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This article develops nonparametric inference procedures for estimation
and testing problems for means on manifolds. A central limit theorem
for Fréchet sample means is derived leading to an asymptotic distribution
theory of intrinsic sample means on Riemannian manifolds. Central limit
theorems are also obtained for extrinsic sample means w.r.t. an arbitrary
embedding of a differentiable manifold in a Euclidean space. Bootstrap
methods particularly suitable for these problems are presented. Applications
are given to distributions on the sphe® (directional spaces), real
projective spacé& PV —1 (axial spaces), complex projective spdﬂé”“z
(planar shape spaces) w.r.t. Veronese—Whitney embeddings and a three-
dimensional shape spag#.

1. Introduction. Statistical inference for distributions on manifolds is now a
broad discipline with wide-ranging applications. Its study has gained momentum
in recent years, especially due to applications in biosciences and medicine, and
in image analysis. Including in the substantial body of literature in this field are
the books by Bookstein [10], Dryden and Mardia [15], Kendall, Barden, Carne
and Le [33], Mardia and Jupp [41], Small [49] and Watson [52]. While much of
this literature focuses on parametric or semiparametric models, the present article
aims at providing a general framework for nonparametric inference for location.
This is a continuation of our earlier work [7, 8] where some general properties
of extrinsic and intrinsic mean sets on general manifolds were derived, and the
problem of consistency of the corresponding sample indices was explored. The
main focus of the present article is the derivation of asymptotic distributions of
intrinsic and extrinsic sample means and confidence regions based on them. We
provide classical CLT-based confidence regions and tests based on them, as well
as those based on Efron’s bootstrap [17].

Measures of location and dispersion for distributions on a manifélevere
studied in [7, 8] as Fréchet parameters associated with two types of distances
onM. If j:M — RKis an embedding, the Euclidean distance restrictet{ 16)
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1226 R. BHATTACHARYA AND V. PATRANGENARU

yields theextrinsic mean set and theextrinsic total variance. On the other hand,
a Riemannian distance on M yields theintrinsic mean set and intrinsic total
variance.
Recall that thd=réchet mean of a probability measur@® on a complete metric
spacegM, p) is the minimizer of the functioir' (x) = f,oz(x, y)Q(dy), when such
a minimizer exists and is unique [21]. In general the set of minimizerg o
called theFréchet mean set. The intrinsic mearnu;(Q) is the Fréchet mean of
a probability measur€® on acomplete d-dimensional Riemannian manifold
endowed with the geodesic distantedetermined by the Riemannian structgre
on M. It is known that if Q is sufficiently concentrated, then;(Q) exists
[see Theorem 2.2(a)]. Thextrinsic mean ug(Q) = uj £(Q) of a probability
measureQ on a manifoldM w.r.t. an embedding : M — R is the Fréchet mean
associated with the restriction faM) of the Euclidean distance iR*. In [8] it
was shown that the extrinsic mean @fexists if the ordinary mean of(Q) is a
nonfocal point of j (M), that is, if there is ainique point xo on j (M) having the
smallest distance from the meanafQ). In this caseu; £(Q) = 7 (x0).
It is easier to compute the intrinsic mean if the Riemannian manifold has zero
curvature in a neighborhood containing sypp45]. In particular this is the case
for distributions on linear projective shape spaces [42]. If the manifold has nonzero
curvature around supp, it is easier to compute the extrinsic sample mean. It may
be pointed out that iD is highly concentrated as in our medical examples in [8]
and in Section 5, the intrinsic and extrinsic means are virtually indistinguishable.
We now provide a summary of the main results in this article. Section 2
is devoted to nonparametric inference for the Fréchet mean of a probability
measure? on a manifoldM for which there is a domaity of a chartp : U — R?
such thatQ(U) = 1. In Theorem 2.1 it is shown that in this case, under some
rather general assumptions, the image of the Fréchet sample meangurgler
asymptotically normally distributed around the image of the Fréchet megh of
This leads to the asymptotic distribution theory of the intrinsic sample mean on a
Riemannian manifold/ (Theorems 2.2, 2.3). In Corollaries 2.3 and 2.4 bootstrap
confidence regions are derived for the Fréchet mean, with or without a pivot.
Section 3 is devoted to asymptotics of extrinsic sample means. The ideas behind
the main result here are essentially due to Hendriks and Landsman [27] and
Patrangenaru [44]. The two approaches are somewhat different. We present in
this article an extension of the latter approach. Extrinsic means are commonly
used in directional, axial and shape statistics. In the particular case of directional
data analysis, that is, whe = S?~1 is the unit sphere iR, Fisher, Hall,
Jing and Wood [19] provided an approach for inference using computationally
efficient bootstrapping which gets around the problem of increased dimensionality
associated with the embedding of the manifalfl in a higher-dimensional
Euclidean space. In Corollary 3.2 confidence regions are derived for the extrinsic
meanu ; £(Q). Nonparametric bootstrap methods on abstract manifolds are also
derived in this section (Theorem 3.2, Proposition 3.2).
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If one assumes thaP has a nonzero absolutely continuous component with
respect to the volume measure &h then from some results of Bhattacharya and
Ghosh [6], Babu and Singh [1], Beran [2] and Hall [24, 25], one derives bootstrap-
based confidence regions fog (Q) with coverage erroop(n—z) (Theorem 3.4)

(also see [5, 9]). One may also use the nonpivotal bootstrap to construct confidence
regions based on the percentile method of Hall [25] for gen@radth a coverage

error no more tham , (n~%/@+D) whered is the dimension of the manifold (see
Remark 2.4 and Proposition 3.2). This is particularly useful in those cases where
the asymptotic dispersion matrix is difficult to compute.

Section 4 applies the preceding theory to (i) real projective spREes'—
the axial spaces, and (ii) complex projective spac&sP*—2—the shape spaces.
Another application to products of real projective spad@g™)*—~1 or the so-
calledprojective shape spaces, will appear in [42].

As an application of Corollary 3.3, large sample confidence regions for mean
axes are described in Corollary 4.2. A similar application to projective shape
spaces, combining bootstrap methods for directional data from [3], appears in [42].
Other applications to axial spaces are given in Theorem 4.3 and Corollary 4.4, and
to planar shape spaces in Theorem 4.5.

Finally in Section 5 we apply the results of Sections 2 and 4 to construct
(1) a 95% large sample confidence region for the intrinsic mean location of the
magnetic South Pole from a directional data set given in [20], (2) simultaneous
confidence intervals for the affine coordinates of the extrinsic sample mean shape
in a medical application and (3) a test for the difference between three-dimensional
mean shapes in a glaucoma detection problem.

2. A central limit theorem for Fréchet sample means and bootstrapping.
A d-dimensionabifferentiable manifold is a locally compact separable Hausdorff
spaceM, together with aratlas 4,; comprising a family ofcharts (U,, ¢,) of
open seté/,, coveringM, and for eacle a homeomorphism, of U, onto an open
subset ofR? for which the transition mapg, - ¢>/§l 1pg(UaNUB) = ¢ (UsNUp)
are of clas€2®. The setd/,, are often calledoordinate neighborhoods. One may
show that a differentiable manifold is metrizable. We briefly recall some basic
notion associated with Riemannian manifolds. For details the reader may refer to
any standard text on differential geometry (e.g., [13, 26], or [38]Ri&nannian
metric g on a differentiable manifold/ is aC> symmetric positive definite tensor
field of type (2, 0), that is, a family of inner productg, = (-, -),, on the tangent
spacesl', M, p € M, which is differentiable w.r.tp. A Riemannian manifold M
is a connected differentiable manifold endowed with a Riemannian metfibe
distancep, induced byg is called thegeodesic distance. For p,q € M, pg(p, q)
is the infimum of Iengthsff(k(r),;&(r))i{ﬁ dt of all Cl-curvesx(r),a <t <b,
with x(a) = p, x(b) = g. The minimizer satisfies a variational equation whose
solution is ageodesic curve. There is a unique such geodesic curve y (¢) for
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any initial pointy (0) = p and initial tangent vectop (0) = v. A classical result of
Hopf and Rinow states that/, p,) is complete as a metric space if and only if
(M, g) is geodesically complete [i.e., every geodesic curve(r) is defined for all

t € R]. These two equivalent properties of completeness are in turn equivalent to
a third propertyall closed bounded subsets of (M, p,) are compact ([13], pages

146 and 147).

Given g € M, the exponential map Exp,:U — M is defined on an open
neighborhoodU of 0 € T, M by the correspondence— y, (1), wherey, () is
the unique geodesic satisfying0) = ¢, y (0) = v, providedy () extends at least
to+ = 1. Thus if (M, g) is geodesically complete or, equivalentiy, p.) is
complete as a metric space, then xp defined on all of7; M. In this article,
unless otherwise specified, &ilemannian manifolds are assumed to be compl ete.

