1(λ,�) − R3(λ,�) = o(R1(λ,�)).

A general result follows, of which the earlier theorems are special cases with
nil Z1 or nil Z2.

THEOREM 4.4. Under Conditions C.1, C.2and C.5,as n → ∞, one has

U(λ,�) − L3(λ,�) − 1

n
εT ε = op

(
L3(λ,�)

)
.

If, in addition, Condition C.3also holds, then

V (λ,�) − L3(λ,�) − 1

n
εT ε = op

(
L3(λ,�)

)
.

The proof of the theorem follows from straightforward modifications of the
proof of Theorem 4.3 as given in Section 7.

5. Empirical performance. We now present simple simulations to illustrate
the practical performance of generalized cross-validation in the context.

5.1. Real random effects. First consider a setting with real random effects
covered by Theorems 4.1 and 4.2. One hundred replicates of samples were
generated according to

Yi = η(xi) + bsi + εi, i = 1, . . . ,100,(5.1)

whereη(x) = 3sin(2πx), xi a random sample fromU(0,1), εi ∼ N(0,0.52), bs ∼
N(0,0.52) andsi ∈ {1, . . . ,10}, ten each. Cubic smoothing splines as described in
Example 3.1 were calculated with(λu,�u) minimizingU(λ,�) of (4.4),(λv,�v)

minimizingV (λ,�) of (4.1) and(λm,�m) minimizingL1(λ,�) of (4.2).
The lossL1(λ,�) was recorded for the fits. For theV fit with (λv,�v), the

variance estimate through

σ̂ 2 = YT (I − A(λv,�v))
2Y

tr(I − A(λv,�v))
(5.2)
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was also recorded; the variance estimate was proposed by Wahba [14] for indepen-
dent data. The ratioσ 2/σ 2

s as part of� was “estimated” through�u, �v or �m.
It is known that cross-validation may lead to severe undersmoothing on up to

about 10% replicates. To circumvent the problem, a simple modification proved to
be very effective in the empirical studies of Kim and Gu [9]. The modifiedV is
given by

Vα(λ,�) = n−1YT (I − A(λ,�))2Y
{n−1 tr(I − αA(λ,�))}2(5.3)

for someα > 1. Similarly,U can be modified by

Uα(λ,�) = 1

n
YT (

I − A(λ,�)
)2Y + 2

n
σ 2α trA(λ,�).(5.4)

A good choice ofα is around 1.4. TheU andV fits with α = 1.2,1.4,1.6,1.8
were also calculated and the loss and variance estimates recorded.

The performances ofUα(λ,�) andVα(λ,�) are illustrated in Figure 1. In the
left and center frames, the lossesL1(λu,�u) andL1(λv,�v) are plotted versus the
minimum possible, forα = 1,1.4. The relative efficacy ofUα(λ,�) andVα(λ,�)

for α = 1,1.2,1.4,1.6,1.8 is summarized in the right frame in box plots. Roughly
speaking,Uα andVα with α = 1 are “unbiased” by Theorems 4.1 and 4.2, and
settingα > 1 introduces “bias.” The top-tier performance may degrade slightly
asα increases, but the worst cases are being pulled in forα up to 1.2 ∼ 1.4, where
one appears to have the “minimax” performance.

Further details of the simulation are shown in Figure 2. In the left frame,
λu and λv for α = 1 andα = 1.4 are plotted against each other, where a very
smallλ byα = 1 is seen to be pulled to the “normal” range byα = 1.4. The number
of cases with severe undersmoothing by cross-validation seems to be much less
than what is typically seen in simulations with independent error; the phenomenon
has yet to be understood. The center frame of Figure 2 plots the variance ratio
σ 2/σ 2

s “estimated” through�m, �u and �v . An interesting observation is the

FIG. 1. Simulation with real random effects. Left and center:Performances of Uα(λ,�) and
Vα(λ,�) with α = 1 ( faded circles) and α = 1.4 (circles). Right:L1(λm,�m)/L1(λu,�u) ( fatter
boxes) and L1(λm,�m)/L1(λv,�v) (thinner boxes) for α = 1,1.2,1.4,1.6,1.8.
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FIG. 2. Simulation with real random effects. Left: λu ( faded circles) and λv (circles) for α = 1,1.4.
Center:σ2/σ2

s “estimated” through �m (left thin box), �u ( fatter boxes) and �v (thinner boxes).
Right: σ̂2. The faded horizontal lines in center and right frames mark the true values.

