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DATA-DRIVEN RATE-OPTIMAL SPECIFICATION TESTING IN
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We propose new data-driven smooth tests for a parametric regression
function. The smoothing parameter is selected through a new criterion
that favors a large smoothing parameter under the null hypothesis. The
resulting test is adaptive rate-optimal and consistent against Pitman local
alternatives approaching the parametric model at a rate arbitrarily close to
1/

√
n. Asymptotic critical values come from the standard normal distribution

and the bootstrap can be used in small samples. A general formalization
allows one to consider a large class of linear smoothing methods, which can
be tailored for detection of additive alternatives.

1. Introduction. Consider n observations(Yi,Xi) in R × R
p and the

heteroscedastic regression model with unknown meanm(·) and varianceσ 2(·),
Yi = m(Xi) + εi, E[εi |Xi] = 0 and Var[εi |Xi] = σ 2(Xi).

We want to test the hypothesis that the regression belongs to some parametric
family {µ(·; θ); θ ∈ �}, that is,

H0 :m(·) = µ(·; θ) for someθ ∈ �.(1.1)

Tests ofH0 are called lack-of-fit tests or specification tests. Based on smoothing
techniques, many consistent tests ofH0 have been proposed, the so-called smooth
tests; see Hart (1997) for a review. A fundamental issue is the choice of the
smoothing parameter. Since this is a model selection problem, Eubank and Hart
(1992), Ledwina (1994), Hart [(1997), Chapter 7] and Aerts, Claeskens and Hart
(1999, 2000), among others, have proposed use of criteria developed by Akaike
(1973) and Schwarz (1978). However, these criteria are tailored for estimation
but not for testing purposes. Hence, they do not yield adaptive rate-optimal tests,
that is, tests that detect alternatives of unknown smoothness approaching the null
hypothesis at the fastest possible rate when the sample size grows; see Spokoiny
(1996).

Many adaptive rate-optimal specification tests are based on the maximum ap-
proach, which consists of choosing as a test statistic the maximum of Studentized
statistics associated with a sequence of smoothing parameters. This approach is
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used for testing the white noise model with normal errors by Fan (1996) and for
testing a linear regression model with normal errors by Fan and Huang (2001) and
Baraud, Huet and Laurent (2003), who extend the maximum approach. Further
work on the linear model includes Spokoiny (2001) under homoscedastic errors
and Zhang (2003) under heteroscedastic errors. Finally, Horowitz and Spokoiny
(2001) deal with the general case of a nonlinear model with heteroscedastic errors.

We reconsider the model selection approach to propose a new test with some
distinctive features. First, our data-driven choice of the smoothing parameter
relies on a specific criterion tailored for testing purposes. This yields an adaptive
rate-optimal test. Second, the criterion favors a baseline statistic under the null
hypothesis. This results in a simple asymptotic distribution for our statistic and
in bounded critical values for our test. By contrast, in the maximum approach,
critical values diverge and must practically be evaluated by simulation for any
sample size. The computational burden of this task can be heavy for a large
sample size and a large number of statistics. Moreover, diverging critical values
are expected to yield some loss of power compared to our test. In particular, from
an asymptotic viewpoint, our test detects local Pitman alternatives converging to
the null at a faster rate than the ones detected by a maximum test. In small samples,
our simulations show that our test has better power than a maximum test against
irregular alternatives.

In our work we allow for a nonlinear parametric regression model with
mutidimensional covariates, nonnormal errors and heteroscedasticity of unknown
form. In Section 2 we describe the specific aspects of our testing procedure. In
Section 3 we detail the practical construction of the test statistic for three types of
smoothing procedures. Then we give our assumptions and main results, which
concern the null asymptotic behavior of the test, adaptive rate-optimality, and
detection of Pitman local alternatives. In Section 4 we prove the validity of a
bootstrap method and compare the small sample performances of our test with
a maximum test through a simulation experiment. In Section 5 we extend our
results to general linear smoothing methods. Finally, we propose a test whose
power against additive alternatives is not affected by the curse of dimensionality.
Proofs are given in Section 6.

2. Description of the procedure. Consider a collection{T̂h, h ∈ Hn} of
asymptotically centered statistics which measures the lack-of-fit of the null
parametric model. The indexh is a smoothing parameter, chosen in a discrete
grid whose cardinality grows with the sample sizen; see our examples in the
next section. A maximum test rejectsH0 when maxh∈Hn T̂h/v̂h ≥ zmax

α , where
v̂h estimates the asymptotic null standard deviation ofT̂h. A test in the spirit
of Baraud, Huet and Laurent (2003) rejects the null ifT̂h ≥ v̂hzα(h) for someh

in Hn or, equivalently, if maxh∈Hn(T̂h/v̂h − zα(h)) > 0, where the critical values
are chosen to get an asymptoticα-level test, a difficult issue in practice. Setting
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zα(h) = zmax
α yields a maximum test. Because the numberh increases withn,

zmax
α diverges.

On an informal basis, our approach favors a baseline statisticT̂h0 with lowest
variance among thêTh. In practice,̂Th0 can be designed to yield high power against
parametric or regular alternatives that are of primary interest for the statistician.
However, this statistic may not be powerful enough against nonparametric or
irregular alternatives. We then propose to combine this baseline statistic with the
other statisticŝTh in the following way. Let̂vh,h0 be some positive estimators of
the asymptotic null standard deviation ofT̂h − T̂h0. We selecth as

h̃ = arg max
h∈Hn

{
T̂h − γnv̂h,h0

}
= arg max

h∈Hn

{
T̂h − T̂h0 − γnv̂h,h0

}
whereγn > 0.

(2.1)

Our test is

RejectH0 whenT̂h̃/v̂h0 ≥ zα,(2.2)

wherezα is the quantile of order(1− α) of a standard normal.
The distinctive features of our approach are as follows. First, our criterion

penalizes each statistic by a quantity proportional to its standard deviation, while
the criteria reviewed in Hart (1997) use a larger penalty proportional to the
variance. Second, the data-driven choice of the smoothing parameter favorsh0
under the null hypothesis. Indeed, sincêTh − T̂h0 is of order v̂h,h0 underH0,
h̃ = h0 asymptotically underH0 if γn diverges fast enough; see Theorem 1 below.
Hence, the null limit distribution of the test statistic is the one ofT̂h0/v̂h0, that is,
the standard normal, and the resulting test has bounded critical values. Third, our
selection procedure allows us to choose the standardizationv̂h0. We could usêvh̃

instead, which also gives an asymptoticα-level test sincẽh = h0 asymptotically
under H0. But, becausêvh ≥ v̂h0 asymptotically for any admissibleh, our
standardization gives a larger critical region under the alternative. This increases
power at no cost from an asymptotic viewpoint; see Fan (1996) for a similar
device in wavelet thresholding tests. Our simulation results show that this effect is
already large in small samples. By contrast, the maximum approach systematically
downweights the statistiĉTh with its standard deviation.

Third, compared to a test using a single statistic, our test inherits the power
properties of each of thêTh, up to a termγnv̂h,h0. Indeed, the definition of̃h yields

T̂h̃ = max
h∈Hn

(
T̂h − γnv̂h,h0

)+ γnv̂h̃,h0
≥ T̂h − γnv̂h,h0 for anyh ∈ Hn.

As a consequence, a lower bound for the power of the test is

P
(
T̂h̃ ≥ v̂h0zα

)≥ P
(
T̂h ≥ v̂h0zα + γnv̂h,h0

)
for anyh in Hn.(2.3)

Using a penalty proportional to a standard deviation yields a better power bound
than the selection criteria reviewed in Hart (1997). A suitable choice of the
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smoothing parameter in the latter power bound allows us to establish the adaptive
rate-optimality of the test; see Theorem 2 below and the following discussion.
Fourth, combining thêTh with our selection procedure gives a more powerful
test than using the baseline statisticT̂h0. Indeed, sincêvh0,h0 = 0, a noteworthy
implication of (2.3) is

P
(
T̂h̃ ≥ v̂h0zα

)≥ P
(
T̂h0 ≥ v̂h0zα

)
.(2.4)

Theorem 3 below uses the latter inequality to study detection of Pitman local
alternatives approaching the null at a faster rate than in Horowitz and Spokoiny
(2001).

3. Main results. For any integerq and anyx ∈ R
q , |x| = max1≤i≤q |xi |. For

real deterministic sequences,an � bn means thatan andbn have the same exact
order, that is, there is aC > 1 with 1/C ≤ an/bn ≤ C for n large enough. For real
random variables,An�PBn means thatP(1/C ≤ An/Bn ≤ C) goes to 1 whenn
grows. In such statements, uniformity with respect to a variable means thatC can
be chosen independently of it. A sequence{mn(·)}n≥1 is equicontinuous if, for any
ε > 0, there is anη > 0 such that supn≥1 |mn(x) − mn(x

′)| ≤ ε for all x, x′ with
|x − x′| ≤ η.