Note that ify (0) = p andy(¢) is a geodesic, it is generally not true that the
geodesic distance betweprandg = y (1), say, is minimized by (¢1),0<r <1
(consider, e.g., the great circles on the spt#ras geodesics). Leg = 7o(p) be
the supremum of all; > 0 for which this minimization holds. Ify < oo, then
y (to) is thecut point of p along y. Thecut locus C(p) of p is the union of all cut
points of p along all geodesicg starting atp [e.g.,C(p) = {—p} on §2].

In this article we deal with both intrinsic and extrinsic means. Hence we will
often consider a general distangeon a differentiable manifold/, but assume
that (M, p) is complete as a metric space. We consider only those probability
measures) on M for which the Fréchet mean¢ = u#(Q) exists. Moreover
we assume that thereisa chart (U, ¢) suchthat Q(U) =1, and u# € U.

REMARK 2.1. The assumption above on the existence of a ¢bawb) such
that Q(U) = 1 is less restrictive than it may seemglis a Riemannian structure
on M and Q is absolutely continuous w.r.t. the volume measure, then, for any
given p, the complement/ of the cut locusC(p) is the domain of definition of
such a local coordinate system (the coordinate map being the inverse ofthgp
exponential map ab) (see [38], page 100, for details).

EXAMPLE 2.1. For thed-dimensional unit sphereyf = §¢ = {p € R4*+1:
| pll = 1}, with the Riemannian metric induced by the Euclidean metri®Réh?,
the exponential map at a given pojpe S¢ is defined on the tangent spatgM
and is given by

(2.1)  Exp,(v)=cog|vl)p +sin(lviDvl~tv  (veT,s% v£0).

If x € §9, x # —p, then there is a unique vectoare Tp,M such thatx = EXp, u,

and we will label this vector by = Log), x. Since7,$? = {v e RY™, v p =0},
it follows that

(2.2) Log, x = (1— (p-x)?) " "*arccosp - x)(x — (p - x)p).
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In partlcular ford = 2 we consider the orthobasis(p), e2(p) € T, $2, where
= (p1, p2, p3)' € SA\{N, §} [N =(0,0,1), § = (0,0, - D)]:

e1(p) = ((p1)? + (p2)?) " "*(=p2, p1, 0,
(2.3) e2(p) = (—((p1)? + (pz)z)_l/zplps,

—(x%+ )Y pops, ((p1)? + (p209) 7).

The logarithmic coordinates of the pointx = (x1, x2, x3)7 are given in this case
by

u'(p) =ei(p) - Log,, x,
u®(p) = e2(p) - Log,, x.
For computations one may useb = a’b.

(2.4)

Now the image measur@? of Q under¢ has the Fréchet mean= ¢ (i)
w.r.t. the distance? (u, v) := p(¢p~L(u), p~1(v)), u, v € ¢(U). Similarly, if X;
(i=1,...,n) arei.i.d. with common distributio® and defined on a probability
space(L2, A, P), let u, # be a measurable selection from the Fréchet mean set

(W.r.t. p) of the empiricalQ, = %Z?:l 8x;. Thenu, = ¢(u,, 5) is a measurable
selection from the Fréchet mean set (wpt) of 0% = %Z,’f:l&l,, whereX; =

#(X;). Assuming twice continuous differentiability 6f— (p?)2(u, 6), write the
Euclidean gradient as

d

(0", 6)) — (W w0,

@8) wi0) = grad (02,0 = (707
r=1

Now  is the point of minimum of
(2.6) FO0) = [ (0")?w.0)0 ()
andu, is a local minimum of

FO) = [ (0")20,6) 0% du).

Therefore, one has the Taylor expansion

0"

1 & ~
=WZ\P’(XZ-;M)
2.7) =IZ\D<X“M)

+- ZZD WX (e — )+ Ry (A<r<ad),

i=1r'=1
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where
d P . .
(28)  Ry= ) Vnlwy —p")= Y D (X3 6,) — D W' (Xis )
r'=1 i=1

andg, lies on the line segment joining andw,, (for sufficiently largen). We will
assume

2.9) E|W(X;; w|? < oo,
' EID,V (Xiiw)P<oo  (Vrr).
To show thatR), is negligible, write

W (x,e):=  sup  |DW(x;0) — Dy (x; )
(0: 16—l <e)

and assume
(2.10) 8" (¢) = Eu"" (Xi,c) >0 asclO0@<rr <d).

One may then rewrite (2.7) in vectorial form as

1 & .
(2.11) 0=ﬁizzlw(xi,u)+(/x+8n)ﬁ(un—u),
where
(2.12) A=E((DyV (X )y

andé,, — 0 in probability asn — oo, if u, — w in probability. If, finally, we
assumeA is nonsingular, then (2.11) leads to the equation

_ A1 i s V.. ’
(2.13) \/E(Mn_,u)—A <ﬁ§w(xl,ﬂ)>+8n’

where 8, goes to zero in probability ag8 — oco. We have then arrived at the
following theorem.

THEOREM 2.1 (CLT for Fréchet sample means)Let Q be a probability
measure on a differentiable manifold M endowed with a metric p such that every
closed and bounded set of (M, p) is compact. Assume (i) the Fréchet mean ¢
exists, (ii) there exists a coordinate neighborhood (U, ¢) such that Q(U) =1,
(iii) the map 8 — (p?)2(6,u) is twice continuously differentiable on ¢ (U),
(iv) the integrability conditions (2.9) hold as well as the relation (2.10) and
(v) A, defined by (2.12),is nonsingular. Then (a) every measurable selection w,,
from the (sample) Fréchet mean set of Q,‘f = % Y48 %, is a consistent estimator
of 1, and (b) Vi(in — ) 5 N (0, A=1C(A")~L), where C is the covariance
matrix of W (X;; u).
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ProoOFE Part (a) follows from Theorem 2.3 in [8]. The proof of part (b) is as
outlined above, and it may also be derived from standard proofs of the CLT for
M-estimators (see, e.g., [29], pages 132-134).

As an immediate corollary one obtains:

COROLLARY 2.1. Let (M, g) be a Riemannian manifold and let p = p, be
the geodesic distance. Let Q be a probability measure on M whose support is
compact and is contained in a coordinate neighborhood (U, ¢). Assume that
(i) the intrinsic mean u; = g exists, (i) the map 6 — (p?)2(0, u) is twice
continuougly differentiable on ¢ (U) for each u € ¢(U) and A, defined by (2.12),
is nonsingular. Then the conclusions of Theorem 2.1 hold for the intrinsic sample

Mean ju, 1 = i, Of O = 3 Xo7_g 8x;, With 1= (7).
We now prove one of the main results of this section.

THEOREM2.2 (CLT for intrinsic sample means).Let (M, g) bea Riemannian
manifold and let p = p, be the geodesic distance. Let Q be a probability measure
on M whose support is contained in a closed geodesic ball B, = B, (xp) with
center xo and radius r which is digoint from the cut locus C (xo). Assume r < 7%,
where K2 is the supremum of sectional curvatures in B, if this supremum is
positive, or zero if this supremum is nonpositive. Then (a) the intrinsic mean
(of Q) exists, and (b) the conclusion of Theorem 2.1 holds for the image w, =
¢ (un, 1) of theintrinsic samplemean 1, ; of O,=1 "_18x,, under theinverse ¢

of the exponential map, ¢ = (Exp,,) .

PROOFE (@) It is known that under the given assumptions, there liscal
minimum w7, say, of the Fréchet functioR” which belongs toB, and that this
minimum is also theunique minimum in By, [30, 34, 40]. We now show that,
is actually the uniquelobal minimum of F. Let p € (B2,)¢. Thenp(p,x) > r,
Vx € B,. Hence

(2.14) F(p)= /_ P2(p. x)Q(dx) > /_ r20(dx) = r2.
B, B,

On the other hand,

(2.15) F(ur) < F(xo) = /F p2(x0, 1) Q(dx) <12,

proving F(p) > F(u1).

(b) In view of Corollary 2.1, we only need to show that the Hessian matrix
A= A(u) of Fog¢™tatu:=¢(u;) is nonsingular, whergp = Exp,l. Now
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according to [30], Theorem 1.2, for every geodesic cyry® in B, t € (c, d) for
somec < 0,d > 0,

d2
(2.16) ﬁF(y(t)) >0 (c<t<d).

Let ¢ = Exp,, denote the exponential map at, and lety(¢) be the unique
geodesic withy (0) = u; andy (0) = v, so thaty (t) = ¥ (tv). Here we identify
the tangent spacg,, M with R?. Applying (2.16) to this geodesic (at= 0), and
writing G = F o ¢, one has

(2.17) d — Zv"vf'(D,-DjG)(O)>o (Yv#£0),
that is, the Hessian cﬂ; is positive definite at @ RY. If xg = wr, this completes
the proof of (b).

