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ON THE POSTERIOR DISTRIBUTION OF THE NUMBER OF
COMPONENTS IN A FINITE MIXTURE

BY AGOSTINO NOBILE

University of Glasgow

The posterior distribution of the number of componentsk in a finite
mixture satisfies a set of inequality constraints. The result holds irrespective
of the parametric form of the mixture components and under assumptions
on the prior distribution weaker than those routinely made in the literature
on Bayesian analysis of finite mixtures. The inequality constraints can be
used to perform an “internal” consistency check of MCMC estimates of
the posterior distribution ofk and to provide improved estimates which
are required to satisfy the constraints. Bounds on the posterior probability
of k components are derived using the constraints. Implications on prior
distribution specification and on the adequacy of the posterior distribution
of k as a tool for selecting an adequate number of components in the mixture
are also explored.

1. Introduction. Finite mixture distributions have received much attention in
the last decade, as a tool for modeling population heterogeneity and especially as
a conceptually simple way of relaxing distributional assumptions. Undoubtedly
the development of Markov chain Monte Carlo methods has played an essential
catalytic role. A survey of the theory and applications of finite mixtures pre-
MCMC is provided by Titterington, Smith and Makov (1985), and a more recent
introduction to the topic is Robert (1996). Progress has been particularly evident
in the Bayesian approach, where it began with the Gibbs sampling algorithm
of Diebolt and Robert (1994) for estimating the parameters of a mixture with
a fixed number of components. Subsequent work has considered the number of
componentsk as an object of inference, either using tests to select an adequate
number of components or summarizing the uncertainty about it by reporting its
posterior distribution. Carlin and Chib (1995) and Raftery (1996) have proposed
using Bayes factors to testk againstk + 1 components and they have described
MCMC methods to compute the necessary marginal likelihoods. The paper by
Raftery contains a summary of such methods. Mengersen and Robert (1996)
also assume a testing perspective, but use the Kullback–Leibler divergence as a
measure of distance between models withk andk +1 components. Nobile (1994),
Phillips and Smith (1996), Richardson and Green (1997), Roeder and Wasserman
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(1997) and Stephens (2000) have put a prior distribution on the number of
components and obtained MCMC estimates of the posterior. Besides representing
uncertainty aboutk, its posterior distribution can also be used to mix models
with different numbers of components, leading to model mixing predictions of
future observables. Nobile (1994) attempted to estimate the marginal likelihoods
of each model separately and then formed an estimate of the posterior ofk

using Bayes’ theorem. Roeder and Wasserman (1997) proposed to approximate
the marginal likelihoods using the Schwarz criterion. Although their methods
differ considerably, Phillips and Smith (1996), Richardson and Green (1997) and
Stephens (2000) share a common approach consisting of running an MCMC
sampler on a composite model, with jumps between submodels that allow the
sampler to change the number of components in the mixture. Then the posterior
of k can be estimated by the relative amount of simulation time spent by the
sampler in each submodel.

In this paper I show that, under some conditions on the prior distribution,
the marginal likelihoods of finite mixture models with a different number of
components satisfy a set of inequality constraints. Besides its theoretical interest,
the result provides a means of performing a check of “internal” consistency of
MCMC estimates of the marginal likelihoods, or of the marginal likelihoods
implicit in MCMC estimates of the posterior ofk.

2. The model. Let x = {x1, . . . , xn} be a sequence of (possibly vector-
valued) random variables and assume that thexi ’s are independent and identically
distributed with probability density function (with respect to some underlying
measure) given by

f (xi) =
k∑

j=1

λjpj (xi).(1)

Model (1) is called a “finite mixture distribution.” The mixture weightsλj are the
probabilities that the random variablexi follows any ofk alternative distributions,
with densitiespj (·), called the “mixture components.” In this paper attention is
restricted to the case where the number of componentsk, the weightsλj and
the componentspj (·) are all unknown. It is assumed, however, that the densities
pj (·) belong to some specified parametric family, allowed to vary withj . Thus
pj (xi) = pj (xi |θj ), where θj is the vector of parameters of thej th mixture
component.

As stated, model (1) is somewhat ambiguous, since the meaning of mixture
weights and mixture components is completely specified only whenk is fixed; for
instance, the expression “the weight of the second component” seems to have a
different meaning whenk = 2 than it has whenk = 5. In order to make explicit
the dependence onk of mixture weights and components, rewrite model (1) as
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follows:

f (xi |k,λk, θk) =
k∑

j=1

λjkpjk(xi|θjk), i = 1, . . . , n,

where λk = (λ1k, . . . , λkk)
� and θk = (θ1k, . . . , θkk)

�. On occasionλ = (λ1,

λ2, . . . )
� andθ = (θ1, θ2, . . . )

� will be used. In principle this formulation allows
the parametric family of the component to change withj andk.

