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This article develops nonparametric inference procedures for estimation
and testing problems for means on manifolds. A central limit theorem
for Fréchet sample means is derived leading to an asymptotic distribution
theory of intrinsic sample means on Riemannian manifolds. Central limit
theorems are also obtained for extrinsic sample means w.r.t. an arbitrary
embedding of a differentiable manifold in a Euclidean space. Bootstrap
methods particularly suitable for these problems are presented. Applications
are given to distributions on the sphereSd (directional spaces), real
projective spaceRPN−1 (axial spaces), complex projective spaceCPk−2

(planar shape spaces) w.r.t. Veronese–Whitney embeddings and a three-
dimensional shape space�4

3.

1. Introduction. Statistical inference for distributions on manifolds is now a
broad discipline with wide-ranging applications. Its study has gained momentum
in recent years, especially due to applications in biosciences and medicine, and
in image analysis. Including in the substantial body of literature in this field are
the books by Bookstein [10], Dryden and Mardia [15], Kendall, Barden, Carne
and Le [33], Mardia and Jupp [41], Small [49] and Watson [52]. While much of
this literature focuses on parametric or semiparametric models, the present article
aims at providing a general framework for nonparametric inference for location.
This is a continuation of our earlier work [7, 8] where some general properties
of extrinsic and intrinsic mean sets on general manifolds were derived, and the
problem of consistency of the corresponding sample indices was explored. The
main focus of the present article is the derivation of asymptotic distributions of
intrinsic and extrinsic sample means and confidence regions based on them. We
provide classical CLT-based confidence regions and tests based on them, as well
as those based on Efron’s bootstrap [17].

Measures of location and dispersion for distributions on a manifoldM were
studied in [7, 8] as Fréchet parameters associated with two types of distances
on M . If j :M → R

k is an embedding, the Euclidean distance restricted toj (M)

Received June 2002; revised March 2004.
1Supported by NSF Grant DMS-04-06143.
2Supported by NSA Grant MDA 904-02-1-0082 and NSF Grant OMS-04-06151.
AMS 2000 subject classifications. Primary 62H11; secondary 62H10.
Key words and phrases. Fréchet mean, extrinsic mean, central limit theorem, confidence regions,

bootstrapping.

1225



1226 R. BHATTACHARYA AND V. PATRANGENARU

yields theextrinsic mean set and theextrinsic total variance. On the other hand,
a Riemannian distance on M yields the intrinsic mean set and intrinsic total
variance.

Recall that theFréchet mean of a probability measureQ on a complete metric
space(M,ρ) is the minimizer of the functionF(x) = ∫

ρ2(x, y)Q(dy), when such
a minimizer exists and is unique [21]. In general the set of minimizers ofF is
called theFréchet mean set. The intrinsic meanµI (Q) is the Fréchet mean of
a probability measureQ on acomplete d-dimensional Riemannian manifoldM
endowed with the geodesic distancedg determined by the Riemannian structureg

on M . It is known that if Q is sufficiently concentrated, thenµI (Q) exists
[see Theorem 2.2(a)]. Theextrinsic mean µE(Q) = µj,E(Q) of a probability
measureQ on a manifoldM w.r.t. an embeddingj :M → R

k is the Fréchet mean
associated with the restriction toj (M) of the Euclidean distance inRk . In [8] it
was shown that the extrinsic mean ofQ exists if the ordinary mean ofj (Q) is a
nonfocal point of j (M), that is, if there is aunique point x0 on j (M) having the
smallest distance from the mean ofj (Q). In this caseµj,E(Q) = j−1(x0).

It is easier to compute the intrinsic mean if the Riemannian manifold has zero
curvature in a neighborhood containing suppQ [45]. In particular this is the case
for distributions on linear projective shape spaces [42]. If the manifold has nonzero
curvature around suppQ, it is easier to compute the extrinsic sample mean. It may
be pointed out that ifQ is highly concentrated as in our medical examples in [8]
and in Section 5, the intrinsic and extrinsic means are virtually indistinguishable.

We now provide a summary of the main results in this article. Section 2
is devoted to nonparametric inference for the Fréchet mean of a probability
measureQ on a manifoldM for which there is a domainU of a chartφ :U → R

d

such thatQ(U) = 1. In Theorem 2.1 it is shown that in this case, under some
rather general assumptions, the image of the Fréchet sample mean underφ is
asymptotically normally distributed around the image of the Fréchet mean ofQ.
This leads to the asymptotic distribution theory of the intrinsic sample mean on a
Riemannian manifoldM (Theorems 2.2, 2.3). In Corollaries 2.3 and 2.4 bootstrap
confidence regions are derived for the Fréchet mean, with or without a pivot.

Section 3 is devoted to asymptotics of extrinsic sample means. The ideas behind
the main result here are essentially due to Hendriks and Landsman [27] and
Patrangenaru [44]. The two approaches are somewhat different. We present in
this article an extension of the latter approach. Extrinsic means are commonly
used in directional, axial and shape statistics. In the particular case of directional
data analysis, that is, whenM = Sd−1 is the unit sphere inRd , Fisher, Hall,
Jing and Wood [19] provided an approach for inference using computationally
efficient bootstrapping which gets around the problem of increased dimensionality
associated with the embedding of the manifoldM in a higher-dimensional
Euclidean space. In Corollary 3.2 confidence regions are derived for the extrinsic
meanµj,E(Q). Nonparametric bootstrap methods on abstract manifolds are also
derived in this section (Theorem 3.2, Proposition 3.2).
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If one assumes thatQ has a nonzero absolutely continuous component with
respect to the volume measure onM , then from some results of Bhattacharya and
Ghosh [6], Babu and Singh [1], Beran [2] and Hall [24, 25], one derives bootstrap-
based confidence regions forµE(Q) with coverage errorOp(n−2) (Theorem 3.4)
(also see [5, 9]). One may also use the nonpivotal bootstrap to construct confidence
regions based on the percentile method of Hall [25] for generalQ with a coverage
error no more thanOp(n−d/(d+1)), whered is the dimension of the manifold (see
Remark 2.4 and Proposition 3.2). This is particularly useful in those cases where
the asymptotic dispersion matrix is difficult to compute.

Section 4 applies the preceding theory to (i) real projective spacesR
N−1—

the axial spaces, and (ii) complex projective spacesCP k−2—the shape spaces.
Another application to products of real projective spaces(RP m)k−m−1, or the so-
calledprojective shape spaces, will appear in [42].

As an application of Corollary 3.3, large sample confidence regions for mean
axes are described in Corollary 4.2. A similar application to projective shape
spaces, combining bootstrap methods for directional data from [3], appears in [42].
Other applications to axial spaces are given in Theorem 4.3 and Corollary 4.4, and
to planar shape spaces in Theorem 4.5.

Finally in Section 5 we apply the results of Sections 2 and 4 to construct
(1) a 95% large sample confidence region for the intrinsic mean location of the
magnetic South Pole from a directional data set given in [20], (2) simultaneous
confidence intervals for the affine coordinates of the extrinsic sample mean shape
in a medical application and (3) a test for the difference between three-dimensional
mean shapes in a glaucoma detection problem.

2. A central limit theorem for Fréchet sample means and bootstrapping.
A d-dimensionaldifferentiable manifold is a locally compact separable Hausdorff
spaceM , together with anatlas AM comprising a family ofcharts (Uα,φα) of
open setsUα coveringM , and for eachα a homeomorphismφα of Uα onto an open
subset ofRd for which the transition mapsφα · φ−1

β :φβ(Uα ∩Uβ) → φα(Uα ∩Uβ)

are of classC∞. The setsUα are often calledcoordinate neighborhoods. One may
show that a differentiable manifold is metrizable. We briefly recall some basic
notion associated with Riemannian manifolds. For details the reader may refer to
any standard text on differential geometry (e.g., [13, 26], or [38]). ARiemannian
metric g on a differentiable manifoldM is aC∞ symmetric positive definite tensor
field of type(2,0), that is, a family of inner productsgp = 〈·, ·〉p on the tangent
spacesTpM,p ∈ M , which is differentiable w.r.t.p. A Riemannian manifold M

is a connected differentiable manifold endowed with a Riemannian metricg. The
distanceρg induced byg is called thegeodesic distance. For p,q ∈ M,ρg(p, q)

is the infimum of lengths
∫ b
a 〈ẋ(t), ẋ(t)〉1/2

x(t) dt of all C1-curvesx(t), a ≤ t ≤ b,

with x(a) = p,x(b) = q. The minimizer satisfies a variational equation whose
solution is ageodesic curve. There is a unique such geodesic curvet → γ (t) for
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any initial pointγ (0) = p and initial tangent vectoṙγ (0) = v. A classical result of
Hopf and Rinow states that(M,ρg) is complete as a metric space if and only if
(M,g) is geodesically complete [i.e., every geodesic curveγ (t) is defined for all
t ∈ R]. These two equivalent properties of completeness are in turn equivalent to
a third property:all closed bounded subsets of (M,ρg) are compact ([13], pages
146 and 147).

Given q ∈ M , the exponential map Expq :U → M is defined on an open
neighborhoodU of 0 ∈ TqM by the correspondencev → γv(1), whereγv(t) is
the unique geodesic satisfyingγ (0) = q, γ̇ (0) = v, providedγ (t) extends at least
to t = 1. Thus if (M,g) is geodesically complete or, equivalently,(M,ρg) is
complete as a metric space, then Expq is defined on all ofTqM. In this article,
unless otherwise specified, allRiemannian manifolds are assumed to be complete.

Note that ifγ (0) = p andγ (t) is a geodesic, it is generally not true that the
geodesic distance betweenp andq = γ (t1), say, is minimized byγ (t),0 ≤ t ≤ t1
(consider, e.g., the great circles on the sphereS2 as geodesics). Lett0 = t0(p) be
the supremum of allt1 > 0 for which this minimization holds. Ift0 < ∞, then
γ (t0) is thecut point of p along γ . Thecut locus C(p) of p is the union of all cut
points ofp along all geodesicsγ starting atp [e.g.,C(p) = {−p} onS2].