3.1. Construction of the statistics and assumptions. Let θ̂n be the nonlinear
least-squares estimator ofθ in model (1.1), that is,

θ̂n = arg min
θ∈�

n∑
i=1

(
Yi − µ(Xi; θ)

)2
,(3.1)

with an appropriate convention in case of ties. A typical statisticT̂h is an estimator
of the mean-squared distance of the regression function from the parametric model

min
θ∈�

n∑
i=1

(
mn(Xi) − µ(Xi; θ)

)2
.(3.2)

From the estimated parametric residualsÛi = Yi − µ(Xi; θ̂n) = m(Xi) − µ(Xi;
θ̂n)+εi, i = 1, . . . , n, we can estimate the departure from the parametric regression
using a leave-one-out linear nonparametric estimatorδ̂h(Xi) =∑n

j=1,j �=i νij (h)Ûj

based on some weightsνij (h) with smoothing parameterh. Then (3.2) can be
estimated as

T̂h =
n∑

i=1

Ûi δ̂h(Xi) = ∑
1≤i �=j≤n

νij (h) + νji(h)

2
ÛiÛj = Û ′WhÛ,(3.3)

whereÛ = [Û1, . . . , Ûn]′ and the generic element ofWh is wij (h) = (νij (h) +
νji(h))/2 for i �= j and wii(h) = 0. Such aT̂h is asymptotically normal under
H0; see, for example, de Jong (1987). Examples 1a and 1b come from projection
methods, while Example 2 builds on kernel smoothing.
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EXAMPLE 1A (Regression on multivariate polynomial functions). Let
ψk(x) = ∏p

�=1 x
k�

� , for k ∈ N
p with |k| = maxl=1,...,p kl ≤ 1/h. Let 
h =

[ψk(Xi), |k| ≤ 1/h, i = 1, . . . , n] andPh = 
h(

′
h
h)

−1
 ′
h be then × n orthog-

onal projection matrix onto the linear subspace ofR
n spanned by
h. The matrix

Wh is obtained fromPh by setting its diagonal elements to zero.

EXAMPLE 1B (Regression on piecewise polynomial functions). Under the as-
sumption that the support ofX is [0,1]p, we consider piecewise polynomial func-
tions of fixed orderq over binsIk(h) =∏p

�=1[k�h, (k� + 1)h), k = (k1, . . . , kp),
k� = 0, . . . , (1/h) − 1. These functions write

ψqkh(x) =
p∏

�=1

x
q�

� I
(
x ∈ Ik(h)

)
,

0≤ |q| = max
1≤�≤p

q� ≤ q̄,1≤ |k| = max
1≤�≤p

k� ≤ 1/h.

The particular choicēq = 0 corresponds to the regressogram. The matrixWh is
constructed as in Example 1a.

EXAMPLE 2 (Kernel smoothing). Consider a continuous, nonnegative, sym-
metric and bounded kernelK(·) from R

p that integrates to 1 and has a positive
integrable Fourier transform. These conditions hold for products of the triangu-
lar, normal, Laplace or Cauchy kernels. DefineKh(x) = K(x1/h, . . . , xp/h). We
consider

T̂h = ∑
1≤i �=j≤n

1

(n − 1)hp
Ûi

Kh(Xi − Xj)√
f̂h(Xi)f̂h(Xj )

Ûj

with f̂h(Xi) = 1

(n − 1)hp

∑
j �=i

Kh(Xj − Xi).

We now turn to variance estimation. The leave-one-out construction of theT̂h

gives that the asymptotic conditional variancesv2
h andv2

h,h0
of T̂h and T̂h − T̂h0

underH0 are

v2
h = 2

∑
1≤i,j≤n

w2
ij (h)σ 2(Xi)σ

2(Xj ),

v2
h,h0

= 2
∑

1≤i,j≤n

(
wij (h) − wij (h0)

)2
σ 2(Xi)σ

2(Xj ).
(3.4)

For our main examples,

v2
h0

�P h
−p
0 and v2

h,h0
�P h−p − h

−p
0 ;

see Proposition 2 in Section 6. Letσ 2(·) be a nonparametric estimator ofσ̂ 2(·)
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such that

max
1≤i≤n

∣∣∣∣ σ̂ 2
n (Xi)

σ 2(Xi)
− 1
∣∣∣∣= oP(1)(3.5)

for any equicontinuous sequence of regression functions. For instance, let

σ̂ 2
n (Xi) =

∑n
j=1 Y 2

j I(|Xj − Xi | ≤ bn)∑n
j=1 I(|Xj − Xi | ≤ bn)

−
(∑n

j=1 Yj I(|Xj − Xi | ≤ bn)∑n
j=1 I(|Xj − Xi | ≤ bn)

)2

,

(3.6)

where bn is a bandwidth parameter chosen independently ofHn such that
n1−4/d ′

b
p
n diverges; see Proposition 3 in Section 6. Consistent estimators of the

variances in (3.4) are

v̂ 2
h0

= 2
∑

1≤i,j≤n

w 2
ij (h0)σ̂

2
n (Xi)σ̂

2
n (Xj ),

v̂ 2
h,h0

= 2
∑

1≤i,j≤n

(
wij (h) − wij (h0)

)2
σ̂ 2

n (Xi)σ̂
2
n (Xj ).

Finally, for the sake of parsimony, and following Horowitz and Spokoiny
(2001), Lepski, Mammen and Spokoiny (1997) and Spokoiny (2001), the setHn

of admissible smoothing parameters is a geometric grid ofJn + 1 smoothing
parameters,

Hn = {hj = h0a
−j , j = 0, . . . , Jn} for somea > 1, Jn → +∞.(3.7)

Note thath0 can depend on an empirical measure of the dispersion of theXi , as
in Zhang (2003), and can converge to zero very slowly, say, as 1/ lnn. We assume
the following:

ASSUMPTION D. The i.i.d.Xi ∈ [0,1]p have a strictly positive continuous
density over[0,1]p.

ASSUMPTION M. The functionµ(x; θ) is continuous with respect tox in
[0,1]p andθ in �, where� is a compact subset ofR

d . There is a constanṫµ such
that for allθ, θ ′ in � and for allx in [0,1]p, |µ(x; θ) − µ(x; θ ′)| ≤ µ̇|θ − θ ′|.

ASSUMPTION E. The εi are independent givenX1, . . . ,Xn. For eachi,
the distribution ofεi , given the design, depends only onXi , E[εi |Xi] = 0 and
Var[εi |Xi] = σ 2(Xi), where the unknown variance functionσ 2(·) is continuous
and bounded away from 0. For somed ′ > max(d,4), E

1/d ′ [|εi |d ′ |Xi] < C1 for
all i.
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ASSUMPTION W. (i) For anyh, the matrixWh is one from Example 1a, 1b
or 2. (ii) The setHn is as in (3.7) withhJn � (lnn)C2/pn−2/(4s+p), for some
C2 > 1, with s = 5p/4 in Example 1a ands = p/4 in Examples 1b and 2. The
numbera is an integer for Example 1b.

Under Assumption M, the value of the parameterθ may not be identified, as
in mixture or multiple index models. The restriction onhJn , together with the
definition of Hn, implies that the numberJn + 1 of smoothing parameters is
of order lnn at most. Assumption W(i), which considers specific nonparametric
methods, will be relaxed in Section 5.1, allowing us, in particular, to consider a
baseline statistiĉTh0 designed for specific parametric alternatives.

3.2. Limit behavior of the test under the null hypothesis. The next theorem
allows for a penalty sequenceγn of exact order

√
2 ln lnn, asJn is of order lnn.

THEOREM 1. Consider a sequence {µ(·, θn), θn ∈ �}n≥1 in H0. Let Assump-
tions D, M, E and W hold and assume that the variance estimator satisfies (3.5).
If h0 → 0 and γn → ∞ with

γn ≥ (1+ η)
√

2 lnJn for some η > 0,(3.8)

the test (2.2)has level α asymptotically given the design, that is,

P
(
T̂h̃ ≥ zαv̂h0|X1, . . . ,Xn

) P→ α.

Theorem 1 is proved in two main steps. The first step consists in showing that

P(h̃ �= h0) = P

(
max

h∈Hn\{h0}
T̂h − T̂h0

v̂h,h0

> γn

)
(3.9)

goes to zero. This is done by first proving that(T̂h − T̂h0)/v̂h,h0 asymp-
totically behaves at first-order asε′(Wh − Wh0)ε/vh,h0 uniformly for h in
Hn \ {h0}, whereε = [ε1, . . . , εn]′, and second by bounding the distribution tails
of maxh∈Hn\{h0} ε′(Wh − Wh0)ε/vh,h0. Then we show that the limit distribution of
T̂h0/v̂h0 is that ofε′Wh0ε/vh0, which converges to a standard normal whenh0 goes
to 0.

As done by Horowitz and Spokoiny (2001), Theorem 1 imposes thath0
asymptotically vanishes. This condition yields a pivotal limit distribution for our
test statistic. As shown by Hart [(1997), page 220] under stronger regularity
conditions on the parametric model, considering a fixedh0 generally yields
a nonpivotal limit distribution because the estimation errorµ(·; θ̂n) − µ(·; θ)

cannot be neglected. Hart (1997) then recommends the use of a double bootstrap
procedure to estimate the critical values of the test.
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3.3. Consistency of the test. Theorem 2 below considers general alternatives
with unknown smoothness. Theorem 3 considers Pitman local alternatives. For
any reals, let 
s� be the lower integer part ofs, that is,
s� < s ≤ 
s� + 1. Let the
Hölder classCp(L, s) be the set of mapsm(·) from [0,1]p to R with

Cp(L, s) = {m(·); |m(x) − m(y)| ≤ L|x − y|s for all x, y in [0,1]p}
for s ∈ (0,1],

Cp(L, s) = {m(·); the
s�th partial derivatives ofm(·) are inCp(L, s − 
s�)}
for s > 1.

THEOREM 2. Consider a sequence of equicontinuous regression functions
{mn(·)}n≥1 such that for some unknown s > s and L > 0, mn(·) − µ(·; θ) ∈
Cp(L, s) for all θ in � and all n. Let Assumptions D, M, E and W hold. Assume
that the variance estimator satisfies (3.5), that 1/(C0 lnn) ≤ h0 ≤ C0 for some
C0 > 0 and that γn ≤ nγ for some γ in (0,1). If

min
θ∈�

[
1

n

n∑
i=1

(
mn(Xi) − µ(Xi; θ)

)2]1/2

≥ (1+ oP(1)
)
κ1L

p/(4s+p)

(
γn supx∈[0,1]p σ 2(x)

n

)2s/(4s+p)

,

(3.10)

the test (2.2) is consistent given the design, that is,

P
(
T̂h̃ ≥ v̂h0zα|X1, . . . ,Xn

) P→ 1,

provided κ1 = κ1(s) > 0 is large enough.

