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OPTIMAL SMOOTHING IN NONPARAMETRIC
MIXED-EFFECT MODELS!

By CHONG GU AND PING MA
Purdue University and Harvard University

Mixed-effect models are widely used for the analysis of correlated data
such as longitudinal data and repeated measures. In this article, we study
an approach to the nonparametric estimation of mixed-effect models. We
consider models with parametric random effects and flexible fixed effects,
and employ the penalized least squares method to estimate the models.
The issue to be addressed is the selection of smoothing parameters through
the generalized cross-validation method, which is shown to yield optimal
smoothing for both real and latent random effects. Simulation studies are
conducted to investigate the empirical performance of generalized cross-
validation in the context. Real-data examples are presented to demonstrate
the applications of the methodology.

1. Introduction. Mixed-effect models are widely used for the analysis of data
with correlated errors. The linear mixed-effect models, also known as variance
component models, are of the form

(1.1) Yi=x'B+2z/b+e,

i=1...,n, WherexiTﬂ are the fixed effectszl.Tb are the random effects with
b ~ N(0, B), ande; ~ N (0, 02) are independent df and of each other; see, for
example, [5] and [12]. The unknown parameters & ando 2, which are to be
estimated from the data. Nonlinear and nonparametric generalizations of (1.1) can
be found in, for example, [8, 11, 17].

In this article, we consider models of the form

(1.2) Yi =n(xi)+2z/ b+e,

where the regression functiarix) is assumed to be a smooth function on a generic
domain X. The model terms)(x) or n(x) + z''b will be estimated using the
penalized (unweighted) least squares method through the minimization of

1 1
(1.3) EDMC —n(xi)—z,.Tb)2+;szb+u(n),
i=1
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where the quadratic functional () quantifies the roughness of and the
smoothing parameter controls the trade-off between the goodness-of-fit and the
smoothness ofj; note that if one substitutes?B~1 for = in (1.3), then the first
two terms are proportional to the minus log likelihood(¥f, b). We will treat =

as a tuning parameter like however, and not be concerned with the estimation
of 02B~1. Technically, (1.3) resembles a partial spline model, but with the partial
termsz’ b penalized.

Absent the random effects’ b, penalized least squares regression has been
studied extensively in the literature; see, for example, [16] and [2] for compre-
hensive treatments of the subject. The models of (1.2) were first considered by
Wang [17], who used penalized marginal likelihood Ygfto estimate;. Smooth-
ing parameter selection in penalized marginal likelihood estimation with correlated
data was studied by Wang [18], who illustrated the middling performance of vari-
ous versions of cross-validation, in contrast to the more reliable performance of the
generalized maximum likelihood method of Wahba [15] derived under the Bayes
model of smoothing splines. Under the Bayes moglélself is decomposed into
fixed and random effects, withJ () acting as the minus log likelihood of the
random effects; the generalized maximum likelihood method of Wahba [15] is es-
sentially the popular restricted maximum likelihood method widely used for the
estimation of variance component models.

The purpose of this article is to study the estimation of the model terms in
(2.2) through the minimization of (1.3), with the smoothing paramégtend the
correlation parameterX selected by the standard generalized cross-validation
method of Craven and Wahba [1], which was developed for independent data. In
some applications, the random effeztd are physically interpretable, or real, and
in some othersz” b are merely a convenient device for the modeling of variance
components, or latent; for the latter case, the estimation through (1.3) turns the
variance components into “mean components.” For both real and latent random
effects, generalized cross-validation will be shown to yield optimal smoothing,
through asymptotic analysis and numerical simulation. Real-data examples are
also presented to illustrate the applications of the methodology.

The rest of this article is organized as follows. In Section 2 the problem is
formulated and preliminary analysis is conducted. Examples are given in Section 3.
Generalized cross-validation and its optimality are discussed in Section 4, followed
by simulation studies in Section 5. Real-data examples are shown in Section 6.
Proofs of the theorems and lemmas in Section 4 are collected in Section 7. A few
remarks in Section 8 conclude the article.

2. Penalized least squares estimation. Consider the minimization of (1.3)
for n in a g-dimensional space spg, ..., §,}. Functions in the space can be
expressed as

q
(2.1) n(x) =) cj&i(x)=§"(x)c.

j=1
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Plugging (2.1) into (1.3), one minimizes

(2.2) (Y = Rc— Zb)T(Y — Rc— Zb) + b =b + nacl Oc

with respect tac andb, whereX > 0is p x p, R isn x g with the (i, j)th entry
£i(x), Z=(21,..., z)T isn x pandQ is g x ¢ with the (j, k)th entryJ (&, &).