In this article we deal with both intrinsic and extrinsic means. Hence we will
often consider a general distanceρ on a differentiable manifoldM , but assume
that (M,ρ) is complete as a metric space. We consider only those probability
measuresQ on M for which the Fréchet meanµF = µF (Q) exists. Moreover
we assume that there is a chart (U,φ) such that Q(U) = 1, and µF ∈ U .

REMARK 2.1. The assumption above on the existence of a chart(U,φ) such
thatQ(U) = 1 is less restrictive than it may seem. Ifg is a Riemannian structure
on M and Q is absolutely continuous w.r.t. the volume measure, then, for any
given p, the complementU of the cut locusC(p) is the domain of definition of
such a local coordinate system (the coordinate map being the inverse of Expp, the
exponential map atp) (see [38], page 100, for details).

EXAMPLE 2.1. For thed-dimensional unit sphere,M = Sd = {p ∈ R
d+1 :

‖p‖ = 1}, with the Riemannian metric induced by the Euclidean metric onR
d+1,

the exponential map at a given pointp ∈ Sd is defined on the tangent spaceTpM

and is given by

Expp(v) = cos(‖v‖)p + sin(‖v‖)‖v‖−1v (v ∈ TpSd, v 	= 0).(2.1)

If x ∈ Sd, x 	= −p, then there is a unique vectoru ∈ TpM such thatx = Expp u,

and we will label this vector byu = Logp x. SinceTpSd = {v ∈ R
d+1, v · p = 0},

it follows that

Logp x = (
1− (p · x)2)−1/2 arccos(p · x)

(
x − (p · x)p

)
.(2.2)
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In particular, ford = 2 we consider the orthobasise1(p), e2(p) ∈ TpS2, where
p = (p1,p2,p3)

t ∈ S2\{N,S} [N = (0,0,1), S = (0,0,−1)]:

e1(p) = (
(p1)

2 + (p2)
2)−1/2

(−p2,p1,0)t ,

e2(p) = (−(
(p1)

2 + (p2)
2)−1/2

p1p3,

−(x2 + y2)−1/2p2p3,
(
(p1)

2 + (p2)
2)1/2)t

.

(2.3)

The logarithmic coordinates of the pointx = (x1, x2, x3)
T are given in this case

by

u1(p) = e1(p) · Logp x,

u2(p) = e2(p) · Logp x.
(2.4)

For computations one may usea · b = atb.

Now the image measureQφ of Q underφ has the Fréchet meanµ = φ(µF )

w.r.t. the distanceρφ(u, v) := ρ(φ−1(u),φ−1(v)), u, v ∈ φ(U). Similarly, if Xi

(i = 1, . . . , n) are i.i.d. with common distributionQ and defined on a probability
space(�,A,P ), let µn,F be a measurable selection from the Fréchet mean set
(w.r.t. ρ) of the empiricalQ̂n = 1

n

∑n
i=1 δXi

. Thenµn = φ(µn,F ) is a measurable

selection from the Fréchet mean set (w.r.t.ρφ) of Q̂
φ
n = 1

n

∑n
i=1 δ

X̃i
, whereX̃i =

φ(Xi). Assuming twice continuous differentiability ofθ → (ρφ)2(u, θ), write the
Euclidean gradient as


(u; θ) = gradθ (ρ
φ)2(u, θ) =

(
∂

∂θr
(ρφ)2(u, θ)

)d

r=1
= (


r(u; θ)
)d
r=1.(2.5)

Now µ is the point of minimum of

Fφ(θ) :=
∫

(ρφ)2(u, θ)Qφ(du)(2.6)

andµn is a local minimum of

Fφ
n (θ) :=

∫
(ρφ)2(u, θ)Q̂φ

n(du).

Therefore, one has the Taylor expansion

0= 1√
n

n∑
i=1


r(X̃i;µn)

= 1√
n

n∑
i=1


r(X̃i;µ)

+ 1

n

n∑
i=1

d∑
r ′=1

Dr ′
r(X̃i;µ)
√

n
(
µr ′

n − µr ′) + Rr
n (1≤ r ≤ d),

(2.7)
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where

Rr
n =

d∑
r ′=1

√
n
(
µr ′

n − µr ′)1

n

n∑
i=1

{Dr ′
r(X̃i; θn) − Dr ′
r(X̃i;µ)}(2.8)

andθn lies on the line segment joiningµ andµn (for sufficiently largen). We will
assume

E|
(X̃i;µ)|2 < ∞,

E|Dr ′
r(X̃i;µ)|2 < ∞ (∀ r, r ′).
(2.9)

To show thatRr
n is negligible, write

ur,r ′
(x, ε) := sup

{θ : ‖θ−µ‖≤ε}
|Dr ′
r(x; θ) − Dr ′
r(x;µ)|

and assume

δr,r ′
(c) := Eur,r ′

(X̃i, c) → 0 asc ↓ 0 (1 ≤ r, r ′ ≤ d).(2.10)

One may then rewrite (2.7) in vectorial form as

0= 1√
n

n∑
i=1


(X̃i;µ) + (
 + δn)
√

n(µn − µ),(2.11)

where


 = E
((

Dr ′
r(X̃i;µ)
))d

r,r ′=1(2.12)

and δn → 0 in probability asn → ∞, if µn → µ in probability. If, finally, we
assume
 is nonsingular, then (2.11) leads to the equation

√
n(µn − µ) = 
−1

(
1√
n

n∑
i=1


(X̃i;µ)

)
+ δ′

n,(2.13)

where δ′
n goes to zero in probability asn → ∞. We have then arrived at the

following theorem.

THEOREM 2.1 (CLT for Fréchet sample means).Let Q be a probability
measure on a differentiable manifold M endowed with a metric ρ such that every
closed and bounded set of (M,ρ) is compact. Assume (i) the Fréchet mean µF

exists, (ii) there exists a coordinate neighborhood (U,φ) such that Q(U) = 1,
(iii) the map θ → (ρφ)2(θ, u) is twice continuously differentiable on φ(U),
(iv) the integrability conditions (2.9) hold as well as the relation (2.10) and
(v) 
, defined by (2.12), is nonsingular. Then (a) every measurable selection µn

from the (sample) Fréchet mean set of Q̂
φ
n = 1

n

∑n
i=1 δ

X̃i
is a consistent estimator

of µ, and (b)
√

n(µn − µ)
L→ N (0,
−1C(
t)−1), where C is the covariance

matrix of 
(X̃i;µ).



INTRINSIC AND EXTRINSIC MEANS—II 1231

PROOF. Part (a) follows from Theorem 2.3 in [8]. The proof of part (b) is as
outlined above, and it may also be derived from standard proofs of the CLT for
M-estimators (see, e.g., [29], pages 132–134).�

As an immediate corollary one obtains:

COROLLARY 2.1. Let (M,g) be a Riemannian manifold and let ρ = ρg be
the geodesic distance. Let Q be a probability measure on M whose support is
compact and is contained in a coordinate neighborhood (U,φ). Assume that
(i) the intrinsic mean µI = µF exists, (ii) the map θ → (ρφ)2(θ, u) is twice
continuously differentiable on φ(U) for each u ∈ φ(U) and 
, defined by (2.12),
is nonsingular. Then the conclusions of Theorem 2.1hold for the intrinsic sample
mean µn,I = µn,F of Q̂n = 1

n

∑n
i=1 δXi

, with µ = φ(µI ).

We now prove one of the main results of this section.

THEOREM2.2 (CLT for intrinsic sample means).Let (M,g) be a Riemannian
manifold and let ρ = ρg be the geodesic distance. Let Q be a probability measure
on M whose support is contained in a closed geodesic ball Br ≡ Br(x0) with
center x0 and radius r which is disjoint from the cut locus C(x0). Assume r < π

4K
,

where K2 is the supremum of sectional curvatures in Br if this supremum is
positive, or zero if this supremum is nonpositive. Then (a) the intrinsic mean µI

(of Q) exists, and (b) the conclusion of Theorem 2.1 holds for the image µn =
φ(µn,I ) of the intrinsic sample mean µn,I of Q̂n = 1

n

∑n
i=1 δXi

, under the inverse φ

of the exponential map, φ = (Expx0
)−1.

PROOF. (a) It is known that under the given assumptions, there is alocal
minimum µI , say, of the Fréchet functionF which belongs toBr and that this
minimum is also theunique minimum inB2r [30, 34, 40]. We now show thatµI

is actually the uniqueglobal minimum of F . Let p ∈ (B2r )
c. Thenρ(p, x) > r,

∀x ∈ Br. Hence

F(p) =
∫
Br

ρ2(p, x)Q(dx) >

∫
Br

r2Q(dx) = r2.(2.14)

On the other hand,

F(µI ) ≤ F(x0) =
∫
Br

ρ2(x0, x)Q(dx) ≤ r2,(2.15)

provingF(p) > F(µI ).

(b) In view of Corollary 2.1, we only need to show that the Hessian matrix

 ≡ 
(µ) of F ◦ φ−1 at µ := φ(µI ) is nonsingular, whereφ = Exp−1

x0
. Now
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according to [30], Theorem 1.2, for every geodesic curveγ (t) in Br, t ∈ (c, d) for
somec < 0, d > 0,

d2

dt2F(γ (t)) > 0 (c < t < d).(2.16)

Let ψ = ExpµI
denote the exponential map atµI , and letγ (t) be the unique

geodesic withγ (0) = µI and γ̇ (0) = v, so thatγ (t) = ψ(tv). Here we identify
the tangent spaceTµI

M with R
d . Applying (2.16) to this geodesic (att = 0), and

writing G = F ◦ ψ, one has

d2

dt2F(ψ(tv))

∣∣∣∣
t=0

= ∑
vivj (DiDjG)(0) > 0 (∀v 	= 0),(2.17)

that is, the Hessian ofG is positive definite at 0∈ R
d . If x0 = µI , this completes

the proof of (b).
Next letx0 	= µI . Now F ◦ φ−1 = G ◦ (ψ−1 ◦ φ−1) on a domain that includes

µ = φ(µI ) ≡ (Expx0
)−1(µI ). Writeψ−1◦φ−1 = f . Then in a neighborhood ofµ,

∂2(G ◦ f )

∂ur ∂ur ′ (u) = ∑
j,j ′

(DjDj ′G)(f (u))
∂f j

∂ur
(u)

∂f j ′

∂ur ′ (u)

+ ∑
j

(DjG)(f (u))
∂2f j

∂ur ∂ur ′ (u).