The proof is based upon the power bound (2.3). From this inequality, the test is
consistent ifT̂h − zαv̂h0 − γnv̂h,h0 diverges in probability for a suitable choice of
the smoothing parameterh adapted to the unknown smoothness of the departure
from the parametric model. Thus, combining several statistics in the procedure is
crucial to detecting alternatives of unknown smoothness. A sketch of the proof is
as follows. For a departure from the parametric model inCp(L, s), T̂h estimates
minθ∈�

∑n
i=1(mn(Xi) − µ(Xi; θ))2 up to a multiplicative constant with a bias of

order nL2h2s . The standard deviation of̂Th is of orderh−p/2 and the order of
v̂h0zα + γnv̂h,h0 is γnh

−p/2 supx∈[0,1]p σ 2(x). Collecting the leading terms shows
that T̂h − v̂h0zα − γnv̂h,h0 diverges if

min
θ∈�

[
1

n

n∑
i=1

(
mn(Xi) − µ(Xi; θ)

)2]1/2
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is of larger order than[
1

n

(
nL2h2s + γnh

−p/2 sup
x∈[0,1]p

σ 2(x)

)]1/2

.

Finding the minimum of this quantity with respect toh gives the rate of (3.10). The
rate of the optimalh is (γn infx∈[0,1]p σ 2(x)/L2n)2/(4s+p). The parsimonious set
Hn is rich enough to contain anh of this order. Our proof can be easily modified to
study the selection procedures considered in Hart (1997), which useγnv̂

2
h in (2.1)

instead ofγnv̂h,h0. This would give the worst detection rate(γn/n)s/(2s+p).
For γn of order

√
ln lnn, the smallest order compatible with Theorem 1, the

test detects alternatives (3.10) with rate(
√

ln lnn/n)2s/(4s+p) for any s > s. This
rate is the optimal adaptive minimax one for the idealistic white noise model; see
Spokoiny (1996). Horowitz and Spokoiny (2001) obtain the same rate for their
kernel-based test but with minimal smoothness indexs = max(2,p/4), while we
achieves = p/4 for our piecewise polynomial or kernel-based tests. The valuep/4
is critical for the smoothness indexs, as previously noted by Guerre and Lavergne
(2002) and Baraud, Huet and Laurent (2003).

THEOREM 3. Let θ0 be an inner point of � and consider a sequence of local
alternatives mn(·) = µ(·; θ0) + rnδn(·), where {δn(·)}n≥1 is an equicontinuous
sequence from Cp(L, s) for some unknown s > s and L > 0, with

1

n

n∑
i=1

δ2
n(Xi) = 1+ oP(1) and

1

n

n∑
i=1

δn(Xi)
∂µ(Xi; θ0)

∂θ
= oP(1).(3.11)

Assume that for each x in [0,1]p, µ(x; θ) is twice differentiable with respect
to θ in � with second-order derivatives continuous in x and θ and that, for some
C3 > 0, (

C3 + oP(1)
)|θ − θ ′|2

≤ 1

n

n∑
i=1

(
µ(Xi; θ) − µ(Xi; θ ′)

)2 for any θ, θ ′ in �.
(3.12)

Let Assumptions D, M, E and W hold and assume that the variance estimator

satisfies (3.5).If h0 → 0, rn → 0 and
√

nh
p/2
0 rn → ∞, the test is consistent given

the design.

The ratern of Theorem 3 can be made arbitrarily close to 1/
√

n by a proper
choice ofh0. This improves upon Horowitz and Spokoiny (2001), who obtain the
rate

√
ln lnn/

√
n.
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As stated in Lemma 5 of Section 6, conditions (3.11) and the identification
condition (3.12) ensure that

min
θ∈�

[
1

n

n∑
i=1

(
mn(Xi) − µ(Xi; θ)

)2]1/2

= rn − oP(rn).(3.13)

As the minimum of (3.13) is achieved forθ = θ0 at first-order, rnδn(·) is
asymptotically the departure fromµ(·; θ0). When rn converges to zero, this
departure becomes smoother as it belongs to the smoothness classCp(Lrn, s). This
sharply contrasts with the departures from the parametric model in Theorem 2,
which can be much more irregular. The proof of Theorem 3 follows from (2.4). The
test is consistent as soon asT̂h0 − v̂h0zα diverges in probability. We show that̂Th0 is,
up to a multiplicative constant, an estimate ofr2

n

∑n
i=1 δ2

n(Xi) with a negligible

bias and a standard deviation of orderh
−p/2
0 . As v̂h0 is of orderh−p/2

0 , T̂h0 − v̂h0zα

diverges to infinity as soon asnr2
n diverges faster thanh−p/2

0 as required.

4. Bootstrap implementation and small sample behavior.

4.1. Bootstrap critical values. The wild bootstrap, initially proposed by
Wu (1986), is often used in smooth lack-of-fit tests to compute small sample
critical values; see, for example, Härdle and Mammen (1993). Here we use
a generalization of this method, the smooth conditional moments bootstrap
introduced by Gozalo (1997). It consists of drawingn i.i.d. random variablesωi

independently from the original sample withEωi = 0, Eω2
i = 1 andE|ωi |d ′

< ∞,
and generating bootstrap observations ofYi asY ∗

i = µ(Xi, θ̂n) + σ̂n(Xi)ωi, i =
1, . . . , n. A bootstrap test statistiĉT ∗

h̃∗/v̂
∗
h0

is built from the bootstrap sample,
as was the original test statistic. When this scheme is repeated many times, the
bootstrap critical valuez∗

α,n at level α is the empirical 1− α quantile of the
bootstrapped test statistics. This critical value is then compared to the initial
test statistic. The following theorem establishes the first-order consistency of this
procedure.

THEOREM 4. Let Yi = mn(Xi) + εi , i = 1, . . . , n, be the initial model, where
{mn(·)}n≥1 is any equicontinuous sequence of functions. Under the assumptions of
Theorem 1 and for the variance estimator σ̂ 2

n (Xi) of (3.6),

sup
z∈R

∣∣P(T̂ ∗̃
h∗/v̂

∗
h0

≤ z|X1, Y1, . . . ,Xn,Yn

)− P
(
N(0,1) ≤ z

)∣∣ P→ 0.

4.2. Small sample behavior. We investigated the small sample behavior of our
bootstrap test. We generated samples of 150 observations through the model

Y = θ1 + θ2X + r cos(2πtX) + ε, r ∈
{
0,

√
2
3

}
, t ∈ {2,5,10},(4.1)
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whereX is distributed asU [−1,1]. The null hypothesis corresponds tor = 0,
while under the alternativesr2 = 2/3 andE[r2 cos2(2πtX)]/Eε2 = 1/3 for any
integert , a quite small signal-to-noise ratio. Whent increases, the deviation from
the linear model becomes more oscillating and irregular, and then more difficult to
detect.

To compute our test statistic, we used the regressogram method of Example 1b
with half-binwidths in

Hn = {h0 = 2−2, h1 = 2−3, . . . , h5 = 2−7}.
The smallest binwidth thus defines 128 cells, which is sufficient for 150
observations. Theγn was set toc

√
2 lnJn, wherec = 1,1.5,2. For each experiment

we ran 5000 replications under the null and 1000 under the alternative. For
each replication the bootstrap critical values were computed from 199 bootstrap
samples. Forωi we used the two-point distribution

P

(
ωi = 1− √

5

2

)
= 5+ √

5

10
, P

(
ωi = 1+ √

5

2

)
= 5− √

5

10
,

which verifies the required conditions.
In a first stage we set(θ1, θ2) = (0,0) and performed a test for white noise,

that is, H0 :m(·) = 0, with homoscedastic errors following a standard normal
distribution (Table 1). We estimated the variance under homoscedasticity by

σ̂ 2
n = 1

2(n − 1)

n−1∑
i=1

(
Y(i+1) − Y(i)

)2
,

whereY(i) denote observations ordered according to the order of theXi . This

TABLE 1
White noise model—Gaussian errors

T̂
h̃

v̂
h̃

Our test

T̂h0
v̂h0

T̂hJn
v̂hJn

MAX c = 1 c = 1.5 c = 2 c = 1 c = 1.5 c = 2

H0 1.9 2.1 2.0 2.0 2.0 2.0 1.8 1.8 1.7
5.3 5.1 4.2 4.3 4.2 4.4 4.4 4.3 4.4

t = 2 5.1 60.6 90.5 90.7 90.0 90.5 91.7 91.3 91.9
9.0 72.5 96.0 96.3 95.9 96.2 95.4 95.7 97.3

t = 5 3.0 59.2 66.3 66.9 66.3 66.3 77.3 78.5 78.8
7.7 73.3 79.2 79.8 79.4 79.5 88.7 88.5 87.8

t = 10 3.4 50.5 32.8 32.5 32.5 32.7 48.4 49.2 49.2
7.0 66.0 49.3 50.2 49.3 48.8 65.6 65.5 59.9

Percentages of rejection at 2% and 5% nominal levels.
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estimate is consistent under the null and the alternative; see Rice (1984). In each
cell of the tables, the first and second rows give empirical percentages of rejections
at 2% and 5% nominal levels. We compare our test to (i) simple benchmark
tests based on fixed bandwidthsh0 andh5, to evaluate the effect of a data-driven
bandwidth, (ii) the maximum test based on MAX = maxh∈Hn T̂h/v̂h, to evaluate
the gain of our approach and (iii) a test based onT̂

h̃
/v̂

h̃
, to evaluate the effect of

our standardization. For each test, we computed bootstrap critical values as for our
test.

