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CONFIDENCE SETS FOR NONPARAMETRIC
WAVELET REGRESSION

BY CHRISTOPHERR. GENOVESE1 AND LARRY WASSERMAN2

Carnegie Mellon University

We construct nonparametric confidence sets for regression functions
using wavelets that are uniform over Besov balls. We consider both
thresholding and modulation estimators for the wavelet coefficients. The
confidence set is obtained by showing that a pivot process, constructed from
the loss function, converges uniformly to a mean zero Gaussian process.
Inverting this pivot yields a confidence set for the wavelet coefficients, and
from this we obtain confidence sets on functionals of the regression curve.

1. Introduction. Wavelet regression is an effective method for estimating
inhomogeneous functions. Donoho and Johnstone (1995a, b, 1998) showed that
wavelet regression estimators based on nonlinear thresholding rules converge at
the optimal rate simultaneously across a range of Besov and Triebel spaces.
The practical implication is that, for denoising an inhomogeneous signal, wavelet
thresholding outperforms linear techniques. See, for instance, Cai (1999), Cai and
Brown (1998), Efromovich (1999), Johnstone and Silverman (2002) and Ogden
(1997). However, confidence sets for the wavelet estimators may not inherit the
convergence rate of function estimators. Indeed, Li (1989) shows that uniform
nonparametric confidence sets for regression estimators decrease in radius at
a n−1/4 rate. However, with additional assumptions, Picard and Tribouley (2000)
show that it is possible to get a faster rate for pointwise intervals.

In this paper we show how to construct uniform confidence sets for wavelet
regression. More precisely, we construct a confidence sphere in the�2-norm for the
wavelet coefficients of a regression functionf . We use the strategy of Beran and
Dümbgen (1998), originating from an idea in Stein (1981), in which one constructs
a confidence set by using the loss function as an asymptotic pivot. Specifically, let
µ1,µ2, . . . be the coefficients forf in the orthonormal wavelet basisφ1, φ2, . . . ,

and let(µ̂1, µ̂2, . . . ) be corresponding estimates that depend on a (possibly vector-
valued) tuning parameterλ. LetLn(λ) = ∑

i (µ̂i(λ)−µi)
2 be the loss function and
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let Sn(λ) be an unbiased estimate ofLn(λ). The Beran–Dümbgen strategy has the
following steps:

1. Show that thepivot process Bn(λ) = √
n(Ln(λ) − Sn(λ)) converges weakly to

a Gaussian process with covariance kernelK(s, t).
2. Show thatBn(λ̂n) also has a Gaussian limit, whereλ̂n minimizesSn(λ). This

step follows from the previous step ifλ̂n is independent of the pivot process or
if Bn(λ̂n) is stochastically very close toBn(λn) for an appropriate deterministic
sequenceλn.

3. Find a consistent estimatorτ̂2
n of K(λ̂n, λ̂n).

4. Conclude that

Dn =
{
µ :

Ln(λ̂n) − Sn(λ̂n)

τ̂n/
√

n
≤ zα

}

=
{
µ :

n∑
�=1

(µ̂n� − µ�)
2 ≤ τ̂nzα√

n
+ Sn(λ̂n)

}

is an asymptotic 1− α confidence set for the coefficients, wherezα denotes the
upper-tailα-quantile of a standard Normal and whereµ̂n� ≡ µ̂�(λ̂n).

5. It follows that

An =
{

n∑
�=1

µ�φ�(·) :µ ∈ Dn

}

is an asymptotic 1− α confidence set forfn = ∑n
�=1 µ�φ�.

6. With appropriate function-space assumptions, conclude that dilatingAn yields
a confidence set forf .

The limit laws—and, thus, the confidence sets—we obtain are uniform over
Besov balls. The exact form of the limit law depends on how theµi ’s are estimated.
We consider universal shrinkage [Donoho and Johnstone (1995a)], modulation
estimators [Beran and Dümbgen (1998)] and a restricted form of SureShrink
[Donoho and Johnstone (1995b)].

Having obtained the confidence setAn, we immediately get confidence sets for
any functionalT (f ). Specifically,(inff ∈Cn T (f ),supf ∈Cn

T (f )) is an asymptotic
confidence set forT (f ). In fact, if T is a set of functionals, then the collection
{(inff ∈Cn T (f ),supf ∈Cn

T (f )) :T ∈ T } provides simultaneous intervals for all
the functionals inT . If the functionals inT are point-evaluators, we obtain
a confidence band forf ; see Section 8 for a discussion of confidence bands.
An alternative method for constructing confidence bands is given in Picard and
Tribouley (2000). At the cost of additional assumptions, the confidence setAn can
be expanded to a confidence set forf .

In Section 2 we discuss the basic framework of wavelet regression. In Section 3
we give the formulas for the confidence sets with known variance. In Section 4
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we extend the results to the unknown variance case. In Section 5 we describe
how to obtain confidence sets for functionals. In Section 6 we consider numerical
examples. Finally, Section 7 contains technical results and Section 8 contains
closing remarks.

2. Wavelet regression. Let φ and ψ be, respectively, a father and mother
wavelet that generate the following complete orthonormal set inL2[0,1]:

φJ0,k(x) = 2J0/2φ(2J0x − k),

ψj,k(x) = 2j/2ψ(2j x − k),

for integersj ≥ J0 andk, whereJ0 is fixed. Any functionf ∈ L2[0,1] may be
expanded as

f (x) =
2J0−1∑
k=0

αk φJ0,k(x) +
∞∑

j=J0

2j−1∑
k=0

βj,k ψj,k(x),(1)

whereαk = ∫
f φJ0,k andβj,k = ∫

f ψj,k . For fixedj , we call βj · = {βj,k : k =
0, . . . ,2j − 1} theresolution-j coefficients.

Assume that

Yi = f (xi) + σεi, i = 1, . . . , n,

wheref ∈ L2[0,1], xi = i/n andεi areIID standard Normals. (See Section 7 for
details.) The goal is to estimatef under squared error loss. We assume thatn = 2J1

for some integerJ1. Let

fn(x) =
2J0−1∑
k=0

αkφJ0,k(x) +
J1∑

j=J0

2j−1∑
k=0

βj,k ψj,k(x)(2)

denote the projection off onto the span of the firstn basis elements.
Define empirical wavelet coefficients

α̃k =
n∑

i=1

Yi

∫ i/n

(i−1)/n
φj0,k(x) dx ≈ 1

n

n∑
i=1

φJ0,k(xi)Yi ≈ αk + σ√
n
Zk,

β̃j,k =
n∑

i=1

Yi

∫ i/n

(i−1)/n
ψj,k(x) dx ≈ 1

n

n∑
i=1

ψj,k(xi)Yi ≈ βj,k + σ√
n
Zj,k,

where theZks andZj,ks areIID standard Normals. In practice, these coefficients
are computed inO(n) time using the discrete wavelet transform.

We consider two types of estimation: soft thresholding and modulation. The
soft-threshold estimator with thresholdλ ≥ 0, given by Donoho and Johnstone
(1995a, 1995b), is defined by

α̂k = α̃k,(3)

β̂j,k = sgn(β̃j,k)(|β̃j,k| − λ)+,(4)
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wherea+ ≡ max(a,0).
Two common rules for choosing the thresholdλ are the universal threshold and

the SureShrink threshold. To define these, letσ̂ 2 be an estimate ofσ 2 and let
ρn = √

2 logn. Theuniversal threshold is λ = ρnσ̂ /
√

n. Thelevelwise SureShrink
rule chooses a different thresholdλj for the nj = 2j coefficients at resolution
level j by minimizing Stein’s unbiased risk estimator (SURE) with estimated
variance. This is given by

Sn(λ) = σ̂ 2

n
2J0 +

J1∑
j=J0

S(λj ),(5)

where

Sj (λj ) =
nj∑

k=1

[
σ̂ 2

n
− 2

σ̂ 2

n
1{|β̃j,k| ≤ λj } + min(β̃2

j,k, λ
2
j )

]
,(6)

for J0 ≤ j ≤ J1. The minimization is usually performed over 0≤ λj ≤ ρnj
σ̂ /

√
n,

although we shall minimize over a smaller interval for reasons that are explained
in the remark after Theorem 3.2. SureShrink can also be used to select a global
threshold by minimizingSn(λ) using the same constantλ at every level. We call
this global SureShrink.