(2.18)

The second sum in (2.18) vanishes atu = µ, since(DjG)(f (µ)) = (DjG)(0) = 0
as f (µ) = ψ−1φ−1(µ) = ψ−1(µI ) = 0 is a local minimum ofG. Also f is a
diffeomorphism in a neighborhood ofµ. Hence, writing
r,r ′(µ) as the(r, r ′)
element of
(µ),


r,r ′(µ) = ∂2(F ◦ φ−1)

∂ur ∂ur ′ (µ) = ∑
j,j ′

(DjDj ′G)(0)
∂f j

∂ur
(µ)

∂f j ′

∂ur ′ (µ).

This shows, along with (2.17), that
 = 
(µ) is positive definite. �

REMARK 2.2. If the supremum of the sectional curvatures (of a complete
manifold M) is nonpositive, and the support ofQ is contained inBr , then the
hypotheses of Theorem 2.2 are satisfied, and the conclusions (a), (b) hold. One
may apply this even withr = ∞.

REMARK 2.3. The assumptions in Theorem 2.2 on the support ofQ for the
existence ofµI are too restrictive for general applications. But without additional
structures they cannot be entirely dispensed with, as is easily shown by lettingQ

be the uniform distribution on the equator ofS2. For the complex projective space
CP d/2, d even, necessary and sufficient conditions for the existence of the intrinsic
meanµI of an absolutely continuous (w.r.t. the volume measure)Q with radially
symmetric density are given in [33, 39].
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It may be pointed out that it is the assumption of some symmetry, that is, the
invariance ofQ under a group of isometries, that often causes the intrinsic mean
set to contain more than one element (see, e.g., [8], Proposition 2.2). The next
result is, therefore, expected to be more generally applicable than Theorem 2.2.

THEOREM 2.3 (CLT for intrinsic sample means).Let Q be absolutely
continuous w.r.t. the volume measure on a Riemannian manifold (M,g). Assume
that (i) µI exists, (ii) the integrability conditions (2.9) hold, (iii) the Hessian
matrix 
 of F ◦ φ−1 at µ = φ(µI ) is nonsingular and (iv) the covariance

matrix C of 
(X̃i;µ) is nonsingular. Then
√

n(µn − µ)
L→ N (0,�), where

� = 
−1C(
t)−1.

This theorem follows from Theorem 2.1 and Remark 2.1.
In order to obtain a confidence region forµF using the CLT in Theorem 2.1

in the traditional manner, one needs to estimate the covariance matrix� =

−1C(
t)−1. For this one may use proper estimates of
 andC, namely,


̂(θ) := 1

n

n∑
i=1

(Grad
)(X̃i,µn), Ĉ = CovQ̂φ
n,

�̂ := 
̂−1Ĉ(
̂t )−1, �̂−1 = 
̂t Ĉ−1
̂.

(2.19)

The following corollary is now immediate. Letχ2
d,1−α denote the(1 − α)th

quantile of the chi-square distribution withd degrees of freedom.

COROLLARY 2.2. Under the hypothesis of Theorem 2.1, if C is nonsingular,
a confidence region for µF of asymptotic level 1 − α is given by Un,α :=
φ−1(Dn,α), where Dn,α = {v ∈ φ(U) :n(µn − v)t �̂−1(µn − v) ≤ χ2

d,1−α}.

EXAMPLE 2.2. In the case of the sphereS2 from Example 2.1, it follows
that if we consider an arbitrary data pointu = (u1, u2), and a second point
θ = Logp λ = (θ1, θ2), and evaluate the matrix of second-order partial derivatives

w.r.t. θ1, θ2 of

G(u, θ) = arccos2
(

cos‖u‖ + sin‖u‖
‖u‖ (u1θ1 + u2θ2) − 1

2
‖θ‖2 cos‖u‖

)
,(2.20)

then

∂2G

∂θr ∂θs
(u;0) = 2urus

‖u‖2

(
1− ‖u‖

tan‖u‖
)

+ 2δrs‖u‖
tan‖u‖ ,(2.21)

whereδrs is the Kronecker symbol and‖u‖2 = (u1)2 + (u2)2. The matrix
̂ =
(λrr ′)r,r ′=1,2 has the entries

λrr ′ = 1

n

n∑
i=1

∂2G

∂θr ∂θr ′ (ui;0).(2.22)
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AssumeĈ is the sample covariance matrix ofuj , j = 1, . . . , n; a large sample
confidence region for the intrinsic mean is given by Corollary 2.2 withµn = 0.

We now turn to the problem of bootstrapping a confidence region forµF . Let
X∗

i,n be i.i.d. with common distribution̂Qn (conditionally, given{Xi : 1 ≤ i ≤ n}).
Write X̃∗

i,n = φ(X∗
i,n),1 ≤ i ≤ n, and letµ∗

n be a measurable selection from the

Fréchet mean set of̂Q∗,φ
n := 1

n

∑n
i=1 δ

X̃∗
i,n

. Let E∗
n,α be a subset ofφ(U), such that

P ∗(µ∗
n − µn ∈ E∗

n,α) → 1 − α in probability, whereP ∗ denotes the probability

underQ̂n.

COROLLARY 2.3. In addition to the hypothesis of Theorem 2.1,assume C is
nonsingular. Then φ−1({(µn − E∗

n,α) ∩ φ(U)}) is a confidence region for µF of
asymptotic level (1− α).

PROOF. One may write (2.7) and (2.8) withµ andµn replaced byµn andµ∗
n,

respectively, also replacing̃Xi by X̃∗
i in (2.8). To show that a new version of (2.11)

holds with similar replacements (also replacing
 by 
̂), with a δ∗
n (in place

of δn) going to zero in probability, one may apply Chebyshev’s inequality with
a first-order absolute moment underQ̂n, proving that
̂∗ − 
̂ goes to zero in
probability. Here
̂∗ = 1

n

∑n
i=1(Grad
)(X̃∗

i ;µ∗
n). One then arrives at the desired

version of (2.7), replacingµn,µ,
, X̃i by µ∗
n,µn, 
̂, X̃∗

i , respectively, and with
the remainder (corresponding toδ

′
n) going to zero in probability. �

REMARK 2.4. In Corollary 2.3, we have considered the so-calledpercentile
bootstrap of Hall [25] (also see [17]), which does not require the computation
of the standard error̂
. For this as well as for the CLT-based confidence region
given by Corollary 2.2, one can show that the coverage error is no more than
Op(n−d/(d+1)) or O(n−d/(d+1)), as the case may be [4]. One may also use the
bootstrap distribution of thepivotal statistic n(µn − µ)T �̂−1(µn − µ) to find c∗

n,α

such that

P ∗(
n(µ∗

n − µn)
T �̂∗−1(µ∗

n − µn) ≤ c∗
n,α

) � 1− α,(2.23)

to find the confidence region

D∗
n,α = {v ∈ φ(U) :n(µn − v)T �̂−1(µn − v) ≤ c∗

n,α}.(2.24)

In particular, if Q has a nonzero absolutely continuous component w.r.t. the
volume measure onM, then so doesQφ w.r.t. the Lebesgue measure onφ(U)

(see [13], page 44). Then assuming (a)c∗
n,α is such that theP ∗-probability in (2.23)

equals 1− α + Op(n−2) and (b) some additional smoothness and integrability
conditions of the third derivatives of
, one can show that the coverage error [i.e.,
the difference between 1−α andP(µ ∈ D∗

n,α)] is Op(n−2) (see [5, 6, 12, 24, 25]).
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It follows that the coverage error of the confidence regionφ−1(D∗
n,α ∩ φ(U))

for µF is alsoO(n−2). We state one such result precisely.

COROLLARY 2.4 (Bootstrapping the intrinsic sample mean).Suppose the
hypothesis of Theorem 2.3holds. Then

sup
r>0

∣∣P ∗(
n(µ∗

n − µn)
T �̂∗−1(µ∗

n − µn) ≤ r
)

− P
(
n(µn − µ)T �̂−1(µn − µ) ≤ r

)∣∣ = Op(n−2),

and the coverage error of the pivotal bootstrap confidence region is = Op(n−2).

REMARK 2.5. The assumption of absolute continuity ofQ in Theorem 2.3
is reasonable for most applications. Indeed this is assumed in most parametric
models in directional and shape analysis (see, e.g., [15, 52]).

REMARK 2.6. The results of this section may be extended to the two-sample
problem, or to paired samples, in a fairly straightforward manner. For example,
in the case of paired observations(Xi, Yi), i = 1, . . . , n, let Xi have (marginal)
distributionQ, and intrinsic meanµI , and letQ2 andνI be the corresponding
quantities forYi. Let φ = Exp−1

x0
for somex0, and letµ,ν and µn, νn be the

images underφ of the intrinsic population and sample means. Then one arrives
at the following [see (2.13)]:

√
n(µn − µ) − √

n(νn − ν)
L→ N (0,�),(2.25)

where� is the covariance matrix of
−1
1 
(X̃i;µ) − 
−1

2 
(Ỹi;ν). Here
i is the
Hessian matrix ofF ◦ φ−1 for Qi (i = 1,2). Assume� is nonsingular. Then a
CLT-based confidence region forγ := µ− ν is given in terms ofγn := µn − νn by
{v ∈ R

d :n(γn − v)�̂−1(γn − v) ≤ χ2
d,1−α}. Alternatively, one may use a bootstrap

estimate of the distribution of
√

n(γn − γ ) to derive a confidence region.