Under the null hypothesis, the bootstrap leads to accurate rejection probabilities
for all tests. Under the considered alternatives, empirical power decreases for all
tests when the frequency increases fromt = 2 to t = 10. The data-driven tests
always dominate the tests based on the fixed parameterh0, which behaves poorly.
For the low frequency alternatives, data-driven tests perform very well with power
greater than 90% and 95% at a 2% and 5% nominal level, respectively, and there
are no significant differences between them. For higher frequency alternatives,
differences are significant. Our test has quite high power and rejects the null
hypothesis at more than 85% and 60% at a 5% level whent = 5 and 10,
respectively. It performs better than or as well as does the test based onh5 designed
for irregular alternatives, except forc = 2 andt = 10. It always dominates MAX

with differences ranging from 7.1% to 18.3%, depending on the level. The test
based on̂T

h̃
/v̂

h̃
behaves as the MAX test. This suggests that the high performances

of our test are mainly explained by our standardization choice, which is made
possible by our selection procedure.

To check whether these conclusions are affected by the details of the exper-
iments, we consider errors following a centered and standardized exponential
(Table 2), a standardized Student with five degrees of freedom (Table 3), a normal

TABLE 2
White noise model—exponential errors

Our test

T̂h0
v̂h0

T̂hJn
v̂hJn

MAX c = 1 c = 1.5 c = 2

H0 2.9 2.9 3.3 3.3 3.2 3.4
6.1 6.2 6.7 6.3 5.9 6.5

t = 2 4.5 65.4 91.9 92.2 92.4 92.6
9.0 77.7 95.9 96.1 96.3 97.2

t = 5 5.6 61.4 66.5 76.7 77.0 78.6
9.6 71.7 78.9 86.1 87.0 86.0

t = 10 3.6 50.6 35.4 51.3 52.8 53.7
7.6 64.5 52.3 65.5 65.6 62.0

Percentages of rejection at 2% and 5% nominal levels.
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TABLE 3
White noise model—Student errors

Our test

T̂h0
v̂h0

T̂hJn
v̂hJn

MAX c = 1 c = 1.5 c = 2

H0 2.3 2.1 2.0 1.8 1.7 1.9
5.0 4.8 4.4 4.5 4.3 4.4

t = 2 5.2 60.4 91.8 91.9 92.2 92.1
9.2 73.3 95.7 95.5 95.8 96.2

t = 5 3.4 60.6 66.6 77.6 77.7 79.0
8.4 74.6 79.3 88.2 88.2 86.9

t = 10 3.6 48.8 32.2 48.1 48.5 49.4
7.8 65.1 48.1 63.1 64.2 60.0

Percentages of rejection at 2% and 5% nominal levels.

distribution with conditional varianceσ 2(X) = (1 + 3X2)/3 using our estima-
tor (3.6) withbn = 1/8 (Table 4) and a linear model with homoscedastic normal
errors and(θ1, θ2) = (1,3) (Table 5). As results for̂T

h̃
/v̂

h̃
are very similar to the

ones for MAX, we do not report them. For exponential errors, there is a slight
tendency to overrejection. It is likely that matching third-order moments in the
bootstrap sample generation as proposed by Gozalo (1997) would lead to more
accurate critical values. Heteroscedasticity does not adversely affect the behavior
of the tests. For the linear model, there is some gain in power for the MAX test
compared with Table 1, but differences with our test remain significant for the two
high-frequency alternatives.

TABLE 4
White noise model—heteroscedastic errors

Our test

T̂h0
v̂h0

T̂hJn
v̂hJn

MAX c = 1 c = 1.5 c = 2

H0 2.2 2.2 1.8 1.7 1.5 1.6
5.1 5.0 4.7 4.2 4.1 4.2

t = 2 3.0 62.3 92.6 94.1 93.9 94.9
5.9 76.3 98.0 97.9 98.4 98.7

t = 5 1.6 64.4 62.9 82.9 83.5 83.9
4.2 78.9 81.9 91.9 92.8 91.6

t = 10 2.2 57.8 26.8 53.3 53.7 53.2
5.6 72.8 50.3 69.5 71.3 63.5

Percentages of rejection at 2% and 5% nominal levels.
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TABLE 5
Linear model—Gaussian errors

Our test

T̂h0
v̂h0

T̂hJn
v̂hJn

MAX c = 1 c = 1.5 c = 2

H0 2.3 2.1 1.9 1.9 2.0 2.0
5.0 5.0 4.4 4.5 4.5 5.0

t = 2 3.0 59.8 93.6 91.0 91.2 91.1
6.3 71.7 96.7 95.5 95.6 96.8

t = 5 2.7 58.2 73.2 77.7 77.9 78.5
5.8 72.7 85.0 88.4 88.2 88.4

t = 10 3.0 48.2 41.9 50.4 50.6 50.0
7.0 64.4 58.8 66.0 66.2 61.8

Percentages of rejection at 2% and 5% nominal levels.

5. Extensions to general nonparametric methods and additive alternatives.

5.1. General nonparametric methods. We give here some general sufficient
conditions ensuring the validity of our results. These conditions could be checked
for other smoothing methods or other designs than the ones considered here.
Indeed, different smoothing methods can be used for specification testing; see,
for example, Chen (1994) for spline smoothing, Fan, Zhang and Zhang (2001) for
local polynomials and Spokoiny (1996) for wavelets. Also, our conditions allow
for various constructions of the quadratic formsT̂h; see, for example, Dette (1999)
and Härdle and Mammen (1993).

For an n × n matrix W , let Spn[W ] be its spectral radius andN2
n [W ] =

Tr[W ′W ] =∑i,j w2
ij . For W symmetric, the former is its largest eigenvalue in

absolute value and the latter is the sum of its squared eigenvalues.

ASSUMPTIONW0. LetHn be as in (3.7) withhJn � (lnn)C2/p/n2/(4s+p) for
somes > 0, C2 > 1 andh0 → 0. The collection ofn×n matrices{Wh,h ∈ Hn} is
such that: (i) For allh, Wh = [wij (h),1≤ i, j ≤ n] depends only uponX1, . . . ,Xn

and is real symmetric withwii(h) = 0 for all i. (ii) maxh∈Hn Spn[Wh] = OP(1).
(iii) N2

n [Wh] �P h−p for all h ∈ Hn and uniformly inh ∈ Hn \ {h0}N2
n [Wh −

Wh0] �P h−p − h
−p
0 .

ASSUMPTIONW1. Let Hn, s andhJn be as in Assumption W0. For any se-
quencehn = hjn from Hn: (i) There are some symmetric positive semidefinite ma-
tricesPhn with Spn[Whn − Phn] = oP(1). (ii) For anys > s, there is a set�s,n of
functions from[0,1]p to R such that for anyL > 0 and anyδ(·) in Cp(L, s), there
is aπ(·) in �s,n with supx∈[0,1]p |δ(x)−π(x)| ≤ C4Lhs

n for someC4 = C4(s) > 0.
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(iii) Let �2
n = �2

n(s, hn) = infπ∈�s,n

∑
1≤i,j≤n π(Xi)pij (hn)π(Xj )/

∑n
i=1 π(Xi)

2,
wherepij (hn) is the generic element ofPhn . For anys > s, there is a constant
C5 = C5(s) > 0 such thatP(�n > C5) → 1.

Assumption W1 describes the approximation properties of the nonparametric
method used to build theWh and allows us to extend a result of Ingster [(1993),
page 253 and following]; see Lemma 6 in Section 6. The next proposition shows
that our main examples satisfy Assumptions W0 and W1 under a regular i.i.d.
random design.

PROPOSITION 1. Assume that Assumption D holds, and let s be as in
Assumption W. Then Examples 1a, 1band 2 satisfy Assumptions W0 and W1.

The next theorem extends our main results under Assumptions W0 and W1.
In Section 6 we actually show Theorems 1–4 by proving Theorem 5 and
Proposition 1.

THEOREM 5. Theorems 1 and 4 hold under Assumption W0 in place of
Assumptions D and W. Theorems 2 and 3 hold under Assumptions W0 and W1 in
place of Assumptions D and W.

5.2. Additive alternatives. Our general framework easily adapts to detection
of specific alternatives. We focus here on additive nonparametric regressions
m(x) = m1(x1) + · · · + mp(xp). The null hypothesis is

H0 :m(·) = µ(·; θ) for someθ ∈ �,

whereµ(x; θ) = µ1(x1; θ) + · · · + µp(xp; θ).

For ease of notation, we consider a modification of Example 1a where we remove
cross-products of polynomial functions. LetXi = [X1i , . . . ,Xpi]′ and consider
the (p/h) × n matrix 
h = [Xk

1i , . . . ,X
k
pi, i = 1, . . . , n, k = 0, . . . ,1/h]. Let Wh

be the matrix obtained from
h(

′
h
h)

−1
 ′
h by setting the diagonal entries to

0 andT̂h defined as in (3.3).

THEOREM 6. Let the matrices Wh be as above and Hn be as in (3.7), with
hJn � (lnn)C6/n1/3 for some C6 > 1. Let Assumptions D, E and M hold. Consider
a sequence of additive equicontinuous regression functions {mn(·)}n≥1 and assume
that the variance estimator satisfies (3.5).

(i) For h0 and γn as in Theorem 1, the test is asymptotically of level α given
the design.
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(ii) Assume that for some unknown s > 5/4 and L > 0, mn(·) − µ(·; θ) is in
Cp(L, s) for all θ in � and all n. For h0 and γn as in Theorem 2 and

min
θ∈�

[
1

n

n∑
i=1

(
mn(Xi) − µ(Xi; θ)

)2]1/2

≥ (1+ oP(1)
)
κ2L

1/(4s+1)

(
γn supx∈[0,1] σ 2(x)

n

)2s/(4s+1)

,

the test is consistent given the design provided κ2 = κ2(s) is large enough.