Next letxg £ ;. Now Fo¢p™1 =G ° (v 1o ¢~1) on a domain that includes
w=¢(ur) = (EXp,)~ Yup). Writey ~1ogp~1 = f. Thenin aneighborhood gf,

9%(G o f) f af’
— )= (u
8rar r

(2.18) s

+Zwmqw> (u).

ou’ du r’
The second sum in (2.18) vanlsheaai w, since(D;G)(f(n)) = (D;G)(0) =
as f(w) = v Yo~t(w) = v () =0 is a local minimum ofG. Also fis a
diffeomorphlsm in a neighborhood @f. Hence, writingA, /(1) as the(r, r’)
element ofA (u),

2(Fogp™

Arp(p) = W( n) =

f af '
W(M)-

B
This shows, along with (2.17), that = A (w) is positive definite. [

REMARK 2.2. If the supremum of the sectional curvatures (of a complete
manifold M) is nonpositive, and the support @f is contained inB,, then the
hypotheses of Theorem 2.2 are satisfied, and the conclusions (a), (b) hold. One
may apply this even with = oo.

REMARK 2.3. The assumptions in Theorem 2.2 on the suppo@ &br the
existence ofx; are too restrictive for general applications. But without additional
structures they cannot be entirely dispensed with, as is easily shown by l@tting
be the uniform distribution on the equator$#. For the complex projective space
C P92, d even, necessary and sufficient conditions for the existence of the intrinsic
meany; of an absolutely continuous (w.r.t. the volume meas@eyith radially
symmetric density are given in [33, 39].
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It may be pointed out that it is the assumption of some symmetry, that is, the
invariance ofQ under a group of isometries, that often causes the intrinsic mean
set to contain more than one element (see, e.g., [8], Proposition 2.2). The next
result is, therefore, expected to be more generally applicable than Theorem 2.2.

THEOREM 2.3 (CLT for intrinsic sample means)Let Q be absolutely
continuous w.r.t. the volume measure on a Riemannian manifold (M, g). Assume
that (i) wu; exists, (ii) the integrability conditions (2.9) hold, (iii) the Hessian
matrix A of Fo¢ 1 at u=¢(us) is nonsingular and (iv) the covariance
matrix C of W(X;; 1) is nonsingular. Then /n(u, — ) LY N (0,T), where
r=A1cnahH1L

This theorem follows from Theorem 2.1 and Remark 2.1.

In order to obtain a confidence region feg- using the CLT in Theorem 2.1
in the traditional manner, one needs to estimate the covariance natgx
A~1C(Ah~L. For this one may use proper estimate\aindC, namely,

A@©) = Z(Gradw)(x,, [tn)s ¢ =CovQ?,
(219) i=1
[:=A"1C(AH, [1=A'CtA.

The following corollary is now immediate. Lexd 1_o denote the(l — a)th
quantile of the chi-square distribution withdegrees of freedom.

COROLLARY 2.2. Under the hypothesis of Theorem 2.1,if C is nonsingular,
a confidence region for pws of asymptotic level 1 — « is given by U, 4 :=

¢~ (Dy o), Where D, ¢ = {v € (U) 1n(iy — ) Ty —v) < %21, ).

EXAMPLE 2.2. In the case of the sphes# from Example 2.1, it follows
that if we consider an arbitrary data point= («1,4?), and a second point
6 =Log, A= (61, 62), and evaluate the matrix of second-order partial derivatives
w.r.t. 91, 62 of

influ]l

(2.20) G(u, 9)_arcco§<cos|| 4+ el il

1
W0t +u26?) — Enenzcosuuu),

then

aZG _ 2u”u® (1_ [z ]| ) n 28”“14”

2.21 —u;0)= ,
2 T I llu) tan|u|| tan|fu|l

wheres,, is the Kronecker symbol anfi||2 = (u1)2 + («?)2. The matrix A =
(Arr)r=12 has the entries

(ui; 0).

1 892G
2.22 Appr = — .
(2.22) n ; 90" 30"



1234 R. BHATTACHARYA AND V. PATRANGENARU

AssumeC is the sample covariance matrix of,j=1,...,n; alarge sample
confidence region for the intrinsic mean is given by Corollary 2.2 wjth= 0.

We now turn to the problem of bootstrapping a confidence regiop forLet
X¥ be i.i.d. with common distributio®,, (conditionally, given{X;:1 <i <n}).

i,n

Write f(l*n = ¢(X§fn), 1<i <n, and lety) be a measurable selection from the
Fréchet mean set @, * := 1y7_ 5. . Let E* , be a subset ap(U), such that
P*(uy — n € Ep ) > 1L —ain prot;ability, whereP* denotes the probability
underQ,,.

COROLLARY 2.3. In addition to the hypothesis of Theorem 2.1, assume C is
nonsingular. Then ¢~ 1({(u, — Ey ) N¢(U)}) is a confidence region for p# of
asymptotic level (1 — «).

PROOF One may write (2.7) and (2.8) witla andu,, replaced by, andu:,
respectively, also replacing; by X;‘ in (2.8). To show that a new version of (2.11)
holds with similar replacements (also replacingby [\), with a g, (in place
of 4,) going to zero in probability, one may apply Chebyshev’s inequality with
a first-order absolute moment und@,, proving thatA* — A goes to zero in
probability. HereA* = 1 7 (Grad®)(X; 11). One then arrives at the desired
version of (2.7), replacing.,, i, A, X; by Wy o, A, 5(;“, respectively, and with
the remainder (corresponding&ﬁp) going to zero in probability. O

REMARK 2.4. In Corollary 2.3, we have considered the so-cafledentile
bootstrap of Hall [25] (also see [17]), which does not require the computation
of the standard erroA. For this as well as for the CLT-based confidence region
given by Corollary 2.2, one can show that the coverage error is no more than
0,(n=4@+Dy or 0(n=4/@+D)  as the case may be [4]. One may also use the
bootstrap distribution of thpivotal statistic n(u,, — wI T, — ) to find Ch
such that

(2.23) P*(n(uy — ) T s — ) < ¢ p) > 1—a,
to find the confidence region
(2.24) D ={vepU)in(un —v) Ty —v) < ).

In particular, if Q has a nonzero absolutely continuous component w.r.t. the
volume measure oM, then so doegD? w.r.t. the Lebesgue measure ¢tl)

(see [13], page 44). Then assumingdg), is such that the*-probability in (2.23)
equals 1—- o + OI,(n*Z) and (b) some additional smoothness and integrability
conditions of the third derivatives &, one can show that the coverage error [i.e.,
the difference between-lo andP (i € Dj; ,)]is 0,,(n‘2) (see|5, 6, 12, 24, 25]).
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It follows that the coverage error of the confidence regdﬁril(D;;a N¢))
for ug is alsoO (n~2). We state one such result precisely.

COROLLARY 2.4 (Bootstrapping the intrinsic sample meanpuppose the
hypothesis of Theorem 2.3 holds. Then
sup P*(n(uy — )" T — ) <)

r>0
— P(n(n — ) Ty — ) < 1) = 0, (072,
and the coverage error of the pivotal bootstrap confidence regionis= 0, (n=2).

REMARK 2.5. The assumption of absolute continuity @fin Theorem 2.3
is reasonable for most applications. Indeed this is assumed in most parametric
models in directional and shape analysis (see, e.g., [15, 52]).

REMARK 2.6. The results of this section may be extended to the two-sample
problem, or to paired samples, in a fairly straightforward manner. For example,
in the case of paired observatio(s;, Y;),i = 1,...,n, let X; have (marginal)
distribution Q, and intrinsic mean;, and letQ» andv; be the corresponding
guantities forY;. Let ¢ = Exp;o1 for somexg, and letu, v and u,, v, be the
images undep of the intrinsic population and sample means. Then one arrives
at the following [see (2.13)]:

(2.25) VAt — 1) — /10y — v) 5 N (0, 1),

wherer is the covariance matrix ok 1w (X;; u) — A5 W (¥i; v). HereA; is the
Hessian matrix ofF o ¢~1 for Q; (i = 1,2). Assumel is nonsingular. Then a
CLT-based confidence region fer:= u — v is given in terms of, := u,, — v, by
weR :n(y, — )l Ly, —v) < X5 1_q}- Alternatively, one may use a bootstrap
estimate of the distribution of/n(y,, — y) to derive a confidence region.

In Section 5 we consider two applications of results in this section (and one
application of the results in Sections 3 and 4). Application 1 deals with the data
from a paleomagnetic study of the possible migration of the Earth’s magnetic poles
over geological time scales. Heb¢ = 52 and the geodesic distance between two
points is the arclength between them measured on the great circle passing through
them.