wide range of�m, especially the many very small values, which effectively leave
the termzT b unpenalized like the fixed effect terms in the null space ofJ (η).
The “estimates” through�u and�v appear far better in comparison, but remain
highly unreliable. The upward trend of�u and�v with increasingα is somewhat
expected, as largerα yields smoother estimates corresponding to larger penalty
terms. In the right frame of Figure 2, the variance estimates by (5.2) are shown in
box plots forV fits withα = 1,1.2,1.4,1.6,1.8, demonstrating generally adequate
performance.

5.2. Latent random effects. For latent random effects, we keep the setting
of (5.1) but replacebsi by bci

, as in Example 3.3. One hundred replicates of
samples were generated withη(xi) andεi as in Section 5.1, and withci ∈ {1,2},
50 each,b1 ∼ N(0, σ 2

1 ) for σ 2
1 = 0.52, and b2 ∼ N(0, σ 2

2 ) for σ 2
2 = 0.32; the

intracenter correlations are 0.25/(0.25+ 0.25) = 0.5 for c = 1 and 0.09/(0.09+
0.25) = 0.265 for c = 2. Cubic smoothing splines were calculated withλ and�

minimizingU(λ,�), V (λ,�) andL2(λ,�) of (4.6).
The simulation results are summarized in Figures 3 and 4. Figure 3 parallels

Figure 1, except thatL1(λ,�) is replaced byL2(λ,�). The left and center frames
of Figure 4 summarize the “estimation” of the two parameters of�; note that the
data contain only one “sample” fromN(0, σ 2

1 ) and one fromN(0, σ 2
2 ).

5.3. Mixture random effects. For mixture random effects, we simply add
togetherbs of Section 5.1 andbc of Section 5.2, with the ten subjects nested under
the two clusters, five each. One hundred replicates of samples were generated, with
the specifications ofη(x), σ 2, σ 2

s , σ 2
1 andσ 2

2 remaining the same as in Sections
5.1 and 5.2. Cubic smoothing splines were calculated withλ and� minimizing
U(λ,�), V (λ,�) andL3(λ,�) of (4.10). The counterpart of Figures 1 and 3 is
shown in Figure 5. The “estimated” variance ratios are again highly unreliable,
whereaŝσ 2 demonstrates adequate performance, as seen in Figures 2 and 4; plots
are omitted.
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FIG. 3. Simulation with latent random effects. Left and center:Performances of Uα(λ,�) and
Vα(λ,�) with α = 1 ( faded circles) and α = 1.4 (circles). Right:L2(λm,�m)/L2(λu,�u) ( fatter
boxes) and L2(λm,�m)/L2(λv,�v) (thinner boxes) for α = 1,1.2,1.4,1.6,1.8.

FIG. 4. Simulation with latent random effects. Left and center:σ2/σ2
1 and σ2/σ2

2 “estimated”

through �m (left thin box), �u ( fatter boxes) and �v (thinner boxes). Right: σ̂2. The faded
horizontal line marks the true values.

FIG. 5. Simulation with mixture random effects. Left and center:Performances of Uα(λ,�) and
Vα(λ,�) with α = 1 ( faded circles) and α = 1.4 (circles). Right:L3(λm,�m)/L3(λu,�u) ( fatter
boxes) and L3(λm,�m)/L3(λv,�v) (thinner boxes) for α = 1,1.2,1.4,1.6,1.8.
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6. Applications. We now apply the technique to analyze a couple of real data
sets.

6.1. Tumor volume. To study the sensitivity of a human prostate tumor to
androgen deprivation, a preparation of the PC82 prostate cancer cell line was
implanted under the skin of eight male nude mice. After 46 days, measurable
tumors appeared on all eight mice; this day is referred to as day 0. On day 32, all
mice were castrated. The tumors were measured roughly weekly over a 5-month
period, resulting in 16 sets of measurements on the eight mice. Further details
concerning the data can be found in [6], along with some analyses using parametric
models.