Proof of Theorem 6 repeats the proofs of Theorems 1 and 2 withv2
h,h0

of

order(h−1 − h−1
0 ) instead of(h−p − h

−p
0 ) and is therefore omitted. One can also

show consistency of the test against Pitman additive alternatives that approach

the parametric model at rateo(1/

√
nh

1/2
0 ). The bootstrap procedure described in

Section 4.1 also remains valid.

6. Proofs. This section is organized as follows. In Section 6.1 we study the
quadratic formsε′(Wh − Wh0)ε and ε′Whε underH0. Section 6.2 recalls some
results related to variance estimation. In Section 6.3 we gather preliminary results
on the parametric estimation errormn(·) − µ(·; θ̂n). In Sections 6.4 and 6.5 we
establish Theorems 1 and 4 under Assumption W0. In Sections 6.6 and 6.7 we
establish Theorems 2 and 3 under Assumptions W0 and W1. Thus, Theorem 5 is
a direct consequence of Sections 6.4–6.7. Section 6.8 deals with Proposition 1.

We denoteY = [Y1, . . . , Yn]′ andε = [ε1, . . . , εn]′. For anyδ(·) from R
p to R,

δ = δ(X) = [δ(X1), . . . , δ(Xn)]′ and Dn(δ) is the n × n diagonal matrix with
entriesδ(Xi). Let ‖ · ‖2

n and(·, ·)n be the Euclidean norm and inner product onR
n

divided byn, respectively, that is,

‖δ‖2
n = ‖δ(X)‖2

n = 1

n

n∑
i=1

δ2(Xi)

and

(ε, δ)n = (ε, δ(X)
)
n = 1

n

n∑
i=1

εiδ(Xi).

This gives Spn[W ] = max‖u‖n=1 ‖Wu‖n = max‖u‖n=1 |u′Wu|/n for a symmet-
ric W . Recall that Spn[AB] ≤ Spn[A]Spn[B]. Let θn = θn,m be such that

min
θ∈�

‖m(X) − µ(X; θ)‖n = ‖m(X) − µ(X; θn)‖n.(6.1)

We use the notationPn(A) for P(A|X1, . . . ,Xn), En[·] and Varn[·] being the
associated conditional mean and variance. In what follows,C andC′ are positive
constants that may vary from line to line. An absolute constant depends neither on
the design nor on the distribution of theεi given the design.
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6.1. Study of quadratic forms. The proof of Lemma 1 is omitted.

LEMMA 1. Let W be an n × n symmetric matrix with zeros on the diagonal.
Under Assumption E, En[ε′Wε] = 0 and Varn[ε′Wε] = 2

∑
1≤i,j≤n w2

ij σ
2(Xi) ×

σ 2(Xj ) = 2N2
n [Dn(σ)WDn(σ)] � N2

n [W ].

LEMMA 2. Let σ = infx∈[0,1]p σ (x) > 0, σ = supx∈[0,1]p σ (x) < ∞ and ν ∈
(0,1/2). Under Assumption E, there is an absolute constant C = Cν > 0 such
that:

(i) If (σ 4Sp2
n[Wh])/(σ 4N2

n [Wh]) ≤ ν,

sup
z∈R

∣∣Pn(ε
′Whε ≤ vhz) − P

(
N(0,1) ≤ z

)∣∣≤ C

(
σ Spn[Wh]
σ Nn[Wh]

)1/4

.

(ii) For all h ∈ Hn \ {h0} and any z > 0, if (σ 4Sp2
n[Wh − Wh0])/(σ 4N2

n [Wh −
Wh0]) < ν,

Pn

(∣∣∣∣ε′(Wh − Wh0)ε

vh,h0

∣∣∣∣≥ z

)
≤

√
2√
πz

exp
(
−z2

2

)
+ C

(
σ Spn[Wh − Wh0]
σ Nn[Wh − Wh0]

)1/4

.

PROOF. Let ε̃ = D−1
n (σ )ε, so thatEn[̃εi] = 0 and Varn[̃εi] = 1 for all i, and

let W = [wij ]1≤i,j≤n be Dn(σ)WhDn(σ) or Dn(σ)(Wh − Wh0)Dn(σ ), so that
for v2 = N2

n [W ] =∑1≤i,j≤n w2
ij , ε̃′Wε̃/v is ε′Whε/vh or ε′(Wh − Wh0)ε/vh,h0,

respectively. Letλ1, . . . , λn be the real eigenvalues ofW ,

Ln = 1

v3

[
6

n∑
i=1

(
n∑

j=1

w2
ij

)3/2

+ 36
n∑

i=1

n∑
j=1

|wij |3
]

and �n = 1

v4

n∑
i=1

λ4
i .

Consider a vectorg of n independentN(0,1) variables, independent of theXi .
Theorem 3 of Rotar’ and Shervashidze (1985) says that there is an absolute
constantC > 0 such that

sup
z∈R

∣∣∣∣Pn

(
ε̃′Wε̃

v
≤ z

)
− Pn

(
g′Wg

v
≤ z

)∣∣∣∣
≤ C[1− ln(1− 2�n)]3/4L1/4

n if �n < 1/2.

Let {bi ∈ R
n}1≤i≤n be an orthonormal system of eigenvectors ofW associated

with the eigenvaluesλi . AsEn[g′Wg] = 0 by Lemma 1,g′Wg =∑n
i=1 λi(b

′
ig)2 =∑n

i=1 λi[(b′
ig)2 − En[(b′

ig)2]]. Hence,g′Wg has the same conditional distribution
as
∑n

i=1 λiζi , where theζi are centered Chi-squared variables with one degree of
freedom, independent among themselves and of theXi . The Berry–Esseen bound
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of Chow and Teicher [(1988), Theorem 3, page 304] yields that there is an absolute
constantC > 0 such that

sup
z∈R

∣∣∣∣Pn

(
g′Wg

v
≤ z

)
− P
(
N(0,1) ≤ z

)∣∣∣∣≤ C

∑n
i=1 |λi |3

v3 .

The two above inequalities together imply that if�n < 1/2,

sup
z∈R

∣∣∣∣Pn

(
ε̃′Wε̃

v
≤ z

)
− P
(
N(0,1) ≤ z

)∣∣∣∣
≤ C

[(
1− ln(1− 2�n)

)3/4
L1/4

n +
∑n

i=1 |λi |3
v3

]
.

(6.2)

Let {ei, i = 1, . . . , n} be the canonical basis ofR
n, so that‖ei‖n = 1/

√
n. Then

n∑
i=1

(
n∑

j=1

w2
ij

)3/2

=
n∑

i=1

‖Wei‖n

‖ei‖n

n‖Wei‖2
n

≤ Spn[W ] × ∑
1≤i,j≤n

w2
ij = Spn[W ]N2

n [W ],

∑
1≤i,j≤n

|wij |3 = ∑
1≤i,j≤n

w2
ij

|(ei,Wej )n|
‖ei‖n‖ej‖n

≤ ∑
1≤i,j≤n

w2
ij

‖Wej‖n

‖ej‖n

≤ Spn[W ]N2
n [W ].

Hence, usingv2 =∑n
i=1 λ2

i = N2
n [W ] and|λi | ≤ Spn[W ] for all i, we obtain

�n ≤ Sp2
n[W ]

N2
n [W ] , Ln ≤ 42

Spn[W ]
Nn[W ]

and
n∑

i=1

|λi |3
v3 ≤ Spn[W ]

Nn[W ] ≤
(

Spn[W ]
Nn[W ]

)1/4

,

since Spn[W ]/Nn[W ] ≤ 1 for any symmetricW . The above inequalities and (6.2)
give

sup
z∈R

∣∣∣∣Pn

(
ε̃′Wε̃

v
≤ z

)
− P
(
N(0,1) ≤ z

)∣∣∣∣≤ C

(
Spn[W ]
Nn[W ]

)1/4

,(6.3)

provided(Spn[W ]/Nn[W ])2 ≤ ν, for an absolute constantC = Cν > 0.
Part (i) follows by settingW = Dn(σ)WhDn(σ) in (6.3) and noting that(

Spn[W ]
Nn[W ]

)2

≤
(

σ

σ

)4(Spn[Wh]
Nn[Wh]

)2

≤ ν < 1/2.
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Part (ii) follows from (6.3) withW = Dn(σ)(Wh −Wh0)Dn(σ ) and Mills’ ratio
inequality. �

6.2. Variance estimation. The following results are proven in Guerre and
Lavergne (2003).

PROPOSITION2. Under Assumptions D and W, v2
h0

�P h
−p
0 and uniformly in

h ∈ Hn \ {h0} v2
h,h0

�P h−p − h
−p
0 .

PROPOSITION3. Let {mn(·)}n≥1 be an equicontinuous sequence of regression
functions.

(i) Under Assumptions D and E, if bn → 0 and n1−4/d ′
b

p
n → ∞, then (3.5)

holds.
(ii) Let {Wh,h ∈ Hn} be any collection of nonzero n × n symmetric matrices

with zeros on the diagonal. Under (3.5),
v̂2
h0

v2
h0

P→ 1 and maxh∈Hn\{h0} |
v̂2
h,h0

v2
h,h0− 1| = oP(1).

6.3. The parametric estimation error.

LEMMA 3. Let W be an n×n symmetric matrix depending upon X1, . . . ,Xn,
θn be as in (6.1) and Bn(R) = {θ ∈ �; 1

n

∑n
i=1(µ(Xi; θ) − µ(Xi; θn))

2 ≤ R2}.
Under Assumptions E and M, there is an absolute constant C = Cd ′ > 0 such that,
for any mn(·), any n and any R > 0,

En

[
sup

θ∈Bn(R)

∣∣√n
(
W
(
µ(X; θ) − µ(X; θn)

)
, ε
)
n

∣∣]
≤ Cµ̇Spn[W ]R max

1≤i≤n
E

1/d ′
n

[|εi |d ′]
.

