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DATA-DRIVEN RATE-OPTIMAL SPECIFICATION TESTING IN
REGRESSION MODELS!

By EMMANUEL GUERRE AND PASCAL LAVERGNE
LSTA Paris 6 and University of Toulouse GREMAQ and INRA

We propose new data-driven smooth tests for a parametric regression
function. The smoothing parameter is selected through a new criterion
that favors a large smoothing parameter under the null hypothesis. The
resulting test is adaptive rate-optimal and consistent against Pitman local
alternatives approaching the parametric model at a rate arbitrarily close to
1//n. Asymptotic critical values come from the standard normal distribution
and the bootstrap can be used in small samples. A general formalization
allows one to consider a large class of linear smoothing methods, which can
be tailored for detection of additive alternatives.

1. Introduction. Consider n observations(Y;, X;) in R x R? and the
heteroscedastic regression model with unknown mnwe@nand variance 2(-),

Yi=m(X;))+¢, Elg|X;1=0 and Vafe;|X;]=02(X;).

We want to test the hypothesis that the regression belongs to some parametric
family {u(-; 0); 6 € ®}, that is,

(1.1 Ho:m() = u(-;0) for somed € ©.

Tests of Hy are called lack-of-fit tests or specification tests. Based on smoothing
technigues, many consistent testsHyfhave been proposed, the so-called smooth
tests; see Hart (1997) for a review. A fundamental issue is the choice of the
smoothing parameter. Since this is a model selection problem, Eubank and Hart
(1992), Ledwina (1994), Hart [(1997), Chapter 7] and Aerts, Claeskens and Hart
(1999, 2000), among others, have proposed use of criteria developed by Akaike
(1973) and Schwarz (1978). However, these criteria are tailored for estimation
but not for testing purposes. Hence, they do not yield adaptive rate-optimal tests,
that is, tests that detect alternatives of unknown smoothness approaching the null
hypothesis at the fastest possible rate when the sample size grows; see Spokoiny
(1996).

Many adaptive rate-optimal specification tests are based on the maximum ap-
proach, which consists of choosing as a test statistic the maximum of Studentized
statistics associated with a sequence of smoothing parameters. This approach is
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used for testing the white noise model with normal errors by Fan (1996) and for

testing a linear regression model with normal errors by Fan and Huang (2001) and
Baraud, Huet and Laurent (2003), who extend the maximum approach. Further
work on the linear model includes Spokoiny (2001) under homoscedastic errors
and Zhang (2003) under heteroscedastic errors. Finally, Horowitz and Spokoiny
(2001) deal with the general case of a nonlinear model with heteroscedastic errors.

We reconsider the model selection approach to propose a new test with some
distinctive features. First, our data-driven choice of the smoothing parameter
relies on a specific criterion tailored for testing purposes. This yields an adaptive
rate-optimal test. Second, the criterion favors a baseline statistic under the null
hypothesis. This results in a simple asymptotic distribution for our statistic and
in bounded critical values for our test. By contrast, in the maximum approach,
critical values diverge and must practically be evaluated by simulation for any
sample size. The computational burden of this task can be heavy for a large
sample size and a large number of statistics. Moreover, diverging critical values
are expected to yield some loss of power compared to our test. In particular, from
an asymptotic viewpoint, our test detects local Pitman alternatives converging to
the null at a faster rate than the ones detected by a maximum test. In small samples,
our simulations show that our test has better power than a maximum test against
irregular alternatives.

In our work we allow for a nonlinear parametric regression model with
mutidimensional covariates, nonnormal errors and heteroscedasticity of unknown
form. In Section 2 we describe the specific aspects of our testing procedure. In
Section 3 we detail the practical construction of the test statistic for three types of
smoothing procedures. Then we give our assumptions and main results, which
concern the null asymptotic behavior of the test, adaptive rate-optimality, and
detection of Pitman local alternatives. In Section 4 we prove the validity of a
bootstrap method and compare the small sample performances of our test with
a maximum test through a simulation experiment. In Section 5 we extend our
results to general linear smoothing methods. Finally, we propose a test whose
power against additive alternatives is not affected by the curse of dimensionality.
Proofs are given in Section 6.

2. Description of the procedure. Consider a collection7},, h € #,} of
asymptotically centered statistics which measures the lack-of-fit of the null
parametric model. The indek is a smoothing parameter, chosen in a discrete
grid whose cardinality grows with the sample sizesee our examples in the
next section. A maximum test rejeciy when maxey, Th/Oh > ¥ where
) estimates the asymptotic null standard deviationTjpf A test in the spirit
of Baraud, Huet and Laurent (2003) rejects the nuliif> 24 (k) for someh
in #, or, equivalently, if ma){ejgn(fh/ﬁh — z4(h)) > 0, where the critical values
are chosen to get an asymptatidevel test, a difficult issue in practice. Setting
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za(h) = z'® yields a maximum test. Because the numheancreases with:,

max diverges.

On an informal basis, our approach favors a baseline stargmwth lowest
variance among th&,. In practlce,ThO can be designed to yield high power against
parametric or regular alternatives that are of primary interest for the statistician.
However, this statistic may not be powerful enough against nonparametric or
irregular alternatives. We then propose to combine this baseline statistic with the
other statisticg}, in the following way. Letvy, », be some positive estimators of

the asymptotic null standard deviationBf — ﬁ,o. We select: as

h=arg max Ty — YnUh.ho)
hedt,

2.1) PN
= arghm}atp{ Th — Thg — YnOh.ho} wherey,, > 0.
EJty
Our testis
(2.2) RejectHy whenT;; /Dy, > 24,

wherez,, is the quantile of ordefl — «) of a standard normal.

The distinctive features of our approach are as follows. First, our criterion
penalizes each statistic by a quantity proportional to its standard deviation, while
the criteria reviewed in Hart (1997) use a larger penalty proportional to the
variance. Second, the data-driven choice of the smoothing parameter favors
under the null hypothesis. Indeed, sinte — Tho is of ordervy ,, under Ho,

h = ho asymptotically undeHp if y, diverges fast enough; see Theorem 1 below.
Hence, the null limit distribution of the test statistic is the ondgf/vy,, that is,

the standard normal, and the resulting test has bounded critical values. Third, our
selection procedure allows us to choose the standardizatjonWe could usej;
instead, which also gives an asymptatidevel test sinceér = hg asymptotically
under Ho. But, becausev, > v, asymptotically for any admissiblé, our
standardization gives a larger critical region under the alternative. This increases
power at no cost from an asymptotic viewpoint, see Fan (1996) for a similar
device in wavelet thresholding tests. Our simulation results show that this effect is
already large in small samples. By contrast, the maximum approach systematically
downweights the statisti}, with its standard deviation.

Third, compared to a test using a single statistic, our test inherits the power
properties of each of thE,, up to a termy, v n,- INdeed, the definition of yields

Th m%x(Th — YnUh,hg) + Y Of o = T — YnOh.ho foranyh € #,.

As a consequence, a lower bound for the power of the test is
(2.3)  P(T; = Dhoze) = P(Th = Dnoze + YaDhno)  fOranyhin #,.

Using a penalty proportional to a standard deviation yields a better power bound
than the selection criteria reviewed in Hart (1997). A suitable choice of the
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smoothing parameter in the latter power bound allows us to establish the adaptive
rate-optimality of the test; see Theorem 2 below and the following discussion.
Fourth, combining thef;, with our selection procedure gives a more powerful
test than using the baseline statislig,. Indeed, since,, », = 0, a noteworthy
implication of (2.3) is

(2.4) P(Twﬁ = ’U\hoza) = IED(Twho z ﬁhoZa)'

Theorem 3 below uses the latter inequality to study detection of Pitman local
alternatives approaching the null at a faster rate than in Horowitz and Spokoiny
(2001).

3. Main results. For any integey and anyx € R?, |x| = max<;<4 |x;|. For
real deterministic sequences, < b, means that;,, andb, have the same exact
order, that is, there is@ > 1 with 1/C < a,/b,, < C for n large enough. For real
random variables4, =<p B, means thaP(1/C < A,,/B,, < C) goes to 1 whem
grows. In such statements, uniformity with respect to a variable mean€ bt
be chosen independently of it. A sequefwes (-)},>1 is equicontinuous if, for any
€ > 0, there is am > 0 such that sup.4 |m, (x) —m,(x")| <€ for all x, x” with
lx — x| <.