The second estimator we consider is the modulation estimator given by Beran
and Dümbgen (1998) and Beran (2000). Although these papers did not explicitly
consider wavelet estimators, we can adapt their technique to construct estimators
of the form

α̂k = ξφα̃k,(7)

β̂j,k = ξj β̃j,k,(8)

whereξφ, ξJ0, ξJ0+1, . . . , ξJ1 are chosen to minimize SURE, which in this case is

S̃n(ξ) =
2J0−1∑
k=0

[
ξ2
φ

σ̂ 2

n
+ (1− ξφ)2

(
α̃2

k − σ̂ 2

n

)]

+
J1∑

j=J0

2j−1∑
k=0

[
ξ2
j

σ̂ 2

n
+ (1− ξj )

2
(
β̃2

j,k − σ̂ 2

n

)]

≡ Sφ(ξφ) +
J1∑

j=J0

S̃j (ξj ).

(9)

Following Beran (2000), we minimizẽSn(ξ) subject to a monotonicity constraint:
1≥ ξφ ≥ ξJ0 ≥ ξJ0+1 ≥ · · · ≥ ξJ1. We call this the monotone modulator, and we let
ξ̂ denote theξ ’s at which the minimum is achieved.
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It is natural to consider minimizing̃Sn(ξ), level by level [Donoho and Johnstone
(1995a, 1995b)] or in other block minimization schemes [Cai (1999)] without the
monotonicity constraint. However, we find, as in Beran and Dümbgen (1998),
that the loss functions for these estimators then do not admit an asymptotic
distributional limit which is needed for the confidence set. It is possible to
construct other modulators besides the monotone modulator that admit a limiting
distribution; we will report on these elsewhere.

Having estimated the wavelet coefficients, we then estimatef —more precisely,
fn—by

f̂n(x) =
2J0−1∑
k=0

α̂kφJ0,k(x) +
J1∑

j=J0

2j−1∑
k=0

β̂j,kψj,k(x).(10)

It will be convenient to consider the wavelet coefficients, true and estimated,
in the form of a single vector. Letµ = (µ1,µ2, . . . ) be the sequence of true
wavelet coefficients(α0, . . . , α2J0−1, βJ0,0, . . . , βJ0,2J0−1, . . . ). Theαk coefficient
corresponds toµ�, where � = k + 1 and βjk corresponds toµ�, where � =
2j + k + 1. Let φ1, φ2, . . . denote the corresponding basis functions. Because
f ∈ L2[0,1], we also have thatµ ∈ �2. Similarly, letµn = (µ1, . . . ,µn) denote the
vector of firstn coefficients(α0, . . . , α2J0−1, βJ0,0, . . . , βJ0,2J0−1, . . . , βJ1,2J1−1).

For anyc > 0, define

�2(c) =
{
µ ∈ �2 :

∞∑
�=1

µ2
� ≤ c2

}
,

and letBς
p,q(c) denote a Besov space with radiusc. If the wavelets arer-regular

with r > ς , the wavelet coefficients of a functionf ∈ B
ς
p,q(c) satisfy‖µ‖ς

p,q ≤ c,
where

‖µ‖ς
p,q =

( ∞∑
j=J0

(
2j (ς+(1/2)−(1/p))

(∑
k

|βj,k|p
)1/p)q)1/q

.(11)

Let

γ =



ς, p ≥ 2,

ς + 1

2
− 1

p
, 1 ≤ p < 2.

(12)

We assume thatp,q ≥ 1 and also thatγ > 1/2. We also assume that the mother
and father wavelets are bounded, have compact support and have derivatives with
finite L2 norms. We will call a space of functionsf satisfying these assumptions
a Besov ball withγ > 1/2 and radiusc and the corresponding body of coefficients
with ‖µ‖ς

p,q ≤ c a Besov body withγ > 1/2 and radiusc. We useB to denote
either, depending on context. IfB is a coefficient body, we will denote byBm for
any positive integerm, the set of vectors(µ1, . . . ,µm) for µ ∈ B.
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Our main results also extend to unions of Besov balls (and bodies). Fixη, c > 0,
and define

Fη,c = ⋃
p,q≥1

⋃
γ≥1/2+η

Bς(γ )
p,q (c).(13)

The parameterη is an increment of smoothness required only in the nonsparse case
(p ≥ 2).

3. Confidence sets with σ known. Here we give explicit formulas for the
confidence set whenσ is known. The proofs are deferred until Section 7, and
the σ unknown case is treated in Section 4. It is to be understood in this section
thatσ replaceŝσ in (5) and (9).

The confidence set is of the form

Dn =
{
µn :

n∑
�=1

(µ� − µ̂�)
2 ≤ s2

n

}
.(14)

The definition of the radiussn is given in Theorems 3.1, 3.2 and 3.3. In each case
we will show that

lim
n→∞ sup

µn∈Bn
|P{µn ∈ Dn} − (1− α)| = 0(15)

for a coefficient bodyB. Strictly speaking, the confidence setDn is for
approximate wavelet coefficients, but we show in Section 7 that the approximation
error can be easily accounted for. By the Parseval relation,Dn also yields a
confidence set forfn. That is,

lim
n→∞ sup

µn∈Bn
|P{fn ∈ An} − (1− α)| = 0,(16)

where

An =
{

n∑
j=1

µjφj :µn ∈ Dn

}
.(17)

Constructing the confidence setAn does not require knowledge ofc or γ .
At the cost of making an additional assumption, namely, an upper bound on the

ball size,An can be dilated slightly to produce a confidence set forf . Fix η, c > 0
and recall the definition ofFη,c from (13). Then the set

Cn =
{
f ∈ Fη,c : inf

g∈An

‖f − g‖2 ≤ δ√
n

}
,(18)

for δ > 0, satisfies

lim inf
n→∞ inf

f ∈Fη,c

P{f ∈ Cn} ≥ 1− α.(19)

The factorδ/
√

n accommodates the difference between the true and approximate
wavelet coefficients. The overcoverage of (18) occurs because one never really
estimatesf , rather, any data-based procedure is inevitably estimatingfn.
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REMARK 3.1. It is not surprising that sharp inferences are available forfn

only. The difference betweenf andfn is effectively not estimable. In the context
of kernel density estimation, Neumann (1998) and Chaudhuri and Marron (2000)
argue that it is sensible to confine inferences to the smoothed version of the
unknown density.

REMARK 3.2. The theorems that follow state that the confidence sets have
correct asymptotic coverage over a Besov spaceB with γ > 1/2. These results all
hold replacingB by Fη,c for anyη, c > 0. It is also worth noting that ifp < 2, the
results still hold withγ = 1/2.

THEOREM 3.1 (Universal threshold). Suppose that f̂n is the estimator based
on the global threshold λ = ρnσ/

√
n. Let

s2
n = σ 2 zα√

n/2
+ Sn(λ).(20)

Then (15), (16)and (19) hold for any Besov body B with γ > 1/2 and radius
c > 0.

We consider a restricted version of the SureShrink estimator where we minimize
SURE over�ρnσ/

√
n ≤ λ ≤ ρnσ/

√
n, where� > 1/

√
2.

THEOREM 3.2 (Restricted SureShrink).Let 1/
√

2 < � < 1. In the global
case, let λ̂J0 = · · · = λ̂J1 ≡ λ̂ be obtained by minimizing Sn(λ) over �ρnσ/

√
n ≤

λ ≤ ρnσ/
√

n. In the levelwise case, let λ̂ ≡ (λ̂J0, . . . , λ̂J1) be obtained by
minimizing Sn(λJ0, . . . , λJ1). Let

s2
n = σ 2 zα√

n/2
+ Sn(λ̂).(21)

Then (15), (16)and (19) hold for any Besov body B with γ > 1/2 and radius
c > 0.

REMARK 3.3. We conjecture that our results hold with only the restriction
that � > 0. We hope to report on this extension in a future paper. Interestingly,
the above theorem does not hold for� = 0 because the asymptotic equicontinuity
of Bn fails, so some restriction on SureShrink appears to be necessary.

REMARK 3.4. The theorem also holds with a data-splitting scheme similar
to that used in Nason (1996) and Picard and Tribouley (2000), where we use one
half of the data to estimate the SURE-minimizing threshold and the other half to
construct the confidence set. In the case� > 1/

√
2 this is not required, but it may

be needed in the more general case� > 0.
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Finally, we consider the modulation estimator.

THEOREM 3.3 (Modulators). Let f̂n be the estimate obtained from the
monotone modulator. Let

s2
n = τ̂

zα√
n

+ S̃(â),(22)

where

τ̂2 = 2σ 4

n

n∑
�=1

(2ξ̂� − 1)2 + 4σ 2
n∑

�=1

(
µ̃2

� − σ 2

n

)2

(1− ξ̂�)
2,(23)

where ξ̂� is the estimated shrinkage coefficient associated with µ�. Then (15), (16)
and (19) hold for any Besov body B with γ > 1/2 and radius c > 0.