In Section 5 we consider two applications of results in this section (and one
application of the results in Sections 3 and 4). Application 1 deals with the data
from a paleomagnetic study of the possible migration of the Earth’s magnetic poles
over geological time scales. HereM = S2 and the geodesic distance between two
points is the arclength between them measured on the great circle passing through
them.

Application 3 analyzes some recent three-dimensional image data on the effect
of a (temporary) glaucoma-inducing treatment in 12 Rhesus monkeys. On each
animalk = 4 carefully chosen landmarks are measured on each eye—the normal
eye and the treated eye. For each observation (a set of four points inR

3) the effects
of translation, rotation and size are removed to obtain a sample of 12 points on
the five-dimensional shape orbifold�4

3. We use the so-called three-dimensional
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Bookstein coordinates to label these points (see [15], pages 78–80). In order to
apply Theorem 2.3 (i.e., its analog indicated above), a somewhat flat Riemannian
structure is chosen so that the necessary assumptions can be verified.

3. The CLT for extrinsic sample means and confidence regions for the
extrinsic mean. From Theorem 2.1 one may derive a CLT for extrinsic sample
means similar to Corollary 2.1. In this section, however, we use another approach
which, for extrinsic means, is simpler to apply and generally less restrictive.

Recall that the extrinsic meanµj,E(Q) of a nonfocal probability measureQ
on a manifoldM w.r.t. an embeddingj :M → R

k , when it exists, is given by
µj,E(Q) = j−1(Pj (µ)), whereµ is the mean ofj (Q) andPj is the projection
on j (M) (see [8], Proposition 3.1, e.g.). Often the extrinsic mean will be denoted
by µE(Q), or simplyµE , whenj andQ are fixed in a particular context. To ensure
the existence of the extrinsic mean set, in this section we will assume thatj (M) is
closed inR

k .
Assume (X1, . . . ,Xn) are i.i.d. M-valued random objects whose common

probability distribution isQ, and letXE := µE(Q̂n) be theextrinsic sample mean.
HereQ̂n = 1

n

∑n
j=1 δXj

is the empirical distribution.

A CLT for the extrinsic sample mean on asubmanifold M of R
k (with j the

inclusion map) was derived by Hendriks and Landsman [27] and, independently,
by Patrangenaru [44] by different methods. Differentiable manifolds that are not
a priori submanifolds ofRk arise in new areas of data analysis such as in shape
analysis, in high-level image analysis, or in signal and image processing (see, e.g.,
[15, 16, 22, 31–33, 42, 51]). These manifolds, known under the names of shape
spaces and projective shape spaces, are quotient spaces of submanifolds ofR

k

(spaces of orbits of actions of Lie groups), rather than submanifolds ofR
k . Our

approach is a generalization of the adapted frame method of Patrangenaru [44]
to closed embeddings inRk. This method leads to an appropriate dimension
reduction in the CLT and, thereby, reduces computational intensity. This method
extends the results of Fisher et al. [19] who considered the caseM = Sd. We expect
that with some effort the results of Hendriks and Landsman [27] may be modified
to yield the same result.

Assumej is an embedding of ad-dimensional manifoldM such thatj (M) is
closed inR

k , andQ is aj -nonfocal probability measure onM such thatj (Q) has
finite moments of order 2 (or of sufficiently high order as needed). Letµ and�

be, respectively, the mean and covariance matrix ofj (Q) regarded as a probability
measure onRk . Let F be the set of focal points ofj (M), and letPj :F c → j (M)

be the projection onj (M). Pj is differentiable atµ and has the differentiability
class ofj (M) around any nonfocal point. In order to evaluate the differentialdµPj

we consider a special orthonormal frame field that will ease the computations.
Assumep → (f1(x), . . . , fd(x)) is a local frame field on an open subset ofM such
that, for eachx ∈ M , (dj (f1(x)), . . . , dj (fd(x))) are orthonormal vectors inRk .
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A local frame field(e1(p), e2(p), . . . , ek(p)) defined on an open neighborhood
U ⊆ R

k is adapted to the embedding j if it is an orthonormal frame field
and ∀x ∈ j−1(U), (er(j (x)) = dpj (fr(x)), r = 1, . . . , d. Let e1, e2, . . . , ek be
the canonical basis ofRk and assume(e1(p), e2(p), . . . , ek(p)) is an adapted
frame field aroundPj (µ) = j (µE). Then dµPj (eb) ∈ TPj (µ)j (M) is a linear
combination ofe1(Pj (µ)), e2(Pj (µ)), . . . , ed(Pj (µ)):

dµPj (eb) = ∑(
dµPj (eb)

) · ea

(
Pj (µ)

)
ea

(
Pj (µ)

)
.(3.1)

By the delta method,n1/2(Pj (j (X)) − Pj (µ)) converges weakly toN(0,�|µ),
wherej (X) = 1

n

∑n
i=1 j (Xi) and

�|µ =
[

d∑
a=1

dµPj (eb) · ea

(
Pj (µ)

)
ea

(
Pj (µ)

)]
b=1,...,k

�|

×
[∑

dµPj (eb) · ea

(
Pj (µ)

)
ea

(
Pj (µ)

)]t

b=1,...,k
.

(3.2)

Here�| is the covariance matrix ofj (X1) w.r.t. the canonical basise1, e2, . . . , ek.

The asymptotic distributionN(0,�|µ) is degenerate and can be regarded as a
distribution onTPj (µ)j (M), since the range ofdµPj is TPj (µ)j (M). Note that

dµPj (eb) · ea

(
Pj (µ)

) = 0 for a = d + 1, . . . , k.

REMARK 3.1. An asymptotic distribution of the extrinsic sample mean can
be obtained as a particular case of Theorem 2.1. The covariance matrix in that
theorem depends both on the way the manifold is embedded and on the chart used.
We provide below an alternative CLT, which applies to arbitrary embeddings, leads
to pivots and is independent of the chart used.

The tangential component tan(v) of v ∈ R
k w.r.t. the basisea(Pj (µ)) ∈

TPj (µ)j (M), a = 1, . . . , d, is given by

tan(v) = (
e1

(
Pj (µ)

)t
v, . . . , ed

(
Pj (µ)

)T
v
)t

.(3.3)

Then the random vector(dµE
j)−1(tan(Pj (j (X))−Pj (µ))) = ∑d

a=1 X
a

jfa has the
following covariance matrix w.r.t. the basisf1(µE), . . . , fd(µE):

�j,E = ea

(
Pj (µ)

)t
�µeb

(
Pj (µ)

)
1≤a,b≤d

=
[∑

dµPj (eb) · ea

(
Pj (µ)

)]
a=1,...,d

�|

×
[∑

dµPj (eb) · ea

(
Pj (µ)

)]t

a=1,...,d
.

(3.4)

DEFINITION 3.1. The matrix �j,E given by (3.4) is theextrinsic co-
variance matrix of the j -nonfocal distributionQ (of X1) w.r.t. the basis
f1(µE), . . . , fd(µE).
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Whenj is fixed in a specific context, the subscriptj in �j,E will be omitted.
If, in addition, rank�|µ = d, �j,E is invertible and we define thej -standardized
mean vector

Zj,n =: n1/2�j,E
−1/2(X

1
j , . . . ,X

d

j )T .(3.5)

PROPOSITION 3.1. Assume {Xr}r=1,...,n is a random sample from the
j -nonfocal distribution j (Q), and let µ = E(j (X1)) and assume the extrin-
sic covariance matrix �j,E of Q is finite. Let (e1(p), e2(p), . . . , ek(p)) be an
orthonormal frame field adapted to j . Then (a) the extrinsic sample mean XE

has asymptotically a normal distribution in the tangent space to M at µE(Q)

with mean 0 and covariance matrix n−1�j,E , and (b) if �j,E is nonsingular, the
j -standardized mean vector Zj,n given in (3.5)converges weakly to N(0, Id).

As a particular case of Proposition 3.1, whenj is the inclusion map of a
submanifold ofRk , we get the following result for nonfocal distributions on an
arbitrary closed submanifoldM of R

k :

COROLLARY 3.1. Assume M ⊆ R
k is a closed submanifold of R

k . Let
{Xr}r=1,...,n be a random sample from the nonfocal distribution Q on M , and
let µ = E(X1) and assume the covariance matrix �| of j (Q) is finite. Let
(e1(p), e2(p), . . . , ek(p)) be an orthonormal frame field adapted to M . Let �E :=
�j,E , where j :M → R

k is the inclusion map. Then (a)n1/2 tan(j (XE) − j (µE))

converges weakly to N(0,�E), and (b) if �| induces a nonsingular bilinear form
on Tj(µE)j (M), then ‖Zj,n‖2 converges weakly to the chi-square distribution χ2

d .

EXAMPLE 3.1. In the case of a hypersphere inR
k , j (x) = x andPj = PM .

We evaluate the statistic‖Zj,n‖2 = n‖�j,E
−1/2 tan(PM(X) − PM(µ))‖2. The

projection map isPM(x) = x/‖x‖. PM has the following property: ifv = cx, then
dxPM(v) = 0; on the other hand, if the restriction ofdxPM to the orthocomplement
of Rx is a conformal map, that is, ifv · x = 0, thendxPM(v) = ‖x‖−1v. In
particular, if we select the coordinate system such thatx = ‖x‖ek , then one may
takeea(PM(x)) = ea , and we get

dxPM(eb) · ea

(
PM(x)

) = ‖x‖−1δab ∀a, b = 1, . . . , k − 1, dxPM(ek) = 0.