3.1. Construction of the statistics and assumptions. Let 8, be the nonlinear
least-squares estimator ®@in model (1.1), that is,

n
o~ _ . - . 2
(3.1) On —arggrg(lmp;(n (X3 0))%,

with an appropriate convention in case of ties. A typical statitis an estimator
of the mean-squared distance of the regression function from the parametric model

n

(32) min Y (m, (X;) — 1£(Xi: 6))%.
96@1’:1

From the estimated parametric residulls= Y; — uw(X;; 6,) = m(X;) — n(X;:
0,)+e¢;,i=1,...,n, wecanestimate the departurg from the parametric regression
using a leave-one-out linear nonparametric estimitox;) = ’}:1’#1. vij (MU
based on some weightg; (k) with smoothing parameter. Then (3.2) can be
estimated as

(B3) Th=) UsXd= >

i=1 1<i#j<n

ii(h (R ~ ~
LZUN()Uin =U'W,U,
whereU = [U1, ..., U,]" and the generic element ), is w;;(h) = (v;j(h) +
vji(h))/2 fori # j andw;;(h) = 0. Such aT}, is asymptotically normal under
Ho; see, for example, de Jong (1987). Examples 1la and 1b come from projection
methods, while Example 2 builds on kernel smoothing.
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EXAMPLE 1A (Regression on multivariate polynomial functions). Let
Y (x) = ]'[e 1x , for k € N7 with |k| = max—y,_ ,k < 1/h. Let ¥, =
[V (X)), k| < 1/h,z =1,...,n]and P, = ¥, (¥, ¥;,) "W, be then x n orthog-
onal projection matrix onto the linear subspacéR6fspanned byy;. The matrix
W}, is obtained fromP,, by setting its diagonal elements to zero.

ExXAMPLE 1B (Regression on piecewise polynomial functions). Under the as-
sumption that the support &f is [0, 1]7, we consider piecewise polynomial func-
tions of fixed ordeig over binsIi(h) = [1)_;[keh, (ke + Dh), k = (k1, ..., kp),
ke = ., (1/h) — 1. These functions write

Yakn (x) = H x{I(x € Ik (b)),

=1
0<lgl= max gy <q,1<|k|= maxk, <1/h.
1<t<p 1<t<p

The particular choicg = 0 corresponds to the regressogram. The maifjxis
constructed as in Example la.

ExAamMPLE 2 (Kernel smoothing). Consider a continuous, nonnegative, sym-
metric and bounded kerndl () from R?” that integrates to 1 and has a positive
integrable Fourier transform. These conditions hold for products of the triangu-
lar, normal, Laplace or Cauchy kernels. Defikig(x) = K (x1/h, ..., x,/h). We
consider

e Y 1 - K(Xi—X)) -
_ S j
1<izj<n W= DRP T E (X)) fu(X))

with /i (Xi) = - _1)hp§Kh(X

We now turn to variance estimation. The leave- one -out constructlon dl’hthe
gives that the asymptotic conditional varlanaésand Vi ho of 7, and T}, — Tho
underHp are

=2 Y wimoi(X)o?(X)),

1<i,j=<n

V2, =2 ) (wij(h) — wij(ho) oA (X)o2(X ).

1<i,j=<n

(3.4)

For our main examples,
2 — 2 - —p.
v, <p hg” and vi, <ph”? —ho";

see Proposition 2 in Section 6. Le£(-) be a nonparametric estimator &#(.)
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such that

~2
X.

(3.5) max 0”2( i) _
1<izn|o4(X;)

1‘ =op(1)

for any equicontinuous sequence of regression functions. For instance, let
2 "L YZI( X — Xi| < by)
0,(Xi)=—=; I
=1 11X — Xi| < bn)
2
B T Yil(X; — Xil < bp)
Y IX; = Xl <by) )7

where b, is a bandwidth parameter chosen independently#6f such that
nl=44'pP diverges; see Proposition 3 in Section 6. Consistent estimators of the
variances in (3.4) are

12=2 Y wihos2(X)sAX)),

(3.6)

1<i,j<n
~ 2~ ~
V=2 . (wij(h) —wi;(ho))GAX)GZ(X ).
1<i,j<n

Finally, for the sake of parsimony, and following Horowitz and Spokoiny
(2001), Lepski, Mammen and Spokoiny (1997) and Spokoiny (2001), th#&,set
of admissible smoothing parameters is a geometric grid,,of- 1 smoothing
parameters,

(3.7) Hy=1{hj=hoa’,j=0,...,J,}  forsomea > 1, J, — +oo.

Note thatkg can depend on an empirical measure of the dispersion aXthas
in Zhang (2003), and can converge to zero very slowly, say/ &snl We assume
the following:

AssSUMPTIOND. The i.i.d.X; € [0, 1]” have a strictly positive continuous
density over{0, 1]7.

ASsSUMPTION M. The functionu(x;6) is continuous with respect to in
[0, 1]” and6 in ®, where® is a compact subset @?. There is a constant such
that for allg, 8" in ® and for allx in [0, 17, | (x; 0) — u(x; 8| < 1|0 —0'].

ASSUMPTION E. The¢; are independent giveX4,..., X,,. For eachi,
the distribution ofe;, given the design, depends only &, E[¢;|X;] =0 and
Varlg;|X;] = 62(X;), where the unknown variance functierf(-) is continuous
and bounded away from 0. For sonie> max(d, 4), EY¥'[|¢;|?'|X;] < C1 for
all ;.
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ASsSUMPTIONW. (i) For anyh, the matrixWj, is one from Example 1a, 1b
or 2. (i) The set#, is as in (3.7) withh, = (Inn)€2/Pp=2/4s+P) for some
Cy > 1, withs =5p/4 in Example 1a and = p/4 in Examples 1b and 2. The
numbera is an integer for Example 1b.

Under Assumption M, the value of the parametemay not be identified, as
in mixture or multiple index models. The restriction a@n, , together with the
definition of #¢,, implies that the numbey, + 1 of smoothing parameters is
of order Inn at most. Assumption W(i), which considers specific nonparametric
methods, will be relaxed in Section 5.1, allowing us, in particular, to consider a
baseline statisti@o designed for specific parametric alternatives.

3.2. Limit behavior of the test under the null hypothesis. The next theorem
allows for a penalty sequengg of exact orden/2Inlnn, asJ, is of order Im.

THEOREM 1. Consider a sequence {u(-,6,), 6, € ®},>1 in Hy. Let Assump-
tions D, M, E and W hold and assume that the variance estimator satisfies (3.5).
If ho — 0and y, — oo with

(3.8) Yn = (14+n)v2InJ, for somen > 0,
thetest (2.2) haslevel o asymptotically given the design, that is,

P(T: > 20l X1, ... Xn) > .

Theorem 1 is proved in two main steps. The first step consists in showing that

~ _ Ty — Tho )
= P =P, 85
goes to zero. This is done by first proving thek, — Tj,)/0n.n, asymp-
totically behaves at first-order as(W, — Wpy)e/vp,n, uniformly for A in
H, \ {ho}, wheree = [¢1, ..., &,]’, and second by bounding the distribution tails
of MaX,e 2, (ho} € (Wh — Who)e/vn no. Then we show that the limit distribution of
Tho/ﬁho is that ofe’ Wp,e/v,, Which converges to a standard normal whemoes
to 0.

As done by Horowitz and Spokoiny (2001), Theorem 1 imposes hhat
asymptotically vanishes. This condition yields a pivotal limit distribution for our
test statistic. As shown by Hart [(1997), page 220] under stronger regularity
conditions on the parametric model, considering a fixgdgenerally yields
a nonpivotal limit distribution because the estimation erudr; 0,) — wn(-;0)
cannot be neglected. Hart (1997) then recommends the use of a double bootstrap
procedure to estimate the critical values of the test.
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3.3. Consistency of the test. Theorem 2 below considers general alternatives
with unknown smoothness. Theorem 3 considers Pitman local alternatives. For
any reals, let | s | be the lower integer part of that is,|s| <s < |s] + 1. Let the
Holder classC,, (L, s) be the set of maps(-) from [0, 1]” to R with

Cp(L,s)={m();|m(x) —m(y)| < L|x — y|* forall x, y in [0, 1]”}
fors € (0, 1],
Cp(L,s) = {m(-); thes]th partial derivatives ofi(-) are inC,(L,s — [s])}

fors > 1.