We performed a nonparametric analysis of the data using the techniques
developed. Taking the logarithm of the measured tumor volume as the responseY ,
the model of Example 3.1 was considered,

Yi = η(xi) + bsi + εi,

wheres = 1, . . . ,8. The exponential spline as discussed in Example 3.1 was used
to estimateη(x), but the generalized cross-validation score was minimized at
θ = 0, yielding a cubic spline fit. The fittedη(x) is plotted in Figure 6 along
with the data. The variance estimates are given byσ̂ 2 = 0.1490 andσ̂ 2

s = 0.0928;
remember that̂σ 2 is trustworthy butσ̂ 2

s can be grossly misleading, as shown in
Section 5.

6.2. Treatment of multiple sclerosis. A randomized, double-blind clinical trial
was conducted to study the treatment of multiple sclerosis by azathioprine (AZ)
and methylprednisolone (MP). Patients were assigned randomly to three groups:
(i) the PP group receiving placebos for both AZ and MP, (ii) the AP group receiving

FIG. 6. Cubic spline fits of tumor volume. Left: Tumor volume measurements (dashed lines)
and their geometric mean (solid line). Right: Fitted η(x) (solid line), with the geometric mean of
measurements superimposed ( faded line). The castration time is marked by the vertical line.
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real AZ and placebo MP; and (iii) the AM group receiving real AZ and MP. The
abundance of lymphocytes bearing a protein calledFC receptor was measured in
the form of the so-called AFCR levels. Blood samples were drawn prior to the
initiation of therapy, at the initiation, in weeks 4, 8 and 12, and every 12 weeks
thereafter for the remainder of the trial. A total of 48 patients were represented
in the data, with 17 on PP, 15 on AP and 16 on AM. There were “missing”
values in the sense that blood samples were not drawn from all patients at every
time point. Detailed descriptions of the study can be found in [7] and further
references therein. A analysis of the data using parametric models was conducted
by Heitjan [7].

We now present a nonparametric analysis of the data using the formulation of
Example 3.2. Following [7], the responsesYi are taken as the square roots of the
AFCR measures. The model is of the form

Yi = η(xi, τi) + bsi + εi,

where the patient identifications is nested under the treatment levelτ . The
“missing” values pose no problem for our treatment. The fitted cubic splines are
plotted in Figure 7 with the data superimposed. The smoothing parameterθ1,2 was
effectively set to 0 by cross-validation, so the interactionη1,2(x, τ ) consists of only
parametric terms with the basis(I[τ=j ] − 1/3)x, j = 1,2; see Example 3.2 for the
notation. The variance estimates were given byσ̂ 2 = 12.81 andσ̂ 2

s = 6.624.

7. Proofs. This section collects the proofs of the lemmas and theorems of
Section 4. The following lemmas govern some of the calculations.

LEMMA 7.1. For Zb ∼ N(0,ZBZT ) and ε ∼ N(0, σ 2I ), independent of
each other, one has

Var[bT ZT CZb] = 2 tr(CZBZT CT ZBZT ),

Var[εT Cε] = 2σ 4 tr(CCT ),

Var[bT ZT Cε] = σ 2 tr(CCT ZBZT ).

The proof of the lemma is straightforward.

LEMMA 7.2. For M = RE+RT (I −QZ), where E = RT (I −QZ)R +nλQ,
one has

MT P ⊥
Z M + MT (PZ − QZ)M

= MT (I − QZ)M ≤ I,

(I − M)T P ⊥
Z (I − M) + (I − M)T (PZ − QZ)(I − M)

= (I − M)T (I − QZ)(I − M) ≤ 4I.
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FIG. 7. Cubic spline fits of AFCR levels. From top to bottom: the PP, AP and AM groups. The fitted
η(x, τ ), τ = PP,AP,AM, are in solid lines in their respective frames, with the corresponding data
superimposed as faded lines and the other two estimates as dashed lines.
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PROOF. It is straightforward to show thatMT (I − QZ)M ≤ I . Now for an
arbitrary vectorx,

xT (I − M)T (I − QZ)(I − M)x

= xT (I − QZ)x + xT MT (I − QZ)Mx − 2xT (I − QZ)MxT ≤ 4xT x,

where the Cauchy–Schwarz inequality is used to bound the cross term.�

Also note thatB is fixed, thus having bounded eigenvalues, and thatXT X and
XXT share nonzero eigenvalues for all matricesX.