Application 3 analyzes some recent three-dimensional image data on the effect
of a (temporary) glaucoma-inducing treatment in 12 Rhesus monkeys. On each
animalk = 4 carefully chosen landmarks are measured on each eye—the normal
eye and the treated eye. For each observation (a set of four poitt} ihe effects
of translation, rotation and size are removed to obtain a sample of 12 points on
the five-dimensional shape orbifold3. We use the so-called three-dimensional
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Bookstein coordinates to label these points (see [15], pages 78-80). In order to
apply Theorem 2.3 (i.e., its analog indicated above), a somewhat flat Riemannian
structure is chosen so that the necessary assumptions can be verified.

3. The CLT for extrinsic sample means and confidence regions for the
extrinsic mean. From Theorem 2.1 one may derive a CLT for extrinsic sample
means similar to Corollary 2.1. In this section, however, we use another approach
which, for extrinsic means, is simpler to apply and generally less restrictive.

Recall that the extrinsic mean; £(Q) of a nonfocal probability measur@
on a manifoldM w.r.t. an embedding : M — R¥, when it exists, is given by
wje(Q) = j—l(Pj (1)), wherep is the mean ofj (Q) and P; is the projection
on j (M) (see [8], Proposition 3.1, e.g.). Often the extrinsic mean will be denoted
by ug(Q), or simplyu g, whenj andQ are fixed in a particular context. To ensure
the existence of the extrinsic mean set, in this section we will assumgatis
closed inR*.

Assume (X1,..., X,) are i.i.d. M-valued random objects whose common
probability distribution isQ, and letX ¢ := £ (Q,) be theextrinsic sample mean.
HereQ, = % "i—18x, is the empirical distribution.

A CLT for the extrinsic sample mean onsabmanifold M of R (with j the
inclusion map) was derived by Hendriks and Landsman [27] and, independently,
by Patrangenaru [44] by different methods. Differentiable manifolds that are not
a priori submanifolds oR* arise in new areas of data analysis such as in shape
analysis, in high-level image analysis, or in signal and image processing (see, e.g.,
[15, 16, 22, 31-33, 42, 51]). These manifolds, known under the names of shape
spaces and projective shape spaces, are quotient spaces of submaniffds of
(spaces of orbits of actions of Lie groups), rather than submanifol@® oOur
approach is a generalization of the adapted frame method of Patrangenaru [44]
to closed embeddings iR*. This method leads to an appropriate dimension
reduction in the CLT and, thereby, reduces computational intensity. This method
extends the results of Fisher et al. [19] who considered theMases?. We expect
that with some effort the results of Hendriks and Landsman [27] may be modified
to yield the same result.

Assume;j is an embedding of d-dimensional manifold such thatj (M) is
closed inR¥, andQ is a j-nonfocal probability measure a¥ such thatj (Q) has
finite moments of order 2 (or of sufficiently high order as needed) lahd X
be, respectively, the mean and covariance matrix ¢f) regarded as a probability
measure ofR¥. Let ¥ be the set of focal points gf(M), and letP; . ¢ — j(M)
be the projection orj (M). P; is differentiable at. and has the differentiability
class ofj (M) around any nonfocal point. In order to evaluate the differeafja;
we consider a special orthonormal frame field that will ease the computations.
Assumep — (f1(x), ..., fa(x)) is alocal frame field on an open subsetiuch
that, for eachx € M, (dj(f1(x)),...,dj(fs(x))) are orthonormal vectors iR¥.
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A local frame field(e1(p), e2(p), ..., ex(p)) defined on an open neighborhood
U C R¥ is adapted to the embedding ; if it is an orthonormal frame field
andVx € j7XU), (e,(j(x)) = dpj(fr(x)), r=1...,d. Leteg, ez, ...,e; be
the canonical basis dR* and assuméei(p), e2(p), ..., ex(p)) is an adapted
frame field aroundP;(u) = j(ug). Thend,Pj(ep) € Tp(u)Jj (M) is a linear
combination ofe1(P;(w)), e2(Pj (i), ..., eqa(Pj(1)):

(3.1) dyPj(ep) =Y (duPjlep)) - ea(Pj(10))ea(Pj(1).
By the delta methody®2(P;(j (X)) — P;(1)) converges weakly tav(0, ¥,,),

wherej(X) =2 ¥, j(X;) and

a=1

d
I, = [ Y duPj(ep) - ea(Pj(1))ea(P; (u))] b
(3.2) b=1,....k

X [Z d, Pj(ep) - eq(Pj (M))ea(PJ(m)];:l

Here X is the covariance matrix of(X1) w.r.t. the canonical basig, eo, ..., ¢x.
The asymptotic distributionv(0, £,,) is degenerate and can be regarded as a
distribution onTp;uyj (M), since the range af, P; is Tp;u)J(M). Note that

d,Pj(ep)-eq(Pj(n)) =0 fora=d+1,... k.

REMARK 3.1. An asymptotic distribution of the extrinsic sample mean can
be obtained as a particular case of Theorem 2.1. The covariance matrix in that
theorem depends both on the way the manifold is embedded and on the chart used.
We provide below an alternative CLT, which applies to arbitrary embeddings, leads
to pivots and is independent of the chart used.

The tangential component tan of v € RF w.rt. the basise,(P; (1)) €
TpjwijM),a=1,...,d,is given by
(3.3) tan(v) = (e1(P;(1)'v, ..., ea(Pj () v)".
Then the random vecta,, . j)~*(tan(P; (j (X)) — Pj(w))) = >4_, X f has the
following covariance matrix w.r.t. the basfs(ug), ..., fa(wg):
2.8 = ea(Pj(10) Zpen(Pj (1)) 124 peg

(3.4) = [ duPiter)-ea(Piw)] ¥

a=1,...,

.....

DEFINITION 3.1. The matrixX; g given by (3.4) is theextrinsic co-
variance matrix of the j-nonfocal distribution QO (of X1) w.rt. the basis

SA(mE), ..., fa(ug).
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When j is fixed in a specific context, the subscriptn X; £ will be omitted.
If, in addition, rank¥,, =d, X; g is invertible and we define thg-standardized
mean vector
(35) Zj,n =Zl’ll/22j7E_l/2(Y;:, ,Y?)T

PROPOSITION 3.1. Assume {X,},—1.., IS a random sample from the
j-nonfocal distribution j(Q), and let u = E(j(X1)) and assume the extrin-
sic covariance matrix X, g of Q isfinite. Let (e1(p),ea(p), ..., ex(p)) be an
orthonormal frame field adapted to j. Then (a) the extrinsic sample mean X ¢
has asymptotically a normal distribution in the tangent space to M at ug(Q)
with mean 0 and covariance matrix n_lzj’E, and (b) if £; ¢ isnonsingular, the
j-standardized mean vector Z ; ,, given in (3.5) converges weakly to N (0, 1,).

As a particular case of Proposition 3.1, whegns the inclusion map of a
submanifold ofR¥, we get the following result for nonfocal distributions on an
arbitrary closed submanifoltif of R¥:

COROLLARY 3.1. Assume M C R is a closed submanifold of R*. Let
{X;}r=1,...n be arandom sample from the nonfocal distribution Q on M, and
let ©w = E(X1) and assume the covariance matrix ¥ of j(Q) is finite. Let
(e1(p), e2(p), ..., ex(p)) bean orthonormal framefield adaptedto M. Let X :=
¥ £, where j: M — R istheinclusion map. Then (a) n/2tan(j (X g) — j (xk))
converges weakly to N (O, Zg), and (b) if ¥ induces a nonsingular bilinear form
on T, j (M), then ||Z; 1|2 converges weakly to the chi-square distribution x 2.

EXAMPLE 3.1. In the case of a hypersphereRhf, j(x) = x and Pj = Py.
We evaluate the statistitZ; ,[2 = n[|Z; g~ Y2tan(Py(X) — Py (w)|2. The
projection map isPy(x) = x/||x||. Py has the following property: it = cx, then
d, Py (v) = 0; on the other hand, if the restriction @f Pys to the orthocomplement
of Rx is a conformal map, that is, i - x = 0, thend, Py (v) = ||lx||"tv. In
particular, if we select the coordinate system such that|| x|lex, then one may
takee, (Py(x)) = ¢4, and we get

dyPy(ep) - ea(Py(¥) =X 8ap  Va.b=1,....k—1,dPy(ex) =0.