Differentiating (2.2) with respect to andb and setting the derivatives to 0, one
has

2.3) RTR +nrQ RTZ c\ _(RTY
' ZTR zTz+x)\b) \zTvy )"

Assume that the linear system is solvable, that is, the colum@;())fare in the
column space of the left-hand side matrix. A solution of (2.3) is then given by

¢\_(R"R+nrQ  RTZ \T(RTY
b~ ZTR VAW zty )
where C™ denotes the Moore—Penrose inverse (fsatisfying CC*TC = C,

ctcct=ct,(cchHl=cctand(cto) =ctc.
Write D =2Z"Z + ¥ andE = (RTR +nxQ) — RTZD~1zTR. With (2.3)

solvable, one has
RTR+nrQ RTZ\(K\_ (RT
ZTR D L) \zT

for somek andL, which, after some algebra, yiel#&k (I — ZD~1z7)"1 = RT,
so the columns oR” are in the column space &. It follows thatE EYRT = RT,
and in turn

RTR+nx0 RTZ \*
ZTR zZTz+%

_ E* —ETRTzD™?!
—D1ZTREY D14+ D 1ZzTREtRTZD1)"

It then follows that
(2.4) #=Re=RETRT(I1-2zD1ZT)Y = mY.
Similarly, one has
Y = Ré+ Zb
={I—-2zZD 1ZORETRT(1—2zD1z"Yy+ ZzD71ZT}Y = A(A, D),
where

_l’_
A(A’E):(R,Z)(RTR—HMQ RTZ ) (RT>

ZTR VAW zT
(2'5) 15T T 1T 1T
=(I—-7zZD *ZHRETRY(1-2zD1z"y+zD7 7z
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is known as the smoothing matrix. Alternatively, fét = RTR + nAQ and
D =D — ZT"RE*RT Z, one may write

RTR+nr0 RTZ \*
ZTR zZTz+ %

EY+EYRTZD YZTRET —E*RTZD™!
—D1ZTRE™ D1 ’

yielding the expressions
(26) M=A0)—AMWZ(ZT(I1-A0)Z+2) 2T (1 - AW)).

where A(L) = RETRT is the smoothing matrix when the random effects are
absent, and

Q7)) AN T)=A0)+ T —AW)Z(ZT (1= AM)Z+3) 12T (1 — AW)).

The eigenvalues od (1, ¥) andA()) are in the rang€0, 1].

With the standard formulation of penalized least squares regression, the
minimization of (1.3) is performed in a so-called reproducing kernel Hilbert space
F C {n:J(n) <oo}inwhich J(n) is a square seminorm, and the solution resides
in the spaceV; @ spariR;(x;,-),i=1,...,n}, whereN; = {n:J(n) =0} is the
null space ot/ (n) andR; (-, -) is the so-called reproducing kernel#ie N;. The
solution has an expression

(2.8) n(x) =) dvy(x)+ Y _GRy(xi, x),

i=1 i=1

where {¢,}"_; is a basis ofN;. It follows that R = (S, 0), where S is

n x m with the (i, v)th entry ¢,(x;) and Q is n x n with the (i, j)th entry
R;(x;,x;). From the property of reproducing kernels, it can also be shown
that J (R, (x;, ), Rj(xj,-)) = Ry(xj, x;), S0 Q = diag(O, 0). See, for example,

[2] and [16]. The linear system (2.3) is thus solvable as long asof full column
rank.

For fast computation, Kim and Gu [9] consider the spaged spaniR;(z;, -),
Jj=1,...,q}, where{z;} are a random subset 6f;}. In that settingR = (S, R),
whereR is n x § with the (i, j)th entry R (z;, x;), and Q = diag(O, Q), where
0 is ¢ x g with the (j, k)th entry Rj(zj,zx). SinceJ(n) is a square norm in
spanR,(zj,-),j=1,...,q}, it can be shown that the columns Bf are in the
column space 00. It then follows that the linear system (2.3) is solvable wien
is of full column rank.

The formulation of (2.1) and (2.2) also covers general penalized regression
splines, so long as (2.3) is solvable. A sufficient condition is for b®thnd Z
to be of full column rank.
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3. Examples. A few examples are in order to illustrate the formulation of the
problem and the potential applications of the method under study. The examples
will be employed in the simulation study of Section 5 and the data analysis of
Section 6.

ExampPLE 3.1 (Growth curves). Consider the “growth” over time of a certain
guantity associated with subjects,

Yi =n(x;) + by, + &,

where Y; is the ith observation taken at time; € [0,a] from subjects; €
{1,..., p}, andb, ~ N (O, o‘f) are the subject random effects, independent of the
measurement errar; and of each other. In this setting, = JSZI, so thep x p
matrix X is diagonal with only one tunable parameter. The random eftecése
real.

Taking J () = J§ (d?n/dx?)?dx, one has the cubic smoothing spline, with the
¢, andR; functions in (2.8) given by

$100=1  dax)=x, Ry(xy.x2)= /0 (vt — )+ (x2 — u) 4 du,

where(-);+ = max(-, 0). See, for example, [2], Section 2.3.1. The null space model
has the expressian(x) = Bo + B1x.

Taking J () = f§ (Len)?hg dx, whereLg = (d/dx)(d/dx + 6) andhg = ¥~
for somed > 0, one has a (negative) exponential spline. The null space model has
the expressiom(x) = Bo + B1e . Transformingx by ¥ = (1 — ¢~%%)/6, it can
be shown that

a a
/ (Lom?hg dx = / (d%n/d7??2d7,
0 0

wherea = (1 — ¢~%%)/6, so one has a cubic spline in See, for example, [2],
Example 4.7, Section 4.3.4. Note that the exponential spline reduces to the cubic
spline inx when6 = 0.

SupposeY is the logarithm of the measuremefit satisfying a log-normal
distribution with » = n(x) + b, ando? a constant; the mean df is known to
be exgu + 02/2). The null space model of the cubic spline characterizes an
exponential growth curve fdf, and the null space model of the exponential spline
corresponds to a Gompertz growth curve forThe splines allow departures from
these parametric growth curves.