Sinceek(PM(µ)) points in the direction ofµ, dµPM(eb) · µ = 0, ∀b = 1, . . . ,

k − 1, and we get

�E = ‖µ‖−2E
([X · ea(µ/‖µ‖)]a=1,...,k−1[X · ea(µ/‖µ‖)]ta=1,...,k−1

)
(3.6)

which is the matrixG in formula (A.1) in [19].
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REMARK 3.2. The CLT for extrinsic sample means as stated in Proposi-
tion 3.1 or Corollary 3.1 cannot be used to construct confidence regions for
extrinsic means, since the population extrinsic covariance matrix is unknown. In
order to find a consistent estimator of�j,E , note thatj (X) is a consistent estima-
tor of µ, dj (X)Pj converges in probability todµPj , andea(Pj (j (X))) converges
in probability toea(Pj (µ)) and, further,

Sj,n = n−1
∑(

j (Xr) − j (X)
)(

j (Xr) − j (X)
)t

is a consistent estimator of�| . It follows that[
d∑

a=1

dj (X)Pj (eb) · ea

(
Pj (j (X))

)
ea

(
Pj (j (X))

)]
Sj,n

×
[

d∑
a=1

dj (X)Pj (eb) · ea

(
Pj (j (X))

)
ea

(
Pj (j (X))

)]t
(3.7)

is a consistent estimator of�µ, and tanPj (j (X)) v is a consistent estimator of tan(v).

If we take the components of the bilinear form associated with the matrix (3.7)
w.r.t. e1(Pj (j (X))), e2(Pj (j (X))), . . . , ed(Pj (j (X))), we get a consistent estima-
tor of �j,E given by

G(j,X) =
[[∑

dj (X)Pj (eb) · ea

(
Pj (j (X))

)]
a=1,...,d

]
· Sj,n

×
[[∑

dj (X)Pj (eb) · ea

(
Pj (j (X))

)]
a=1,...,d

]t
,

(3.8)

and obtain the following results.

THEOREM 3.1. Assume j :M → R
k is a closed embedding of M in R

k . Let
{Xr}r=1,...,n be a random sample from the j -nonfocal distribution Q, and let µ =
E(j (X1)) and assume j (X1) has finite second-order moments and the extrinsic
covariance matrix �j,E of X1 is nonsingular. Let (e1(p), e2(p), . . . , ek(p)) be an
orthonormal frame field adapted to j . If G(j,X) is given by (3.8), then for n

large enough G(j,X) is nonsingular (with probability converging to 1) and (a) the
statistic

n1/2G(j,X)−1/2 tan
(
Pj (j (X)) − Pj (µ)

)
(3.9)

converges weakly to N(0, Id), so that

n
∥∥G(j,X)−1/2 tan

(
Pj (j (X)) − Pj (µ)

)∥∥2(3.10)

converges weakly to χ2
d , and (b) the statistic

n1/2G(j,X)−1/2 tanPj (j (X))

(
Pj (j (X)) − Pj (µ)

)
(3.11)
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converges weakly to N(0, Id), so that

n
∥∥G(j,X)−1/2 tanPj (j (X))

(
Pj (j (X)) − Pj (µ)

)∥∥2(3.12)

converges weakly to χ2
d .

COROLLARY 3.2. Under the hypothesis of Theorem 3.1, a confidence
region for µE of asymptotic level 1 − α is given by (a) Cn,α := j−1(Un,α),

where Un,α = {µ ∈ j (M) :n‖G(j,X)−1/2 tan(Pj (j (X)) − Pj (µ))‖2 ≤ χ2
d,1−α},

or by (b) Dn,α := j−1(Vn,α), where Vn,α = {µ ∈ j (M) :n‖G(j,X)−1/2 ×
tanPj (j (X))(Pj (j (X)) − Pj (µ))‖2 ≤ χ2

d,1−α}.

Theorem 3.1 and Corollary 3.2 involve pivotal statistics. The advantages of
using pivotal statistics in bootstrapping for confidence regions are well known (see,
e.g., [1, 2, 5, 9, 24, 25]).

At this point we recall the steps that one takes to obtain a bootstrapped statistic
from a pivotal statistic. If{Xr}r=1,...,n is a random sample from the unknown
distribution Q, and {X∗

r }r=1,...,n is a random sample from the empirical̂Qn,
conditionally given{Xr}r=1,...,n, then the statistic

T (X,Q) = n
∥∥G(j,X)−1/2 tan

(
Pj (j (X)) − Pj (µ)

)∥∥2

given in Theorem 3.1(a) has the bootstrap analog

T (X∗, Q̂n) = n
∥∥G(j,X∗)−1/2 tanPj (j (X))

(
Pj (j (X∗)) − Pj (j (X))

)∥∥2
.

Here G(j,X∗) is obtained from G(j,X) by substituting X∗
1, . . . ,X∗

n for
X1, . . . ,Xn, andT (X∗, Q̂n) is obtained fromT (X,Q) by substitutingX∗

1, . . . ,X∗
n

for X1, . . . ,Xn, j (X)) for µ andG(j,X∗) for G(j,X).
The same procedure can be used for the vector-valued statistic

V (X,Q) = n1/2G(j,X)−1/2 tan
(
Pj (j (X)) − Pj (µ)

)
,

and as a result we get the bootstrapped statistic

V ∗(X∗, Q̂n) = n1/2G(j,X∗)−1/2 tanPj (j (X))

(
Pj (j (X∗)) − Pj (j (X))

)
.

For the rest of this section, we will assume thatj (Q), when viewed as a measure
on the ambient spaceRk , has finite moments of sufficiently high order. If M is
compact, then this is automatic. In the noncompact case finiteness of moments of
order 12, along with an assumption of a nonzero absolutely continuous component,
is sufficient to ensure an Edgeworth expansion up to orderO(n−2) of the pivotal
statisticV (X,Q) (see [5, 6, 12, 19, 24]). We then obtain the following results:
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THEOREM 3.2. Let {Xr}r=1,...,n be a random sample from the j -nonfocal
distribution Q which has a nonzero absolutely continuous component w.r.t.
the volume measure on M induced by j . Let µ = E(j (X1)) and assume the
covariance matrix �| of j (X1) is defined and the extrinsic covariance matrix �j,E

is nonsingular and let (e1(p), e2(p), . . . , ek(p)) be an orthonormal frame field
adapted to j . Then the distribution function of

n
∥∥G(j,X)−1/2 tan

(
Pj (j (X)) − Pj (µ)

)∥∥2

can be approximated by the bootstrap distribution function of

n
∥∥G(j,X∗)−1/2 tanPj (j (X))

(
Pj (j (X∗)) − Pj (j (X))

)∥∥2

with a coverage error Op(n−2).

One may also use nonpivotal bootstrap confidence regions, especially when
G(j,X) is difficult to compute. The result in this case is the following (see [4]).

PROPOSITION3.2. Under the hypothesis of Proposition 3.1, the distribution
function of n‖ tan(Pj (j (X)) − Pj (µ))‖2 can be approximated uniformly by the
bootstrap distribution of

n
∥∥tanPj (j (X))

(
Pj (j (X∗)) − Pj (j (X))

)∥∥2

to provide a confidence region for µE with a coverage error no more than
Op(n−d/(d+1)).

REMARK 3.3. Note that Corollary 3.2(b) provides a computationally simpler
scheme than Corollary 3.2(a) for large sample confidence regions; but for bootstrap
confidence regions Theorem 3.2, which is the bootstrap analog of Corollary 3.2(a),
yields a simpler method. The corresponding 100(1 − α)% confidence region is
C∗

n,α := j−1(U∗
n,α) with U∗

n,α given by

U∗
n,α = {

µ ∈ j (M) :n
∥∥G(j,X)−1/2 tan

(
Pj (j (X)) − Pj (µ)

)∥∥2 ≤ c∗
1−α

}
,(3.13)

wherec∗
1−α is the upper 100(1− α)% point of the values

n
∥∥G(j,X∗)−1/2 tanPj (j (X))

(
Pj (j (X∗)) − Pj (j (X))

)∥∥2(3.14)

among the bootstrap resamples. One could also use the bootstrap analog of the
confidence region given in Corollary 3.2(b) for which the confidence region is
D∗

n,α := j−1(V ∗
n,α) with V ∗

n,α given by

V ∗
n,α = {

µ ∈ j (M) :

n
∥∥G(j,X)−1/2 tanPj (j (X))

(
Pj (j (X)) − Pj (µ)

)∥∥2 ≤ d∗
1−α

}
,

(3.15)
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whered∗
1−α is the upper 100(1− α)% point of the values

n
∥∥G(j,X∗)−1/2 tanPj (j (X∗))

(
Pj (j (X∗)) − Pj (j (X))

)∥∥2(3.16)

among the bootstrap resamples. The region given by (3.13)–(3.14) has coverage
errorOp(n−2).

4. Asymptotic distributions of sample mean axes, Procrustes mean shapes
and extrinsic mean planar projective shapes. In this section we focus on the
asymptotic distribution of sample means in axial data analysis and in planar shape
data analysis. The axial space is the(N − 1)-dimensional real projective space
M = RP N−1 which can be identified with the sphereSN−1 = {x ∈ R

N |‖x‖2 = 1}
with antipodal points identified (see, e.g., [41]). If[x] = {x,−x} ∈ RP N−1,

‖x‖ = 1, the tangent space at[x] can be described as

T[x]RP N−1 = {([x], v), v ∈ R
N |vtx = 0}.(4.1)

We consider here the general situation when the distribution onRP N−1 may
not be concentrated. Note that forN odd, RP N−1 cannot be embedded inRN ,
since for any embedding ofRP N−1 in R

k with N odd, the first Stiefel–Whitney
class of the normal bundle is not zero ([43], page 51).

TheVeronese–Whitney embedding is defined for arbitraryN by the formula

j ([x]) = xxt , ‖x‖ = 1.(4.2)

The embeddingj mapsRP N−1 into a (12N(N + 1) − 1)-dimensional Euclidean
hypersphere in the spaceS(N,R) of realN × N symmetric matrices, where the
Euclidean distanced0 between two symmetric matrices is

d0(A,B) = Tr
(
(A − B)2).

This embedding, which was already used by Watson [52], is preferred over
other embeddings in Euclidean spaces because it isequivariant (see [35]). This
means that the special orthogonal group SO(N) of orthogonal matrices with
determinant+1 acts as a group of isometries onRP N−1 with the metric of
constant positive curvature; and it also acts on the left onS+(N,R), the set of
nonnegative definite symmetric matrices with real coefficients, byT · A = TAT t .