4. Confidence sets with σ unknown. Suppose now thatσ is not known.
We consider two cases. The first, assumed in Beran and Dümbgen [(1998),
equation 3.2], is that there exists an independent, uniformly consistent estimate
of σ . For example, if there are replications at each design point, then the residuals
at these points provide the required estimatorσ̂ . More generally, lettingL(·)
denote the law of a random variable, they assume the following condition:

(S1) There exists an estimatêσ 2
n , independent of the empirical wavelet coeffi-

cients, such thatL(σ̂ 2
n /σ 2) depends only onn and such that

lim
n→∞m

(
L
(
n1/2(σ̂ 2

n /σ 2 − 1)
)
,N(0,�

2)
) = 0,

wherem(·, ·) metrizes weak convergence and� > 0.

In the absence of replication (or any other independent estimate ofσ 2), we
estimateσ 2 by

σ̂ 2
n = 2

n∑
�=(n/2)+1

µ̃2
�,(24)

which Beran (2000) calls the high-component estimator. We then need to assume
that µn is contained in a more restrictive space. Specifically, we assume the
following:

(S2) The coefficientsµ of f are contained in the set

{µ ∈ �2(c) :‖βj ·‖2 ≤ ζj , j ≥ J2}
for somec > 0,J2 > J0 and some sequence of positive realsζ = (ζ1, ζ2, . . . ),
whereζj = O(2−j/2) andβj · denotes the resolution-j coefficients.
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Condition (S2) holds whenf is in a Besov ballB with γ > 1/2. We note that
such a condition is implicit in Beran (2000) and Beran and Dümbgen (1998) in the
absence of (S1).

Beran and Dümbgen (1998) construct confidence sets withσ unknown by
including an extra term in the formula fors2

n to account for the variability in̂σ 2
n .

This strategy is feasible for modulators since terms involvingσ̂ 2
n separate nicely in

the estimated loss from the rest of the data. In thresholding estimators the empirical
process in Theorem 7.2 depends onσ̂n in a complicated way, making it difficult to
deal withσ̂ separately. We offer two methods for this case. For the soft-thresholded
wavelet estimators it turns out that a plug-in method suffices. More generally, we
can use a “double confidence set” approach.

For both approaches we need the uniform consistency ofσ̂ .

LEMMA 4.1. For any Besov body B with γ > 1/2 and for every ε > 0,

sup
µ∈B

P
{∣∣∣∣ σ̂ 2

σ 2 − 1
∣∣∣∣ > ε

}
→ 0.(25)

The proof of this lemma is straightforward and is omitted.
In the plug-in approach we simply replaceσ by σ̂ in the expressions of the last

section.

THEOREM 4.1 (Plug-in confidence ball).Theorems 3.1 and 3.2 continue to
hold if σ̂ replaces σ . For the modulation estimator Theorem 3.3 holds with τ̂2

replaced by

τ̂2 = 2σ̂ 4

n

n∑
�=1

(2ξ̂� − 1)2 + 2�σ̂ 4

(
1

n

n∑
�=1

(2ξ̂� − 1)

)2

+ 4σ 2
n∑

�=1

(
µ̃2

� − σ 2

n

)2

(1− ξ̂�)
2.

(26)

In the double confidence set approach, the confidence set is the “tube” equal to
the union of confidence balls obtained by treatingσ as known for every value in a
confidence interval forσ . We first need a uniform confidence interval forσ . This
is given in the following theorem; the proof is straightforward and is omitted.

THEOREM 4.2. Let

Qn = σ̂ 2
n

[(
1− �z1−α/2√

n

)−1

,

(
1− �zα/2√

n

)−1]
.(27)

Under condition (S1)we have

lim inf
n→∞ inf

σ>0
P{σ ∈ Qn} ≥ 1− α.(28)



NONPARAMETRIC WAVELET REGRESSION 707

Under condition (S2)with � = 2, we have, for any Besov body B with γ > 1/2,

lim inf
n→∞ inf

µ∈B,σ>0
P{σ ∈ Qn} ≥ 1− α.(29)

THEOREM 4.3 (Double confidence set).Let α̃ = 1 − √
1− α if (S1) holds

and let α̃ = α/2 if (S2)holds. Let Qn be an asymptotic 1− α̃ confidence interval
for σ , as in Theorem 4.2.Let

Dn = ⋃
σ∈Qn

Dn,σ ,(30)

where Dn,σ is a 1 − α̃ confidence ball for µ from the previous section obtained
with fixed σ . Then

lim inf
n→∞ inf

µn∈Bn
P{µn ∈ Dn} ≥ 1− α.(31)

Finally, under condition (S1)or (S2),Theorems 3.1, 3.2and 3.3 continue to hold
with (31) replacing (15) and Dn as in (30).

5. Confidence sets for functionals. Let f 
→ f �
n be the operation that takesf

to the approximation defined in (44). The reader can think off �
n as simply the

projectionfn of f onto the span of the firstn basis functions. DefineC�
n to be

the set off �
n corresponding to coefficient sequencesµn ∈ Dn. For real-valued

functionalsT , define

J �
n (T ) =

(
inf

f �
n ∈C�

n

T (f �
n ), sup

f �
n ∈Cn

T (f �
n )

)
.(32)

We then have the following immediately from the asymptotic coverage of the
confidence set.

LEMMA 5.1. Let T be a set of real-valued functionals on a Besov ball B with
γ > 1/2 and radius c > 0. Then

lim inf
n→∞ inf

f ∈B
P{T (f �

n ) ∈ J �
n (T ) for all T ∈ T } ≥ 1− α.(33)

We can extend the previous result to include sets of functionals of slowly
increasing resolution. LetF be a function class and letTn be a sequence of sets
of real-valued functionals onF . Define the worst-case approximation error over
F andTn by

rn(F ,Tn) = sup
T ∈Tn

sup
f ∈F

|T (f ) − T (f �
n )|.

For a sequencewn, define

Jn(T ) =
(

inf
f �

n ∈C�
n

T (f �
n ) − wn, sup

f �
n ∈C�

n

T (f �
n ) + wn

)
.(34)
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THEOREM 5.1. For a function class F and a sequence Tn of sets of real-
valued functionals on F , if wn ≥ rn(F ,Tn),

lim inf
n→∞ inf

f ∈F
P{T (f ) ∈ Jn(T ) for all T ∈ Tn} ≥ 1− α.(35)

PROOF. Follows from the triangle inequality and Lemma 5.1.�

REMARK 5.1. If the functionals inTn are point evaluatorsT (f ) = f (x), then
the confidence sets above yield confidence bands.

For a given compactly-supported wavelet basis, define the integerκ to be the
maximum number of basis functions within a single resolution level whose support
contains any single point:

κ = sup
{
#{ψjk(x) �= 0 : 0≤ k < 2j } : 0≤ x ≤ 1, j ≥ J0

}
.

Note also that‖ψjk‖1 = 2−j/2‖ψ‖1. Both κ and ‖ψ‖1 are finite for all the
commonly used wavelets.

As an example, we consider local averages over intervals whose length
decreases withn.

THEOREM 5.2. Fix a decreasing sequence �n > 0 and define

Tn =
{
T :T (f ) = 1

b − a

∫ b

a
f dx,0≤ a < b ≤ 1, |b − a| ≥ �n

}
.

Fix η, c > 0 and let Fη,c be the union of Besov balls defined in (13).
If the mother and father wavelets are compactly supported with κ < ∞ and

‖ψ‖1 < ∞ and if �−1
n = o(nζ /(logn)�ζ) for some 0≤ ζ ≤ 1, then

rn(Fη,c,Tn) = o
(
nζ−1/(logn)�ζ).(36)

Hence, for any sequence wn ≥ 0 that satisfies wn → 0 and lim infn→∞ wnn
1−ζ ×

(logn)�ζ > 0,

lim inf
n→∞ inf

f ∈Fη,c

P{T (f ) ∈ Jn(T ) for all T ∈ Tn} ≥ 1− α.(37)

6. Numerical examples. Here we study the confidence sets for the zero
functionf0(x) ≡ 0 and for the two examples considered in Beran and Dümbgen
(1998). We also compare the wavelet confidence sets to confidence sets obtained
from a cosine basis as in Beran (2000).
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TABLE 1
Coverage and average confidence ball radius, by method, in the

σ -known case. Here n = 1024and σ = 1

Method Function Coverage Average radius

Universal f0 0.951 0.274
f1 0.949 0.299
f2 0.935 0.439

SureShrink (global) f0 0.946 0.270
f1 0.941 0.292
f2 0.937 0.401

SureShrink (levelwise) f0 0.944 0.268
f1 0.940 0.289
f2 0.927 0.395

Modulator (wavelet) f0 0.941 0.258
f1 0.940 0.269
f2 0.933 0.329

Modulator (cosine) f0 0.931 0.253
f1 0.930 0.259
f2 0.905 0.318

The two functions, defined on[0,1], are given by

f1(x) = 2(6.75)3x6(1− x)3,(38)

f2(x) =




1.5, if 0 ≤ x < 0.3,
0.5, if 0.3 ≤ x < 0.6,
2.0, if 0.6 ≤ x < 0.8,
0.0, otherwise.