We are now ready for the proofs of the lemmas and theorems of Section 4.

PROOF OFLEMMA 4.1. Recall from (4.3),

R1(λ,�) = 1

n
ηT (I − A)2η + 1

n
tr

(
(I − A)2ZBZT ) + σ 2

n
trA2.

Using (2.7), the first term is seen to be of the orderO(λs), and the third term is of
orderO(n−1λ−1/r + n−1p). Again by (2.7),

(I − A)Z = (I − Ã)Z
(
I − (

ZT (I − Ã)Z + �
)−1

ZT (I − Ã)Z
)

= (I − Ã)Z
(
ZT (I − Ã)Z + �

)−1
�,

thus

ZT (I − A)2Z ≤ �
(
ZT (I − Ã)Z + �

)−1
�,

so Condition C.1 implies an upper bound on the eigenvalues of(I −A)ZBZT (I −
A), and the second term is of orderO(n−1p). The proof is complete.�

PROOF OFTHEOREM 4.1. In light of (4.5), it suffices to show that

L1(λ,�) − R1(λ,�) = op

(
R1(λ,�)

)
,(7.1)

n−1(η + Zb)T (I − A)ε = op

(
R1(λ,�)

)
,(7.2)

n−1(εT Aε − σ 2 trA) = op

(
R1(λ,�)

)
.(7.3)

To see (7.1), note that

Var[L1(λ,�)] = n−2 Var[2ηT (I − A)2Zb − 2ηT (I − A)Aε

+ bT ZT (I − A)2Zb − 2bT ZT (I − A)Aε + εT A2ε].
Since Condition C.1 implies an upper bound on the eigenvalues of(I −
A)ZBZT (I − A), one has

n−2 Var[ηT (I − A)2Zb] = n−2ηT (I − A)2ZBZT (I − A)2η

= n−1O(R1) = o(R2
1),
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where the last equation is by Condition C.2. Likewise,

n−2 Var[ηT (I − A)Aε] = n−2σ 2ηT (I − A)A2(I − A)η = o(R2
1),

n−2 Var[bT ZT (I − A)2Zb] = 2n−2 tr
(
(I − A)2ZBZT (I − A)2ZBZT ) = o(R2

1),

n−2 Var[bT ZT (I − A)Aε] = n−2σ 2 tr
(
(I − A)A2(I − A)ZBZT ) = o(R2

1),

n−2 Var[εA2ε] = 2n−2σ 4 trA4 = o(R2
1).

Summing up, and bounding the covariances between the terms by the Cauchy–
Schwarz inequality, one has Var[L1(λ,�)] = o(R2

1(λ,�)), and hence (7.1).
Similar calculations yield (7.2) and (7.3), completing the proof.�

PROOF OFLEMMA 4.2. From (2.7), one has trA ≤ tr Ã+p and trA2 ≥ tr Ã2,
so

(n−1 trA)2

n−1 trA2 ≤ (n−1 tr Ã + n−1p)2

n−1 tr Ã2
= O(n−1λ−1/r + n−1p + n−1p2λ1/r ).

The lemma follows asλ → 0 andnλ1/r → ∞. �

PROOF OFLEMMA 4.3. Recall from (4.9) that

R1(λ,�) − R2(λ,�)

= 1

n
ηT (I − M)T (PZ − QZ)2(I − M)η

+ 1

n
tr

((
(PZ − QZ) + (PZ − QZ)RE+RT (PZ − QZ)

)2
ZBZT )

+ σ 2

n
tr

((
QZ + (PZ − QZ)M

)T (
QZ + (PZ − QZ)M

))
.