THEOREM 2. Consider a sequence of equicontinuous regression functions
{m,(-)}»,>1 such that for some unknown s > s and L > 0, m,(-) — pu(;0) €
Cp(L,s) for all 6 in © and all n. Let Assumptions D, M, E and W hold. Assume
that the variance estimator satisfies (3.5), that 1/(Cplnn) < hg < Co for some
Co > Oand that y,, <n? for somey in (0, 1). If

0e®| n i

L 1/2
mip[— D (ma(Xi) = (X3 9))2}
(3.10)

’

Y SUR (0,17 Gz(x) >2s/(4S+P)
n

> (1 + OP(l))KlLP/(4v+p) (

thetest (2.2)is consistent given the design, that is,

P(T; > Dngzal X1, ... Xn) — 1,

provided k1 = x1(s) > O islarge enough.

The proof is based upon the power bound (2.3). From this inequality, the test is
consistent if7}, — ZaVhy — VYnUh,ho diverges in probability for a suitable choice of
the smoothing parametéradapted to the unknown smoothness of the departure
from the parametric model. Thus, combining several statistics in the procedure is
crucial to detecting alternatives of unknown smoothness. A sketch of the proof is
as follows. For a departure from the parametric model' jiiL, s), 7, estimates
MiNgeo Y 71 (M, (X;) — n(X;; 6))2 up to a multiplicative constant with a bias of
ordernL2h?%. The standard deviation &, is of orderz—?/2 and the order of
DhoZa + VnDh,ho 1S Ynh~P/2SUR, (0,170 0 2(x). Collecting the leading terms shows
that7), — Dhgze — Yuh.no diverges if

1. 1/2
gnei(g[; ;(””n(xi) — u(X;; 9))2]
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is of larger order than

1 B 1/2
[— (anhzg + y,h~P/? sup az(x)>] )
n x€[0,1]?
Finding the minimum of this quantity with respectitgives the rate of (3.10). The
rate of the optimah is (v, inf c[o,13» 02(x)/L?n)?/*+P) The parsimonious set
H, is rich enough to contain @nof this order. Our proof can be easily modified to
study the selection procedures considered in Hart (1997), Whicla,,W§ein (2.2)
instead ofy, v, x,- This would give the worst detection ratg, /n)*/(>+P).
For y, of order+/Ininn, the smallest order compatible with Theorem 1, the
test detects alternatives (3.10) with r&téininn/n)%/*+P) for anys > s. This
rate is the optimal adaptive minimax one for the idealistic white noise model; see
Spokoiny (1996). Horowitz and Spokoiny (2001) obtain the same rate for their
kernel-based test but with minimal smoothness indexmax(2, p/4), while we
achieves = p/4 for our piecewise polynomial or kernel-based tests. The valde
is critical for the smoothness indexas previously noted by Guerre and Lavergne
(2002) and Baraud, Huet and Laurent (2003).

THEOREM 3. Let 6y be aninner point of ® and consider a sequence of local
alternatives my(-) = u(-; 6p) + rndn(-), where {§,(-)},>1 IS an equicontinuous
sequence from C, (L, s) for some unknown s > s and L > 0, with

(3.11) 3253(;@) =1+op(l) and }Zan(xi)w =op(1).
ni- ni 20

Assume that for each x in [0, 1]7, u(x;0) is twice differentiable with respect
to 6 in ® with second-order derivatives continuousin x and 6 and that, for some
C3>0,

(Cz+op(1)|6 — 6|2

3.12 170
(3.12) <= (u(Xis 0) — (X 6'))?  forany6,6'in®.
=

Let Assumptions D, M, E and W hold and assume that the variance estimator

satisfies (3.5).1f ho — 0, r, — 0 and nhg/zr,, — 00, the test is consistent given
the design.

The rater,, of Theorem 3 can be made arbitrarily close t6/k by a proper
choice ofhg. This improves upon Horowitz and Spokoiny (2001), who obtain the

ratev/Inlnn//n.
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As stated in Lemma 5 of Section 6, conditions (3.11) and the identification
condition (3.12) ensure that

fe®

L 1/2
(3.13) mm[ Z(m,,(X,-)—u(Xi;G))z} =71y — op(ry).

As the minimum of (3.13) is achieved fdr = 6y at first-order, r,8,(-) is
asymptotically the departure from(-; 6p). When r, converges to zero, this
departure becomes smoother as it belongs to the smoothnessS gléss, s). This
sharply contrasts with the departures from the parametric model in Theorem 2,
which can be much more irregular. The proof of Theorem 3 follows from (2.4). The
test is consistent as soonBg — v, z, diverges in probability. We show thaj, is,

up to a multiplicative constant, an estimaterﬁfZ?:l 82(X;) with a negligible

bias and a standard deviation of ord@p/z. AS Ty, is of orderhap/z, Tho — UpoZa

diverges to infinity as soon aﬁf diverges faster thah)a”/2 as required.
4. Bootstrap implementation and small sample behavior.

4.1. Bootstrap critical values. The wild bootstrap, initially proposed by
Wu (1986), is often used in smooth lack-of-fit tests to compute small sample
critical values; see, for example, Hardle and Mammen (1993). Here we use
a generalization of this method, the smooth conditional moments bootstrap
introduced by Gozalo (1997). It consists of drawingi.d. random variables;
independently from the original sample willw; = 0, Ea) =1 andE|w; 1" < o0,
and generating bootstrap observatlonsths Yr= M(Xl,e )+ 6, (X)w;, i =
1,...,n. A bootstrap test statlstlffi" AT bunt from the bootstrap sample,
as was the original test statistic. When this scheme is repeated many times, the
bootstrap critical value, , at level « is the empirical 1- « quantile of the
bootstrapped test statistics. This critical value is then compared to the initial
test statistic. The following theorem establishes the first-order consistency of this
procedure.

THEOREM4. LetY; =m,(X;)+¢;,i=1,...,n,betheinitial model, where
{m, (-)}»>1 isany equicontinuous sequence of functions. Under the assumptions of
Theorem 1 and for the variance estimator aZ(X ;) of (3.6),

SUBP(TE, /0], < 2IX1, Y1, ..., Xa Ya) = B(N(0.D) <2)| 5 0,
zeR

4.2. Small sample behavior. We investigated the small sample behavior of our
bootstrap test. We generated samples of 150 observations through the model

(41)  Y=61+6X+rcos2mX) e, relo, @}t €{2,5,10},
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where X is distributed ad/[—1, 1]. The null hypothesis corresponds te= 0,
while under the alternatives® = 2/3 andE[r2cos (271 X)]/Ee? = 1/3 for any
integerz, a quite small signal-to-noise ratio. Whemcreases, the deviation from
the linear model becomes more oscillating and irregular, and then more difficult to
detect.

To compute our test statistic, we used the regressogram method of Example 1b
with half-binwidths in

Hy={ho=2"2h1=2"3,..  hg=2""1.