Also, j (T · [x]) = T · j ([x]),∀T ∈ SO(N),∀ [x] ∈ RP N−1.

Note thatj (RP N−1) is the set of all nonnegative definite matrices inS(N,R)

of rank 1 and trace 1. The following result appears in [8].

PROPOSITION 4.1. (a) The set F of the focal points of j (RP N−1) in
S+(N,R) is the set of matrices in S+(N,R) whose largest eigenvalues are of
multiplicity at least 2. (b)The projection Pj :S+(N,R)\F → j (RP N−1) assigns
to each nonnegative definite symmetric matrix A with a highest eigenvalue of
multiplicity 1, the matrix j ([m]), where m(‖m‖ = 1) is an eigenvector of A

corresponding to its largest eigenvalue.
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The following result of Prentice [46] is also needed in the sequel.

PROPOSITION4.2 ([46]). Assume [Xr ], ‖Xr‖ = 1, r = 1, . . . , n, is a random
sample from a j -nonfocal probability measure Q on RP N−1. Then the j -extrinsic
sample covariance matrix G(j,X) is given by

G(j,X)ab = n−1(ηN − ηa)
−1(ηN − ηb)

−1

× ∑
r

(ma · Xr)(mb · Xr)(m · Xr)
2,

(4.3)

where ηa, a = 1, . . . ,N, are eigenvalues of K := n−1 ∑n
r=1 XrX

t
r in increasing

order and ma,a = 1, . . . ,N, are corresponding linearly independent unit eigen-
vectors.

Here we give a proof of (4.3) based on the equivariance ofj to prepare the reader
for a similar but more complicated formula of the analogous estimator given later
for CP k−2.

Since the mapj is equivariant, w.l.o.g. one may assume thatj (XE) = Pj (j (X))

is a diagonal matrix,XE = [mN ] = [eN ] and the other unit eigenvectors of
j (X) = D are ma = ea,∀a = 1, . . . ,N − 1. We evaluatedDPj . Based on this
description ofT[x]RP N−1, one can select inTPj (D)j (RP N−1) the orthonormal
frameea(Pj (D)) = d[eN ]j (ea). Note thatS(N,R) has the orthobasisFb

a , b ≤ a,
where, fora < b, the matrixFb

a has all entries zero except for those in the positions
(a, b), (b, a) that are equal to 2−1/2; also Fa

a = j ([ea]). A straightforward
computation shows that ifηa, a = 1, . . . ,N, are the eigenvalues ofD in their
increasing order, thendDPj (F

b
a ) = 0,∀b ≤ a < N and dDPj (F

N
a ) = (ηN −

ηa)
−1ea(Pj (D)); from this equation it follows that, ifj (X) is a diagonal matrixD,

then the entryG(j,X)ab is given by

G(j,X)ab = n−1(ηN − ηa)
−1(ηN − ηb)

−1
∑
r

Xa
r Xb

r (X
N
r )2.

Takingj (X) to be a diagonal matrix andma = ea , (4.3) follows.
Note thatµE,j = [νN ], where (νa), a = 1, . . . ,N , are unit eigenvectors of

E(XXt) = E(j (Q)) corresponding to eigenvalues in their increasing order. Let
T ([ν]) = n‖G(j,X)−1/2 tan(Pj (j (X)) − Pj (E(j (Q))))‖2 be the statistic given
by (3.10). We can derive now the following theorem as a special case of
Theorem 3.1(a).

THEOREM4.1. Assume j is the Veronese–Whitney embedding of RP N−1 and
{[Xr ],‖Xr‖ = 1, r = 1, . . . , n} is a random sample from a j -nonfocal probability
measure Q on RP N−1 that has a nondegenerate j -extrinsic variance. Then T ([ν])
is given by

T ([ν]) = nνt [(νa)a=1,...,N−1]G(j,X)−1[(νa)a=1,...,N−1]t ν,(4.4)

and, asymptotically, T ([ν]) has a χ2
N−1 distribution.
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PROOF. Sincej is an isometric embedding and the tangent spaceT[νN ]RP N−1

has the orthobasisν1, . . . , νN−1, if we select the first elements of the adapted
moving frame in Theorem 3.1 to beea(Pj (νE,j )) = (d[νN ]j)(νa), then theath tan-
gential component ofPj (j (X))−Pj (ν) w.r.t. this basis ofTPj (E(j (Q)))j (RP N−1)

equals up to a sign theath component ofm− νN w.r.t. the orthobasisν1, . . . , νN−1

in T[νN ]RRN−1, namelyνt
am. The result follows now from Theorem 3.1(a).�

REMARK 4.1. If we apply Theorem 3.1(b) to the embeddingj , we obtain
a similar theorem due to Fisher, Hall, Jing and Wood [19], whereT ([ν]) is
replaced byT ([m]). Similar asymptotic results can be obtained for the large
sample distribution of Procrustes means of planar shapes, as we discuss below.
Recall that the planar shape spaceM = ∑k

2 of an ordered set ofk points in C

at least two of which are distinct can be identified in different ways with the
complex projective spaceCP k−2 (see, e.g., [8, 31]). Here we regardCP k−2 as
a set of equivalence classesCP k−2 = S2k−3/S1 where S2k−3 is the space of
complex vectors inCk−1 of norm 1, and the equivalence relation onS2k−3 is by
multiplication with scalars inS1 (complex numbers of modulus 1). A complex
vector z = (z1, z2, . . . , zk−1) of norm 1 corresponding to a given configuration
of k landmarks, with the identification described in [8], can be displayed in the
Euclidean plane (complex line) with the superscripts as labels. If, in addition,
r is the largest superscript such thatzr 	= 0, then we may assume thatzr > 0.

Using this representative of the projective point[z] we obtain a unique graphical
representation of[z], which will be called thespherical representation.

The Veronese–Whitney (or simply Veronese) map is the embedding ofCP k−2

in the space of Hermitian matricesS(k − 1,C) given in this case byj ([z]) = zz∗,
where, if z is considered as a column vector,z∗ is the adjoint ofz, that is, the
conjugate of the transpose ofz. The Euclidean distance in the space of Hermitian
matricesS(k − 1,C) is d2

0(A,B) = Tr((A − B)(A − B)∗) = Tr((A − B)2).
Kendall [31] has shown that the Riemannian metric induced onj (CP k−2) by d0

is a metric of constant holomorphic curvature. The associated Riemannian distance
is known as theKendall distance and the full group of isometries onCP k−2 with
the Kendall distance is isomorphic to the special unitary group SU(k − 1) of all
(k − 1) × (k − 1) complex matricesA with A∗A = I and det(A) = 1.

A random variableX = [Z],‖Z‖ = 1, valued inCP k−2 is j -nonfocal if the
highest eigenvalue ofE[ZZ∗] is simple, and then the extrinsic mean ofX is
µj,E = [ν], whereν ∈ C

k−1,‖ν‖ = 1, is an eigenvector corresponding to this
eigenvalue (see [8]). The extrinsic sample mean[z]j,E of a random sample[zr ] =
[(z1

r , . . . , z
k−1
r )],‖zr‖ = 1, r = 1, . . . , n, from such a nonfocal distribution exists

with probability converging to 1 asn → ∞, and is the same as that given by

[z]j,E = [m],(4.5)
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wherem is a highest unit eigenvector of

K := n−1
n∑

r=1

zrz
∗
r .(4.6)

This means that[z]j,E is the full Procrustes estimate for parametric families
such as Dryden–Mardia distributions or complex Bingham distributions for planar
shapes [35, 36]. For this reason,µj,E = [m] will be called theProcrustes mean
of Q.

PROPOSITION4.3. Assume Xr = [Zr ],‖Zr‖ = 1, r = 1, . . . , n, is a random
sample from a j -nonfocal probability measure Q with a nondegenerate j -extrinsic
covariance matrix on CP k−2. Then the j -extrinsic sample covariance matrix
G(j,X) as a complex matrix has the entries

G(j,X)ab = n−1(ηk−1 − ηa)
−1(ηk−1 − ηb)

−1

×
n∑

r=1

(ma · Zr)(mb · Zr)
∗|mk−1 · Zr |2.

(4.7)

The proof is similar to that given for Proposition 4.2 and is based on the
equivariance of the Veronese–Whitney mapj w.r.t. the actions ofSU(k − 1)

on CP k−2 and on the setS+(k − 1,C) of nonnegative semidefinite self-adjoint
(k − 1) by (k − 1) complex matrices (see [8]). Without loss of generality we
may assume thatK in (4.6) is given byK = diag{ηa}a=1,...,k−1 and the largest
eigenvalue ofK is a simple root of the characteristic polynomial overC, with
mk−1 = ek−1 as a corresponding complex eigenvector of norm 1. The eigenvectors
over R corresponding to the smaller eigenvalues are given byma = ea,m

′
a =

iea, a = 1, . . . , k − 2, and yield an orthobasis forT[mk−1]j (CP k−2). For any
z ∈ S2k−1 which is orthogonal tomk−1 in C

k−1 w.r.t. the real scalar product, we
define the pathγz(t) = [costmk−1 + sintz]. ThenTPj (K)j (CP k−2) is generated
by the vectors tangent to such pathsγz(t) at t = 0. Such a vector, as a matrix in
S(k − 1,C), has the formzm∗

k−1 + mk−1z
∗. In particular, since the eigenvectors

of K are orthogonal w.r.t. the complex scalar product, one may takez = ma ,
a = 1, . . . , k − 2, or z = ima , a = 1, . . . , k − 2, and thus get an orthobasis in
TPj (K)j (M). When we norm these vectors to have unit lengths we obtain the
orthonormal frame

ea

(
Pj (K)

) = d[mk−1]j (ma) = 2−1/2(mam
∗
k−1 + mk−1m

∗
a),

e′
a

(
Pj (K)

) = d[mk−1]j (ima) = i2−1/2(mam
∗
k−1 − mk−1m

∗
a).