SinceD = ZT Z + � < (1 + ρn)Z
T Z, one hasPZ − QZ < ρnPZ/(1 + ρn) <

ρnPZ . For the first line, noting thatPZ − QZ = PZ(I − QZ) and(I − QZ)(I −
M) = I − A, one has

1

n
ηT (I − M)T (PZ − QZ)2(I − M)η = 1

n
ηT (I − A)PZ(I − A)η = o(R1).

Alternatively, withηT η/n bounded,

1

n
ηT (I − M)T (PZ − QZ)2(I − M)η

≤ ρn

1

n
ηT (I − M)T (PZ − QZ)(I − M)η

= O(ρn)
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as(I − M)T (PZ − QZ)(I − M) ≤ 4I . For the second line, note that

1

n
tr

(
(PZ − QZ)ZBZT (PZ − QZ)

) ≤ ρ2
n

1

n
tr(ZBZT ) = o(R1)

and, with F = (PZ − QZ)1/2RE+RT (PZ − QZ)1/2 ≤ I and henceF(PZ −
QZ)F ≤ ρnI , that

1

n
tr

((
(PZ − QZ)RE+RT (PZ − QZ)

)2
ZBZT )

= 1

n
tr

(
B1/2ZT (PZ − QZ)1/2F(PZ − QZ)F(PZ − QZ)1/2ZB1/2)

≤ ρn

1

n
tr

(
B1/2ZT (PZ − QZ)ZB1/2) = ρ2

n

1

n
tr(ZBZT ) = o(R1);

the cross term can be bounded by the Cauchy–Schwarz inequality. For the third
line, note thatn−1 trQ2

Z ≤ p/n = o(R1) and thatMT (PZ − QZ)2M ≤ I has no
more thanp nonzero eigenvalues. The proof is now complete.�

PROOF OFTHEOREM 4.3. Recall from (4.7) that

R2(λ,�) = 1

n
{ηT (I − M)T P ⊥

Z (I − M)η

+ tr(MT P ⊥
Z MZBZT ) + σ 2 tr(MT P ⊥

Z M)}.
Pluggingη̂ = M(η + Zb + ε) into (4.8) and grouping terms, some algebra leads
to

U(λ,�) − L2(λ,�) − 1

n
εT ε

= 1

n
(η + Zb)T (I − M)T (PZ − QZ)2(I − M)(η + Zb)

+ 2

n
ηT (I − M)T (PZ − QZ)2(I − M)ε + 2

n
ηT (I − M)T P ⊥

Z ε

(7.4)
+ 2

n
bT ZT (I − M)T (PZ − QZ)2(I − M)ε − 2

n
bT ZT MT P ⊥

Z ε

+ 1

n
εT (

QZ + (PZ − QZ)M
)T (

QZ + (PZ − QZ)M
)
ε

− 1

n
(εT Aε − σ 2 trA).

To prove the first part of the theorem, it suffices to show that (7.4) is of order
op(R2(λ,�)) and that

L2(λ,�) − R2(λ,�) = op

(
R2(λ,�)

)
.(7.5)
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Taking the expectation of the first line of (7.4), one has

1

n
E[(η + Zb)T (I − M)T (PZ − QZ)2(I − M)(η + Zb)]

= 1

n
η(I − M)T (PZ − QZ)2(I − M)η

+ 1

n
tr

((
(PZ − QZ) − (PZ − QZ)RE+RT (PZ − QZ)

)2
ZBZT )

= O(R1 − R2) = o(R2),

where Condition C.4 is used. Similarly, the expectation of the fourth line of (7.4)
gives

1

n
E

[
εT (

QZ + (PZ − QZ)M
)T (

QZ + (PZ − QZ)M
)
ε
]

= σ 2

n
tr

((
QZ + (PZ − QZ)M

)T (
QZ + (PZ − QZ)M

))

= O(R1 − R2) = o(R2).