PROOF. Without loss of generality, we can assume that max1≤i≤n E
1/d ′ [|εi |d ′ |

Xi] = µ̇ = Spn[W ] = 1. Let δW (·; θ) = W(µ(·; θ) − µ(·; θn)). The Marcinkie-
wicz–Zygmund inequality, see Chow and Teicher (1988), yields, under
Assumption E and for anyθ, θ ′ in �, that there is an absolute constantC such
that

E
1/d ′
n

∣∣∣∣∣ 1√
n

n∑
i=1

(
δW (Xi; θ) − δW (Xi; θ ′)

)
εi

∣∣∣∣∣
d ′

≤ C

[
1

n

n∑
i=1

(
δW (Xi; θ) − δW (Xi; θ ′)

)2
E

2/d ′
n |εi |d ′

]1/2

≤ C
∥∥W (µ(X; θ) − µ(X; θ ′)

)∥∥
n ≤ C‖µ(X; θ) − µ(X; θ ′)‖n.
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Let Nn(t,R) be the smallest number of‖µ(X; θ) − µ(X; θ ′)‖n-balls of radiust
covering Bn(R). It follows from van der Vaart [(1998), Example 19.7] and
Assumption M that, for some absolute constantC′ > 0, Nn(t,R) ≤ C′(R/t)d .
The Hölder inequality and Corollary 2.2.5 from van der Vaart and Wellner (1996)
give, asd/d ′ < 1,

En sup
θ∈Bn(R)

∣∣∣∣∣ 1√
n

n∑
i=1

δW (Xi; θ)εi

∣∣∣∣∣≤ E
1/d ′
n sup

θ∈Bn(R)

∣∣∣∣∣ 1√
n

n∑
i=1

δW (Xi; θ)εi

∣∣∣∣∣
d ′

≤ C′
∫ R

0

(
R

t

)d/d ′
dt = Cd ′R. �

LEMMA 4. Under Assumptions E and M, there is an absolute constant C =
Cd ′ > 0, such that, for any ρ large enough, any mn(·) and any n,

Pn

[
‖mn(X) − µ(X; θ̂n)‖n >

√
3‖mn(X) − µ(X; θn)‖n +

√
2ρ√
n

]

≤ C max1≤i≤n E
1/d ′
n [|εi |d ′ ]

ρ
.

PROOF. The definition (3.1) of̂θn yields, see van de Geer (2000),

‖mn(X) − µ(X; θ̂n)‖2
n

≤ 2
(
µ(X; θ̂n) − µ(X; θn), ε

)
n + ‖mn(X) − µ(X; θn)‖2

n,

‖µ(X; θ̂n) − µ(X; θn)‖2
n

≤ 4
(
µ(X; θ̂n) − µ(X; θn), ε

)
n + 4‖mn(X) − µ(X; θn)‖2

n.

(6.4)

Consider a fixedr > 1 and anyρ ≥ r . Let En = {‖mn(X) − µ(X; θn)‖2
n <

(µ(X; θ̂n) − µ(X; θn), ε)n}, so that on the complement of this event
‖mn(X) − µ(X; θ̂n)‖n ≤ √

3‖mn(X) − µ(X; θn)‖n by (6.4). Lemma 4 follows
by bounding

Pn

((√
3‖mn(X) − µ(X; θn)‖n +

√
2rJ

√
n

)2

≤ ‖mn(X) − µ(X; θ̂n)‖2
n andEn

)

≤ Pn

(
2‖mn(X) − µ(X; θn)‖2

n + 2r2J

n

≤ 2‖mn(X) − µ(X; θn)‖2
n + 2‖µ(X; θn) − µ(X; θ̂n)‖2

n andEn

)

= Pn

(
r2J

n
≤ ‖µ(X; θ̂n) − µ(X; θn)‖2

n andEn

)
.
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Let Sj = Sj,n = {θ ∈ �; rj /
√

n ≤ ‖µ(X; θ) − µ(X; θn)‖n < rj+1/
√

n } ⊂
Bn(r

j+1/
√

n ) with Bn(·) as in Lemma 3. Then (6.4), the definition ofEn, the
Markov inequality and Lemma 3 withW = Idn yield

Pn

(
r2J

n
≤ ‖µ(X; θ̂n) − µ(X; θn)‖2

n andEn

)

≤
+∞∑
j=J

Pn

(
θ̂n ∈ Sj and

r2j

8n
≤ (µ(X; θ̂n) − µ(X; θn), ε

)
n

)

≤
+∞∑
j=J

Pn

(
r2j

8
√

n
≤ sup

θ∈Bn(rj+1/
√

n )

∣∣√n
(
µ(X; θ) − µ(X; θn), ε

)
n

∣∣)

≤
+∞∑
j=J

8
√

n

r2j
En

[
sup

θ∈Bn(rj+1/
√

n )

∣∣√n
(
µ(X; θ) − µ(X; θn), ε

)
n

∣∣]

≤ C max
1≤i≤n

E
1/d ′
n

[|εi |d ′] +∞∑
j=J

rj+1√n

r2j
√

n

= r2

r − 1

C max1≤i≤n E
1/d ′
n [|εi |d ′ ]

rJ
. �

Lemma 5 is proven in Guerre and Lavergne (2003).

LEMMA 5. Consider the local alternatives of Theorem 3 and let the con-
ditions of Theorem 3 on µ(·; ·) hold. Under Assumptions E and M and if
limn→+∞

√
nrn = +∞,

‖mn(X) − µ(X; θn)‖n = rn − oP(rn) and ‖µ(X; θ̂n) − µ(X; θ0)‖n = oP(rn).

PROPOSITION4. Under Assumptions E, M and W0(ii), if h0 → 0, then, for
any {mn(·)}n≥1 ⊂ H0,

max
h∈Hn\{h0}

∣∣∣∣ T̂h − T̂h0 − ε′(Wh − Wh0)ε

(h−p − h
−p
0 )1/2

∣∣∣∣= oP(1), h
p/2
0

(
T̂h0 −ε′Wh0ε

)= oP(1).

Let hn ∈ Hn be an arbitrary sequence of smoothing parameters. Then under H0
or H1, (

mn(X) − µ(X, θ̂n)
)′
Whε = OP(1)

[√
n‖mn(X) − µ(X, θn)‖n + 1

]
.

PROOF. We have

T̂h = (mn(X) − µ(X; θ̂n)
)′
Wh

(
mn(X) − µ(X; θ̂n)

)
+ 2
(
mn(X) − µ(X; θ̂n)

)′
Whε + ε′Whε.

(6.5)
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The Cauchy–Schwarz inequality, Assumptions E and W0(ii) and Lemma 4 yield
uniformly in h ∈ Hn,∣∣(mn(X) − µ(X; θ̂n)

)′
Wh

(
mn(X) − µ(X; θ̂n)

)∣∣
≤ n max

h∈Hn

Spn[Wh]‖mn(X) − µ(X; θ̂n)‖2
n

= OP

[(
1+ √

n‖mn(X) − µ(X; θn)‖n

)2]= OP(1)

underH0, as‖mn(X) − µ(X; θn)‖n = 0. Since for anyh ∈ Hn, h−p − h
−p
0 ≥

h
−p
1 − h

−p
0 = h

−p
0 (ap − 1) → +∞, we obtain that, underH0,

max
h∈Hn\{h0}

∣∣∣∣(mn(X) − µ(X; θ̂n))
′(Wh − Wh0)(mn(X) − µ(X; θ̂n))

(h−p − h
−p
0 )1/2

∣∣∣∣= oP(1),

h
p/2
0

(
mn(X) − µ(X; θ̂n)

)′
Wh0

(
mn(X) − µ(X; θ̂n)

)= oP(1).

(6.6)

Since‖µ(X; θ̂n)−µ(X; θn)‖n ≤ ‖µ(X; θ̂n)−mn(X)‖n +‖mn(X)−µ(X; θn)‖n,
Lemma 4 and Assumption E yieldPn(θ̂n /∈ Bρ,n) ≤ C/ρ for anyρ large enough,
anymn(·) and anyn, where

Bρ,n =
{
θ ∈ �;
‖µ(X; θ) − µ(X; θn)‖n ≤ (√3+ 1

)‖mn(X) − µ(X; θn)‖n +
√

2ρ√
n

}
.

Lemma 3 yields

En

[
sup

θ∈Bρ,n

∣∣(µ(X, θ) − µ(X; θn)
)′
Wε
∣∣]

≤ CρSpn[W ](√n‖mn(X) − µ(X; θn)‖n + 1
)
.

(6.7)

Taking W = Wh0 and using the Markov inequality, (6.5), (6.6),mn(X) − µ(X;
θn) = 0, Assumption W0(ii) andh0 → 0 then show thathp/2

0 (T̂h0 − ε′Wh0ε) =
oP(1) underH0. TakingW = Wh − Wh0 in (6.7) and usingh = h0a

−j for some
j = 0, . . . , Jn yields, underH0,

Pn

(
max

h∈Hn\{h0}

∣∣∣∣(µ(X, θ̂n) − µ(X; θn))
′(Wh − Wh0)ε

(h−p − h
−p
0 )1/2

∣∣∣∣≥ ε

)
≤ Pn(θ̂n /∈ Bρ,n)

+ 1

ε

∑
h∈Hn\{h0}

En sup
θ∈Bρ,n

∣∣∣∣(µ(X, θ) − µ(X; θn))
′(Wh − Wh0)ε

(h−p − h
−p
0 )1/2

∣∣∣∣
≤ C

ρ
+ ρ

ε
OP(h

p/2
0 )

∞∑
j=1

1

(apj − 1)1/2 = C

ρ
+ ρ

ε
OP(h

p/2
0 ),
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for all ε > 0. The last result follows from (6.7) withW = Wh and

En

[(
(mn(X) − µ(X; θn)

)′
Whε

)2]≤ nSp2
n(Wh)σ

2‖mn(X) − µ(X; θn)‖2
n. �

6.4. Proof of Theorem 1 under Assumption W0. Under Assumptions
W0(iii) and E, vh,h0 � Nn[Wh − Wh0] �P (h−p − h

−p
0 )1/2 uniformly in h ∈

Hn \ {h0}; see Lemma 1. Therefore, Propositions 3(ii) and 4 yield

max
h∈Hn\{h0}

∣∣∣∣ T̂h − T̂h0

v̂h,h0

∣∣∣∣= (1+ oP(1)
)× max

h∈Hn\{h0}

∣∣∣∣ε′(Wh − Wh0)ε

vh,h0

∣∣∣∣+ oP(1).