Since the mapj is equivariant we may assume thatK is diagonal. In this case
ma = ea , ea(Pj (K)) = 2−1/2Ek−1

a ande′
a(Pj (K)) = 2−1/2Fk−1

a , whereEb
a has all

entries zero except for those in the positions(a, b) and(b, a) that are equal to 1,
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andFb
a is a matrix with all entries zero except for those in the positions(a, b) and

(b, a) that are equal toi, respectively−i. Just as in the real case, a straightforward
computation shows thatdKPj (E

b
a) = dKPj (F

b
a ) = 0,∀a ≤ b < k − 1, and

dKPj (E
k−1
a ) = (ηk−1 − ηa)

−1ea

(
Pj (K)

)
,

dKPj (F
k−1
a ) = (ηk−1 − ηa)

−1e′
a

(
Pj (K)

)
.

We evaluate the extrinsic sample covariance matrixG(j,X) given in (3.8) using
the real scalar product inS(k − 1,C), namely,U · V = Re Tr(UV∗). Note that

dKPj (E
k−1
b ) · ea

(
Pj (K)

) = (ηk−1 − ηa)
−1δba,

dKPj (E
k−1
b ) · e′

a

(
Pj (K)

) = 0

and

dKPj (F
k−1
b ) · e′

a

(
Pj (K)

)t = (ηk−1 − ηa)
−1δba,

dKPj (F
k−1
b ) · ea

(
Pj (K)

) = 0.

Thus we may regardG(j,X) as a complex matrix noting that in this case we get

G(j,X)ab = n−1(ηk−1 − ηa)
−1(ηk−1 − ηb)

−1

×
n∑

r=1

(ea · Zr)(eb · Zr)
∗|ek−1 · Zr |2,

(4.8)

thus proving (4.7) whenK is diagonal. The general case follows by equivariance.
We consider now the statistic

T
(
(X)E,µE

) = n
∥∥G(j,X)−1/2 tan

(
Pj (j (X)) − Pj (µE)

)∥∥2

given in Theorem 3.1 in the present context of random variables valued in complex
projective spaces to get:

THEOREM 4.2. Let Xr = [Zr ], ‖Zr‖ = 1, r = 1, . . . , n, be a random
sample from a Veronese-nonfocal probability measure Q on CP k−2. Then the
quantity (3.10)is given by

T ([m], [ν]) = n[(m · νa)a=1,...,k−2]G(j,X)−1[(m · νa)a=1,...,k−2]∗(4.9)

and asymptotically T ([m], [ν]) has a χ2
2k−4 distribution.

PROOF. The tangent spaceT[νk−1]CP k−2 has the orthobasisν1, . . . , νk−2,

ν∗
1, . . . , ν∗

k−2. Note that sincej is an isometric embedding, we may select the
first elements of the adapted moving frame in Corollary 3.1 to beea(Pj (µ)) =
(d[νk−1]j)(νa), followed by e∗

a(Pj (µ)) = (d[νk−1]j)(ν∗
a ). Then theath tangential

component ofPj (j (X))−Pj (µ) w.r.t. this basis ofTPj (µ)j (CP k−2) equals up to a
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sign the component ofm−νk−1 w.r.t. the orthobasisν1, . . . , νk−2 in T[νk−1]CP k−2,
which isνt

am; and thea∗th tangential components are given byν∗
a
tm, and together

(in complex multiplication) they yield the complex vector[(m ·νa)a=1,...,k−2]. The
claim follows from this and from (4.3), as a particular case of Corollary 3.1.�

We may derive from this the following large sample confidence regions.

COROLLARY 4.1. Assume Xr = [Zr ], ‖Zr‖ = 1, r = 1, . . . , n, is a random
sample from a j -nonfocal probability measure Q on CP k−2. An asymptotic
(1 − α)-confidence region for µ

j
E(Q) = [ν] is given by Rα(X) = {[ν] :T ([m],

[ν]) ≤ χ2
2k−4,α}, where T ([m], [ν]) is given in (4.9).If Q has a nonzero absolutely

continuous component w.r.t. the volume measure on CP k−2, then the coverage
error of Rα(X) is of order O(n−1).

For small samples the coverage error could be quite large, and a bootstrap
analogue of Theorem 4.2 is preferable.

THEOREM 4.3. Let j be the Veronese embedding of CP k−2, and let
Xr = [Zr ], ‖Zr‖ = 1, r = 1, . . . , n, be a random sample from a j -nonfocal
distribution Q on CP k−2 having a nonzero absolutely continuous component w.r.t.
the volume measure on CP k−2. Assume in addition that the restriction of the
covariance matrix of j (Q) to T[ν]j (CP k−2) is nondegenerate. Let µE(Q) = [ν]
be the extrinsic mean of Q. For a resample {Z∗

r }r=1,...,n from the sample consider
the matrix K∗ := n−1 ∑

Z∗
r Z∗∗

r . Let (η∗
a)a=1,...,k−1 be the eigenvalues of K∗ in

their increasing order, and let (m∗
a)a=1,...,k−1 be the corresponding unit complex

eigenvectors. Let G∗(j,X)∗ be the matrix obtained from G(j,X) by substituting
all the entries with ∗-entries. Then the bootstrap distribution function of

T ([m]∗, [m]) := n[(m∗
k−1 · m∗

a)a=1,...,k−2]G∗(
(j,X)∗

)−1[(mk−1 · m∗
a)a=1,...,k−2]∗

approximates the true distribution function of T ([m], [ν]) given in Theorem 4.2
with an error of order Op(n−2).

REMARK 4.2. For distributions that are reasonably concentrated one may
determine a nonpivotal bootstrap confidence region using Corollary 3.1(a). The
chart used here features affine coordinates inCP k−2. Recall that the complex
spaceCk−2 can be embedded inCP k−2, preserving collinearity. Such a standard
affine embedding, missing only a hyperplane at infinity, is(z1, . . . , zk−2) →
[z1 : · · · : zk−1 : 1]. This leads to the notion ofaffine coordinates of a point

p = [z1 : · · · : zm : zk−1], zk−1 	= 0,

to be defined as

(w1,w2, . . . ,wk−2) =
(

z1

zk−1 , . . . ,
zk−2

zk−1

)
.



1248 R. BHATTACHARYA AND V. PATRANGENARU

To simplify the notation the simultaneous confidence intervals used in the next
section can be expressed in terms of simultaneouscomplex confidence intervals.
If z = x + iy,w = u + iv, x < u,y < v, then we define the complex interval
(z,w) = {c = a + ib|a ∈ (x,u), b ∈ (y, v)}.

5. Applications. In this last section we consider three applications.

APPLICATION 1. Here we consider the data set ofn = 50 South magnetic
pole positions (latitudes and longitudes), determined from a paleomagnetic study
of New Caledonian laterities ([20], page 278). As an example of application of
Section 2, we give a large sample confidence region for the mean location of the
South pole based on this data. The sample points to a nonsymmetric distribution
onS2; the extrinsic sample mean and the intrinsic sample mean are given by

XE = (0.0105208,0.199101,0.979922)t

and, usingXE as the initial input of the necessary minimization for construct-
ing XI ,

XI = p = (0.004392,0.183800,0.982954)t .

From Examples 2.1 and 2.2, select the orthobasise1(p), e2(p) given in (2.3)
and the logarithmic coordinatesu1, u2 w.r.t. this basis inTpS2 defined in (2.4).
Then compute the matrix̂
 given in (2.22), to get, using Corollary 2.2, the
following 95% asymptotic confidence region forµI :

U = {
Expp

(
u1e1(p) + u2e2(p)

)|
16.6786(u1)2 − 2.9806u1u2 + 10.2180(u1)2 ≤ 5.99146

}
.

Note that Fisher, Lewis and Embleton ([20], page 112) estimate another location
parameter, thespherical median. The spherical median here refers to the minimizer
of the expected geodesic (or, arc) distance to a given point on the sphere. For this
paleomagnetism data, their sample median is at 78.9◦,98.4◦, while the extrinsic
sample mean is 78.5◦,89.4◦ and the intrinsic sample mean is 79.4◦,88.6◦. These
estimates differ substantially from the current position of the South magnetic pole,
a difference accounted for by the phenomenon of migration of the Earth’s magnetic
poles.

APPLICATION 2. As an application of Section 4, we give a nonpivotal
bootstrap confidence region for the mean shape of a group of eight landmarks
on the skulls of eight-year-old North American children. The sample used is the
University School data ([10], pages 400–405). The data set represents coordinates
of anatomical landmarks, whose names and position on the skull are given in [10].
The data are displayed in Figure 1. (The presentation of raw data is similar to
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FIG. 1.

other known shape data displays such as in [15], page 46.) The shape variable
(in our case, shape of the eight landmarks on the upper mid face) is valued in
a planar shape spaceCP 6 (real dimension= 12). A spherical representation of
a shape in this case consists of seven marked points; in Figure 2 we display a
spherical representation of this data set. A representative for the extrinsic sample
mean (spherical representation) is

(−0.67151+ 0.66823i,0.76939+ 1.05712i,−1.03159− 0.15998i,

−0.57776− 0.87257i,0.77871− 1.36178i,

−0.17489+ 0.82106i,1.00000+ 0.00000i).
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FIG. 2.

We derived the nonpivotal bootstrap distribution using a simple program in
S-Plus4.5, that we ran for 500 resamples. A spherical representation of the
bootstrap distribution of the extrinsic sample means is displayed in Figure 3. Here
we added a representative for the last landmark (the opposite of the sum of the
other landmarks since data is centered at 0).

Note that the bootstrap distribution of the extrinsic sample mean is very
concentrated at each landmark location. This is in agreement with the theory, that
predicts in our case a spread of about six times smaller than the spread of the
population. It is also an indication of the usefulness of the spherical coordinates.
We determined a confidence region for the extrinsic mean using the six 95%
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FIG. 3.

simultaneous bootstrap complex intervals for the affine coordinates, as described
in Remark 4.2, and found the following complex intervals:
for w1:

(−0.677268+ 0.666060i,−0.671425+ 0.672409i),

for w2:

(0.767249+ 1.051660i,0.775592+ 1.058960i),

for w3:

(−1.036100− 0.161467i,−1.029420− 0.154403i),
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for w4:

(−0.578941− 0.875168i,−0.574923− 0.871553i),

for w5:

(0.777688− 1.366880i,0.782354− 1.358390i),

for w6:

(−0.177261+ 0.820107i,−0.173465+ 0.824027i).