Since e, (Py () points in the direction ofu, d, Py(ep) - 1 =0,Vb=1,...,
k — 1, and we get

.....

which is the matrixG in formula (A.1) in [19].
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REMARK 3.2. The CLT for extrinsic sample means as stated in Proposi-
tion 3.1 or Corollary 3.1 cannot be used to construct confidence regions for
extrinsic means, since the population extrinsic covariance matrix is unknown. In
order to find a consistent estimator Bf ¢, note thatj (X) is a consistent estima-
tor of u, dj(—X)Pj converges in probability ta, P;, ande, (P; (j(X))) converges
in probability toe, (P; (1)) and, further,

Sin=n""Y_(j(X) = (X)) (i (X)) — X))
is a consistent estimator &. It follows that

d
[ Y dixyPilen) - ea(Pi(G(X)))ea(Pj (G (X)))}Sj,n
(3.7) - ,
X |: Z dj(T)Pj (ep) - €a(Pj (J (X)))ea(Pj (J (X)))i|
a=1
is a consistent estimator &f,, and tal;,i Gy Y is a consistent estimator of tan.

If we take the components of the bilinear form associated with the matrix (3.7)
w.r.t.e1(P;(j (X)), e2(P;j(j(X))),...,eq(P;(j(X))), we get a consistent estima-
tor of X; g given by

g e e e

.....

and obtain the following results.

THEOREM 3.1. Assume j: M — R* isa closed embedding of M in R¥. Let
{X,}r=1....n bearandom sample fromthe j-nonfocal distribution O, and let ; =
E(j(X1)) and assume j(X1) has finite second-order moments and the extrinsic
covariance matrix X; g of X1 isnonsingular. Let (e1(p), e2(p), ..., ex(p)) bean
orthonormal frame field adapted to j. If G(j, X) is given by (3.8), then for n
large enough G (j, X) isnonsingular (with probability converging to 1) and (a) the
statistic

(3.9) nY2G(j, X)"Y2tan(P; (j (X)) — Pj (1))
converges weakly to N (0, 1), so that
(3.10) n| G, X) Y2 tan(P; (G (X)) — P;(w)]>

converges weakly to 2, and (b) the statistic
(3.11) G (j, X)"2 tan, i (P (G (X)) = Pj(w)
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converges weakly to N (0, 1), so that

(3.12) 1[G X2 tan, G (P GO0) = Pi(w)[°
converges weakly to x 7.

COROLLARY 3.2. Under the hypothesis of Theorem 3.1, a confidence
region for ug of asymptotic level 1 — « is given by (@) Cp.q := j 2 (Un.a),
where Uy, o = {1 € j(M):n||G(j, X)"2tan(P; (j (X)) — Pj(u)II* < XF1_g}-
or by (b) Do = j ' (Voa), Where Voo = {u € j(M):n|G(j, X)"H? x
t@an,, ) (P (G (X)) = Pj ()% < %7 14 )-

Theorem 3.1 and Corollary 3.2 involve pivotal statistics. The advantages of
using pivotal statistics in bootstrapping for confidence regions are well known (see,
e.g., [1,2,5,9, 24, 25)).

At this point we recall the steps that one takes to obtain a bootstrapped statistic
from a pivotal statistic. If{X,},—=1..., IS a random sample from the unknown
distribution Q, and {X},=1,., is a random sample from the empiric@n,
conditionally given{X,},—1. ..., then the statistic

.....

T(X, Q) =n|G(j, X)"Y2tan(P; G(X)) — Pj(w))|>

given in Theorem 3.1(a) has the bootstrap analog
T(X*, On) =n[|G(j, X*) Y2 tan, x5, (P GX) — P GOO)) .

Here G(j, X*) is obtained from G(j, X) by substituting X7j,..., X for
X1,..., X,,andT (X*, Qn) is obtained fronT" (X, Q) by substitutingX7, ..., X7
for X1,..., X, j(X)) for w andG(j, X*) for G(j, X).

The same procedure can be used for the vector-valued statistic

V(X. Q) =n"?G(j. X)"*tan(P;(j (X)) — P;(w)).
and as a result we get the bootstrapped statistic
VEX®, Q) = n'2G(j, X2 tan, o) (P (X)) = Pi(/(X))).

For the rest of this section, we will assume théP), when viewed as a measure
on the ambient spac®¥, has finite moments of sufficiently high order. If M is
compact, then this is automatic. In the noncompact case finiteness of moments of
order 12, along with an assumption of a nonzero absolutely continuous component,
is sufficient to ensure an Edgeworth expansion up to o€@r2) of the pivotal
statisticV (X, Q) (see [5, 6, 12, 19, 24]). We then obtain the following results:
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THEOREM 3.2. Let {X,},=1.. ., be arandom sample from the j-nonfocal
distribution Q which has a nonzero absolutely continuous component w.r.t.
the volume measure on M induced by j. Let u = E(j(X1)) and assume the
covariance matrix ¥ of j (X1) is defined and the extrinsic covariance matrix X; g
is nonsingular and let (e1(p), e2(p), ..., ex(p)) be an orthonormal frame field
adapted to j. Then the distribution function of

n||G (i, X) "2 tan(P; (G (X)) — P ()|
can be approximated by the bootstrap distribution function of
1| G (. X2 an, o (P (GXD) — P GOX0)[?

with a coverage error 0, (n=2).

One may also use nonpivotal bootstrap confidence regions, especially when
G (j, X) is difficult to compute. The result in this case is the following (see [4]).

PROPOSITION3.2. Under the hypothesis of Proposition 3.1, the distribution
function of n||tan(P;(j (X)) — P; (w)) % can be approximated uniformly by the
bootstrap distribution of

n||tany, e (P (G (X)) = P; (j (X))

to provide a confidence region for g with a coverage error no more than
OP(n_d/(d+l)).

2
H

REMARK 3.3. Note that Corollary 3.2(b) provides a computationally simpler
scheme than Corollary 3.2(a) for large sample confidence regions; but for bootstrap
confidence regions Theorem 3.2, which is the bootstrap analog of Corollary 3.2(a),
yields a simpler method. The corresponding @08 «)% confidence region is
Cr o= j 1y ,) with U , given by

(3.13) U, ={ne i :n|GG, X) ™ 2tan(P;(G(X) — P;(w)|* < ¢i_a).
wherec]_, is the upper 10 — «)% point of the values
(314)  n[GG, X V2 tan, ) (P GGOXD) — P GOO))|?

among the bootstrap resamples. One could also use the bootstrap analog of the
confidence region given in Corollary 3.2(b) for which the confidence region is
D}, = jX(V},) with V¥, given by

Vig=lnejim:

(3.15) _
n|G(j, X) ™2 tan, o (P GC0) = P )| < di, ),



1242 R. BHATTACHARYA AND V. PATRANGENARU
whered;_, is the upper 10A — )% point of the values

(3.16)  n[G(j. XN V2 tan, e (P (T (XH) = Pi(j (X))

among the bootstrap resamples. The region given by (3.13)—(3.14) has coverage
error 0, (n~?).

2
|

4. Asymptotic distributions of sample mean axes, Procrustes mean shapes
and extrinsic mean planar projective shapes. In this section we focus on the
asymptotic distribution of sample means in axial data analysis and in planar shape
data analysis. The axial space is ttié — 1)-dimensional real projective space
M =RPN-1which can be identified with the sphes& 1 = {x e RV|||x|?2 = 1}
with antipodal points identified (see, e.g., [41]). ] = {x, —x} € RPN~
x|l = 1, the tangent space @at] can be described as

(4.1) TiRPY =1 = {([x], v), v e RN [v'x =0},

We consider here the general situation when the distributioR B 1 may
not be concentrated. Note that faf odd, RPV—1 cannot be embedded R,
since for any embedding &PV~ in R¥ with N odd, the first Stiefel-Whitney
class of the normal bundle is not zero ([43], page 51).

TheVeronese-Whitney embedding is defined for arbitraty by the formula

(4.2) J(IxD) = xx’, llxll = 1.

The embedding mapsRPY 1 into a (%N(N + 1) — 1)-dimensional Euclidean
hypersphere in the spad&N, R) of real N x N symmetric matrices, where the
Euclidean distancéy between two symmetric matrices is

do(A, B) =Tr((A — B)?).

This embedding, which was already used by Watson [52], is preferred over
other embeddings in Euclidean spaces becauseeguisariant (see [35]). This
means that the special orthogonal group(8® of orthogonal matrices with
determinant+1 acts as a group of isometries @PVN~1 with the metric of
constant positive curvature; and it also acts on the lefSoaV, R), the set of
nonnegative definite symmetric matrices with real coefficients] byt = TAT’.
Also, j(T -[x)=T - j(x]),VT € SON),V[x] e RPN-1,

Note thatj (RPN 1) is the set of all nonnegative definite matricesSifV, R)
of rank 1 and trace 1. The following result appears in [8].

PROPOSITION 4.1. (@) The set ¥ of the focal points of j(RPY~1) in
S+(N,R) is the set of matrices in S; (N, R) whose largest eigenvalues are of
multiplicity at least 2. (b) The projection P; : S (N, R)\F — j@RPN1) assigns
to each nonnegative definite symmetric matrix A with a highest eigenvalue of
multiplicity 1, the matrix j([m]), where m(|lm| = 1) is an eigenvector of A
corresponding to its largest eigenval ue.
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The following result of Prentice [46] is also needed in the sequel.