(39)

Tables 1 and 2 report the results of a simulation usingα = 0.05, n = 1024,
σ = 1 and 5000 iterations (which gives a 95% confidence interval for the estimated
coverage of length no more than 0.025). For comparison, the radius of the
standard 95%χ2 confidence ball, which uses no smoothing, is 1.074. We used a
symmlet 8 wavelet basis, and all the calculations were done using the S+Wavelets
package.

TABLE 2
Coverage, by thresholding method, in the σ -unknown case using the

Plug-in Confidence Ball. Again n = 1024and σ = 1

Function Universal Sure GL Sure LW WaveMod CosMod

f0 0.961 0.955 0.954 0.955 0.999
f1 0.963 0.955 0.953 0.961 0.999
f2 0.938 0.940 0.929 0.951 0.997
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7. Technical results. Recall that the model is

Yi = f (xi) + σεi,

where theεi ∼ N(0,1) are IID and f (x) = ∑
j µjφj (x). Let Xj denote the

empirical wavelet coefficients given by

Xj =
n∑

i=1

Yi

∫ i/n

(i−1)/n
φj (x) dx.

ThenXn = (X1, . . . ,Xn) are multivariate Normal with

EXj = µj + O(1/n), VarXj = σ 2

n
+ O(1/n2),(40)

uniformly overB [Donoho and Johnstone (1999)], whereµn� = ∫
f nφ�. TheXj ’s

are asymptotically independent.
That theXj ’s are asymptotically independent poses no problem. Using the

orthogonal discrete wavelet transform to define the empirical wavelet coefficients
yields X̃n that are exactly independent. Donoho and Johnstone (1999) show
that the means and variances ofX̃n and Xn are close. From this, it follows
that the Kullback–Leibler distance—and, hence, the total variation distance—
between the law of

√
n(Xn − µn) and aNn(0, σ 2I ) tends to 0 uniformly, where

µn = (µ1, . . . ,µn). In what follows, we may thus assume theXj are independent
Normal(µj , σ

2/n).
It will be helpful to introduce some notation before proceeding with the ensuing

sections. Letσ 2
n = σ 2/n and definern = ρnσ/

√
n, whereρn = √

2 logn. Also
defineνni = −√

nµi/σ , and letani = νni − uρn andbni = νni + uρn. Note that√
nXi/σ = εi − νni . Define

Ini(u) = 1{|Xi | < urn} = 1{νni − uρn < εi < νni + uρn} = 1{ani < εi < bni},
I+
ni (u) = 1{Xi > urn} = 1{εi > νni + uρn} = 1{ε > bni},

I−
ni (u) = 1{Xi < −urn} = 1{εi < νni − uρn} = 1{ε < ani},

Jni(s, t) = 1{srn < Xi < trn} = 1{νni + sρn < εi < νni + tρn}.
For 0≤ u ≤ 1 and 1≤ i ≤ n, define

Zni(u) = √
n[(Xi − urn)1{Xi > urn} + (Xi + urn)1{Xi < −urn} − µi]2

− √
n[σ 2

n − 2σ 2
n1{X2

i ≤ u2r2
n} + min(X2

i , u
2r2

n)]

= σ 2
√

n

[
(ε2

i − 1)
(
1− 2Ini(u)

)
+ 2νniεiIni(u) − 2uρnεi

(
I+
ni (u) − I−

ni (u)
)]

.

(41)
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EachZni represents the contribution of theith observation to the pivot process and
satisfiesEZni(u) = 0 for every 0≤ u ≤ 1. We also have that

Z2
ni(u) = σ 4

n

[
(ε2

i − 1)2 + 4ν2
niε

2
i Ini(u) + 4u2ρ2

nε2
i

(
1− Ini(u)

)
− 4νniεi(ε

2
i − 1)Ini(u) − 4uρnεi(ε

2
i − 1)

(
I+
ni (u) − I−

ni (u)
)]

.

(42)

The relevance of these definitions will become clear subsequently. Throughout this
sectionC′ denotes a generic positive constant not depending onn, µ or ε, that may
change from expression to expression.

7.1. Absorbing approximation and projection errors. As noted in the state-
ments of Theorems 3.1, 3.2 and 3.3, the confidence setCn for µn induces a confi-
dence set forf uniformly over Besov spaces. In this section we make this precise.

Define

f n(x) = n

n∑
i=1

1[(i−1)/n,i/n](x)

∫ i/n

(i−1)/n
f (t) dt

=
∞∑

�=1

µnφj (x)

(43)

and its projection

f �
n (x) =

n∑
�=1

µnφj (x).(44)

THEOREM 7.1. Fix c, η > 0. Let �Fη,c be the body corresponding to Fη,c. Let
Dn be defined by (14) and suppose that

lim inf
n→∞ inf

µ̄n∈ �Fη,c

P{µ̄n ∈ Dn} ≥ 1− α.

Let Cn be defined as in (18).Then

lim inf
n→∞ inf

f ∈Fη,c

P{f ∈ Cn} ≥ 1− α.(45)

PROOF. From the results in Brown and Zhao (2001), it follows that‖f − f̄n‖2
2

and ‖f̄n − f �
n ‖2

2 = ∑∞
j=n+1 µ̄2

j are both bounded, uniformly overBς
p,q(c), by

(C logn)/n2γ for someC > 0 not depending onp, q or ς . It then follows that,
for anyf ∈ Fη,c,

‖f − f �
n ‖2

2 ≤ t (‖f − f̄n‖2 + ‖f̄n − f �
n ‖2)

2

≤ C logn

n1+2η
≡ k2

n.
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Let

s̃2
n = s2

n + δn = τ̂ zα√
n

+ δn + Sn,

whereδn = δ logn/
√

n for any fixed, smallδ > 0. LetW2
n = ‖f̂n − f �

n ‖2
2. Then

‖f̂n − f̄n‖2
2 = ‖f̂n − f �

n ‖2
2 + ‖f �

n − f̄n‖2
2 = W2

n + k2
n

and

‖f − f̂n‖2 ≤ ‖f − f �
n ‖2 + ‖f̂n − f �

n ‖2 ≤ Wn + kn

uniformly overFη,c. Hence,

P{‖f̄n − f̂n‖2
2 > s̃2

n} ≤ P{W2 > s̃2
n − k2

n}
= P{W2 > s2

n + δn − k2
n}.

Now, lim infn→∞ δn − k2
n > 0 and so

lim sup
n→∞

sup
f ∈Fη,c

P{W2 > s2
n + δn − k2

n} ≤ lim sup
n→∞

sup
f ∈Fη,c

P{W2 > s2
n} ≤ α.

To do the same forf we note that

‖f̂n − f ‖2
2 = ‖f̂n − f �

n ‖2
2 + ‖f − f �

n ‖2
2 + 2〈f̂n − f �

n , f �
n − f 〉

= ‖f̂n − f �
n ‖2

2 + ‖f − f �
n ‖2

2 + 2〈f̂n − f �
n , f �

n − fn〉

= ‖f̂n − f �
n ‖2

2 + ‖f − f �
n ‖2

2 + 2
n∑

i=1

(µ̂� − µ̄�)(µ� − µ̄�)

≤ ‖f̂n − f �
n ‖2

2 + ‖f − f �
n ‖2

2 + 2‖f̂n − f �
n ‖2‖fn − f �

n ‖2

= (‖f̂n − f �
n ‖2 + ‖fn − f �

n ‖2)
2 + ‖f − fn‖2

2

≤ (Wn + kn)
2 + k2

n,

where the last inequality follows from the results in Brown and Zhao (2001) since
‖fn − f �

n ‖ ≤ ‖f − f̄n‖. We have

P{‖f − f̂n‖ > s̃2
n} ≤ P{(Wn + kn)

2 > s̃2
n}

= P{(Wn + kn)
2 > s2

n + δn}
= P{W2

n + 2knWn + k2
n > s2

n + δn}
≤ P{W2

n > s2
n} + P{2knWn + k2

n > δn}.
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The lim sup of the first term is bounded above byα. For the second term,

lim sup
n→∞

sup
f ∈Fη,c

P{2knWn + k2
n > δn}

= lim sup
n→∞

sup
f ∈Fη,c

P
{
Wn >

δn − k2
n

2kn

}

= lim sup
n→∞

sup
f ∈Fη,c

P
{
Wn >

δnη

2
√

2C
−

√
C logn

2n(1/2)+η

}

→ 0.

Hence, lim supn→∞ P{‖f − f̂n‖ > s̃2
n} ≤ α. �

7.2. The pivot process. In the rest of this section, for convenience, we will
denoteµ̄j simply byµj . We now focus on the confidence setDn for µn defined
by

Dn =
{
µn :

n∑
i=1

(µ̂i − µi)
2 ≤ s2

n

}
.