EXAMPLE 3.2 (Growth under treatment). Consider the setting of Exam-
ple 3.1, but with thep subjects divided inte treatment groups. The fixed effect
becomes(x, ), wherer € {1, ..., ¢} denotes the treatment level. For the identifi-
ability of n(x, ) andby, one needs more than one subject per treatment level. One
may decompose

n(x, ) =ng +n1(x) +n2(7) +n1.2(x, 1),
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whereng is a constanty1(x) is a function ofx satisfyingn1(0) =0, n2(1) is a
function of ¢ satisfying}"._; n2(x) = 0, andn1,2(x, 7) satisfiesn1 2(0, ) =0,
VT, andZ’T:l n1.2(x, ) =0, Vx. The termng + n1(x) is the “average growth”
and the termyz(7) + n1.2(x, 7) is the “contrast growth.”

For flexible models one may use

a a !
s =6 [ (@PnajaxRx +073 [ (@Pna/di®Pax,
=1

which has a null spac#/; of dimension 2. A set of¢, is given by
{1,x, Iie=j1 — 1/¢, (I[f:j] — 1/t)x, j=1 ..., t— l},

and the functiorR; is given by

a
Rj(x1, 115 X2, 12) = 91/(; (x1—u)y(x2—u)ydu

a
+61.2(Ijry=rp) — 1/1)/O (x1 —u)4(x2 —u)y du.

See, for example, [2], Section 2.4.4, Problem 2.14(c). To force an additive model
n(x,t) = ng + n1(x) + n2(r), which yields parallel growth curves at different
treatment levels, one may s&t, = 0 and remove/|,—;} — 1/t)x from the list

of ¢,. One may also choose to transfonmthroughx = (1 — e~%%)/6 and fit
models on th& scale.

ExampLE 3.3 (Clustered observations). Consider observations from clus-
ters, such as in multicenter studiés,= n(x;) + &;, wherey; is taken from clus-
terc; with covariatex;. Observations from different clusters are independent, while
observations from the same cluster may be correlated to various degrees. The in-
tracluster correlation may be modeled ¥ja= b, + ¢;, whereb ~ N (0, B), with
B = diago?, ..., 05), ande ~ N(0,02I), independent of each other; the intra-
cluster correlation in clustes is given byo?/(0% 4 o). In this setting, they x p
matrix X involves p tunable parameters on the diagonal. The random eftgcts
are latent.

Note that the covariate is generic, which can be univariate as in Example 3.1,
or multivariate as in Example 3.2.

4. Optimality of generalized cross-validation. For the selection of the
smoothing parameter(and others such as then Example 3.1 and théy andf; »
in Example 3.2, if present) and the correlation paramebersve propose to
minimize the generalized cross-validation score

n=YT( — A, D)%Y
{(n=ttr(1 — A(x, 2)}2°

(4.1) Vr, X)) =
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> may involve less thap(p + 1)/2 tunable parameters. It will be shown in this
section that the minimizers df (A, ) yield optimal smoothing asymptotically,
in the sense to be specified. Numerical verifications of the asymptotic analysis
will be presented in the next section. Generalized cross-validation was proposed
by Craven and Wahba [1] for independent data, with the asymptotic optimality
established by Li [10] in that setting; see also [13].
First consider the mean square error at the data points,

n
(4.2) Li(A,X) = %Z(Yi —n(x;) —Z'b)?,

i=1

which is a natural loss when the random effextb are real. Simple algebra yields

Li(A, %) = %(AY —n—2Zb)T(AY —n — Zb)
1
=~@+ Zb)T' (I — Ay + Zb)

2 1
— S+ 207U — A)Ae + ZeT A%,
n n

wheren = ((x1), ..., n(x,)T, Y =5 + Zb + e and the argumentér, X) are
dropped from the notation of the smoothing matrix Taking expectation with
respect td ande, the risk is seen to be

R1(%, X) = E[L1(%, ¥)]

(4.3) 5
1. 2 1 2 T g 2
== (I—An+=tr(I—AZBZ")+ —trA-
n n n
Now define
1 2
(4.4) U, 2) ==Y - A)?Y + ZotrA.
n n

It follows that

1 T
UM, Z)—L1(A,X)——¢&" ¢
n
(4.5) ) X
=S+ 2zZb)T (I — A)e — Z(eT Ae — 52tr A).
n n

We shall establish the optimality &f (1, X) under the following conditions.

CONDITION C.1. The eigenvalues ok (Z7(I — AM)Z + £)71% are
bounded from above.

Condition C.1 holds forx with eigenvalues bounded from above,~and Yor
of magnitude up to the order @ (,/n) when the magnitude a2 (1 — A(1))Z
grows at the rate o (n).
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CONDITION C.2. Asn — o0, nR1(A, ¥) — oo.

The condition simply concedes that the parametric rateDof 1) is not
achievable. In the absence of random effectsyfeatisfyingJ(n) < oo or more
stringent smoothness conditions, it typically holds thaty” (I — A(1))%y =
0 (%) for somes € [1, 2], and trA2(1) < A~Y" asi — 0 andnAY" — oo for
somer > 1, at least for univariate smoothing splines; see, for example, [1, 15]
and [2], Section 4.2.3. For the cubic splines of Example 32 4.

LEMMA 4.1. Under Condition C.1, if n=1p" (/1 — A(\)% = 0(1*) and
trA2(0) = 0(x"Y") as A — 0 and nAY" — oo, then R1(A,T) = O\ +
=Y 4 1p).