The smallest binwidth thus defines 128 cells, which is sufficient for 150
observations. The, was setta+/2In J,,, wherec = 1, 1.5, 2. For each experiment

we ran 5000 replications under the null and 1000 under the alternative. For
each replication the bootstrap critical values were computed from 199 bootstrap
samples. Fow; we used the two-point distribution

1-v5\ 5++5 1++/5\ 5-+5
JONEL RS TS )
2 10 2 10
which verifies the required conditions.
In a first stage we se®i, 62) = (0,0) and performed a test for white noise,
that is, Hyp:m(-) = 0, with homoscedastic errors following a standard normal
distribution (Table 1). We estimated the variance under homoscedasticity by

1 n—1

~2 2
=— = Y (Yiin — Yi)?
O = 2 = 1) i;( i+D — Yi))

where Y(;, denote observations ordered according to the order ofXtheThis

TABLE 1
White noise model—Gaussian errors

Q Our test
Vi
T 7
Tho  hi MAX ¢=1 ¢=15 «¢=2 c=1 ¢=15 ¢=2
Vg ny,
Ho 1.9 2.1 2.0 2.0 2.0 2.0 1.8 1.8 1.7
5.3 51 4.2 4.3 4.2 4.4 4.4 4.3 4.4
t=2 5.1 60.6 90.5 90.7 90.0 90.5 91.7 91.3 91.9
9.0 72.5 96.0 96.3 95.9 96.2 95.4 95.7 97.3
t=5 3.0 59.2 66.3 66.9 66.3 66.3 77.3 78.5 78.8
7.7 73.3 79.2 79.8 79.4 79.5 88.7 88.5 87.8
t=10 3.4 50.5 32.8 325 325 32.7 48.4 49.2 49.2
7.0 66.0 49.3 50.2 49.3 48.8 65.6 65.5 59.9

Percentages of rejection at 2% and 5% nominal levels.
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estimate is consistent under the null and the alternative; see Rice (1984). In each
cell of the tables, the first and second rows give empirical percentages of rejections
at 2% and 5% nominal levels. We compare our test to (i) simple benchmark
tests based on fixed bandwidtlg and /s, to evaluate the effect of a data-driven
bandwidth, (ii) the maximum test based onAK = max;,¢ s, Ty /Vh, to evaluate

the gain of our approach and (iii) a test basedﬁ;ylﬁﬁ, to evaluate the effect of

our standardization. For each test, we computed bootstrap critical values as for our
test.

Under the null hypothesis, the bootstrap leads to accurate rejection probabilities
for all tests. Under the considered alternatives, empirical power decreases for all
tests when the frequency increases from 2 to ¢+ = 10. The data-driven tests
always dominate the tests based on the fixed pararhgterhich behaves poorly.

For the low frequency alternatives, data-driven tests perform very well with power
greater than 90% and 95% at a 2% and 5% nominal level, respectively, and there
are no significant differences between them. For higher frequency alternatives,
differences are significant. Our test has quite high power and rejects the null
hypothesis at more than 85% and 60% at a 5% level when5 and 10,
respectively. It performs better than or as well as does the test bagedlesigned

for irregular alternatives, except for= 2 andr = 10. It always dominates Wx

with differences ranging from.T% to 183%, depending on the level. The test
based orf;l/ﬁ;l behaves as the M test. This suggests that the high performances
of our test are mainly explained by our standardization choice, which is made
possible by our selection procedure.

To check whether these conclusions are affected by the details of the exper-
iments, we consider errors following a centered and standardized exponential
(Table 2), a standardized Student with five degrees of freedom (Table 3), a normal

TABLE 2
White noise model—exponential errors

Our test

h /]:h Jn

Vhg Uk Jn

MAX ¢=1 ¢=15 c¢=2

Hp 2.9 2.9 3.3 3.3 3.2 3.4
6.1 6.2 6.7 6.3 59 6.5

t=2 45 654 919 92.2 92.4 92.6
90 77.7 959 96.1 96.3 97.2

t=5 56 614 665 76.7 77.0 78.6
96 717 789 86.1 87.0 86.0

t=10 36 506 354 513 52.8 53.7
76 645 523 65.5 65.6 62.0

Percentages of rejection at 2% and 5% nominal levels.
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TABLE 3
White noise model—Student errors

Our test

L

MAX ¢=1 ¢=15 ¢=2
th vh./n

Hop 2.3 2.1 2.0 1.8 17 1.9
5.0 4.8 4.4 4.5 4.3 4.4

t=2 52 604 918 919 92.2 92.1
92 733 957 955 95.8 96.2

t=5 34 606 666 776 7.7 79.0
84 746 793 88.2 88.2 86.9

t=10 3.6 488 322 481 48.5 49.4
78 651 481 631 64.2 60.0

Percentages of rejection at 2% and 5% nominal levels.

distribution with conditional variance?(X) = (1 + 3X?)/3 using our estima-

tor (3.6) withb,, = 1/8 (Table 4) and a linear model with homoscedastic normal
errors and61, 82) = (1, 3) (Table 5). As results foﬁ;/ﬁfl are very similar to the

ones for Max, we do not report them. For exponential errors, there is a slight
tendency to overrejection. It is likely that matching third-order moments in the
bootstrap sample generation as proposed by Gozalo (1997) would lead to more
accurate critical values. Heteroscedasticity does not adversely affect the behavior
of the tests. For the linear model, there is some gain in power for thg Mst
compared with Table 1, but differences with our test remain significant for the two
high-frequency alternatives.

TABLE 4
White noise model—heteroscedastic errors

Our test
T 7,
o M MAx e=1 ¢=15 =2
Vg Vi g,
Ho 22 22 18 17 15 16

51 5.0 4.7 4.2 41 4.2

t=2 30 623 926 941 93.9 94.9
59 763 98.0 979 98.4 98.7

t=5 16 644 629 829 83.5 83.9
42 789 819 919 92.8 91.6

t=10 22 578 268 533 53.7 53.2
56 728 503 695 71.3 63.5

Percentages of rejection at 2% and 5% nominal levels.
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TABLE 5
Linear model—Gaussian errors

Our test
7 7
o P MaAx e=1 ¢=15 c¢=2
Uh vh.ln
Hg 2.3 2.1 1.9 1.9 2.0 2.0

5.0 5.0 4.4 4.5 4.5 5.0

t=2 30 598 936 910 91.2 911
6.3 717 96.7 95.5 95.6 96.8
t=5 27 582 732 7.7 77.9 78.5
58 727 850 884 88.2 88.4

t=10 3.0 482 419 504 50.6 50.0
70 644 588 66.0 66.2 61.8

Percentages of rejection at 2% and 5% nominal levels.

5. Extensionsto general nonparametric methodsand additive alter natives.

5.1. General nonparametric methods. We give here some general sufficient
conditions ensuring the validity of our results. These conditions could be checked
for other smoothing methods or other designs than the ones considered here.
Indeed, different smoothing methods can be used for specification testing; see,
for example, Chen (1994) for spline smoothing, Fan, Zhang and Zhang (2001) for
local polynomials and Spokoiny (1996) for wavelets. Also, our conditions allow
for various constructions of the quadratic forifs see, for example, Dette (1999)
and Hardle and Mammen (1993).

For ann x n matrix W, let Sp,[W] be its spectral radius anan[W] =
TIW'W] =3 ; wlzj For W symmetric, the former is its largest eigenvalue in
absolute value and the latter is the sum of its squared eigenvalues.

ASSUMPTIONWO. LetH, be asin (3.7) withh;, < (Inn)C2/P /n?/4s+p) for
somes > 0, C> > 1 andhg — 0. The collection ofi x n matrices{Wy,, h € #,} is
such that: (i) For alk, W), = [w;;(h), 1 <i, j < n] depends only upoiy, ..., X,
and is real symmetric withw;; (h) = O for all i. (ii) max,ez, Sp,[Wr] = Op(D).
(i) N2[W;,] <p h™P for all h € #, and uniformly ink € #, \ {ho}N?[W), —
Wiol <p h™F — hy”.

ASSUMPTIONW1. Let#,, s andh , be as in Assumption WO. For any se-
quencer, = hj, from #,: (i) There are some symmetric positive semidefinite ma-
trices Py, with Sp,[Wy, — Pn,1 = op(1). (ii) For anys > s, there is a sell; , of
functions from[0, 1]” to R such that for any. > 0 and anys(-) in C,(L, s), there
is am () in Iy, , With SUR,¢[g.17r [6(x) — 7 (x)| < C4Lh;, for someCy = Ca(s) > 0.
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(iii) Let A7 = AZ(s, hn) =infrer,, iz j<n (X0 pij () (X ) /30g 7 (X2)?,
where p;;(h,) is the generic element af,,. For anys > s, there is a constant
Cs = Cs(s) > 0 such that”(A,, > Cs) — 1.