Our main task in showing thatDn has correct asymptotic coverage is to show that
the pivot process has a tight Gaussian limit. See van der Vaart and Wellner (1996)
for the definition of a tight, Gaussian limit.

For i = 1, . . . , n, let j (i) denote the resolution level to which indexi belongs,
and forj = J0, . . . , J1, let Ij denote the set of indices at resolution levelj , which
containsnj = 2j elements. Lett be a sequence of thresholds with one component
per resolution level starting atJ0, where eachtj is in the range[�ρnσn,ρnσn].
It is convenient to writet = uρnσ/

√
n, whereu is a corresponding sequence of

values in[�,1]. In levelwise thresholding, thetj ’s (anduj s) are allowed to vary
independently. In global thresholding, all of thetj ’s (anduj s) are equal; in this
case, we treatt (andu) interchangeably as a sequence or scalar as convenient.

The soft threshold estimator̂µ is defined by

µ̂i(t) = (
Xi − tj (i)

)
1
{
Xi > tj (i)

} + (
Xi + tj (i)

)
1
{
Xi < −tj (i)

}
,(46)

for i = 1, . . . , n. The corresponding loss as a function of threshold is

Ln(t) =
n∑

i=1

(
µ̂i(t) − µi

)2
.

We can write Stein’s unbiased risk estimate as

Sn(t) =
n∑

i=1

(
σ 2

n − 2σ 2
n1

{
X2

i ≤ t2
j (i)

} + min
(
X2

i , t
2
j (i)

))
(47)
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=
J1∑

j=J0

∑
i∈Ij

(
σ 2

n − 2σ 2
n1{X2

i ≤ t2
j } + min(X2

i , t
2
j )

)
(48)

≡
J1∑

j=J0

Snj (tj ).(49)

In global thresholding, we will use the first expression. In levelwise thresholding,
eachSnj is a sum ofnj independent terms, and the differentSnj ’s are independent.

The SureShrink thresholds are defined by minimizingSn. By independence and
additivity, this is equivalent in the levelwise case to separately minimizing the
Snj (tj )s overtj . That is, recalling thatrn = ρnσ/

√
n,

ûn = argmin
�≤u≤1

Sn(u) and t̂n = unrn (global),(50)

ûnj = argmin
�≤uj≤1

Snj (uj ) and t̂nj = unj rn (levelwise).(51)

We now define

Bn(u) = √
n
(
Ln(urn) − Sn(urn)

)
.(52)

We regard{Bn(u) :u ∈ U�} as a stochastic process. Let� > 1/
√

2. In the global
case we takeU� = [�,1]. In the levelwise case we takeU = [�,1]∞, the set of
sequences(u1, . . . , uk,1,1, . . . ) for any positive integerk and any� ≤ uj ≤ 1.
This process has mean zero becauseSn is an unbiased estimate of risk. The
processBn can be written as

Bn(u) =
n∑

i=1

Zni

(
uj(i)

)
,(53)

whereZni is defined in (41). For levelwise thresholding,Bn(u) is also additive in
the threshold components:

Bn(u) =
J1∑

j=J0

Bnj (uj ) =
J1∑

j=J0

∑
i∈Ij

Zni(uj ).(54)

EachBnj is of the same basic form as the sum ofnj independent terms.

LEMMA 7.1. Let B be a Besov body with γ > 1/2 and radius c > 0. The
process Bn(u) is asymptotically equicontinuous on U� uniformly over µ ∈ B for
any � > 1/

√
2 with both global and levelwise thresholding. In fact, it is uniformly

asymptotically constant in the sense that, for all δ > 0,

lim sup
n→∞

sup
µ∈B

P∗
{

sup
u,v∈U�

|Bn(u) − Bn(v)| > δ

}
= 0.(55)



NONPARAMETRIC WAVELET REGRESSION 715

PROOF. As above, letani = νni − uρn and bni = νni + uρn. From (41) we
have, for 0≤ u < v ≤ 1,

√
n

2σ 2

(
Zni(u) − Zni(v)

)
= (ε2

i − 1)
(
Ini(v) − Ini(u)

) − νniεi

(
Ini(v) − Ini(u)

)
− uρnεi

(
I+
ni (u) − I−

ni (u)
) + vρnεi

(
I+
ni (v) − I−

ni (v)
)

= (ε2
i − 1)1{uρn ≤ |εi − νni | < vρn} − νniεi1{uρn ≤ |εi − νni | < vρn}

− uρnεi1{uρn ≤ εi − νni < vρn} + uρnεi1{−vρn ≤ εi − νni < −uρn}
+ (v − u)ρnεi

(
I+
ni (v) − I−

ni (v)
)

= (ε2
i − 1)1{uρn ≤ |εi − νni | < uρn + (v − u)ρn}

− bniεi1{bni < εi ≤ bni + (v − u)ρn}
− aniεi1{ani − (v − u)ρn ≤ εi < ani}
+ (v − u)ρnεi[1{εi > bni + (v − u)ρn} − 1{εi < ani − (v − u)ρn}].

(56)

From (56) we have that
√

n

2σ 2 |Zni(u) − Zni(v)|
≤ (

ε2
i + (|νni | + uρn)|εi | + 1

)
1{uρn ≤ |εi − νni | ≤ vρn}

+ |v − u|ρn|εi |1{|εi − νni | > vρn}
≤ (ε2

i + |νni ||εi | + 1)1{uρn ≤ |εi − νni | ≤ vρn}
+ ρn|εi |1{|εi − νni | ≥ uρn}

≤ (ε2
i + |νni ||εi | + 1)1{�ρn ≤ |εi − νni | ≤ ρn}

+ ρn|εi |1{|εi − νni | ≥ �ρn}
≡ �ni.

(57)

Let

An0 = {1 ≤ i ≤ n : |νni | ≤ 1}, An1 = {1≤ i ≤ n : 1< |νni | ≤ 2ρn},
and

An2 = {1≤ i ≤ n : |νni | > 2ρn}.
Let A = An,1 ∪ An,2, the set ofi such that|νni | ≥ 1. Letn0 be the cardinality

of A. Let β = 2γ and note thatβ > 1 sinceγ > 1/2. The Besov condition implies
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the following:

C2nρ2
n ≥

n∑
i=1

ν2
nii

β ≥ ∑
i∈A

ν2
nii

β

≥ ∑
i∈A

iβ ≥
n0∑
i=1

iβ

≥ C2n
1+β
0 ,

(58)

where the last inequality holds for large enoughn0. It follows from (58) that

n0(n) ≤ Cn1/(1+2γ )ρ2/(1+2γ )
n ,(59)

which iso(
√

n ).
From the above, we have in the global thresholding case that

sup
�≤u≤v≤1

|Bn(u) − Bn(v)|

≤ sup
�≤u≤v≤1

n∑
i=1

|Zni(u) − Zni(v)|

≤ 2σ 2
√

n

n∑
i=1

[(ε2
i + |νni ||εi | + 1)1{�ρn ≤ |εi − νni | ≤ ρn}

+ ρn|εi |1{|εi − νni | ≥ �ρn}].

(60)

We break the sum
∑n

i=1 into three sums,
∑

i∈An0
+∑

i∈An1
+∑

i∈An2
, and

consider these one at a time.
For the case where|νni | ≤ 1, we have the following:

2σ 2
√

n

∑
i∈An0

[(ε2
i + |νni ||εi | + 1)1{�ρn ≤ |εi − νni | ≤ ρn}

+ ρn|εi |1{|εi − νni | ≥ �ρn}]

≤ 2σ 2
√

n

∑
i∈An0

(
ε2
i + (1+ ρn)|εi | + 1

)
1{|εi | ≥ �ρn − 1}.

Let tn = �ρn − 1. By (72) and (73), the expected value of each summand is

E
(
ε2
i + (1+ ρn)|εi | + 1

)
1{|εi | ≥ �ρn − 1}

= 2(tn + ρn + 1)φ(tn) + 4
(
1− �(tn)

)
= o(n−1/2).
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The entire sum thus goes to zero as well. To see the last equality, note that there
existsδ > 0 such that

φ(tn) = 1√
2π

exp
{
−1

2
t2
n

}
= 1√

2πe
e−�2ρ2

n/2e�ρn

= 1√
2πe

n(
√

2�/
√

logn )−�2 = o(n−1/2−δ),

because
√

2�√
logn

− �2 < −1/2 − δ for large enoughn, whereδ = |�2 − 1/2|/2. It

follows thatρnφ(tn) = o(n−1/2), and similarly for(1− �(tn)) ∼ φ(tn)/tn.
For the case where 1< |νni | ≤ 2ρn, we have the following:

2σ 2
√

n

∑
i∈An1

[(ε2
i + |νni ||εi | + 1)1{�ρn ≤ |εi − νni | ≤ ρn}

+ ρn|εi |1{|εi − νni | ≥ �ρn}]

≤ 2σ 2
√

n

∑
i∈An1

(ε2
i + 3ρn|εi | + 1)1{|εi − νni | ≥ �ρn}.