See Section 7 for the proof of the lemma. For fixgdhe random effects add
little to the equation, and Condition C.2 is satisfiedfor> 0, n1Y" — co and X
of magnitude up to orde€ (\/n); the optimalx =< n~"/67+D is well within the
domain. In fact, the restriction oB is not really necessary for Condition C.2 but
to assure thaR; — 0. Whenp grows withr, Condition C.2 clearly holds, though
one may need to scale back the domairxdbr R; = o(1) to remain true.

THEOREM4.1. Under ConditionsC.1and C.2,asn — oo, one has

1 T
U(h, D) — L1(h, D) — ZeTe =0, (L1(1, T)).
n

The proof of the theorem is given in Section 7. When the conditions of the
theorem hold in a neighborhood of the optingal ¥), the minimizer ofU (1, X)
will deliver nearly the minimum loss.

The use ofU (1, ¥) requires knowledge af?, which usually is not available in
practice. With an extra condition, the result also holdsWok, X).

CONDITION C.3. Asn — oo, {n ttrA(x, )}2/{n"1tr A%2(x, )} — 0.

In the absence of random effects, Condition C.3 generally holds in most
settings of interest. In fact, it typically holds thatAtéx) < A~Y" asix — 0 and
niY" — oo, of the same order asA®()). See, for example, [1, 10, 15] and [2],
Section 4.2.3.

LEMMA 4.2, IftrA() = O Y") and trA2(x) < 2~V as » — 0 and
nxY" — oo, then Condition C.3holds for p up to order O(/n).

The proof is to be found in Section 7.
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THEOREM4.2. Under ConditionsC.1, C.2and C.3,asn — oo, one has

1 T
VOL2) - L 2) — ~ele = 0p(La(h, ).

PROOF Given Theorem 4.1, the proof follows that of Theorem 3.3 in [2],
page 66. [

We now turn to the case with latent random effezt®, for which the loss
L1(x, ¥) of (4.2) may not make much practical sense. Wite= Z(z7 2)*z"
and P; = I — Pz. We consider the estimation &y by P, wherejj is given
in (2.4); the projection ensures the identifiability of the target function. Accounting
for the error covariance?/ + ZBZ”, one may assess the estimation precision via
the loss

3 1 _ .
Lo(h, T) = ;(n — TP 0?1+ ZBZT) 1P (i — ).

Since(o?l + ZBZ") =021 — ZDy*z"), whereDo = 2" Z + B~ 1, one
may use

- 1
(4.6) Lo(A, Z)=0%Lo(x, %) = ~ (- ! Pz (& —n),

which is independent oB. Write 9, = ZD~17" and recallM = RETRT (I —
Qz) from (2.4). Pluggingj = M (n + Zb + ¢) into (4.6) and taking expectation,
one has the risk

R2(%, X) = E[L2(%, ¥)]

1
(4.7) = ;{nT(l —~ M) PLH(I — M)y

+tr(MT PFMZBZT) 4+ c2te(MT PFM)).
From (2.5) and (2.4), one has
(I-AY=(I-0z)(—-RETR'(I-02)Y
=(P7+Pz— Q) —Q+Zb+e)
=Pz (—9)+(Pz— Q) — A+ Zb+e)+ Pye
=Pz (- +(Pz— Q)Y — i) + Pze.
It follows that
YT =AY = - Pz —i)+e' Pre+2m—)' Pre
+ (Y =) (Pz— Q2)*(Y — @),
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and hence

1 T
UM, X)— LA, X)) — ;e &
1
(4.8) = (Y - T (Pz — Q)Y —#)

2 1 2
+ - Pre— =" Pye+ Zatr A.
n n n
With an extra condition/ (A, £) and V (A, £) can be shown to tracko(), X)
asymptotically.
CONDITION C.4. Asn — o0, R1(M, £) — Ro(\, ) = o(R1(A, X)).
Conditions C.2 and C.4 together imply thiag(A, ) — Ro(A, ) = 0(R2(A, X))
andnR2(A, X) — oo. Subtracting (4.7) from (4.3), some algebra yields
Ri(A, X) — R2(A, X)
1
=" (I = M) (Pz = Q2)*( = M)y

(4.9)
+ -t (P2~ Q2)+ (P2~ Q2)RE"R' (Pz — 02))°ZBZ")

2
+ 2t ((Qz + (P2 — QM) (Qz + (P2 — Q2)M)).

The following lemma confirms the feasibility of Condition C.4 for fixed

LEMMA 4.3. For fixed p, if (i) 7(I — AA, £)Pz(I — A(A, Z))p =
o™ (I — A(x, 2))2n), (i) = < p, 2T Z for p2 = o(R1), and (iii) tr (ZT Z)/n is
bounded, then R1(x, £) — Ra(, =) = o(R1(%, ).

The proof of the lemma is given in Section 7. Condition (i) bdrs- A)y from
being overloaded in the column spaceif(ii) holds for X of magnitude up to
the orderO(/n) whenz” Z grows at a rated (), which is typical for fixedp.
Alternatively, if p, = o(R1) in (ii), which usually holds for bounde®, then (i)
can be replaced by boundgdy/n; see the proof in Section 7.