PrROPOSITION4.2 ([46]). Assume[X,], X |=1,r=1,...,n,isarandom
sample froma j-nonfocal probability measure Q on RPN 1. Then the j-extrinsic
sample covariance matrix G (j, X) isgiven by

GG, X)ap =n"Y0in — na) Xy — mp) 1

4.3
43) X Y g - Xp)mp - X,)(m - X,)2,

p
where n,,a=1,..., N, are eigenvalues of K := n—lzlexrxﬁ in increasing
order and m,,a =1,..., N, are corresponding linearly independent unit eigen-
vectors.

Here we give a proof of (4.3) based on the equivariangetofprepare the reader
fora siI[ni;ar but more complicated formula of the analogous estimator given later
for CP*—=,

Since the mag is equivariant, w.l.o.g. one may assume thaX g) = P;(j (X))
is a diagonal matrix,Xg = [mny] = [ex] and the other unit eigenvectors of
j(X)=D aremy, =e¢,,Ya=1,...,N — 1. We evaluatelp P;. Based on this
description ofT[x]]RiPN‘l, one can select iI’ij(D)j(]RPN_l) the orthonormal
framee, (P;(D)) = djey)Jj(eq). Note thatS(N, R) has the orthobasis‘f, b<a,
where, fora < b, the matrixF? has all entries zero except for those in the positions
(a,b), (b,a) that are equal to 2/2; also F¢ = j([e,]). A straightforward
computation shows that if,,a = 1,..., N, are the eigenvalues adb in their
increasing order, thedp P;(F?) = 0,Yb <a < N anddpP;(FN) = (ny —
na) " teqa(Pj(D)); from this equation it follows that, if (X) is a diagonal matrixD,
then the entnG (j, X)qp is given by

G(j, X)ap =1ty —na) Ty —mp) 71D XEXE (X2
r

Taking j (X) to be a diagonal matrix and, = ¢, (4.3) follows.

Note thaturg ; = [vv], where (v,),a = 1,..., N, are unit eigenvectors of
E(XX") = E(j(Q)) corresponding to eigenvalues in their increasing order. Let
T([v]) = nl|G(j, X)"Y2tan(P; (j (X)) — P;(E(j(Q))))|I? be the statistic given
by (3.10). We can derive now the following theorem as a special case of
Theorem 3.1(a).

THEOREM4.1. Assume j isthe Vieronese-Whitney embedding of R PV~ and
(X1, IX-I=21r=1,...,n}isarandom sample froma j-nonfocal probability
measure Q on RPV~1 that hasa nondegenerate j-extrinsic variance. Then T'([v])
is given by
(44) T(v]) = nvt[(va)a:l ..... N-11G(j, X)_l[(va)a:l ..... N—l]tV,
and, asymptotically, T ([v]) hasa XI%/—l distribution.
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PROOE Sincej is anisometric embedding and the tangent sﬁ@;@RP’V—l
has the orthobasisy, ..., vy_1, if we select the first elements of the adapted
moving frame in Theorem 3.1 to kg(P; (vg,;)) = (dy17) (Va), then theath tan-
gential component oP; (j (X)) — P;(v) W.r.t. this basis oprj(E(j(Q)))j(RPN—l)
equals up to a sign theh component ofz — vy w.r.t. the orthobasiss, ..., vy_1
in Tj,,)RRYN 1, namelyv’m. The result follows now from Theorem 3.1(a)J

REMARK 4.1. If we apply Theorem 3.1(b) to the embeddingwe obtain
a similar theorem due to Fisher, Hall, Jing and Wood [19], whE(gv]) is
replaced byT ([m]). Similar asymptotic results can be obtained for the large
sample distribution of Procrustes means of planar shapes, as we discuss below.
Recall that the planar shape spade= 2’5 of an ordered set of points inC
at least two of which are distinct can be identified in different ways with the
complex projective spac€ P¥—2 (see, e.g., [8, 31]). Here we regaftP*—2 as
a set of equivalence class€P*—2 = §%-3/51 where §%3 is the space of
complex vectors irC*~1 of norm 1, and the equivalence relation §#~2 is by
multiplication with scalars ins' (complex numbers of modulus 1). A complex
vectorz = (z1, 7%, ..., 751 of norm 1 corresponding to a given configuration
of k landmarks, with the identification described in [8], can be displayed in the
Euclidean plane (complex line) with the superscripts as labels. If, in addition,
r is the largest superscript such théts# 0, then we may assume thgt > 0.
Using this representative of the projective pdigit we obtain a unique graphical
representation dz], which will be called thespherical representation.

The Veronese-Whitney (or simply Veronese) map is the embedding of P¥—2
in the space of Hermitian matricégk — 1, C) given in this case by ([z]) = zz*,
where, if z is considered as a column vectet, is the adjoint ofz, that is, the
conjugate of the transpose af The Euclidean distance in the space of Hermitian
matricesS(k — 1, C) isd3(A, B) = Tr((A — B)(A — B)*) = Tr((A — B)?).

Kendall [31] has shown that the Riemannian metric inducegd(@P*—2) by do
is a metric of constant holomorphic curvature. The associated Riemannian distance
is known as thékendall distance and the full group of isometries ofiP¥—2 with
the Kendall distance is isomorphic to the special unitary grougkcSUl) of all
(k — 1) x (k — 1) complex matricesA with A*A =T and defA) = 1.

A random variableX = [Z], || Z|| = 1, valued inCP*~2 is j-nonfocal if the
highest eigenvalue oE[ZZ*] is simple, and then the extrinsic mean X¥fis
wj e = [v], wherev e C*1 |lv|l = 1, is an eigenvector corresponding to this
eigenvalue (see [8]). The extrinsic sample m@_,n,,; of arandom samplg, ] =
[(zL....25" D] Izl =L r=1,...,n, from such a nonfocal distribution exists
with probability converging to 1 as — oo, and is the same as that given by

(4.5) [Z]j,E = [m],
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wherem is a highest unit eigenvector of
n
(4.6) K :=n_1ZZer.
r=1

This means thaﬁj,E is the full Procrustes estimate for parametric families
such as Dryden—Mardia distributions or complex Bingham distributions for planar
shapes [35, 36]. For this reasqn; ¢ = [m] will be called theProcrustes mean

of Q.

ProPOSITION4.3. Assume X, =[Z,1,I1Z/|=1,r=1,...,n, isarandom
sample froma j-nonfocal probability measure Q with a nondegenerate j-extrinsic
covariance matrix on CP*~2. Then the j-extrinsic sample covariance matrix
G(j, X) asa complex matrix has the entries

G(jy X)ab = 1" (=1 — 1a) (=1 — 1) ™2
4.7) n
X > (ma - Zy)(mp - Z)*mi—1- Z, %
r=1

The proof is similar to that given for Proposition 4.2 and is based on the
equivariance of the Veronese-Whitney mapw.r.t. the actions ofSU (k — 1)
on CP*=2 and on the sef, (k — 1, C) of nonnegative semidefinite self-adjoint
(k — 1) by (k — 1) complex matrices (see [8]). Without loss of generality we
may assume thak in (4.6) is given byK = diag{n,}.=1... k-1 and the largest
eigenvalue ofK is a simple root of the characteristic polynomial o&rwith
mi_1 = ex—1 a@s a corresponding complex eigenvector of norm 1. The eigenvectors
over R corresponding to the smaller eigenvalues are givemnby= e,, m,, =
ieq,a=1,...,k — 2, and yield an orthobasis fofj,,_,;j(CP*=2). For any
z € %=1 which is orthogonal ton;_1 in Ck—1 w.r.t. the real scalar product, we
define the pathy, () = [costmi_1 + Sintz]. Then ij(K)j((CP"_Z) is generated
by the vectors tangent to such path$t) atr = 0. Such a vector, as a matrix in
S(k — 1,C), has the formem;_; + my_1z*. In particular, since the eigenvectors
of K are orthogonal w.r.t. the complex scalar product, one may taken,,
a=1...,k—2,0rz=img,a=1,...,k — 2, and thus get an orthobasis in
Tp;(k)Jj(M). When we norm these vectors to have unit lengths we obtain the
orthonormal frame

ea(Pj (K)) =dim;_q1J (mq) = 2_1/2(mamZ—1 + mkflmi),
el (Pj(K)) = dymy_11j (ima) =2 Y2 (mam}i_y — mg_am?).