APPLICATION 3. This example is relevant in glaucoma detection. Although it
is known that increased intraocular pressure (IOP) may cause a shape change in the
eye cup, which is identified with glaucoma, it does not always lead to this shape
change. The data analysis presented shows that the device used for measuring the
topography of the back of the eye, as reported in [11], is effective in detecting
shape change.

We give a nonpivotal bootstrap confidence region for the mean shape change of
the eye cup due to IOP. Glaucoma is an eye disorder caused by IOP that is very
high. Due to the increased IOP, as the soft spot where the optic nerve enters the
eye is pushed backwards, eventually the optic nerve fibers that spread out over the
retina to connect to photoreceptors and other retinal neurons can be compressed
and damaged. An important diagnostic tool is the ability to detect, in images of the
optic nerve head (ONH), increased depth (cupping) of the ONH structures. Two
real data-processed images of the ONH cup surface before and after the IOP was
increased are shown in Figure 4.

The laser image files are, however, huge-dimensional vectors, and their sizes
usually differ. Even if we would restrict the study to a fixed size, there is no
direct relationship between the eye cup pictured and the coordinates at a given
pixel. A useful data reduction process consists in registration of a number of
anatomical landmarks that were identified in each of these images. Assume the

FIG. 4. Change in the ONH topography from normal (left) to glaucomatous (right).
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position vectors of these landmarks areX1, . . . ,Xk, k ≥ 4. Two configurations of
landmarks have the same shape if they can be superimposed after a translation,
a rotation and a scaling. The shape of the configurationx = (x1, . . . , xk) is
labelledo(x) and the space�k

m of shapes of configurations ofk points in R
m

at least two of which are distinct is theshape space introduced by Kendall [31].
We come back to the shape of an ONH cup. This ONH region resembles a

“cup” of an ellipsoid and its border has a shape of an ellipse. In this example
four landmarks are used. The first three landmarks, denoted by S, T and N, are
chosen to be the “top, left and right” points on this ellipse, that is (when referring
to the left eye), Superior, Templar and Nose papilla. The last landmark V that
we call vertex is the point with the largest “depth” inside the ellipse area that
determines the border of the ONH. Therefore, in this example the data analysis is
on the shape space of tetrads�4

3, which is topologically a five-dimensional sphere
(see [33], page 38); however, the identification with a sphere is nonstandard. On the
other hand, it is known that if a probability distribution on�k

m has small support
outside a set of singular points, the use of any distance that is compatible with the
orbifold topology considered is appropriate in data analysis ([15], page 65) since
the data can be linearized. Our choice of the Riemannian metric (5.3) is motivated
by considerations of applicability of Theorems 2.2 and 2.3 and computational
feasibility. Dryden and Mardia ([15], pages 78–80) have introduced the following
five coordinates defined on the generic subset of�4

3 of shapes of a nondegenerate
tetrad that they calledBookstein coordinates:

v1 = (w12w13 + w22w23 + w32w33)/a,

v2 = (
(w12w23 − w22w13)

2

+ (w12w33 − w32w13)
2 + (w22w33 − w23w32)

2)1/2
/a,

v3 = (w12w14 + w22w24 + w32w34)/a,

v4 = (ab1/2)−1(w2
12(w23w24 + w33w34) + w2

22(w13w14 + w33w34)

+ w2
32(w13w14 + w23w24) − w12w13(w22w24 + w32w34)

− w22w32(w23w34 + w33w24)(5.1)

− w12w14(w22w23 + w32w33)
)
,

v5 = (w12w23w34 − w12w33w24 − w13w22w34

+ w13w32w24 + w22w33w14 − w32w23w14)/(2ab)1/2,

where

a = 2(w2
12 + w2

22 + w2
32),

b = w2
12w

2
23 + w2

12w
2
33 − 2w12w13w22w23 + w2

13w
2
22 + w2

13w
2
32

− 2w12w13w32w33 + w2
33w

2
22 + w2

23w
2
32 − 2w22w32w23w33

(5.2)
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and

wri = xr
i − (xr

1 + xr
2)/2, r = 2,3,4.

These coordinates carry useful geometric information on the shape of the 4-ad;
v1 and v3 give us information on the appearance with respect to the bisector
plane of[X1X2], v2 andv4 give some information about the “flatness” of this 4-ad
andv5 measures the height of the 4-ad(X1,X2,X3,X4) relative to the distance
‖X1 − X2‖. AssumeU is the set of shapeso(X) such that(X1,X2,X3,X4) is
an affine frame inR3, andφ :U → R

3k−7 is the map that associates too(X) its
Bookstein coordinates.U is an open dense set in�k

3, with the induced topology. In
the particular casek = 4,�4

3 is topologically a five-dimensional sphere and, from
a classical result of Smale [48],�4

3 has a differentiable structure diffeomorphic
with the sphereS5. Moreover, if L is a compact subset ofU, there are a finite
open coveringU1 = U, . . . ,Ut of �4

3 and a partition of unityφ1, . . . , φt , such that
φ1(o(X)) = 1,∀o(X) ∈ L.

We will use the following Riemannian metric on�4
3: let (y1, . . . , y5) be the

Bookstein coordinates of a shape inU1 and let g1 = dy2
1 + · · · + dy2

5 be a
flat Riemannian metric onU1, and for eachj = 2, . . . , t we consider any fixed
Riemannian metricgj onUj . Let g be the Riemannian metric given by

g =
t∑

j=1

φjgj .(5.3)

The space(�4
3, dg) is complete and is flat in a neighborhood ofL. In this example

the two distributions of shapes of tetrads before and after increase in IOP are
close. HenceL, which contains supports of both distributions, consists of shapes
of nondegenerate tetrads only.

Computations for the glaucoma data yield the following results. Thep-value
of the test for equality of the intrinsic means was found to be 0.058, based on
the bootstrap distribution of the chi square-like statistic discussed in Remark 2.6.
The number of bootstrap resamples for this study was 3000. The chi square-like
density histogram is displayed in Figure 5. A matrix plot for the components
of the nonpivotal bootstrap distribution of the sample mean differencesγ ∗

n

in Remark 2.6 for this application is displayed in Figure 6. The nonpivotal
bootstrap 95% confidence intervals for the mean differencesγj , j = 1, . . . ,5,
components ofγ in Remark 2.6 associated with the Bookstein coordinatesvj , j =
1, . . . ,5, are:(−0.0377073,−0.0058545) for γ1, (0.0014153,0.0119214) for γ2,
(−0.0303489,0.0004710) for γ3, (0.0031686,0.0205206) for γ4, (−0.0101761,
0.0496181) for γ5. Note that the individual tests for difference are significant
at the 5% level for the first, second and fourth coordinates. However, using the
Bonferroni inequality, combining tests for five different shape coordinates each
at 5% level leads to a much higher estimated level of significance for the overall
shape change.
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FIG. 5. χ2-like bootstrap distribution for equality of intrinsic mean shapes from glaucoma data.

FIG. 6. Glaucoma data, matrix plot for the bootstrap mean differences associated with Bookstein
coordinates due to increased IOP.
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APPENDIX

The data set in Application 3 consists of a library of scanning confocal laser
tomography (SCLT) images of the complicated ONH topography [11]. Those
images are the so-calledrange images. A range image is, loosely speaking, like
a digital camera image, except that each pixel stores a depth rather than a color
level. It can also be seen as a set of points in three dimensions. The range data
acquired by 3D digitizers such as optical scanners commonly consist of depths
sampled on a regular grid. In the mathematical sense, a range image is a 2D array
of real numbers which represent those depths. All of the files (observations) are
produced by a combination of modules in C++ and SAS that take the raw image
output and process it. The 256× 256 arrays of height values are the products of
this software. Another byproduct is a file which we will refer to as the “abxy”
file. This file contain the following information: subject names (denoted by: 1c,
1d, 1e, 1f, 1g, 1i, 1j, 1k, 1l, 1n, 1o, 1p), observation points that distinguish the
normal and treated eyes and the 10◦ or 15◦ fields of view for the imaging. The
observation point “03” denotes a 10◦ view of the experimental glaucoma eye,
“04” denotes a 15◦ view of the experimental glaucoma eye, “11” and “12” denote,
respectively, the 10◦ and the 15◦ view of the normal eye. The two-dimensional
coordinates of the center(a, b) of the ellipses that bound the ONH region, as well
as the sizes of the small and the large axes of the ellipses(x, y), are stored in
the so-called “abxy” file. To find out more about the LSU study and the image
acquisition, see [11]. File names (each file is one observation) were constructed
from the information in the “abxy” file. The list of all the observations is then used
as an input for the program (created by G. Derado in C++) which determines the
three-dimensional coordinates of the landmarks for each observation considered
in our analysis, as well as for determining the fifth Bookstein coordinate for each
observation. Each image consists of a 256× 256 array of elevation values which
represent the “depth” of the ONH. By the “depth” we mean the distance from an
imaginary plane, located approximately at the base of the ONH cup, to the “back
of the ONH cup.”

To reduce the dimensionality of the shape space to 5, out of five landmarks
T , S, N , I , V recorded, only four landmarks (X1 = T , X2 = S, X3 = N , X4 = V )
were considered.

The original data were collected in experimental observations on Rhesus
monkeys, and after treatment a healthy eye slowly returns to its original shape.
For the purpose of IOP increment detection, in this paper only the first set of after-
treatment observations of the treated eye is considered.
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INTRINSIC AND EXTRINSIC MEANS—II 1257

also due to the referees for their thoughtful and constructive suggestions. We also
acknowledge the prior work by Hendricks, Landsman and Ruymgaart [28].

REFERENCES

[1] BABU, G. J. and SINGH, K. (1984). On one term Edgeworth correction by Efron’s bootstrap.
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