The expected value of each summand is bounded by 2+ 3ρn. The expected value
of the entire sum is thus bounded by

n0(n)√
n

2σ 2(2+ 3ρn) → 0,

becausen0(n)ρn/
√

n → 0.
For the case where 2ρn < |νni |, we have the following from (57):

2σ 2
√

n

∑
i∈An2

[(ε2
i + |νni ||εi | + 1)1{�ρn ≤ |εi − νni | ≤ ρn}

+ ρn|εi |1{|εi − νni | ≥ �ρn}]

≤ 2σ 2
√

n

( ∑
i∈An2

(ε2
i + 2ρn|εi | + 1) + ∑

i∈An2

(|νni | − ρn)|εi |1{|εi | ≥ |νni | − ρn}
)
.

The expected value of the summands in the first term is bounded by 2+ 2ρn.
The expected value of the summands in the second term is bounded by 2(|νni | −
ρn)φ(|νni | − ρn). Hence, the expected value of the entire sum is bounded by

n0(n)√
n

2σ 2(2+ ρn + 2(|νni | − ρn)φ(|νni | − ρn)
) → 0,

becauseγ > 1/2 impliesn0(n)ρn/
√

n → 0.
We have shown thatE sup�≤u≤v≤1 |Bn(u) − Bn(v)| → 0. The result follows for

all δ > 0 by Markov’s inequality.
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Next, consider the levelwise thresholding case. The product spaceU� = [�,1]∞
is the set of sequences(u1, . . . , uk,1,1, . . . ) over positive integersk and � ≤
uj ≤ 1. By Tychonoff’s theorem, this space is compact and thus totally bounded,
soU� is totally bounded under the product metricd(u, v ) = ∑∞

�=J0
2−�|u� − v�|.

Foru ∈ U∞, define

Bn(u ) =
n∑

i=1

Zni

(
uj(i)

)
.

It follows then that, for anyu, v ∈ U∞, d(u, v ) ≤ 1− � and

|Bn(u ) − Bn(v )| ≤
n∑

i=1

∣∣Zni

(
uj(i)

) − Zni

(
vj (i)

)∣∣(61)

≤
n∑

i=1

sup
u,v∈U�

|Zni(u) − Zni(v)|(62)

≤
n∑

i=1

�ni,(63)

where�ni is the u, v independent bound established above in (57). The result
above shows that

E sup
u,v∈U�

|Bn(u ) − Bn(v )| → 0.(64)

This implies thatBn is asymptotically constant (and thus equicontinuous) onU�.
�

LEMMA 7.2. Let B be a Besov body with γ > 1/2 and radius c > 0.
For any fixed u1, . . . , uk in either global or levelwise thresholding, the vector
(Bn(u1), . . . ,Bn(uk)) converges in distribution to a mean zero Gaussian on R

k ,
uniformly over µ ∈ B, in the sense that

sup
µ∈B

m
(
L
(
Bn(u1), . . . ,Bn(uk)

)
,N

(
0,�(u1, . . . , uk;µ)

)) → 0,

where m is any metric on R
k that metrizes weak convergence and where �

represents a limiting covariance matrix, possibly different for each µ.

PROOF. We begin by showing that the Lindeberg condition holds uniformly
overµ ∈ B and over 0≤ u ≤ 1.

First consider global thresholding. Define‖Zni‖ = sup0≤u≤1 |Zni(u)|. Recall
thatEZni = 0 for all n andi. Now by (41) and (42),

Z2
ni(u) ≤ 2σ 4

n

[
(ε2

i − 1)2 + 4u2ρ2
nε2

i

(
1− Ini(u)

) + 4ν2
niε

2
i Ini(u)

]
≡ ℵ1 + ℵ2 + ℵ3.



NONPARAMETRIC WAVELET REGRESSION 719

Note that none ofℵ1,ℵ2 or ℵ3 depends onu. Hence,

‖Zni‖21{‖Zni‖ > η}
≤ (ℵ1 + ℵ2 + ℵ3)1{(ℵ1 + ℵ2 + ℵ3) > η2}

≤
3∑

r=1

3∑
s=1

ℵrJs,

(65)

where Js = 1{ℵs > η2/3}. We will now show that the nine terms in (65) are
exponentially small inn, which implies that the Lindeberg condition holds.

First,

P
{
ℵ1 >

η2

3

}
= P

{
|ε2

i − 1| > η
√

n

σ 2
√

12

}
≤ 2exp

{
− η

√
n

8σ 2
√

12

}
,

using the fact thatP{|χ2
1 −1| > t} ≤ 2e−t (t∧1)/8. To boundℵ2, we use Mills’ ratio:

P
{
ℵ2 >

η2

3

}
≤ P

{
|εi | > η

σrn
√

48

}
≤ 2

rn
√

48

η
e−η2/(96r2

n) = 2
ρ
√

48

η
√

n
e−nη2/(96ρ2).

For the third term, ifµi = 0, ℵ3 = 0. If µi �= 0,

P
{
ℵ3 >

η2

3

}
≤ P

(
{|Xi | ≤ rn} ∩

{
ε2
i >

η2

48σ 2µ2
i

})
≡ b(µi).

An elementary calculus argument shows thatb(µi) ≤ b(µ∗), where

|µ∗| = ρnσ

2
√

n
+ 1

2

√
ρ2

nσ 2

n
+ 4η√

48n
.

Now, for all largen,

b(µ∗) ≤ P
{
ε > −ρnσ + √

n|µ∗|}
≤ P

{
ε >

n1/4√η

6

}
≤ 6

η
√

2πn1/4
e−η

√
n/72.

These inequalities show that, forη > 0 and for s = 1,2,3, EJsi ≤ K1 ×
exp(−K2 min(η, η2)

√
n ). Because

√
Eℵ2

1i ≤ K3/n,
√

Eℵ2
2i ≤ ρ̄2

nK4/n and√
Eℵ2

3i ≤ µ2
i K5, the Cauchy–Schwarz inequality and (65) show that, forη > 0,

E
n∑

i=1

‖Zni‖21{‖Zni‖ > η} ≤ K6(σ, ρ̄, c)exp
(−K7(σ, ρ̄)min(η, η2)

√
n
)
.(66)

Here the constantsKj depend, at most, onσ . It follows that the Lindeberg
condition holds uniformly by applying the Cauchy–Schwarz inequality to (65).
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Write Bn(u) ≡ Bn;µ(u) to emphasize the dependence onµ and similarly
for Zni;µi

(u). In particular, letBn;0(u) denote the process withµ1 = µ2 = · · · = 0.
Let Ln;µ(u) denote the law ofBn;µ(u) = ∑n

i=1 Zni;µi
(u) and letN denote a

Normal with mean 0 and variance 2. By the triangle inequality,

m
(
Ln;µ(u),N

) ≤ m
(
Ln;0(u),N

) + m
(
Ln;µ(u),Ln;0(u)

)
,

wherem(·, ·) denotes the Prohorov metric. By the uniform Lindeberg condition
above, the CLT holds forLn;0(u) and, hence, by Theorem 7.3,m(Ln;0(u),

N ) → 0. Now we show that

sup
µ∈B

m
(
Ln;µ(u),Ln;0(u)

) → 0.(67)

Note that√
n

2σ 2

∣∣Zni;µi
(u) − Zni;0(u)

∣∣
= ∣∣(ε2

i − 1)
(
Ini;µi

(u) − Ini;0(u)
) + νniεiIni;µi

(u)

− uρnεi

[(
I+
ni;µi

(u) − I+
ni;0(u)

) − (
I−
ni;µi

(u) − I−
ni;0(u)

)]∣∣.
This can be bounded as in the proof of Lemma 7.1 and the sum split over the same
three cases|νni | ≤ 1, 1< |νni | ≤ 2ρn and|νni | > 2ρn. It follows that

sup
µ∈B

E sup
�≤u≤1

|Bn;µ(u) − Bn;0(u)| ≤ a2
n,(68)

wherean → 0; note thatan does not depend onu or µ. Therefore,

sup
µ∈B

sup
�≤u≤1

P|Bn;µ(u) − Bn;0(u)| > an ≤ a2
n

an

= an

for all largen. Recall that, by Strassen’s theorem, ifP{|X − Y | > ε} ≤ ε, then the
marginal laws ofX andY are no more thanε apart in Prohorov distance. Hence,

sup
µ∈B

sup
�≤u≤1

m
(
Ln;µ(u),Ln;0(u)

) ≤ an → 0.(69)

This establishes the theorem for oneu. When Bn(u1, . . . , uk) is an R
k-valued

process for some fixedk,

E‖Bn;µ(u1, . . . , uk) − Bn;0(u1, . . . , uk)‖
≤ kE sup

�≤u≤1
|Bnr;µ(u) − Bnr;0(u)|,(70)

so by (68) the sup of the former is bounded byka2
n. Sincek is fixed, the result

follows. Thus, (67) holds for any finite-dimensional marginal.
The same method shows that the result also holds in the levelwise case.�
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THEOREM 7.2. For any Besov body with γ > 1/2 and radius c > 0 and for
any 1/

√
2 < � < 1, there is a mean zero Gaussian process W such that Bn � W

uniformly over µ ∈ B, in the sense that

sup
µ∈B

m
(
L(Bn),L(W)

) → 0,(71)

where m is any metric that metrizes weak convergence on �∞[�,1].