Let η be as in (3.8). Observe that

Pn(h̃ �= h0) ≤ Pn

(
max

h∈Hn\{h0}

∣∣∣∣ T̂h − T̂h0

v̂h,h0

∣∣∣∣≥ γn

)

≤ Pn

(
max

h∈Hn\{h0}

∣∣∣∣ε′(Wh − Wh0)ε

vh,h0

∣∣∣∣≥ γn

1+ η/2

)
+ oP(1).

Applying Lemma 2(ii) using Assumption W0(iii) andhj = h0a
−j for j =

0, . . . , Jn, we obtain

Pn(h̃ �= h0) ≤ ∑
h∈Hn\{h0}

Pn

(∣∣∣∣ε′(Wh − Wh0)ε

vh,h0

∣∣∣∣≥ γn

1+ η/2

)
+ oP(1)

≤
√

2(1+ η/2)√
πγn

exp
(
−1

2

(
γn

1+ η/2

)2

+ lnJn

)

+ OP(h
p/8
0 )

+∞∑
j=1

1

(apj − 1)1/8 + oP(1) = oP(1),

using (3.8), h0 → 0 and γn → ∞. Thus, Pn(T̂h̃
≥ v̂h0zα) = Pn(T̂h0 ≥

v̂h0zα)+oP(1). Theorem 1 then follows from Propositions 3(ii) and 4, Lemma 2(i)
and Assumption W0.

6.5. Proof of Theorem 4 under Assumptions D and W0. Let ε∗ = [ε∗
1, . . . , ε∗

n].
We first establish a moment bound that plays the role of Assumption E. As
ε∗
i = σ̂n(Xi)ωi , where theωi are independent of the initial sample,E[|ε∗

i |d
′ |X1, Y1,

. . . ,Xn,Yn] = E[|ω1|d ′ ]|σ̂n(Xi)|d ′
and

max
1≤i≤n

E
[|ε∗

i |d
′ |X1, Y1, . . . ,Xn,Yn

]≤ E
[|ω1|d ′](

sup
x∈[0,1]p

σ d ′
(x) + oP(1)

)
.(6.8)

This is sufficient to establish Theorem 4; see Guerre and Lavergne (2003).
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6.6. Proof of Theorem 2 under Assumptions W0 and W1.

LEMMA 6. Consider a function δ̂(·) ∈ Cp(L, s) with s > s and L > 0.
Consider any sequence hn from Hn and let �n = �n(s,hn) be as in Assump-
tion W1(iii). Under Assumption W1, we have

δ̂(X)′Whnδ̂(X)

≥ n
[(

�n − Sp1/2
n

[
Whn − Phn

])‖δ̂(Xi)‖n − (�n + Sp1/2
n

[
Phn

])
C4Lhs

n

]2
,

where C4 = C4(s) is from Assumption W1(ii), provided

‖δ̂(Xi)‖n ≥ �n + Sp1/2
n [Phn]

�n − Sp1/2
n [Whn − Phn]

C4Lhs
n ≥ 0.(6.9)

PROOF. We havêδ′Whnδ̂ = δ̂′Phnδ̂ + δ̂′(Whn −Phn)̂δ ≥ δ̂′Phnδ̂ −nSpn[Whn −
Phn]‖δ̂‖2

n. Let π(·) be such that supx∈[0,1]p |̂δ(x) − π(x)| ≤ C4Lhs
n; see

Assumption W1(ii). BecausePhn is positive by Assumption W1(i), the triangle
inequality and the definition of�n yield(

δ̂′Phnδ̂

n

)1/2

≥
(

π ′Phnπ

n

)1/2

−
(

1

n
( δ̂ − π)′Phn( δ̂ − π)

)1/2

≥
(

π ′Phnπ

n

)1/2

− Sp1/2
n

[
Phn

]‖δ̂ − π‖n

≥ �n‖δ̂ + π − δ̂‖n − Sp1/2
n

[
Phn

]‖δ̂ − π‖n

≥ �n‖δ̂‖n − (�n + Sp1/2
n

[
Phn

])‖δ̂ − π‖n

≥ �n‖δ̂‖n − (�n + Sp1/2
n

[
Phn

])
C4Lhs

n.

As (�n − Sp1/2
n [Whn − Phn])‖δ̂‖n − (�n + Sp1/2

n [Phn])C4Lhs
n ≥ 0 from (6.9),

δ̂′Whnδ̂

n
≥ [�n‖δ̂‖n − (�n + Sp1/2

n

[
Phn

])
C4Lhs

n

]2 − Spn

[
Whn − Phn

]‖δ̂‖2
n

= [(�n − Sp1/2
n

[
Whn − Phn

])‖δ̂‖n − (�n + Sp1/2
n

[
Phn

])
C4Lhs

n

]
× [(�n + Sp1/2

n

[
Whn − Phn

])‖δ̂‖n − (�n + Sp1/2
n

[
Phn

])
C4Lhs

n

]
≥ [(�n − Sp1/2

n

[
Whn − Phn

])‖δ̂‖n − (�n + Sp1/2
n

[
Phn

])
C4Lhs

n

]2
. �

We now prove Theorem 2 under Assumptions W0 and W1, using the power
bound (2.3). Takehn = h0a

−jn , wherejn is the integer part of

1

lna

[
2

4s + p
ln
(

L2n

γn infx∈[0,1]p σ 2(x)

)
+ lnh0

]

� 1

lna

2

4s + p
ln
(

L2n

γn infx∈[0,1]p σ 2(x)

)
,
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using lnh0 = O(ln lnn) and ln(n/γn) ≥ (1− γ ) lnn for someγ ∈ (0,1). Note that
hn is in Hn for all s > s andL > 0 sincehJn � (lnn)C2/p/n2/(4s+p) for some
C2 > 1 andγn ≤ nγ for someγ ∈ (0,1). We have

Lhs
n � Lp/(4s+p)

(
σ 2γn

n

)2s/(4s+p)

and

nL2h2s
n � γnσ

2h−p/2
n � L2p/(4s+p)(σ 2γn)

4s/(4s+p)np/(4s+p) → ∞.

Take nowδ̂(·) = mn(·) − µ(·; θ̂n) in Lemma 6, which belongs toCp(L, s) by the
assumptions of Theorem 2. The lower bound (3.10) of Theorem 2 yields

‖δ̂(X)‖n ≥ ‖mn(X) − µ(X; θn)‖n ≥ Cκ1Lhs
n

(
1+ oP(1)

)
,

implying, in particular, thatn‖mn(X)−µ(X; θn)‖2
n diverges in probability. Under

Assumptions W0(ii) and W1(i), (iii),

P

(
Cκ1Lhs

n ≥ �n(s,hn) + Sp1/2
n [Phn]

�n(s,hn) − Sp1/2
n [Whn − Phn]

C4Lhs
n ≥ 0

)
→ 1

for κ1 large enough, showing that̂δ(·) verifies (6.9) with probability tending to 1.
Therefore, Lemma 6 and Assumption W1(iii) yield(

mn(X) − µ(X; θ̂n)
)′
Whn

(
mn(X) − µ(X; θ̂n)

)
= δ̂ ′(X)Whnδ̂(X)

≥ n
[(

�n − Sp1/2
n

[
Whn − Phn

])‖mn(X) − µ(X; θn)‖n

− (�n + Sp1/2
n

[
Phn

])
C4Lhs

n

]2(1+ oP(1)
)

≥ C
(
1+ oP(1)

)
n‖mn(X) − µ(X; θn)‖2

n ≥ C
(
1+ oP(1)

)
nκ2

1L2h2s
n .

Moreover, by Proposition 4,(
mn(X) − µ(X; θ̂n)

)′
Whnε = OP

(√
n‖mn(X) − µ(X; θn)‖n

)
= oP

(
n‖mn(X) − µ(X; θn)‖2

n

)
.

Fromε′Whnε = OP(vhn) = OP(h
−p/2
n ) = oP(nL2h2s

n ) and (6.5),

T̂hn ≥ C
(
1+ oP(1)

)
n‖mn(X) − µ(X; θn)‖2

n ≥ C
(
1+ oP(1)

)
nκ2

1L2h2s
n .

Proposition 3(ii), Lemma 1 and Assumption W0(iii) yieldzαv̂h0 + γnv̂hn,h0 �P

γnv̂hn,h0 �P γnσ
2h

−p/2
n � nL2h2s

n . Collecting the leading terms implies that,
for κ1 large enough,

T̂hn − zαv̂h0 − γnv̂hn,h0 ≥ CnL2h2s
n (κ2

1 − C′)
(
1+ oP(1)

) P→ +∞.