Conditional onk, let gi be an integer in{1, . . . , k} denoting the unknown
component from which theith observationxi proceeds. The unobserved vector
g = (g1, . . . , gn)

� has been called the “membership vector” or “allocation vector”
or “configuration vector” of the mixture. If one conditions ong, the distribution
of xi is simply given by thegi th component in the mixture,

f (x|k, g, θk) =
n∏

i=1

pgi,k

(
xi|θgi ,k

)
.

The complete specification of the Bayesian finite mixture model requires
a prior distribution for all the unknown quantities. The prior onk, denoted
by π(k), has support on (a subset of) the positive integers and may involve
a hyperparameter. Givenk, the weightsλk = (λ1k, . . . , λkk)

� are assumed to
have the Dir(α1k, . . . , αkk) prior distribution, where the hyperparametersαk =
(α1k, . . . , αkk)

� are positive constants. Although other priors could be used for the
weights, the Dirichlet distribution has become a standard choice. The allocationsgi

are conditionally independent givenk andλk with Pr[gi = j |k,λk] = λjk. Givenk,
independent priors are usually assumed for the component parametersθjk ,

π(θk|k,φk) =
k∏

j=1

πjk(θjk|φjk),

where φjk is the set of hyperparameters in the prior distribution ofθjk and
φk = (φ1k, . . . , φkk)

�. In general the components’ hyperparametersφjk can vary
with k, so that substantive prior information distinguishing the components and
depending on their numberk can be accommodated. Similarly, the functional form
of the prior πjk(·) may change withj and k, since the component parametric
family may too. Dependence onk is, however, ruled out by the assumptions
introduced in Section 3.

In summary, the joint distribution of the data and all unknowns in the model is

f (x, θ, g,λ, k)

= π(k)π(λk|k,αk)f (g|k,λk)π(θk|k,φk)f (x|k, g, θk).
(2)

In the sequel, attention is focused on a model obtained by integrating the
parametersλk andθk out of model (2). Integrating the weights out of the model
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yields

f (g|k,αk) =
∫

f (g|k,λk)π(λk|k,αk) dλk

=
∫ k∏

j=1

λ
nj

jk

�(α0k)∏k
j=1�(αjk)

k∏
j=1

λ
αjk−1
jk dλk

= �(α0k)

�(α0k + n)

k∏
j=1

�(αjk + nj )

�(αjk)
,(3)

whereα0k = ∑k
j=1αjk , nj = nj (g) = card{Aj } andAj = {i :gi = j} is the index

set of the observations allocated to thej th component. One can also, at least in
principle, integrate the component parameters out of the model,

f (x|k, g,φk) =
∫

f (x|k, g, θk)π(θk|k,φk) dθk

=
∫ n∏

i=1

pgi,k

(
xi|θgi ,k

) k∏
j=1

πjk(θjk|φjk) dθk

=
k∏

j=1

∫ ∏
i∈Aj

pjk(xi |θjk)πjk(θjk|φjk) dθjk(4)

=
k∏

j=1

qjk(x
j |φjk),(5)

where xj = {xi : i ∈ Aj } comprises the observations that, according to the
membership vectorg, are from thej th component andqjk(x

j |φjk) is a short way
of writing the integral in (4), that is, the marginal density of these observations
after the parameterθjk has been integrated out.

In the end the joint distribution of the data and unknowns is given by

f (x, g, k|φ,α) = f (x|k, g,φk)f (g|k,αk)π(k),(6)

whereφ = (φ1, φ2, . . . )
� andα = (α1, α2, . . . )

�. Even though theφ’s andα’s are
fixed constants, I prefer, with a slight abuse of notation, to list them explicitly to
the right of the conditioning bars, as it is important to recall that they enter in the
expressions in (6). The posterior distribution of the number of components is

π(k|x,φ,α) ∝ π(k)f (x|k,φk,αk).

The marginal likelihoodsf (x|k,φk,αk), which will also be denoted asfk for
short, are given by

fk = f (x|k,φk,αk) = ∑
g∈Gk

f (x|k, g,φk)f (g|k,αk), k = 1,2, . . . ,(7)
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where the sum extends over the latticeGk = {g :gi ∈ {1, . . . , k}, i = 1, . . . , n}, the
set of membership vectors with components at mostk. Representation (7) demon-
strates the great advantage of working with model (6) rather than model (2).
Using (7) it becomes possible to compare the contributions of thesame mem-
bership vectorg to different fk ’s. This leads to linking together the marginal
likelihoods and deriving a set of linear inequalities satisfied by them.