PROOF. The result follows from the preceeding lemmas in both the global and
levelwise cases. Lemmas 7.3 and 7.2 show that the finite-dimensional distributions
of the process converge to Gaussian limits. Lemma 7.1 proves asymptotic
equicontinuity. It follows then thatBn converges weakly to a tight Gaussian
processW . �

7.3. The variance and covariance of Bn. Recall thatrn = ρnσ/
√

n, νni =
−√

nµi/σ , ani = νni − uρn andbni = νni + uρn. Also define

D1(s, t) =
∫ t

s
εφ(ε) dε = sφ(s) − tφ(t),(72)

D2(s, t) =
∫ t

s
ε2φ(ε) dε = sφ(s) − tφ(t) + �(t) − �(s),(73)

D3(s, t) =
∫ t

s
ε(ε2 − 1)φ(ε) dε = (s2 + 1)φ(s) − (t2 + 1)φ(t),(74)

D4(s, t) =
∫ t

s
(ε2 − 1)2φ(ε) dε

(75) = 2
(
�(t) − �(s)

) + s(s2 + 1)φ(s) − t (t2 + 1)φ(t).

Let Kn(u, v) = Cov(Bn(u),Bn(v)). It follows from (42) that

Kn(u,u) = EZ2
ni(u)

= 2σ 4

n

[
1+ 2ν2

niD2(ani, bni) + 2u2ρ2
n

(
1− D2(ani, bni)

)
− 2νniD3(ani, bni) + 2uρn

(
D3(−∞, ani) − D3(bni,∞)

)]
= 2σ 4

n
[1+ 2u2ρ2

n + 2anibniD2(ani, bni)

− 2bni(a
2
ni + 1)φ(ani) + 2ani (b2

ni + 1)φ(bni)]

= 2σ 4

n

[
1+ 2u2ρ2

n + 2anibni

(
�(bni) − �(ani)

)
+ 2bnia

2
niφ(ani) − 2anib

2
niφ(bni)
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− 2bni(a
2
ni + 1)φ(ani) + 2ani(b

2
ni + 1)φ(bni)

]
= 2σ 4

n

[
1+ 2u2ρ2

n + 2anibni

(
�(bni) − �(ani)

)
︸ ︷︷ ︸

I

+
II︷ ︸︸ ︷

2aniφ(bni) − 2bniφ(ani)
]

≡ 2σ 4

n
[1+ I + II].

THEOREM 7.3. Let B be a Besov ball with γ > 1/2 and radius c > 0. Then,

lim
n→∞ sup

µ∈B

∣∣∣∣∣
n∑

i=1

EZ2
ni(u) − 2σ 4

∣∣∣∣∣ = 0.

PROOF. Apply Lemma 7.4 to the sum of termsI andII. This is of the form
1
n

∑n
i=1 gn(νni), where

gn(x) = 2u2ρ2
n + 2(x2 − u2ρ2

n)
(
�(x + uρn) − �(x − uρn)

)
+ 2(x − uρn)φ(x + uρn) − 2(x + uρn)φ(x − uρn).

We havegn(0) → 0 because|gn(0)| ≤ 6ρnn
−�2

, and, hence,n > 288/ε implies
that |gn(0)| < ε.

Now, if |x| > 2ρn, then by Mills’ inequality|gn(x)| ≤ Cρ2
n. If |x| ≤ 2ρn, the

same holds because each term is of orderρ2
n. Hence,‖gn‖∞ = O(logn).

Forx in a neighborhood of zero,

|gn(x) − gn(0)| ≤ |g′
n(ξ)||x| for some|ξ | ≤ |x|

≤ sup
|ξ |≤|x|

|g′
n(ξ)||x|.

Hence,

sup
n

|gn(x) − gn(0)| ≤ |x|sup
n

sup
|ξ |≤|x|

|g′
n(ξ)|.

By direct calculation, forε > 0 and δ = min(ε,1/8), sup|ξ |≤|x| |g′
n(ξ)| ≤ 1, so

|x| ≤ δ implies supn |gn(x) − gn(0)| ≤ ε. Thus,(gn) is an equicontinuous family
of functions at 0.

By Lemma 7.4, the result follows.�

LEMMA 7.3. Let B be a Besov body with γ > 1/2 and radius c > 0. Then
the function Kn(u, v) = Cov(Bn(u),Bn(v)) converges to a well-defined limit
uniformly over µ ∈ B:

lim
n→∞ sup

µ∈B
|Kn(u, v) − 2σ 4| = 0.
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PROOF. Theorem 7.3 proves the result foru = v. Let 0≤ u < v ≤ 1. Then
by (41),

Zni(u)Zni(v) = σ 4

n
(ε2 − 1)2(1− 2Ini(v) + 2Ini(u)

)

+ 2
σ 3
√

n
ε(ε2 − 1){vrnI

−
ni (v) + urnI

−
ni (u) − µi

− vrnI
+
ni (v) − urnI

+
ni (u) + 3µIni(u)

+ 2urnJni(u, v) − 2urnJni(−v,−u)}
+ 2σ 2ε2{2µ2Ini(u) + 2urn(µ + rnv)Jni(u, v)

+ 2urn(vrn − µv)Jni(−v,−u)}.
Let ãni = νni − vρ andb̃ni = νni + vρ. We then have

Kn(u, v) = E
(
Zni(u)Zni(v)

)
= 2σ 4

n
[1− D4(ãni, b̃ni) + D4(ani, bni)

− vρnD3(−∞, ãni) + uρnD3(−∞, ani) + νni

− vρnD3(b̃ni,∞) − uρnD3(bni,∞) − 3νniD3(ani, bni)

− 2uρnD3(bni, b̃ni) − 2uρnD3(ãni, ani)

+ 2ν2
niD2(ani, bni) + 2uvρn(ρn − νni)D2(bni, b̃ni)

+ 2uvρn(ρn + νni)D2(ãni, ani)].
The proof that this converges is essentially the same as the proof of Theorem 7.3.

�

LEMMA 7.4. Let B be a Besov ball with γ > 1/2. Let gn be a sequence of
functions equicontinuous at 0, with ‖gn‖∞ = O((logn)α) for some α > 0, and
satisfying gn(0) → a ∈ R. Then

lim
n→∞ sup

µ∈B

1

n

n∑
i=1

gn

(
µi

√
n
) = a.

PROOF. Without loss of generality, assume thata = 0. LetMn = ‖gn‖∞. Fix
ε > 0. By equicontinuity, there existsδ > 0 such that|x| < δ implies |gn(x) −
gn(0)| < ε/4 for alln. By assumption, there exists anN such that|gn(0)| < ε/4 for
n ≥ N . SinceB is by assumption a Besov ball, there is a constantC such that, for
all n,

∑n
i=1 µ2

i i
2γ ≤ C2 logn, for all µ ∈ B. See Cai [(1999), pages 919 and 920]

for inequalities that imply this.
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Let νni = µi

√
n. The condition onµ implies for alln that

n∑
i=1

ν2
nii

2γ ≤ C2n logn.

Let the set of suchνns be denoted bỹBn. We thus have

sup
µ∈B

∣∣∣∣∣1n
n∑

i=1

g
(
µi

√
n
)∣∣∣∣∣ ≤ sup

νn∈B̃n

1

n

n∑
i=1

|g(νni)|.

Let

n0 = �C1/γ n1/2γ (logn)1/2γ /δ1/γ �.
This is less thann and bigger thanN for largen. Then for i ≥ n0 andn ≥ N ,
|νni | ≤ δ and|gn(νni)| ≤ ε/2. We have

1

n

n∑
i=1

|gn(νni)| ≤ n0

n
Mn + ε

2

n − n0 + 1

n

≤ n−(1−1/2γ )(logn)1/2γ C1/γ Mn

δ2 + ε

2
.