THEOREM4.3. Under ConditionsC.1, C.2and C.4,asn — oo, one has
1 T
UL, X)—LoA, 2)—=e'e=0,(L2(%, X)).
n
If, in addition, Condition C.3also holds, then

1 T
VG E) = LoGh B) — ~ele = 0)(L2(r. B)).



SMOOTHING IN MIXED-EFFECT MODELS 1367

The proof of the theorem is given in Section 7.

Up to this point, we have considered purely real and purely latent random
effects. In practice, one could have a mixture of real and latent random effects in
the same setting. Partitioh= (Z1, Z) andb” = (bI, bl) and assumb; andb,
are independent sB is block diagonal. Define

1. . A .
(4.10) L3, %) = ~ (i + Z1ba — 0 = Zabn)" P7, (i + Z1b1 — 0 — Z1by)

and R3(r, ©) = E[L3(, )], where Pz, = I — Z(Z3 Z2)V 27 ; La(A, %) is a
natural loss forZ1b41 real andZsh, latent. ReplaceR,(A, X) in Condition C.4
by R3(x, X).

CONDITION C.5. Asn — 00, R1(A, X) — R3(A, X) = 0o(R1(A, X)).

A general result follows, of which the earlier theorems are special cases with
nil Z1 or nil Zo.

THEOREM4.4. Under ConditionsC.1, C.2and C.5,asn — oo, one has
1 T
UM, X)—L3r, B)—~e'e=0,(L3(A, X)).
n
If, in addition, Condition C.3also holds, then

1 T
V(L 2) - La(h, ) — ~eTe = 0p(La(h. ).

The proof of the theorem follows from straightforward modifications of the
proof of Theorem 4.3 as given in Section 7.

5. Empirical performance. We now present simple simulations to illustrate
the practical performance of generalized cross-validation in the context.

5.1. Real random effects. First consider a setting with real random effects
covered by Theorems 4.1 and 4.2. One hundred replicates of samples were
generated according to

(5.1) Yi =n(x;) + by, + ¢, i=1,...,100

wheren(x) = 3sin2rx), x; a random sample fromi (0, 1), &; ~ N (0, 0.5%), by ~
N(0,0.5%) ands; € {1, ..., 10}, ten each. Cubic smoothing splines as described in
Example 3.1 were calculated with,,, ,) minimizing U (A, ¥) of (4.4), 1y, =)
minimizing V (1, ) of (4.1) and(%,,;, =) minimizing L1(X, X) of (4.2).

The lossL1(x, ¥) was recorded for the fits. For theé fit with (,,, ), the
variance estimate through

s2_ YU = AGw, T0)2Y

(5.2)
r(l — A(Ay, Zy))
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was also recorded; the variance estimate was proposed by Wahba [14] for indepen-
dent data. The ratio?/o?2 as part ofZ was “estimated” througlt,,, =, or Z,,.

It is known that cross-validation may lead to severe undersmoothing on up to
about 10% replicates. To circumvent the problem, a simple modification proved to
be very effective in the empirical studies of Kim and Gu [9]. The modifieds
given by

n~ YT (I —A(x, £))2Y
(n=tr(I —aA(r, X)))2
for somex > 1. Similarly, U can be maodified by

(53) VoA, 2) =

1 2
(5.4) Ugh, ) = =YT (I = AL, £))?Y + Z02atr AL, B).
n n

A good choice ofx is around 1.4. Thé/ andV fits with « = 1.2,1.4,1.6,1.8
were also calculated and the loss and variance estimates recorded.

The performances df, (A, X) andV, (A, X) are illustrated in Figure 1. In the
left and center frames, the losseg(),, X,) andL1(),, X,) are plotted versus the
minimum possible, for = 1, 1.4. The relative efficacy of/,, (A, ) andV, (A, X)
fore =1,1.2,1.4,1.6,1.8 is summarized in the right frame in box plots. Roughly
speaking,U, andV, with « = 1 are “unbiased” by Theorems 4.1 and 4.2, and
settinga > 1 introduces “bias.” The top-tier performance may degrade slightly
asa increases, but the worst cases are being pulled ia foqp to 12 ~ 1.4, where
one appears to have the “minimax” performance.

Further details of the simulation are shown in Figure 2. In the left frame,
Ay @and i, for « =1 ande = 1.4 are plotted against each other, where a very
smalli by« = 1is seen to be pulled to the “normal” rangedy- 1.4. The number
of cases with severe undersmoothing by cross-validation seems to be much less
than what is typically seen in simulations with independent error; the phenomenon
has yet to be understood. The center frame of Figure 2 plots the variance ratio
UZ/JSZ “estimated” throughX,,, X, and X,. An interesting observation is the
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Fic. 1. Smulation with real random effects. Left and center: Performances of Uy (A, X) and
Vo (X, ) with o = 1 (faded circles) and « = 1.4 (circles). Right: L1(Am, Zim)/L1(My, Zy) (fatter
boxes) and L1 (Am, Xm)/L1(Ay, Zy) (thinner boxes) for « =1,1.2,1.4,1.6,1.8.
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wide range ofz,,, especially the many very small values, which effectively leave
the termz’ b unpenalized like the fixed effect terms in the null spaceJ of).

The “estimates” througlx, and X, appear far better in comparison, but remain
highly unreliable. The upward trend &f, and X, with increasingx is somewhat
expected, as larger yields smoother estimates corresponding to larger penalty
terms. In the right frame of Figure 2, the variance estimates by (5.2) are shown in
box plots forV fitswithe =1, 1.2, 1.4, 1.6, 1.8, demonstrating generally adequate
performance.