Assumption W1 describes the approximation properties of the nonparametric
method used to build th#),, and allows us to extend a result of Ingster [(1993),
page 253 and following]; see Lemma 6 in Section 6. The next proposition shows
that our main examples satisfy Assumptions WO and W1 under a regular i.i.d.
random design.

PROPOSITION 1. Assume that Assumption D holds, and let s be as in
Assumption W. Then Examples 1a, 1band 2 satisfy Assumptions WO and W1.

The next theorem extends our main results under Assumptions W0 and W1.
In Section 6 we actually show Theorems 1-4 by proving Theorem 5 and
Proposition 1.

THEOREM 5. Theorems 1 and 4 hold under Assumption WO in place of
Assumptions D and W. Theorems 2 and 3 hold under Assumptions W0 and W1in
place of Assumptions D and W.

5.2. Additive alternatives. Our general framework easily adapts to detection
of specific alternatives. We focus here on additive nonparametric regressions
m(x) =ma(x1) +--- +m,(x,). The null hypothesis is

Ho:m() = u(-;0) for somed € ©,
wherepu(x; 0) = u1(x1; 0) + - - + wp(xp; 0).

For ease of notation, we consider a modification of Example 1a where we remove
cross-products of polynomial functions. L&; = [Xy;,..., X ;1" and consider

the (p/h) x n matrix W, = [X§;,..., X5, i=1,...,n,k=0,...,1/h]. Let W,

be theAmatrix obtained frorﬂ!h(\lfjlwh)—lw,’l by setting the diagonal entries to

0 andT}, defined as in (3.3).

THEOREM 6. Let the matrices W, be as above and #,, be asin (3.7), with
hy, = (Inn)€s/n/3 for some Cg > 1. Let Assumptions D, E and M hold. Consider
a sequence of additive equicontinuous regression functions {m, (-)},>1 and assume
that the variance estimator satisfies (3.5).

(i) For hg and y, asin Theorem 1, the test is asymptotically of level o given
the design.
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(i) Assume that for some unknown s > 5/4 and L > 0, m,(-) — u(-;0) isin
C,(L,s)forall #in® andall n. For hg and y, asin Theorem 2 and

12 1/2
min[; Z(mn(Xi) — u(Xi; 9))2]
i=1

fe®

’

2 25/(4s+1)

Su o (x

> (1+ 0p(D)) LM/ +D (y” Preio.1 77 ))
n

the test is consistent given the design provided «2 = «2(s) islarge enough.

Proof of Theorem 6 repeats the proofs of Theorems 1 and 2 ufn;jg of

order(h~1 — hal) instead of(h =7 — hg”) and is therefore omitted. One can also
show consistency of the test against Pitman additive alternatives that approach

the parametric model at ratg¢l/ nhl/ 2) The bootstrap procedure described in
Section 4.1 also remains valid.

6. Proofs. This section is organized as follows. In Section 6.1 we study the
quadratic forms’ (W, — Wj,)e and &’ Wye under Hp. Section 6.2 recalls some
results related to variance estimation. In Section 6.3 we gather preliminary results
on the parametric estimation erra, (-) — u(-; 6,). In Sections 6.4 and 6.5 we
establish Theorems 1 and 4 under Assumption WO. In Sections 6.6 and 6.7 we
establish Theorems 2 and 3 under Assumptions WO and W1. Thus, Theorem 5 is
a direct consequence of Sections 6.4—6.7. Section 6.8 deals with Proposition 1.

We denoteY = [Y1,...,Y,] ande = [e1, ..., &,]". For anys(-) from R? to R,

8 =68(X) =[8(X1),...,8(X)]) and D, (d) is then x n diagonal matrix with
entriess (X;). Let || - ||,§ and(., -),, be the Euclidean norm and inner producti®h
divided byn, respectively, that is,

18112 = 18(X) 112 = 2820()

i=1
and

(&,8)n = (,8(X)), }:sMX)
This gives Sp[W] = maxXy|,=1 |Wull, = maX,,=1|u'Wu|/n for a symmet-
ric W. Recall that Sp{AB] < Sp,[A]Sp,[B]. Letd, =6, ,, be such that
(6.1) 52'8 [m(X) — wn(X; )l = Im(X) — w(X;60n)ln.
We use the notatio®,(A) for P(A|X4,..., X,), E,[-] and Vay[-] being the
associated conditional mean and variance. In what foll@évandC’ are positive

constants that may vary from line to line. An absolute constant depends neither on
the design nor on the distribution of thegiven the design.
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6.1. Sudy of quadratic forms. The proof of Lemma 1 is omitted.

LEMMA 1. Let W beann x n symmetric matrix with zeros on the diagonal.
Under Assumption E, E,[¢'We] =0 and Var,[¢'Wel =231, -, wl.zjcrz(X,-) x
o%(X ;) =2NZ[D,(0)WD,(0)] < N2 W].

LEMMA 2. Letg =infico1ro(x) > 0,0 =SuUp.cppp0o(x) <ocoandv e
(0,1/2). Under Assumption E, there is an absolute constant C = C,, > 0 such
that:

() If G*SEIWAD/(a*NZ[Wy]) < v,

68@[%])”“

SURP, (¢'Whe < vpz) —P(N(0,1) <z)| < C( o Na[Wi]

zeR
(i) Forall h e #,\ {ho} andany z > 0, if (T *SF (W), — Wi,1)/(a* N [W), —
Who]) < U’

P

PROOFE Let?z = D;l(o)e, so thatE,[¢;] = 0 and Vay[¢;] = 1 for all i, and
let W = [w;jli<i j<n b€ Dy(0)W;,Dy(o) O Dy(0)(Wy — Wpo) Dy (o), SO that
for v = N,?[W] = > 1<, j<n wlzj EWE /v is &' Wye /vy or &' (Wy — Why)e/Vh g,
respectively. Leb, ..., A, be the real eigenvalues of,

v3[62<2w,]>3/2+36i2n:|w,-,-|3} and A, = 42,\4

i=1\j=1 i=1j=1 i=1

& (Wh - Wh0)8
U ho

V2 z2 & SP,IWh — Wi\ V4
Z) Jz exp<__> * C(gNn[Wh ~ Wil ) ‘

2

Consider a vectog of n independentV (0, 1) variables, independent of th;.
Theorem 3 of Rotar’ and Shervashidze (1985) says that there is an absolute
constantC > 0 such that

gwWe W
() (225
z€R v v

<C[l—In@d-=2A)4£Y% it A, <1/2

Let {b; € R"}1<i<, be an orthonormal system of eigenvectorsifassociated
with the eigenvaluex AsE,[¢'Wgl=0byLemmalg'Wg=3" 11 b g)?=

> 1)L,[(b/g)2 (b/g)z]] Hence ¢’ Wg has the same conditional distribution
asy ' 1Aiti, Where thez; are centered Chi-squared variables with one degree of
freedom, independent among themselves and okth&@he Berry—Esseen bound
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of Chow and Teicher [(1988), Theorem 3, page 304] yields that there is an absolute
constantC > 0 such that

"W
squn(g g Sz) —P(N(©0,1) <z)
zeR v

The two above inequalities together imply thanif < 1/2,

S nl®
=C= 5

su#Pn (5/‘:@ < z) —P(N(,1) < z)‘

zeR

(6.2)

LENYHE
< C[(l—ln(l—ZAn))3/4£,%/4+ 72’:1; | }
v

Let{e;,i =1,...,n} be the canonical basis &", so that||e; ||, = 1/+/n. Then

n n 3/2 n
IWei|
Z(Zwi) =3 T | We |2

i=1\j=1 = lleilln
=SpIWIx >0 wj=SpIWINIW],
1<i,j<n
[(ei, We i)l
Yo=Y win T
1<i,j<n 1<i,j<n leillnllejllin
[We;jll
< > wi L < Sp,[WINAW].
1<i,j<n ||e/||n

Hence, using? = Y7_; A% = N2[W] and|;| < Sp,[W] for all i, we obtain

SEIW]
n = ,
N2[W]

Sp.[W]
Np[W]

L, <42

and

(xSl _ <Spn[W])1/4

S 08 T NIW] T N W]

since SpPIW1]/N,[W] < 1 for any symmetridV. The above inequalities and (6.2)
give

6.3) squn(g/?g < z) _P(N(O,1) < z)l < c(

zeR

SF%[W] )1/4
Nu[W]

provided(S|q1[W]/Nn[W])2 <, for an absolute constant= C,, > 0.
Part (i) follows by settingV = D, (o)W, D, (o) in (6.3) and noting that

2, =\4 2
(R <(2) (3REM) <v <12
Nu[W] o Np[Wi]
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Part (ii) follows from (6.3) withW = D, (o) (W), — Wj,) D, (o) and Mills’ ratio
inequality. [

6.2. Variance egtimation. The following results are proven in Guerre and
Lavergne (2003).

PROPOSITION2. Under AssumptionsD and W, vgo =p ho” and uniformly in
h € 3, \ tho} vi . =<p h™P —hy".