Since the mayy is equivariant we may assume thitis diagonal. In this case
My = eq,e4(Pj(K)) = 2"Y2E "L ande! (P;(K)) = 27Y2F*~1 whereE? has all
entries zero except for those in the positigash) and (b, a) that are equal to 1,
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and Ff is a matrix with all entries zero except for those in the positi@n®) and
(b, a) that are equal to, respectively—i. Just as in the real case, a straightforward
computation shows thalx P;(E2) = dk P;(F)=0,Ya <b <k — 1, and

dg Pj(EX™Y) = (k-1 — na) "teq (P (K)),
dg P;(F*=Yy = (qi—1 — na) el (P (K)).

We evaluate the extrinsic sample covariance mag{{, X) given in (3.8) using
the real scalar product ifi(k — 1, C), namely,U - V = Re TRUV*). Note that

di Pj(Ey Y - ea(Pj(K)) = (k-1 — Na) Spa-
dg P;(EE™Y) - ¢/ (P;j(K))=0
and
dx Pj(Ff ™) - ¢, (Pj(K))" = (k-1 — 1) " 8pa
dg P;(Ff™Y) - e4(P;(K)) = 0.
Thus we may regard (j, X) as a complex matrix noting that in this case we get
G(jr X)ap =n""(m—1 = na) 1 — 1)
(4.8)

n
x D (ea- Z) ey~ Zp) lex—1- Zr [,
r=1

thus proving (4.7) wheiX is diagonal. The general case follows by equivariance.
We consider now the statistic

T((X) g, ne) =n|G(, X)"Y?tan(P; (G (X)) — P;(uE))

given in Theorem 3.1 in the present context of random variables valued in complex
projective spaces to get:

2
|

THEOREM 4.2. Let X, =[Z], IIZ/| =1, r =1,...,n, be a random
sample from a Veronese-nonfocal probability measure Q on CP*=2. Then the
guantity (3.10)is given by

and asymptotically T ([m], [v]) hasa x2,_, distribution.

PrROOFE The tangent spac@[kal](CP"*2 has the orthobasisy, ..., vi_2,
Vi, ..., vi_,. Note that sincej is an isometric embedding, we may select the
first elements of the adapted moving frame in Corollary 3.1 tei®®; (1)) =
(dpv_117)(va), followed by e} (P;(n)) = (dy,_q17)(v}). Then theath tangential
component of?; (j (X)) — P; (i) W.r.t. this basis of'p, () j (CP*?) equals upto a
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sign the component e — v;_1 w.r.t. the orthobasisy, ..., v;_2in T[kal]CPk—Z,
which isvm; and thea*th tangential components are givenigym, and together
(in complex multiplication) they yield the complex vec{én: - v,),=1.... x—2]. The
claim follows from this and from (4.3), as a particular case of Corollary 31.

We may derive from this the following large sample confidence regions.

COROLLARY 4.1. Assume X, =[Z,], |Z/|=1,r=1,...,n, iSarandom
sample from a j-nonfocal probability measure Q on CP*=2. An asymptotic
(1 — a)-confidence region for u,g(Q) = [v] is given by R,(X) = {[v]: T ([m],
[vD) < X22k—4,a}’ where T ([m], [v]) isgivenin (4.9).1f O hasa nonzero absolutely
continuous component w.r.t. the volume measure on CP*~2, then the coverage
error of R, (X) isof order O (n™1).

For small samples the coverage error could be quite large, and a bootstrap
analogue of Theorem 4.2 is preferable.

THEOREM 4.3. Let j be the \eronese embedding of CP¥2, and let
X, =1Z]1, I1Z|| =1, r=1,...,n, be a random sample from a j-nonfocal
distribution Q on C P*¥~2 having a nonzero absol utely continuous component w.r.t.
the volume measure on CP*—2. Assume in addition that the restriction of the
covariance matrix of j(Q) to T[v]j(CP"—Z) is nondegenerate. Let g (Q) = [v]

.....

.....

their increasing order, and let (m}),=1....,
eigenvectors. Let G*(j, X)* be the matrix obtained from G (j, X) by substituting
all the entries with *-entries. Then the bootstrap distribution function of

approximates the true distribution function of 7 ([m], [v]) given in Theorem 4.2
with an error of order 0,(n~2).

REMARK 4.2. For distributions that are reasonably concentrated one may
determine a nonpivotal bootstrap confidence region using Corollary 3.1(a). The
chart used here features affine coordinate€ #*—2. Recall that the complex
spaceCk—2 can be embedded il P¥~2, preserving collinearity. Such a standard
affine embedding, missing only a hyperplane at infinity, (ig, ..., z5"%) —

L....:zk=1:1]. This leads to the notion @fffine coordinates of a point

p=1lti i mi Y, #7120,

to be defined as
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To simplify the notation the simultaneous confidence intervals used in the next
section can be expressed in terms of simultan@ou®plex confidence intervals.

If z=x+iy,w=u+iv,x <u,y < v, then we define the complex interval
(z,w)={c=a+ibla € (x,u),be (y,v)}.

5. Applications. In this last section we consider three applications.

APPLICATION 1. Here we consider the data setrof= 50 South magnetic
pole positions (latitudes and longitudes), determined from a paleomagnetic study
of New Caledonian laterities ([20], page 278). As an example of application of
Section 2, we give a large sample confidence region for the mean location of the
South pole based on this data. The sample points to a nonsymmetric distribution
on §2; the extrinsic sample mean and the intrinsic sample mean are given by

X = (0.01052080.199101 0.97992%'

and,_usingYE as the initial input of the necessary minimization for construct-
ing X7,

X; = p=(0.0043920.1838000.982954' .

From Examples 2.1 and 2.2, select the orthobas(®), e2(p) given in (2.3)
and the logarithmic coordinates', u? w.r.t. this basis inT,S? defined in (2.4).
Then compute the matri\ given in (2.22), to get, using Corollary 2.2, the
following 95% asymptotic confidence region foy:

U = {Exp, (ule1(p) + u’e2(p))|
16.6786u")? — 2.9806:14% + 10.2180ut)? < 5.99144.

Note that Fisher, Lewis and Embleton ([20], page 112) estimate another location
parameter, thepherical median. The spherical median here refers to the minimizer

of the expected geodesic (or, arc) distance to a given point on the sphere. For this
paleomagnetism data, their sample median is 8°788.4°, while the extrinsic
sample mean is 78°, 89.4° and the intrinsic sample mean is.49 88.6°. These
estimates differ substantially from the current position of the South magnetic pole,
a difference accounted for by the phenomenon of migration of the Earth’s magnetic
poles.

APPLICATION 2. As an application of Section 4, we give a nonpivotal
bootstrap confidence region for the mean shape of a group of eight landmarks
on the skulls of eight-year-old North American children. The sample used is the
University School data ([10], pages 400—405). The data set represents coordinates
of anatomical landmarks, whose names and position on the skull are given in [10].
The data are displayed in Figure 1. (The presentation of raw data is similar to
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University School Data - Boys
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other known shape data displays such as in [15], page 46.) The shape variable
(in our case, shape of the eight landmarks on the upper mid face) is valued in
a planar shape spa@@P® (real dimensior= 12). A spherical representation of

a shape in this case consists of seven marked points; in Figure 2 we display a
spherical representation of this data set. A representative for the extrinsic sample
mean (spherical representation) is

(—0.671514 0.66823, 0.76939+ 1.05714, —1.03159— 0.15998,
—0.57776—0.8725%,0.77871—- 1.36178,
—0.17489+ 0.82106G, 1.00000+ 0.0000Q).
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University School Data - Spherical Representation
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We derived the nonpivotal bootstrap distribution using a simple program in
S-Plus4.5, that we ran for 500 resamples. A spherical representation of the
bootstrap distribution of the extrinsic sample means is displayed in Figure 3. Here
we added a representative for the last landmark (the opposite of the sum of the
other landmarks since data is centered at 0).

Note that the bootstrap distribution of the extrinsic sample mean is very
concentrated at each landmark location. This is in agreement with the theory, that
predicts in our case a spread of about six times smaller than the spread of the
population. It is also an indication of the usefulness of the spherical coordinates.
We determined a confidence region for the extrinsic mean using the six 95%
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Bootstrap Distribution of 500 Extrinsic
Sample Mean Configurations
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simultaneous bootstrap complex intervals for the affine coordinates, as described
in Remark 4.2, and found the following complex intervals:

for wy:
(—0.677268+ 0.666060, —0.671425+ 0.672409),
for wo:
(0.767249+ 1.051660, 0.775592+ 1.058960),
for wa:

(—1.036100- 0.161467, —1.029420—- 0.154403),
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for wa:
(—0.578941— 0.875168, —0.574923— 0.871553),
for ws:
(0.777688— 1.366880, 0.782354— 1.358390),
for weg:

(—0.177261+ 0.820107, —0.173465+ 0.824027).

APPLICATION 3. This example is relevant in glaucoma detection. Although it
is known that increased intraocular pressure (IOP) may cause a shape change in the
eye cup, which is identified with glaucoma, it does not always lead to this shape
change. The data analysis presented shows that the device used for measuring the
topography of the back of the eye, as reported in [11], is effective in detecting
shape change.