5.2. Latent random effects. For latent random effects, we keep the setting

of (5.1) but replaceb;, by b, as in Example 3.3. One hundred replicates of
samples were generated wifkix;) ande; as in Section 5.1, and withy € {1, 2},
50 each,by ~ N(0,0?) for 02 = 0.5%, and b, ~ N(0,0%) for 02 = 0.3%; the
intracenter correlations are2®/(0.25+ 0.25) = 0.5 for ¢ = 1 and 009/(0.09+
0.25) = 0.265 for ¢ = 2. Cubic smoothing splines were calculated witAnd =
minimizingU (A, ), V(A, X) andL2(), X) of (4.6).

The simulation results are summarized in Figures 3 and 4. Figure 3 parallels
Figure 1, exceptthat1(), X) is replaced by.>(A, X). The left and center frames
of Figure 4 summarize the “estimation” of the two parameterx phote that the
data contain only one “sample” fromi (O, 012) and one fromv (0, 022).

5.3. Mixture random effects. For mixture random effects, we simply add
together; of Section 5.1 and, of Section 5.2, with the ten subjects nested under
the two clusters, five each. One hundred replicates of samples were generated, with
the specifications ofi(x), 02, 02, 0? andoZ remaining the same as in Sections
5.1 and 5.2. Cubic smoothing splines were calculated wigmd = minimizing
U, X), V(r, X) andL3z(A, X) of (4.10). The counterpart of Figures 1 and 3 is
shown in Figure 5. The “estimated” variance ratios are again highly unreliable,
whereasy? demonstrates adequate performance, as seen in Figures 2 and 4; plots
are omitted.
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6. Applications. We now apply the technique to analyze a couple of real data
sets.

6.1. Tumor volume. To study the sensitivity of a human prostate tumor to
androgen deprivation, a preparation of the PC82 prostate cancer cell line was
implanted under the skin of eight male nude mice. After 46 days, measurable
tumors appeared on all eight mice; this day is referred to as day 0. On day 32, all
mice were castrated. The tumors were measured roughly weekly over a 5-month
period, resulting in 16 sets of measurements on the eight mice. Further details
concerning the data can be found in [6], along with some analyses using parametric
models.

We performed a nonparametric analysis of the data using the techniques
developed. Taking the logarithm of the measured tumor volume as the regponse
the model of Example 3.1 was considered,

Yi =n(x;) + by, + &,

wheres =1, ..., 8. The exponential spline as discussed in Example 3.1 was used
to estimaten(x), but the generalized cross-validation score was minimized at
0 = 0, yielding a cubic spline fit. The fitted(x) is plotted in Figure 6 along
with the data. The variance estimates are gived by= 0.1490 ands? = 0.0928;
remember tha6? is trustworthy buts? can be grossly misleading, as shown in
Section 5.

6.2. Treatment of multiple sclerosis. A randomized, double-blind clinical trial
was conducted to study the treatment of multiple sclerosis by azathioprine (AZ)
and methylprednisolone (MP). Patients were assigned randomly to three groups:
(i) the PP group receiving placebos for both AZ and MP, (ii) the AP group receiving

L

500
1
500
1

Tumor Volume

50 100 200
Tumor Volume

50 100 200

L

FiG. 6. Cubic spline fits of tumor volume. Left: Tumor volume measurements (dashed lines)
and their geometric mean (solid ling). Right: Fitted n(x) (solid line), with the geometric mean of
measurements superimposed ( faded line). The castration time is marked by the vertical line.
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real AZ and placebo MP; and (iii) the AM group receiving real AZ and MP. The
abundance of lymphocytes bearing a protein caliedreceptor was measured in
the form of the so-called AFCR levels. Blood samples were drawn prior to the
initiation of therapy, at the initiation, in weeks 4, 8 and 12, and every 12 weeks
thereafter for the remainder of the trial. A total of 48 patients were represented
in the data, with 17 on PP, 15 on AP and 16 on AM. There were “missing”
values in the sense that blood samples were not drawn from all patients at every
time point. Detailed descriptions of the study can be found in [7] and further
references therein. A analysis of the data using parametric models was conducted
by Heitjan [7].

We now present a nonparametric analysis of the data using the formulation of
Example 3.2. Following [7], the responsEsare taken as the square roots of the
AFCR measures. The model is of the form

Yi =n(x;, tj) + by, + &,

where the patient identification is nested under the treatment level The
“missing” values pose no problem for our treatment. The fitted cubic splines are
plotted in Figure 7 with the data superimposed. The smoothing paraéieteras
effectively set to O by cross-validation, so the interactj@a(x, t) consists of only
parametric terms with the basif.—;) — 1/3)x, j =1, 2; see Example 3.2 for the
notation. The variance estimates were giversBy= 12.81 andé? = 6.624.

7. Proofs. This section collects the proofs of the lemmas and theorems of
Section 4. The following lemmas govern some of the calculations.