3. Linking the marginal likelihoods. In this section it is shown that, under
certain conditions on the prior distribution, the marginal likelihoodsfk in (7)
satisfy a set of constraints. Intuitively, the approach will consist of breaking up
the sum overGk in (7) into many terms and then showing that some of them can
be rewritten as sums overGt with t < k. The following assumptions will be made
throughout.

ASSUMPTIONA.1. The Dirichlet hyperparameter of any mixture weight does
not change with the number of components:

αjk = αjj , j = 1, . . . , k − 1, k = 2,3, . . . .

ASSUMPTION A.2. The properties of any mixture component (parametric
family and parameter prior distribution) do not change with the number of
components:

pjk(·|·) = pjj (·|·), πjk(·|·) = πjj(·|·), φjk = φjj ,

j = 1, . . . , k − 1, k = 2,3, . . . .

The assumptions impose a coherency requirement. Not only thej th component
“remains the same” whether there arek or k′ < k components in the mixture
(Assumption A.2), but the probability distribution of the ratio between the weight
of the j th component and the sum of the weights of the firstk′ components also
remains unchanged (Assumption A.1). Because of Assumptions A.1 and A.2,
when referring to a certain component one can do so without specifying the
number of components in the mixture.

Begin by noticing that the space of membership vectorsGk in (7) can be
partitioned as follows:

Gk =
k⋃

t=1

G�
t , G�

t ∩ G�
s = ∅, t �= s,(8)

whereG�
t is the set of membership vectors that assigns at least one observation to

the t th component and none to higher components:G�
t = {g ∈ Gt :∃ i s.t.gi = t}.
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DEFINITION 3.1. Letf �
t be the portion offt that accounts for the member-

ship vectorsg that allocate at least one observation to componentt and none to
higher components (components lower thant may be empty),

f �
t = ∑

g∈G�
t

f (x|t, g,φt )f (g|t, αt ).(9)

Clearlyf �
1 = f1.

In the sequel use will be made of the following conditions.

CONDITION C.1. For allg ∈ G�
t with t < k,

f (x|k, g,φk) = f (x|t, g,φt ).

CONDITION C.2. For allg ∈ G�
t with t < k,

f (g|k,αk)

f (g|t, αt )
= akt constant.

LEMMA 3.1. Under Assumptions A.1 and A.2, the model of Section 2 satisfies
Conditions C.1and C.2with

akt = �(α0k)

�(α0k + n)

�(α0t + n)

�(α0t )
.(10)

PROOF. To verify Condition C.1, recall (5):f (x|k, g,φk) = ∏k
j=1 qjk(x

j |φjk).
All g ∈ G�

t , t < k, allocate no observations to components larger than thet th one:
xj = ∅, j > t . Therefore the product in (5) extends from 1 tot only. Moreover,
Assumption A.2 implies that, forj ∈ {1, . . . , t}, qjk(·|·) = qjt (·|·) andφjk = φjt .
Hencef (x|k, g,φk) = ∏t

j=1qjt (x
j |φjt ) = f (x|t, g,φt ). As for Condition C.2,

from (3) one has

f (g|k,αk)

f (g|t, αt )
= �(α0k)

�(α0k + n)

k∏
j=1

�(αjk + nj )

�(αjk)

/
�(α0t )

�(α0t + n)

t∏
j=1

�(αjt + nj )

�(αjt)
.

Again, for allg ∈ G�
t andj > t , Aj = ∅ so thatnj = 0. Hence the lastk − t terms

in the product in the numerator are 1. Also, from Assumption A.1,αjk = αjt ,
j = 1, . . . , t . Therefore C.2 holds withakt given by (10). �

The following result may be considered as an appetizer.

THEOREM 3.1. Let fk and f �
t be as in (7) and (9) and assume that Conditions

C.1and C.2hold. Then

fk =
k∑

t=1

aktf
�
t .(11)
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Moreover,

fk = ak,k−1fk−1 + f �
k .(12)

PROOF. Equation (7) can be rewritten asfk = ∑k
t=1

∑
g∈G�

t
f (x|k, g,φk) ×

f (g|k,αk) because of the partition ofGk in (8). Now use Conditions C.1 and C.2
and the definition off �

t in (9) to obtain (11). A little more algebra yields (12):

fk =
k∑

t=1

aktf
�
t = f �

k +
k−1∑
t=1

akt

f (g|k − 1, αk−1)

f (g|k − 1, αk−1)
f �

t

= f �
k +

k−1∑
t=1

ak−1,t

f (g|k,αk)

f (g|k − 1, αk−1)
f �

t

= f �
k + ak,k−1

k−1∑
t=1

ak−1,tf
�
t = ak,k−1fk−1 + f �

k .
�

Theorem 3.1 provides two representations offk . In (11) it is given as a linear
combination of the “no empty last component” portions of the marginal likelihoods
of models with 1,2, . . . , k components. In (12) it is written as the “no empty last
component” portion of the marginal likelihood of thek-components model plus
a fraction of the marginal likelihood of the model with one fewer component.
Much of the remainder of this section is devoted to deriving a result stronger
than Theorem 3.1. This is achieved by exploiting additional symmetry left as
yet untapped; some mixture components may have identical characteristics. The
first step consists in grouping the mixture components into classes of “alike”
components.