PROPOSITION3. Let {m,(-)},>1 bean equicontinuous sequence of regression
functions.

(i) Under Assumptions D and E, if b, — 0 and n~#4'b! — oo, then (3.5)
holds.

(i) Let {Wy,h € F,} be any collection of nonzero n x n symmetric matrices
=2 =2

with zeros on the diagonal. Under (3.5), ZhTO 5 1 and MaX.e 7, \ (o} |
ho
— 1 =op(D).

,ho

2
Yh.h

0

6.3. The parametric estimation error.

LEMMA 3. Let W beann x n symmetric matrix depending upon X1, ..., X,
6, be asin (6.1) and B,(R) = {0 € ©; y Y1 (u(Xi; 0) — i(Xi36,))% < R?).
Under Assumptions E and M, there is an absolute constant C = C; > 0 such that,
for any m,(-), any n and any R > 0O,

B sup [Va(W (1(X: )~ u(X:6).¢),
6€B,(R)

< CiSp,IWIR max EY¥[le;|*].
1<i<n

PROOF.  Without loss of generality, we can assume that max, EY/4'[|¢; ||
Xi]=pn=Sp,[W]=1. Letsw(;0) = W(u(-;0) — u(:;6,)). The Marcinkie-
wicz—Zygmund inequality, see Chow and Teicher (1988), vyields, under
Assumption E and for ang, 6’ in ©, that there is an absolute constahtsuch
that
1 d

1/d’
EY -

D (Bw(Xis0) — 8w (Xi:0"))e;
i=1

L 12
< C[; > (Bw(Xis 0) — dw (X 9/))2155/[1 el ]
i=1

< C|W(u(X;0) — w(X;0M) |, < Clln(X;0) — u(X; 0"l
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Let N, (z, R) be the smallest number ¢fu(X; 0) — u(X; 0')|,,-balls of radius
covering B, (R). It follows from van der Vaart [(1998), Example 19.7] and
Assumption M that, for some absolute constéit> 0, N, (z, R) < C'(R/t)“.

The Holder inequality and Corollary 2.2.5 from van der Vaart and Wellner (1996)
give, asd/d' <1,

d/
E, sup Zamx,,e)a <E/" sup Zaw(xl,e))e,
0€B,(R) f 9B (R)| V1
C[R/R d/d’
<C — dt=CyR.
= ./0 (t) d U

LEMMA 4. Under Assumptions E and M, there is an absolute constant C =
Cy > 0, such that, for any p large enough, any m,,(-) and any n,

; 2
P 1) = (X B> VBlma () = X 0l + Tﬂ
< Cmaxi<i<n Ei/d/[|€i|d,]

N P

PROOF  The definition (3.1) o), yields, see van de Geer (2000),
lma (X) — (X 8|12

< 2(u(X: 0) — (X5 00), €),, + llma(X) — (X 013,
(X Bn) — 11(X;5 6,)12

< (1 (X; 0p) — 11(X5 00, €),, + Bllma(X) — u(X; 60,) 2.

(6.4)

Consider a fixedr > 1 and anyp > r. Let &, = {[[m,(X) — u(X; 0, N2 <
(w(X;0,) — ,lL(X 0,),8)n}, so that on the complement of this event
ma(X) = (X500 < V/3lma(X) — 1(X;6,) [l by (6.4). Lemma 4 follows
by bounding

2 J\ 2
Pn((ﬁnmn(X) (X )+ Y2

5 ) = Ima(X) = u(X: )1 and;,

2,.2]
. 2
P, (znmn(X) RGO+ T

< 20m(X) — (X 0117 + 2/ (X 0n) — w(X; 0n) 12 and@n)

2]
r o~
=P, (7 < (X 8) — 1(X; 6112 andsn).
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Let S; = Sj, = {0 € ©;r/ /0 < |W(X;0) — p(X;6)lln < r/ T/ n} C
B,(ri*1//n) with B,(-) as in Lemma 3. Then (6.4), the definition &f, the
Markov inequality and Lemma 3 witW = Id,, yield

},.21 R )
Py 7 < ||u(X; 6,) — u(X; en)”n andé,

+00 2j
<> Pu (9 €S and8—j<(M(X 0,) — w(X; 9)8))
j=J

< ZIP ( f sup |ﬁ(u(x;9)—u(x;9n),e)n|)

0B, (ritl//n)

< 2} [ sup !«/E(M(X;G)—M(X;Gn),e)n!]
0B, (ritL/ /)

400 j+1
’ r n
<C maxEY g1 Y 5 v
1<i<n j=J r \/7_1
1/d’ '
r2 Cmax<i<n E¥ e
r—1 rd ‘ -

Lemma 5 is proven in Guerre and Lavergne (2003).

LEMMA 5. Consider the local alternatives of Theorem 3 and let the con-
ditions of Theorem 3 on w(-;-) hold. Under Assumptions E and M and if

liMmy,— 400 «/ﬁrn = +00,
lmu (X)) — w(X; 0)|ln =10 — op(ry) and [l (X5 é\n) — w(X; 00)|ln = op(rn).
ProPOSITION4. Under Assumptions E, M and WO(ii), if g — 0, then, for
any {mn()}nzl C Ho,
max T, — Tho — &' (W), — Who)e

= 1), hl’/2 T _ W _ 1.
heH,\{ho) (h=P — hg?)1/2 op(D) 0 (Tho—&"Whoe) = 0p(1)

Let 1, € #, be an arbitrary sequence of smoothing parameters. Then under Hp
or Hy,

(mn(X) — (X, @))/th = Op(D[Vnllmu(X) — (X, 6)lln + 1].
PrROOFE We have
T = (man(X) — (X 01)) W (m (X) — (X 6,))

(6.5) o
+2(mn(X) — (X; 0y)) Whe + &' Wye.



DATA-DRIVEN TESTS FOR REGRESSION MODELS 861

The Cauchy—-Schwarz inequality, Assumptions E and WO(ii) and Lemma 4 yield
uniformly in 4 € #,,

[(ma(X) — 10(X; 0,)) Wi (mn(X) — n(X; 6,))|
§n£%6%HWNmAX%wN&@mﬁ

= Op[(1+ vallma(X) — w(X; 62)[11)°] = Op(D)
under Ho, as [m,(X) — 1(X; 04)lln = 0. Since for anyh € #,, h™7 — hy" >
hy? —hg” = hy" (a? — 1) — +o00, we obtain that, undet,

max | () — 1(X:00)) (Wi — Yvho)(mn(x) —w(X36)) | _ on (D).
(6.6) heHa\lho} (h=P — hy")1/2

B2 (X) = (X ) Wi (ma (X) = (X 81)) = 0 (2).