LEMMA 7.1. For Zb ~ N(0,ZBZ") and & ~ N(0,c2I), independent of
each other, one has
Varlb? zTczby=2tr(czBZz"cTzBZT),
Varle” Ce] = 20*tr(CcCT),
Varlb” z" ce) = o?tr(ccTzBZT).
The proof of the lemma is straightforward.
LEMMA 7.2. For M = REYTRT(I—Qz),whereE =RT(I — Q)R +n)Q,
one has
MTPFM+MT (P, — Q)M
=MT(I-Q0)M<I,
(I =M Pz(I— M)+ — M) (Pz—0z)I - M)
= —=M)"(I—-Qz)I—-M)<4l.
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PROOF. It is straightforward to show tha¥” (I — Q)M < I. Now for an
arbitrary vectorx,

X" (I = M) (I — Q2)(I — M)X
=x"(I = 0 x+xX"MT (I — 0 )Mx—2xT (1 — Q) MxT < 4xTx,

where the Cauchy—Schwarz inequality is used to bound the cross térm.

Also note thatB is fixed, thus having bounded eigenvalues, and ¥fakX and
X XT share nonzero eigenvalues for all matriges
We are now ready for the proofs of the lemmas and theorems of Section 4.

PROOF OFLEMMA 4.1. Recall from (4.3),
1 1 2
RO, %) = =97 (I — A2+ =tr(( — A2ZBZT) + T tr A2,
n n n

Using (2.7), the first term is seen to be of the ordgi*), and the third term is of
orderO(n=*A=Y" + n=1p). Again by (2.7),

I-MNZ=I-MZ(I-(Z"U-AZ+%)2TU - A)Z)
=(I-Az(Z"U-Az+x) s,
thus
ZT1-A2Z<x(2TU - KAZ+3) s,

so Condition C.1 implies an upper bound on the eigenvalues-efd) ZBZT (I —
A), and the second term is of ordérn—1p). The proof is complete. [

PROOF OFTHEOREM4.1. In light of (4.5), it suffices to show that

(7.1) Li(A, ) — R1(x, ) = 0,(R1(%, 2)),
(7.2) nt + Zb)T (I — A)e = 0,(R1(2, X)),
(7.3) n~el Ae — a?tr A) = 0,(R1(%, ).

To see (7.1), note that
Var[L1(x, £)] =n"?Var2y” (I — A)?Zb — 29T (I — A)Ae
+b"ZT (1 — A)?Zb— 20T ZT (1 — A)Ae + T A%e).

Since Condition C.1 implies an upper bound on the eigenvalues! of
A)ZBZT(I — A), one has

n~?Varp' (I — A)2Zbl=n"9T(I — A)?’ZBZT (1 — A)*y
=n"t0(R1) =o(R}),
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where the last equation is by Condition C.2. Likewise,
n~2VarpT (I — A)Ae) =n"2629T (I — A)A%(I — A)p=o(R?),
n=2Varlb? zT (I — A)?Zb) = 2n2tr((I — A)*ZBZT (I — A)*ZBZ") = 0o(R?),
n~2Varlb” ZT (I — A)Ae] =n"262tr((I — A)A%(I — A)ZBZ") = 0o(R?),
n~2VarleA%e] = 2n 204 tr A* = 0(R?).

Summing up, and bounding the covariances between the terms by the Cauchy—
Schwarz inequality, one has Van(), X)] = o(Rf(A,E)), and hence (7.1).
Similar calculations yield (7.2) and (7.3), completing the prodafl

PROOF OFLEMMA 4.2. From (2.7), one hasar<tr A+ p and trA2 > tr A2,
SO

(n—1tr A)? - (n~MrA +n"1p)?
n—ltrA2 — n—1ltr A2

=0 WY 4 n7lp +nip2ln.
The lemma follows as — 0 andnAY"™ — co. [

PROOF OFLEMMA 4.3. Recall from (4.9) that

Rl()"’ 2:) - RZ()"’ 2:)
1
=" (I = M) (Pz = Q2)*( — M)y

1
+-1r(((Pz — Q2) + (P2~ Q2)RE* R (P7 02))°zBZ")

2
n %tr((Qz +(Pz— 0)M) (Q7 + (Pz — Q2)M)).

SinceD=2"Z+% <A+ p,)Z"Z, one hasP; — Qz < ppPz/(L+ p,) <
on Pz. For the first line, noting thaP; — Qz = P;(I — Qz) and(I — Qz)(I —
M)=1— A, one has

17, a7 _ 207 1l _ _

nﬂ (I —=M) (Pz—0z)(I—-M)n= nﬂ (I —A)Pz(I — A)n =o(Ry).
Alternatively, withy” 5/n bounded,

1
;nT(I —~MT(P7— 02— M)y

1
< pn;nTu — M) (Pz— Q)T — M)y

= O0(pn)
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as(I — M) (Pz — Qz)(I — M) < 4lI. For the second line, note that
1 T 21 T
;tr((Pz —Q72)ZBZ" (Pz — Q7)) < pn;tr(ZBZ ) =0(R1)

and, with F = (Pz — 0-)Y2RE+TRT (P, — 02)¥? < I and henceF(P; —
Q7)F < pyl, that

1
~tr(((Pz — Q)REVRT (P~ 02))°ZBZ")
= %tr(Bl/zzT(pZ — 0)Y2F(P; — Q2)F(P7 — 02)Y2ZBY?)

1 1
< - tr(BY2Z1 (P, — 02)ZBY?%) = pi~(ZBZ") = 0(Ro);

the cross term can be bounded by the Cauchy—-Schwarz inequality. For the third
line, note that:=tr 02 < p/n = o(Ry) and thatM ™ (Pz — 07)?M < I has no
more thanp nonzero eigenvalues. The proof is now complete.