For the two terms on the second line of (7.4), noting that(I −M)T (PZ −QZ)2(I −
M) ≤ 4I ,

n−2 Var[ηT (I − M)T (PZ − QZ)2(I − M)ε]
≤ 4n−2σ 2ηT (I − M)T (PZ − QZ)2(I − M)η = o(R2

2)

by Conditions C.2 and C.4, and

n−2 Var[ηT (I − M)T P ⊥
Z ε] = n−2σ 2ηT (I − M)T P ⊥

Z (I − M)η

= n−1O(R2) = o(R2
2).

Likewise, the third-line terms in (7.4) give

n−2 Var[bT ZT (I − M)T (PZ − QZ)2(I − M)ε]
≤ 2n−2σ 2 tr

((
(PZ − QZ) − (PZ − QZ)RE+RT (PZ − QZ)

)2
ZBZT )

= o(R2
2),

and

n−2 Var[bT ZT MT P ⊥
Z ε] = 2n−2σ 2 tr(MT P ⊥

Z MZBZT ) = n−1O(R2) = o(R2
2).

The fifth line of (7.4) is (7.3), which is of orderop(R1) = op(R2) by Condition C.4.
To see (7.5), note that

Var[L2(λ,�)]
= n−2 Var[2ηT (M − I )T P ⊥

Z MZb + 2ηT (M − I )T P ⊥
Z Mε

+ bT ZT MT P ⊥
Z MZb + bT ZT MT P ⊥

Z Mε + εT MT P ⊥
Z Mε].
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Using (2.6), one hasMZ = ÃZ(ZT (I − Ã)Z + �)−1�, P ⊥
Z MZ = P ⊥

Z (Ã −
I )Z(ZT (I − Ã)Z + �)−1�, thusZT MT P ⊥

Z MZ ≤ �(ZT (I − Ã)Z + �)−1�,
so Condition C.1 implies bounded eigenvalues forP ⊥

Z MZBZT MT P ⊥
Z . It then

follows that

n−2 Var[ηT (M − I )T P ⊥
Z MZb] = n−2ηT (I − M)T P ⊥

Z MZBZT MT P ⊥
Z (I − M)η

= o(R2
2),

n−2 Var[ηT (M − I )T P ⊥
Z Mε] = n−2σ 2ηT (I − M)T P ⊥

Z MMT P ⊥
Z (I − M)η

= o(R2
2),

n−2 Var[bT ZT MT P ⊥
Z MZb] = 2n−2 tr(MT P ⊥

Z MZBZT MT P ⊥
Z MZBZT )

= o(R2
2),

n−2 Var[bT ZT MT P ⊥
Z Mε] = n−2σ 2 tr(MT P ⊥

Z MZBZT MT P ⊥
Z M) = o(R2

2),

n−2 Var[εT MT P ⊥
Z Mε] = 2n−2σ 4 tr(MT P ⊥

Z MMT P ⊥
Z M) = o(R2

2).

Collecting terms and bounding the covariances between the terms by the Cauchy–
Schwarz inequality, one has Var[L2(λ,�)] = o(R2

2(λ,�)), and hence (7.5). The
proof of the first part of the theorem is now complete.

Given the first part of the theorem, the second part follows from the proof of
Theorem 3.3 in [2], page 66.�

8. Discussion. In this article we studied the optimal smoothing of nonpara-
metric mixed-effect models through generalized cross-validation. The asymptotic
analysis was backed by simulation studies with sample size as small as 100. Re-
lated practical issues such as variance estimation were also explored in the sim-
ulation studies. As a sequel to this work, the optimal smoothing of non-Gaussian
longitudinal data has been studied in [4] on an empirical basis. The methods have
been implemented in the open-source R packagegss by the first author.

While many correlated errors can be cast as variance components with low-
rank random effects, some others do not conform, which spells the limitation
of the techniques developed here; an important nonconforming case is serial or
spatial correlation. On the flip side, the nonparametricη(x) can be interpreted as
a realization of a Gaussian process under the Bayes model of a smoothing spline,
so there remains a potential identifiability problem of some sort betweenη(x)

and a separate serial or spatial correlation, unless the serial or spatial correlation
is independent ofx. Optimal smoothing for penalized likelihood estimation with
serially or spatially correlated data is treated in a recent study by Gu and Han [3].
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