Sincel| w(X; 6p) — 1(X; 6l < IIM(X;A@An) = mu (X)) |n + Imn(X) — (X5 00)lln,
Lemma 4 and Assumption E yiel, (6, ¢ B, ,) < C/p for any p large enough,
anym,(-) and anyn, where

Bp,n = {9 € 0;
2
(X5 0) — (X; 0l < (V3+ Dllma(X) — (X3 6l + %}

Lemma 3 yields

.| sup |(4(X. ) w(X:6)) Wel|

(6.7) 6B,

< CpSp,[W]1(vnllm,(X) — u(X; 6,) |l + 1).
Taking W = Wp,, and using the Markov inequality, (6.5), (6.@),,(X) — u(X;
6,) = 0, Assumption WO(ii) andig — 0 then show thah{,’/z(’T},O — &' Wpoe) =

op(1) under Hg. Taking W = W), — Wj,, in (6.7) and using: = hoa~/ for some
j=0,...,J,yields, underHy,
=¢)

(1(X, Bp) — (X 6,)) (Wi — Wo)e
(W(X,0) — u(X;60,)) (W — Who)e

(h—p _hap)l/z
(h—p _hap)l/Z

m(
hedt,\{ho}
<P, & Bp.n)

1
+= ) E, sup
€ hedt\tho)  9€Bon

ad 1 C

cC »p /2 P /2
< — 4+ Z0p(h} — = — + = 0phy"),
= 0 + € ]P( 0 )]Zl (Clpj _ 1)1/2 0 + € ]P( 0 )
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for all e > 0. The last result follows from (6.7) witW = W, and

En[((ma(X) — w(X; 6,)) Wie)?] < nSFE(Wp)e 2 m, (X) — w(X: )12, O

6.4. Proof of Theorem 1 under Assumption WO. Under Assumptions
WO(iii) and E, ving < NalWy — Wiol <p (AP — hy”)Y/2 uniformly in h e
H, \ {ho}; see Lemma 1. Therefore, Propositions 3(ii) and 4 yield

T, —T) &' (Wj, — Wp,)e
max hA ho =(14o0p(1)) x max & (Wi = Who) +op(D).
hedty\{ho} Uh,hg hedt, \{ho} Uh,hg
Letn be as in (3.8). Observe that

Pn(ﬁ¢ho><Pn( max | = Tho >yn)

- hea\ho}l  Vp,pg |~

"Wy —W,
5Pn< max |= W= Whole | )+0p(1)-
hed,\{ho} Uh,ho 1 + 77/2

Applying Lemma 2(ii) using Assumption WO(iii) and; = hoa=/ for j =
0,..., J,, we obtain

&' (Wy — Wpy)e o T
“14n/2

Pui£ho) < 3 Pn( )+0p(1)

hedty\{ho}

V2(1+1/2) 1/ v \?
= T eXp<_5(1+n/2> +|an>

+ Op(hD'®)

Vh,hg

+00

= 7(61” — )18 + op(1) = op(1),

using (3.8), ho — 0 and y, — oo. Thus, Py(T; > Tioza) = Pu(Thy >
UnoZa) +op(1). Theorem 1 then follows from Propositions 3(ii) and 4, Lemma 2(i)
and Assumption WO.

6.5. Proof of Theorem4 under AssumptionsD and WO. Lete* =[e7, ..., &;].
We first establish a moment bound that plays the role of Assumption E. As
e = 0,(X;)w;, where they; are independent of the initial samp]]ﬁ,|e;"|d' | X1, Y1,
s X, Yl = Eflo1 |16, (X)|¢ and

(6.8) maxE[lef|? X1, Yl,...,X,,,Yn]fE[lwlld/]< sup Gd/(x)-i-O]p(l)).
1<i<n x€[0,1]P

This is sufficient to establish Theorem 4; see Guerre and Lavergne (2003).
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6.6. Proof of Theorem 2 under Assumptions W0 and W1.

LEMMA 6. Consider a function 5(-) € C,(L,s) with s > s and L > 0.
Consider any sequence h,, from #, and let A, = A, (s, h,) be as in Assump-
tion W1(iii). Under Assumption W1, we have

5(X) W, 8(X)
> n[(An — SB[ Wi, — Pu, )DISX)ln — (A + SB[ Py, ])CaLis %,
where C4 = Cy4(s) isfrom Assumption W1(ii), provided
An + 5P Py, ]
An — SB[ Wi, — Py, ]

(6.9) 18X > C4Lh? > 0.

PROOF  We haved' Wy, 8 = 8' Py, 8 +8' (Wi, — Py,)8 = 8 Py, 8 — nSp,[Wy, —
Py, 1812, Let 7(-) be such that supigq [8(x) — m(x)| < C4Lhs; see
Assumption W1(ii). Becausé®y,, is positive by Assumption W1(i), the triangle
inequality and the definition ok, yield

FPA\Y2  aPu\Y2 1, 1/2
(—) z(—) —<;(5—7T)Phn(5—ﬂ)>

n n

7' Py o\ /2 -
z( I ) —sg2[P, 115 = 7l

n

> Auli8 + 7 —8llu — SP/?[ P, JI8 — 7lln
> A8l — (An 4 SB[ o, IS — 7|l
> Anll8lln — (An + SB[ Pr,])CaLhs,.

/2 /21 P,, 1)C4L kS, > 0 from (6.9),

As (A, — Sp,
<7

8 Wi, 8 < -
% = (A8l — (An + SO Py, ) Cal | — Sp[Wi, — P, 131

[Wh, — Pu, D181l — (An + Spy

= [(An — SB*[Wh, — Pn, 1) 181l — (An + SPY?[ Ph,])CaLhj]
x [(An + SB[ Wi, — P, )8lln — (An + SB[ Py, ]) CaLh}]
> [(An — SO/ [Wh, — Pu, ) I81ln — (A + SB[y, ])CaL b 2. O

We now prove Theorem 2 under Assumptions WO and W1, using the power
bound (2.3). Také, = hpoa=/», wherej, is the integer part of

1[ 2 In( L°n )+|nh}
Inalds+p \yninfieo1r o2(x) °

1 2 ( L°n )
= — In - 5 ,
Inads+p vn INfre0.17p 04(x)
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using Inkg = O(Ininn) and IN(n/y,) > (1 —y) Inn for somey € (0, 1). Note that
hy, is in #, for all s > s and L > 0 sinceh,, < (Inn)€2/P /n?“@+P) for some
Cy > 1 andy, <n? for somey € (0, 1). We have

=2
LK = Lp/<4s+p)<" Yn
5 <

2s/(4s+p)
)

and
anhgs — ynEZh;p/Z = L2p/(4s+p)(52yn)4s/(4s+p)np/(4s+p) - 00.

Take nows(-) = m,(-) — u(-; 6,) in Lemma 6, which belongs t6,(L, s) by the
assumptions of Theorem 2. The lower bound (3.10) of Theorem 2 yields

I8 1 = llma(X) — (X: 00) [l = CreaLi, (1+ 0p(D)),

implying, in particular, that ||m, (X) — (X 6,)|? diverges in probability. Under
Assumptions WO(ii) and W1(i), (iii),

An(s, hy) + Sp 21 Py, ]
An(s. hy) — SO 2IWh, — P, ]

CaLh? > o) -1
for k1 large enough, showing that.) verifies (6.9) with probability tending to 1.
Therefore, Lemma 6 and Assumption W1(iii) yield
(mn (X) = (X5 6,)) Wi, (ma (X) = (X 6,))
=38 (X)Wi,8(X)
> n[(An =SB [Wh, — P, Dllma(X) — 12(X; 60) 1
— (A + SE/?[ Py, ]) Cal i (1 + 0p (D)
> C(L+ op(D)nlma(X) — w(X; 6a)112 = C(1+ op(D)ncL?hZ.
Moreover, by Proposition 4,
(ma(X) = w(X; 6)) Wi, & = Op(v/nllmn (X) — w(X; 6,)11n)
= op(nlm(X) — u(X: 6,)[12).
Frome' Wy, e = Op(vy,) = Op(hy 7'?) = op(nL2h2) and (6.5),
Th, = C(14 op(D)nllmu(X) — u(X; 00)[12 = C(1+ op(D)nkfL?hZ.