PrOOF OFTHEOREM4.3. Recall from (4.7) that
1
Ro(h, ) = —(n" (1 = M)" Pz (I = M)y

+tr(MT PFMZBZT) 4+ o2te(MT PL M)},

Pluggingn = M(n + Zb + ¢) into (4.8) and grouping terms, some algebra leads
to

1 T
UM, X)—LoA, X)) — ;e e
1
=+ zb)' (1 — )T (Pz — Q2)%(1 — M)(n + Zb)

2 2
+ EnT(I — M (Pz— 02)*(I — M)e + ;nT(l ~ M) Pre
(7.4) 5 2
+ 0T 2T (1 = M) (P7 — 02)*( — M)e — =bT 2T MT Pfe
n n

1
+2e"(Qz + (P2~ Q2)M)" (Qz + (P2~ Q2)M)e

1
— Z(eT Ae — 52tr A).
n

To prove the first part of the theorem, it suffices to show that (7.4) is of order
0p(R2(2, ¥)) and that

(7.5) LA, ) — R2(h, =) = 0, (R2(%, T)).
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Taking the expectation of the first line of (7.4), one has

1
~El(n+ zZb)' (1 — M)T (P7 — Q7)1 — M)(n + Zb)]

= mT Py — 002U -
= 7z — 02)( n
1
+-1r(((Pz — Q2) ~ (Pz = Q2)RE*RT (Pz — 02))°ZBZ")
= O(R1— R2) =0(R2),
where Condition C.4 is used. Similarly, the expectation of the fourth line of (7.4)
gives
1
“E[e”(Qz+ (P2~ Q2)M)" (Qz + (P2 — Qz)M)e]
2
= t1((Qz + (P2 = 0)M)" (Qz + (P2 = 02)M))
= O(R1— R2) =0(R2).

For the two terms on the second line of (7.4), noting tiiat M)T (P, — 0 7)%(I —
M) <4,

n~?Varly" (I = M)" (Pz — Q2)*(I — M)e]
<4n20%y" (I = M) (Pz — Q2)*(I — M)n = 0(R3)

by Conditions C.2 and C.4, and

n=2VarinT (I — M)T PFel =n"20%y" (1 — M)T PF(I — M)y
=n"10(R2) = o(R3).
Likewise, the third-line terms in (7.4) give
n=?Varlb” zT (1 — M)T (P; — 02)>(I — M)e]

<20 %5%tr(((Pz — Qz) — (Pz — Q2)RE*RT (Pz — 02))°ZBZT)
= o(R3),

and

n~2Varlb? ZTMT Pfel=2n"262tr(MT P MZBZT) =n"10(R2) = o(R3).

The fifth line of (7.4) is (7.3), which is of order, (R1) = 0, (R2) by Condition C.4.
To see (7.5), note that

Var[La(A, ¥)]
=n"2Var2ny" (M — )T PFMzZb+ 29" (M — )T Pf Me
+0bTZTMT Py MZb +bT 2T MT P;Me + " MT PF Me].
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Using (2.6), one hasfZ = AZ(ZT(I — A)Z + )71, PfMZ = PF(A —
DZZTI - AZ+ )78, thusZ"TMTPFMZ < 2(ZT(1 — A)Z + 2)71%,
so Condition C.1 implies bounded eigenvalues forMZBZT MT P;. It then
follows that

n=2VarlpT (M — DT Py MZbl=n"9T (1 — M)T PFMZBZ"MT P}(I — M)y

= o(R3),

n=2VarlpT (M — DT PFMel =n"26%9T (I — M)T PFMMT P71 — M)y
= 0(R2),

n=2Varlb” ZTMT Py Mzb] =20 2t(MT Py MZBZ"MT Py MZBZT)
= o(R3),

n~2Varlb” ZT M" Py Me) = n20?tr(MT PFMZBZ" MT P; M) = o(R3),
n=2Varle" MT P} Me] =20 26*tr(MT Py MMT P} M) = o(R3).

Collecting terms and bounding the covariances between the terms by the Cauchy—
Schwarz inequality, one has Van (1, X)] = o(R%(A, 3)), and hence (7.5). The
proof of the first part of the theorem is now complete.

Given the first part of the theorem, the second part follows from the proof of
Theorem 3.3 in [2], page 66.00

8. Discussion. In this article we studied the optimal smoothing of nonpara-
metric mixed-effect models through generalized cross-validation. The asymptotic
analysis was backed by simulation studies with sample size as small as 100. Re-
lated practical issues such as variance estimation were also explored in the sim-
ulation studies. As a sequel to this work, the optimal smoothing of non-Gaussian
longitudinal data has been studied in [4] on an empirical basis. The methods have
been implemented in the open-source R packgge by the first author.

While many correlated errors can be cast as variance components with low-
rank random effects, some others do not conform, which spells the limitation
of the techniques developed here; an important nonconforming case is serial or
spatial correlation. On the flip side, the nonparameiric) can be interpreted as
a realization of a Gaussian process under the Bayes model of a smoothing spline,
so there remains a potential identifiability problem of some sort betwéen
and a separate serial or spatial correlation, unless the serial or spatial correlation
is independent aof. Optimal smoothing for penalized likelihood estimation with
serially or spatially correlated data is treated in a recent study by Gu and Han [3].
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