We give a nonpivotal bootstrap confidence region for the mean shape change of
the eye cup due to IOP. Glaucoma is an eye disorder caused by IOP that is very
high. Due to the increased IOP, as the soft spot where the optic nerve enters the
eye is pushed backwards, eventually the optic nerve fibers that spread out over the
retina to connect to photoreceptors and other retinal neurons can be compressed
and damaged. An important diagnostic tool is the ability to detect, in images of the
optic nerve head (ONH), increased depth (cupping) of the ONH structures. Two
real data-processed images of the ONH cup surface before and after the IOP was
increased are shown in Figure 4.

The laser image files are, however, huge-dimensional vectors, and their sizes
usually differ. Even if we would restrict the study to a fixed size, there is no
direct relationship between the eye cup pictured and the coordinates at a given
pixel. A useful data reduction process consists in registration of a number of
anatomical landmarks that were identified in each of these images. Assume the

400
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00
=200 v :
<300
g0 et .
2500 ) et
200

FiG. 4. Changeinthe ONH topography from normal (left) to glaucomatous (right).
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position vectors of these landmarks &, ..., Xy, k > 4. Two configurations of
landmarks have the same shape if they can be superimposed after a translation,
a rotation and a scaling. The shape of the configuratiog (x1,...,x;) is
labelledo(x) and the spac&} of shapes of configurations &f points in R”

at least two of which are distinct is tishape space introduced by Kendall [31].

We come back to the shape of an ONH cup. This ONH region resembles a
“cup” of an ellipsoid and its border has a shape of an ellipse. In this example
four landmarks are used. The first three landmarks, denoted by S, T and N, are
chosen to be the “top, left and right” points on this ellipse, that is (when referring
to the left eye), Superior, Templar and Nose papilla. The last landmark V that
we call vertex is the point with the largest “depth” inside the ellipse area that
determines the border of the ONH. Therefore, in this example the data analysis is
on the shape space of tetrafjé, which is topologically a five-dimensional sphere
(see [33], page 38); however, the identification with a sphere is nonstandard. On the
other hand, it is known that if a probability distribution &rf, has small support
outside a set of singular points, the use of any distance that is compatible with the
orbifold topology considered is appropriate in data analysis ([15], page 65) since
the data can be linearized. Our choice of the Riemannian metric (5.3) is motivated
by considerations of applicability of Theorems 2.2 and 2.3 and computational
feasibility. Dryden and Mardia ([15], pages 78—80) have introduced the following
five coordinates defined on the generic subsét@bf shapes of a nondegenerate
tetrad that they calleBookstein coordinates:

1

v = (w1ow13 + waowz3 + w32ws3z)/a,
2 2

Ve = ((wi2w23 — w2ow13)

2 21/2
+ (w12w3z — w32w13)” + (W2ow3z — W23w32)“) / /

a,
3 _
V7 = (w12w14 + woow24 + w32w34)/a,
4_ (abV2)1(y?2 2
v = (ab™%) T (wi(w23w2s + w3zwza) + whr(w13wi4 + w3zw34)
2
+ w3y(w13wi4 + w23w24) — wi2w13(W22w24 + W32W34)
(5.1) — w2ow32(W23W34 + W33W24)
— wiow14(w22w23 + W32w33)),
5
v = (W12W23W34 — W12W33W24 — W13W22W34
1/2
+ w13w3ow24 + W2ow33W14 — W3W23W14)/(2ab)Y/?,
where
2 2 2
a = 2(wip + wy + wiy),
2 2 2 2 2 2 2 2
(52) b= W1oWo3 + WqoW33 — 2w12w13w22w23 + Wi3Woo + Wwq3W3o

2 2 2 2
— 2w12wW13W32W33 + Wi3W55 + WozW3, — 2W22W3I2W23W3I3
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and
wyi =x] — (¥ +x3)/2,  r=234

These coordinates carry useful geometric information on the shape of the 4-ad;
vl and v2 give us information on the appearance with respect to the bisector
plane of[ X1X>], v2 andv* give some information about the “flatness” of this 4-ad
andv® measures the height of the 4-6K1, X», X3, X24) relative to the distance
| X1 — X2|. AssumeU is the set of shapes(X) such that(X1, X2, X3, Xy) is
an affine frame iR3, and¢: U — R%*~7 is the map that associatesdoX) its
Bookstein coordinateg/ is an open dense setE{;, with the induced topology. In
the particular caske = 4, Z§ is topologically a five-dimensional sphere and, from
a classical result of Smale [48}33" has a differentiable structure diffeomorphic
with the sphere95. Moreover, if L is a compact subset d@f, there are a finite
open covering/1="U,..., U; of Eg and a patrtition of unityp, ..., ¢, such that
¢1(0(X))=1,Vo(X) e L.

We will use the following Riemannian metric oﬁg‘: let (y1,..., y5) be the
Bookstein coordinates of a shape #h and let g1 = dyf + o+ dyé be a
flat Riemannian metric ol/1, and for eachj = 2,...,t we consider any fixed
Riemannian metrig; onU;. Let g be the Riemannian metric given by

t
(5.3) g=> o8
j:l

The spac«-:e2§, d,) is complete and is flat in a neighborhoodafin this example
the two distributions of shapes of tetrads before and after increase in IOP are
close. Hencd., which contains supports of both distributions, consists of shapes
of nondegenerate tetrads only.

Computations for the glaucoma data yield the following results. Fhalue
of the test for equality of the intrinsic means was found to 58 based on
the bootstrap distribution of the chi square-like statistic discussed in Remark 2.6.
The number of bootstrap resamples for this study was 3088 chi square-like
density histogram is displayed in Figure 5. A matrix plot for the components
of the nonpivotal bootstrap distribution of the sample mean differences
in Remark 2.6 for this application is displayed in Figure 6. The nonpivotal
bootstrap 95% confidence intervals for the mean differengeg =1,...,5,
components of in Remark 2.6 associated with the Bookstein coordinajes =
1,...,5, are:(—0.0377073—0.0058545 for y1, (0.00141530.0119214 for y»,
(—0.03034890.0004710 for y3, (0.00316860.0205206 for y4, (—0.0101761
0.0496183) for ys. Note that the individual tests for difference are significant
at the 5% level for the first, second and fourth coordinates. However, using the
Bonferroni inequality, combining tests for five different shape coordinates each
at 5% level leads to a much higher estimated level of significance for the overall
shape change.
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APPENDIX

The data set in Application 3 consists of a library of scanning confocal laser
tomography (SCLT) images of the complicated ONH topography [11]. Those
images are the so-callednge images. A range image is, loosely speaking, like
a digital camera image, except that each pixel stores a depth rather than a color
level. It can also be seen as a set of points in three dimensions. The range data
acquired by 3D digitizers such as optical scanners commonly consist of depths
sampled on a regular grid. In the mathematical sense, a range image is a 2D array
of real numbers which represent those depths. All of the files (observations) are
produced by a combination of modules in C++ and SAS that take the raw image
output and process it. The 256256 arrays of height values are the products of
this software. Another byproduct is a file which we will refer to as the “abxy”
file. This file contain the following information: subject names (denoted by: 1c,
1d, 1e, 1f, 1q, 1i, 1j, 1k, 1l, 1n, 10, 1p), observation points that distinguish the
normal and treated eyes and the® 1 15 fields of view for the imaging. The
observation point “03” denotes a 1@iew of the experimental glaucoma eye,
“04” denotes a 15view of the experimental glaucoma eye, “11” and “12” denote,
respectively, the 10and the 15 view of the normal eye. The two-dimensional
coordinates of the centé#, b) of the ellipses that bound the ONH region, as well
as the sizes of the small and the large axes of the ellipsgg), are stored in
the so-called “abxy” file. To find out more about the LSU study and the image
acquisition, see [11]. File names (each file is one observation) were constructed
from the information in the “abxy” file. The list of all the observations is then used
as an input for the program (created by G. Derado in C++) which determines the
three-dimensional coordinates of the landmarks for each observation considered
in our analysis, as well as for determining the fifth Bookstein coordinate for each
observation. Each image consists of a 256856 array of elevation values which
represent the “depth” of the ONH. By the “depth” we mean the distance from an
imaginary plane, located approximately at the base of the ONH cup, to the “back
of the ONH cup.”

To reduce the dimensionality of the shape space to 5, out of five landmarks
T,S,N,I,V recorded, only fourlandmarkXg =7, Xo=S,X3=N,X4=YV)
were considered.

The original data were collected in experimental observations on Rhesus
monkeys, and after treatment a healthy eye slowly returns to its original shape.
For the purpose of IOP increment detection, in this paper only the first set of after-
treatment observations of the treated eye is considered.
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