Thus, as soon as

n(logn)−1/(2γ−1) ≥
(

C1/γ

δ1/γ
max

(
1,

2Mn

ε

))2γ /(2γ−1)

,

we have

sup
νn∈B̃n

1

n

n∑
i=1

|gn(νni)| ≤ ε,

which proves the lemma.�

7.4. Proofs of main theorems.

PROOF OFTHEOREM 3.1. This follows from Theorems 7.2 and 7.3. The last
statement follows from Theorem 7.1.�

PROOF OFTHEOREM 3.2. This follows from Theorems 7.2 and 7.3 and the
fact thatB(û) = B(1) + oP (1) uniformly in � ≤ û ≤ 1, andµ ∈ B. The last
statement follows from Theorem 7.1.�

PROOF OF THEOREM 3.3. This follows from Theorem 3.2 in Beran and
Dümbgen (1998) and Theorem 7.1.�
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PROOF OFTHEOREM 4.1. Letm̂ = σ̂ /σ . The pivot process witĥσ “plugged
in” is

B̂n(u) = √
n

n∑
i=1

[(
µi − µ̂i(urnm̂)

)2
+ [m̂σ 2

n − 2m̂σ 2
n1{X2

i ≤ u2r2
nm̂2} + min(X2

i , u
2r2

nm̂2)]]
= Bn(um̂) + (m̂2 − 1)

σ 2

n

n∑
i=1

(1− 2{|β̃j,k| ≤ urnm̂})

= Bn(u) + oP (1),

uniformly overu ∈ U� andµ ∈ B, by Lemmas 7.1 and 4.1. The result follows.
�

PROOF OFTHEOREM 4.3. Letµ0 andσ0 denote the true values ofµ andσ ,
respectively. Then under (S1) we have

Pµn
0 ∈ Dn ≥ P{σ0 ∈ Qn}P{µn

0 ∈ Dn|σ0 ∈ Qn}
≥ P{σ0 ∈ Qn}P{

µn
0 ∈ Dn,σ0|σ0 ∈ Qn

}
= P{σ0 ∈ Qn}P{

µn
0 ∈ Dn,σ0

}
.

Hence,

lim inf
n→∞ inf

µn∈Bn
P{fn ∈ Dn} ≥ (1− α̃)2 = (1− α).

Under (S2),

P{µn
0 /∈ Dn} = P{µn

0 /∈ Dn, σ0 /∈ Qn} + P{µn
0 /∈ Dn, σ0 ∈ Qn}

≤ P{σ0 /∈ Qn} + P
{
µn

0 /∈ Dn,σ0, σ0 ∈ Qn

}
≤ P{σ0 /∈ Qn} + P

{
µn

0 /∈ Dn,σ0

}
.

Thus,

lim inf
n→∞ inf

µn∈Bn
P{fn ∈ Cn} ≥ (1− α̃ − α̃) = 1− α.

This completes the proof.
For the final claim, note that the uniform consistency ofσ̂ and the asymptotic

constancy ofBn (Lemma 7.1) imply thatB(û) = B(1) + oP (1), uniformly in
� ≤ û ≤ 1 andµ ∈ B. The theorem follows from Theorems 3.1, 3.2 and 3.3 and
4.3. �

PROOF OFTHEOREM 5.2. For anyf ∈ Fη,c, we have that

|T (f ) − T (f �
n )| ≤ |T (f ) − T (fn)| + |T (fn) − T (f �

n )|.(76)
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Since
∫ b
a ψjk = 0 whenever the support ofψjk is contained in[a, b], the first term

is bounded by (withC′ denoting a possibly different constant in each expression)

|T (f ) − T (fn)| ≤
∞∑

j=J1+1

2j−1∑
k=0

|βjk| 1

b − a

∣∣∣∣
∫ b

a
ψjk(x) dx

∣∣∣∣
≤ ‖ψ‖1κC′

�n

∞∑
j=J1+1

max|βj ·|2−j/2

≤ C′

�n

∞∑
j=J1+1

‖βj .‖22−j/2

≤ C′

�n

∞∑
j=J1+1

2−j

= C′

�n

2−J1

= C′

n�n

= o
(
nζ−1/(logn)�ζ).

For a given 0≤ a < b ≤ 1, let q = sup{1 ≤ m ≤ n : (m − 1)/n ≤ a} and
r = inf{1 ≤ m ≤ n :b ≤ m/n}. The second term in (76) is bounded by

|T (fn) − T (f �
n )| ≤ 1

b − a

n∑
�=1

|µ�|
∣∣∣∣
∫ b

a
(φ� − φ̄�)

∣∣∣∣
= 1

b − a

n∑
�=1

|µ�|
∣∣∣∣
∫ b

a
φ� −

∫ r/n

(q−1)/n
φ�

∣∣∣∣
≤ 1

b − a

n∑
�=1

|µ�|
(∫ a

(q−1)/n
|φ�| +

∫ r/n

b
|φ�|

)

≤ 1

b − a

[ 2J0−1∑
k=0

|αk|C0

n
+ 4κC1

n

J1∑
j=J0

max|βj ·|2j/2

]

≤ 1

b − a

[ 2J0−1∑
k=0

|αk|C0

n
+ 4κC1

n

J1∑
j=J0

‖βj ·‖22j/2

]

≤ 1

b − a

[ 2J0−1∑
k=0

|αk|C0

n
+ 4κC1c

n
(J1 − J0)

]
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= 1

b − a

[ 2J0−1∑
k=0

|αk|C0

n
+ C′ logn

n

]

≤ 1

�n

C′′(1+ logn)

n

= o
(
nζ−1/(logn)�ζ).

It follows that rn(Fη,c,Tn) = o(nζ−1/(logn)�ζ). The result follows by Theo-
rem 5.1. �

8. Discussion. The expected radius of the confidence ball can be shown to be
of ordern−1/4. This is not surprising since the minimax estimation rate for a Besov
space isn−γ /(2γ+1), which approachesn−1/4 asγ approaches 1/2. Moreover, Li
(1989) showed that for nonparametric regression without smoothness constraints,
confidence spheres for nonparametric regression cannot shrink faster thann−1/4.
Indeed, the presence of the termτ/

√
n in the squared radius of our confidence balls

implies that rate cannot be faster thann−1/4. This is consistent with the results
in Low (1997) and Cai and Low (2003) that suggest confidence sets cannot be
rate adaptive. Thus, while we have not shown that our confidence setDn is rate
optimal, we doubt that the rate can be improved. One consequence of the slow
rate of the confidence set is that the arguments that favor threshold estimators over
modulators no longer apply.

We have chosen to emphasize confidence balls and simultaneous confidence
sets for functionals. A more traditional approach is to construct an interval of the
form f̂ (x) ± wn, wheref̂ (x) is an estimate off (x) and wn is an appropriate
sequence of constants. This corresponds to takingT (f ) = f (x), the evaluation
functional, in Theorem 5.1. There is a rich literature on this subject; a recent
example in the wavelet framework is Picard and Tribouley (2000). Such confidence
intervals are pointwise in two senses. First, they focus on the regression function
at a particular pointx, although they can be extended into a confidence band.
Second, the validity of the asymptotic coverage usually only holds for a fixed
functionf : the absolute difference between the coverage probability and the target
1−α converges to zero for each fixed function, but the supremum of this difference
over the function space need not converge. Moreover, in this approach one must
estimate the asymptotic bias of the function estimator or eliminate the bias by
undersmoothing. While acknowledging that this approach has some appeal and is
certainly of great value in some cases, we prefer the confidence ball approach for
several reasons. First, it avoids having to estimate and correct for the bias which is
often difficult to do in practice and usually entails putting extra assumptions on the
functions. Second, it produces confidence sets that are asymptotically uniform over
large classes. Third, it leads directly to confidence sets for classes of functionals
which we believe are quite useful in scientific applications. Of course, we could
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take the class of functionalsT to be the set of evaluation functionsf (x) and so
our approach does produce confidence bands too. It is easy to see, however, that
without additional assumptions on the functions, these bands are hopelessly wide.
We should also mention that another approach is to construct Bayesian posterior
intervals as in Barber, Nason and Silverman (2002), for example. However, the
frequentist coverage of such sets is unknown.

In Section 5 we gave a flavor of how information can be extracted from the
confidence ballCn using functionals. Beran (2000) discusses a different approach
to exploringCn which he calls “probing the confidence set.” This involves plotting
smooth and wiggly representatives fromCn. A generalization of these ideas is
to use families of what we callparametric probes. These are parameterized
functionals tailored to look for specific features of the function such as jumps
and bumps. In a future paper we will report on probes, as well as other practical
issues that arise. In particular, we will report on confidence sets for other shrinkage
schemes besides thresholding and linear modulators.

Acknowledgments. The authors thank the referees for helpful comments.
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