DATA-DRIVEN TESTS FOR REGRESSION MODELS 865

6.7. Proof of Theorem 3 under Assumptions W0 and W1. The proof follows
the lines of the proof of Theorem 2, using now (2.4). Sincemn(X) − µ(X; θ̂n) =
rnδn(X) + µ(X; θ0) − µ(X; θ̂n),(

mn(X) − µ(X; θ̂n)
)′
Wh0

(
mn(X) − µ(X; θ̂n)

)
= r2

nδn(X)′Wh0δn(X)

+ 2rnδn(X)Wh0

(
µ(X; θ0) − µ(X; θ̂n)

)
+ (µ(X; θ0) − µ(X; θ̂n)

)′
Wh0

(
µ(X; θ0) − µ(X; θ̂n)

)
.

By Lemma 5,∣∣rnδn(X)Wh0

(
µ(X; θ0) − µ(X; θ̂n)

)∣∣
≤ nrnSpn

[
Wh0

]‖δn(X)‖n‖µ(X; θ0) − µ(X; θ̂n)‖n = oP(nr2
n),∣∣(µ(X; θ0) − µ(X; θ̂n)

)′
Wh0

(
µ(X; θ0) − µ(X; θ̂n)

)∣∣
≤ nSpn

[
Wh0

]‖µ(X; θ0) − µ(X; θ̂n)‖2
n = oP(nr2

n).

Because{δn(·)}n≥1 ⊂ C(L, s) with s > s, Lemma 6 yields, under (3.11) and
h0 → 0,

δn(X)′Wh0δn(X) ≥ (1+ oP(1)
)
n
[(

�n − Sp1/2
n

[
Wh0 − Ph0

])‖δn(X)‖n

− C4
(
�n + Sp1/2

n

[
Ph0

])
Lhs

0
]2

≥ Cn
(
1+ oP(1)

)
.

Equation (6.5) in the proof of Proposition 4 and Lemma 5 give, sincezαv̂h0 +
ε′Wh0ε = OP(h

−p/2
0 ), nr2

nh
p/2
0 → +∞ andh0 → 0,

T̂h0 − zαv̂h0 − γnv̂h0,h0 ≥ (1+ oP(1)
)
Cnr2

n + OP(h
−p/2
0 )

P→ +∞.

6.8. Proof of Proposition 1. We only detail the case of Examples 1a and 1b.
The proof of Proposition 1 for Example 2 can be found in Guerre and Lavergne
(2003).

The functionsψk(·) can be changed into any system generating the same linear
subspace ofRn: Consider the following orthonormal basis ofL2([0,1]p, dx):

φk(x) =
p∏

�=1

√
2k� + 1Qk�

(x�)I(x ∈ [0,1]p) for Example 1a,

φqkh(x) = h−p/2
p∏

�=1

√
2k� + 1Qq�

(k�h − x�)I
(
x ∈ Ik(h)

)
for Example 1b,

(6.10)
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where theQk(·) are the Legendre polynomials of degreek on [0,1], with
supt∈[0,1] |Qk(t)| ≤ 1,

∫ 1
0 Q2

k(t) dt = 1/(2k+1),
∫ 1
0 Qk(t)Qk′(t) dt = 0 for k �= k′;

see, for example, Davis (1975). Let�h = [φk(X),1 ≤ |k| ≤ 1/h] for Example 1a
and�h = [φqkh(X),1≤ |q| ≤ q̄,1≤ |k| ≤ 1/h] for Example 1b. Definedh as the
number of columns of�h and note that in both examplesdh is of orderh−p.

LEMMA 7. If f (·) is bounded away from 0 and infinity on [0,1]p, there is a
C > 0 such that

max
h∈Hn

Spdh
[(n−1�′

h�h)
−1] ≤ C

and

max
h∈Hn

Spdh
[n−1�′

h�h] ≤ C with probability tending to 1,

provided h
−p
Jn

= o(n/ lnn)1/3 in Example 1aand h
−p
Jn

= o(n/ lnn) in Example 1b.

PROOF. Consider first Example 1a. As then−1�′
h�h, h ∈ Hn, are nested

Gram matrices, it is sufficient to consider the spectral radii ofn−1�′
hJn

�hJn
and

its inverse. We have

|φk(Xi)φk′(Xi)| ≤
p∏

�=1

√
2k� + 1

√
2k′

� + 1 ≤ Ch
−p
Jn

,

Var
(
φk(Xi)φk′(Xi)

)≤ Eφ2
k (Xi)φ

2
k′(Xi) ≤ E

1/2φ4
k (Xi)E

1/2φ4
k′(Xi)

≤ sup
x∈[0,1]p

|φk(x)| sup
x∈[0,1]p

|φk′(x)|E1/2φ2
k (Xi)E

1/2φ2
k′(Xi)

≤ Ch
−p
Jn

,

as Eφ2
k (X) ≤ supx∈[0,1]p f (x)

∫
φ2

k (x) dx = supx∈[0,1]p f (x). The Bernstein in-
equality then yields√

nh
p
Jn

lnn
sup

0≤|k|,|k′|≤1/hJn

∣∣∣∣∣1n
n∑

i=1

φk(Xi)φk′(Xi) − Eφk(X)φk′(X)

∣∣∣∣∣= OP(1).

This givesn−1�′
hJn

�hJn
= n−1

E�′
hJn

�hJn
+ RhJn

, whereRhJn
is a dhJn

× dhJn

matrix whose elements are uniformlyOP(
√

lnn/nh
p
Jn

). Thus,

SpdhJn

[
RhJn

]≤ NdhJn

[
RhJn

]= OP

(
1

h
p
Jn

√√√√ lnn

nh
p
Jn

)
= oP(1),
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ash
−p
Jn

= o(n/ lnn)1/3. Hence, the eigenvalues ofn−1�′
hJn

�hJn
are between the

smallest and largest eigenvalues ofn−1
E�′

hJn
�hJn

, with probability tending to

one. But, for anya ∈ R
dhJn ,

n−1a′
E�′

hJn
�hJn

a = E

( ∑
0≤|k|≤1/hJn

akφk(X)

)2

�
∫
[0,1]p

( ∑
0≤|k|≤1/hJn

akφk(x)

)2

dx = a′a,

since theφk(·) are orthonormal inL2([0,1]p, dx). Therefore, the eigenvalues
of the symmetric matrixn−1

E�′
hJn

�hJn
are bounded away from 0 and infinity

whenn grows. Example 1b is studied in Baraud (2002) and follows from similar
arguments. �

We now return to the proof of Proposition 1 for Example 1. Lemma 7 implies
that, for someC > 1,

1

Cn
�h�

′
h ≺ Ph = 1

n
�h

(
1

n
�′

h�h

)−1

�′
h ≺ C

n
�h�

′
h,

with probability tending to 1, where≺ is the ordering of symmetric matrices.
Becausepii(h) = e′

iPhei , where{ei}1≤i≤n is the canonical basis ofRn, this gives

|pii(h)| ≤



C

n

∑
|k|≤1/h

φ2
k (Xi) ≤ C/(nh2p), for Example 1a,

C

n

∑
|k|≤1/h,q≤q̄

φ2
qkh(Xi) ≤ C/(nhp), for Example 1b,

(6.11)

with probability going to 1 and uniformly ini = 1, . . . , n and h ∈ Hn. Indeed,
φ2

k (·) ≤ Ch−p for all k ≤ 1/h for Example 1a, whileφ2
qkh(Xi) vanishes except for

exactly one indexk with φ2
qkh(Xi) ≤ Ch−p for Example 1b.

To prove Assumption W0(ii), note that Spn[Ph] = 1 since Ph is an or-
thogonal projection. The triangular inequality gives maxh∈Hn Spn[Wh] ≤ 1 +
maxh∈Hn max1≤i≤n |pii(h)| = OP(1) by (6.11) and the restriction onhJn which

givesh
−2p
Jn

= o(n) for Example 1a andh−p
Jn

= o(n) for Example 1b. For Assump-
tion W0(iii), we have

N2
n [Wh] = N2

n [Ph] − N2
n [Wh − Ph],

N2
n

[
Wh − Wh0

]= N2
n

[
Ph − Ph0

]− N2
n

[
(Wh − Ph) − (Wh0 − Ph0

)]
.

Now N2
n [Ph] = Rank[Ph] and N2

n [Ph − Ph0] = Rank[Ph − Ph0], sincePh and
Ph − Ph0 are orthogonal projections. This givesN2

n [Ph] � h−p and N2
n [Ph −
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Ph0] �P h−p − h
−p
0 almost surely for Example 1a, and for Example 1b, using the

Bernstein inequality withh−p
Jn

= o(n/ lnn), ensuring that the number ofXi in each

bin Ik(h) diverges. Then, sinceN2
n [Wh − Ph] =∑n

i=1 p2
ii(h), Assumption W0(iii)

holds if

max
h∈Hn

hp
n∑

i=1

p2
ii(h) = oP(1)

and

max
h∈Hn\h0

(h−p − h
−p
0 )−1

n∑
i=1

(
pii(h) − pii(h0)

)2 = oP(1),

which is a consequence of (6.11), together withh
−3p
Jn

= o(n/ lnn) for Example 1a

andh
−p
Jn

= o(n/ lnn) for Example 1b. To show Assumption W1(i), note that the
Ph are symmetric positive semidefinite with maxh∈Hn Spn[Wh − Ph] = oP(1),
as shown when establishing Assumption W0(ii). For Assumption W1(ii), (iii),
consider first Example 1a. Let�s,h be the set of polynomial functions with
order 1/h which are such that Assumption W1(ii) holds by the multivariate
Jackson theorem; see, for example, Lorentz (1966). This choice of�s,h gives
�2

n = 1 almost surely by definition of thePh with h
−p
Jn

= o(n) and Assumption D.
For Example 1b, the proof of Assumtion W1(ii) uses the same Taylor expansion
as in Guerre and Lavergne (2002) to build the�s,h. Assumption W1(iii), for any
given q̄, is a consequence of Assumption W1(iii) forq̄ = 1. This can be shown
using Guerre and Lavergne (2002) and establishing convergence of local empirical
moments with repeated applications of the Bernstein inequality.
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