Proposition 3(ii), Lemma 1 and Assumption WO(iii) yietdvx, + ynUn,.ho <P
YO ho =B Y0 2hn /% < nL2h% . Collecting the leading terms implies that,
for 1 large enough,

_ N N P
Th, — ZaOhg — YnOiy o = CL2h% (162 — C') (1 + 0p(1)) = +o0.
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6.7. Proof of Theorem 3 under Assumptions WO and W1. The proof foAIIows
the lines of the proof of Thgorem 2, using now (2.4). SinggX) — u(X;6,) =
rndn(X) + pn(X: 60) — n(X; 6y),

(M (X) — (X 00)) Wi (mn(X) — w(X; )
= 1580 (X) Wig8 (X)
+ 208, (X) Wi (1(X: 00) — (X 6))
+ ((X; 00) — (X5 0n)) Wig (1(X 5 60) — 10(X: ).
By Lemma 5,
|8 (X) Wi (1 (X 60) — 14(X; 6))|
< 17 SR, [Who ) 180 GO ln | (X 60) — 16(X; B) I = op (nr),
| (1 (X5 00) — (X 0n)) Who (1(X: 0) — 14(X: 6,))]
< nSP,[Wao ] l(X; 60) — 11(X: 0|2 = op(nr?).

Because{s,(-)},>1 C C(L,s) with s > s, Lemma 6 yields, under (3.11) and
ho — 0,

80 (X) Wiobn (X) = (L4 0p(D)n[(An — SB?[Whg — Pho]) 182 (X) 1
— Ca(An + SB?[Puo) L)
> Cn(1+ op(1)).

Equation (6.5) in the proof of Proposition 4 and Lemma 5 give, sindg, +
& Wige = Op(hy"'?), nr2hb’? — +o0 andhg — 0,

- ~ ~ —p/2, P
Thy — ZaVhg — YnVhg,hg = (1+ Op(l))Cnr,% + Op(hy p/ ) = +o0.

6.8. Proof of Proposition 1. We only detail the case of Examples 1a and 1b.
The proof of Proposition 1 for Example 2 can be found in Guerre and Lavergne
(2003).

The functionsyy (-) can be changed into any system generating the same linear
subspace dR”: Consider the following orthonormal basis b$([0, 117, dx):

P
dx(x) = [ [ v2ke + 10k, (x0)I(x €[0,1]7)  for Example 1a,

(=1

6.10 P
( ) bgikn(x) = h—P/? 1_[ V2k¢ +1Qg, (keh — Xg)]l(x e Ik(h))

=1
for Example 1b,
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where the Q;(-) are the Legendre polynomials of degrgeon [0, 1], with
SURero. 1Ok (D1 < 1, J3 Q2(1)dt = 1/(2k+1), [y Ok (1) Qu (1) dt =Ofork #k';
see, for example, Davis (1975). Lé}, = [¢x(X), 1 < |k| < 1/ k] for Example 1a
and®;, = [¢gin(X), 1 <lq| <g,1=<|k| <1/h] for Example 1b. Defind), as the
number of columns o®; and note that in both examplég is of orderh—7.

LEMMA 7. If f(-) is bounded away from 0 and infinity on [0, 1]7, thereisa
C > 0 such that

-1 1
maxSp, [(1 D, ®p) 1< C
and
maxsp,, [n"1®),®,] <C  with probability tending to 1,
€Jty

provided h,” = o(n/Inn)*/3 in Example 1laand ;" = o(n/Inn) in Example 1b.

PROOF  Consider first Example la. As the1®) @y, h € #,, are nested
Gram matrices, it is sufficient to consider the spectral radiiblfCI);” @y, and
its inverse. We have

P
|ox (X (XD)| < [] vV2ke +1,/2k; + 1< Ch,”",
=1

Var(gx (X ow (X)) < B2 (Xi)p2 (X:) < EYV2pH(X)EY 240 (X))

< sup |gr(x)| sup |gw(0)EY2p2(X)EY 2% (X))
x€[0,1]” x€[0,1]7

<Ch;?,

as E¢Z(X) < sup.cpo.qyr f () [ ¢Z(x) dx = sup,.¢po.13» f (). The Bernstein in-
equality then yields

nh?
n sup
INn o<k k<1,

is qi 1/ S i
This givesn ®y, Phy, =n""Edy Dy, + Ry, whereRy, is ady, xdy,

1}1

n:
1=

= Op(D).

bi(Xi) P (Xi) — Egp (X) gy (X)
1

matrix whose elements are uniform@ype(,/In n/nhﬁ’n ). Thus,

1 | Inn
Spdhjn [thn] S Ndh]” [R]’l‘/n] == O]P(ﬁ ﬂ) == O]P)(l)v
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ash,” =o(n/Inn)*3. Hence, the eigenvalues of '@, ®,, are between the
smallest and largest eigenvaluesmflECD;”n @y, , with probability tending to
one. But, for any: € R |

2
n_la/IECI>;ljn Qpy,a = E( Z aiPr (X)>

O<lk|<1/hy,

2
= /[0’1][7( Z akqbk(x)) dx=aa,

0<|k|<1/hy,
since thegy(-) are orthonormal inL2([0, 117, dx). Therefore, the eigenvalues
of the symmetric matrlm—lECD’ CI>hj are bounded away from 0 and infinity

whenn grows. Example 1b is stud|ed in Baraud (2002) and follows from similar
arguments. [

We now return to the proof of Proposition 1 for Example 1. Lemma 7 implies
that, for someC > 1,

Cn

with probability tending to 1, where< is the ordering of symmetric matrices.
Becausep;; (h) =¢; Phe,-, wherefe; }1<i <, is the canonical basis @", this gives

1 1, - , C /
hq>h<Ph—_q)h cbhq)h Cbh<;(l>hq)h,

= Z P2(X;) < C/(nh?P), for Example 1a,
n

k|<1/h
(6.11) IpiWl =
= Y LX) =C/@hP),  for Example 1b,

" k<1/hg<q

with probability going to 1 and uniformly in =1,...,n andh € #,. Indeed,
¢,§(-) < Ch~Pforall k <1/h for Example 1a, Whil@?kh(X,-) vanishes except for
exactly one index with ¢2,, (X;) < Ch~” for Example 1b.

To prove Assumption WO(ii), note that J@P,] = 1 since P, is an or-
thogonal projection. The triangular inequality gives may, Sp,[W.] < 1 +
maX,e 2, MaXi<i<n | pii (h)| = Op(1) by (6.11) and the restriction ol;, which
givesh;fp = o(n) for Example la and;n” = o(n) for Example 1b. For Assump-
tion WO(iii), we have

N2[W;,] = N2[Py] — N2[W), — Py],
N2[Wh — Wio] = NZ[Py — Puo] = N2[(Wh — Py) — (Wiho — Pio)]-

Now N?[P,] = RanK P,] and N[ P, — Py,] = RanK P, — Py,], since P, and
P, — Py, are orthogonal projections. This give&’[P,] < h~? and N2[ P, —
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Ppol <ph™? — hap almost surely for Example 1a, and for Example 1b, using the
Bernstein inequality with’c;f =o(n/Inn), ensuring that the number &f in each

bin I (h) diverges. Then, sincN,?[Wh —Pl=>" 1p”(h) Assumption WO(iii)
holds if

n
maxh? 2(h) = ow(1
max i:lel,U op(1)
and

n
h=P —hg") 1S (pii(h) — pii(ho))” = op(1
,max ( o)) ,;(p”() pii(h))” = op(1),

which is a consequence of (6.11), together vhi_t}ﬁ” =o(n/Inn) for Example la

andh;f = o(n/Inn) for Example 1b. To show Assumption W1(i), note that the
P, are symmetric positive semidefinite with max, Sp,[W, — Pn] = op(1),
as shown when establishing Assumption WO(ii). For Assumption W1(ii), (iii),
consider first Example la. Ldi, ;, be the set of polynomial functions with
order ¥4 which are such that Assumption W1(ii) holds by the multivariate
Jackson theorem; see, for example, Lorentz (1966). This choidé, @f gives

= 1 almost surely by definition of th&, with 7, -7 = 0(n) and Assumption D.
For Example 1b, the proof of Assumtion Wl(u) uses the same Taylor expansion
as in Guerre and Lavergne (2002) to build fig,. Assumption W1(iii), for any
given g, is a consequence of Assumption W1(iii) f@r= 1. This can be shown
using Guerre and Lavergne (2002) and establishing convergence of local empirical
moments with repeated applications of the Bernstein inequality.
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