DEFINITION 3.2. Say that two mixture componentsj and k are alike or
equivalent ifαjj = αkk , pjj (·|·) = pkk(·|·), πjj (·|·) = πkk(·|·) andφjj = φkk.

The above definition induces a partition of the components into classes of
equivalence, with two components being in the same class if they are alike. It
may help intuition to regard the observations as balls being placed in a sequence
of colored boxes, with boxes of the same color being equivalent. LetC(m) be
themth equivalence class and letm.h be the index of thehth smallest component
in C(m). The classes are ordered so thatC(m) precedesC(r) if m.1 < r.1. Each
class contains either a finite number of components, possibly one, or countably
many components, possibly all. LetN(t) be the number of equivalence classes
formed by components 1 throught . Also, let i(t) be the index of the equivalence
class to which componentt belongs, so thatC(i(t)) is the class of components that
are equivalent to componentt . Finally, let c(m, t) be the number of components
in C(m) that are no larger thant and letc(m) be its total number of components:
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c(m) = supt c(m, t). One extreme case often considered in the literature is that
of just one equivalence class: there is no prior information distinguishing the
components. In this caseN(t) ≡ 1,C(1) = {1,2, . . .}, 1.h = h, i(t) ≡ 1,c(1, t) = t

andc(1) = ∞. The other extreme case arises when each class contains only one
component;N(t) = t , C(m) = {m}, m.1 = m, i(t) = t , c(m, t) = I (m ≤ t) and
c(m) ≡ 1, with I (·) the indicator function.

DEFINITION 3.3. For any membership vectorg ∈ G�
t , define its class

occupancy pattern as the vectorh = (h1, . . . , hN(t))
�, wherehm is the number

of nonempty components in classC(m).

Let Ht :G�
t −→ {0,1,2, . . . }N(t) be the mapping which associates to each

g ∈ G�
t its class occupancy patternh. Since the domain ofHt is G�

t , componentt
is nonempty, hencehi(t) ≥ 1; also, the number of nonempty components cannot
exceed the number of observations. Therefore, the range of the mapping,Ht =
Ht(G

�
t ), consists of theN(t)-dimensional vectorsh satisfying

N(t)∑
m=1

hm ≤ n, hm ∈
{ {1,2, . . . , c(m, t)}, if m = i(t),

{0,1, . . . , c(m, t)}, otherwise.
(13)

If
∑N(t)

m=1 hm < t , some mixture components in{1, . . . , t} are empty. This suggests
that it may be possible to accommodate the class occupancy patternh using fewer
thant components.

DEFINITION 3.4. For any class occupancyh, let s = s(h) be the smallest
integer such that the mixture components from 1 tos comprise at leasthm

components inC(m), m = 1, . . . ,card(h),

s = s(h) = min{r : c(m, r) ≥ hm,m = 1, . . . ,card(h)},(14)

where card(h) is the number of elements ofh. If h ∈ Ht , then card(h) = N(t) and
s ≤ t .

The symbols will be exclusively used to denote the function defined in (14). For
anyh ∈ Ht , s is the smallest number of components needed to accommodateh,
so thath ∈ Hs too, under the convention that trailing 0’s inh are dropped. For
instance, suppose thatt = 6, C(1) ⊃ {1,2,3,6}, C(2) ⊃ {4}, C(3) ⊃ {5}, so that
N(6) = 3. If h = (2,1,0)� then only three components are nonempty ands = 4.
Dropping the trailing 0 inh, h = (2,1)� ∈ H4.

DEFINITION 3.5. LetH t
r = {h ∈ Ht : r = s(h)} be the (possibly empty) sub-

set of class occupanciesHt which can be accommodated withr ≤ t components.
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The set of class occupancies of the membership vectors inG�
t can be partitioned

as follows:

Ht =
t⋃

r=1

H t
r , H t

r ∩ H t
q = ∅, r �= q.(15)

If h ∈ H t
r , thens(h) = r so thath ∈ Hr too, and henceh ∈ H r

r . This shows that

H t
r ⊂ H r

r , r < t.(16)

DEFINITION 3.6. Let Gt
h with t ≥ s(h) be the subset ofG�

t consisting of
membership vectors with class occupancy patternh :Gt

h = H−1
t (h).

Clearly,{Gt
h, h ∈ Ht } is a partition ofG�

t :

G�
t = ⋃

h∈Ht

Gt
h, Gt

h ∩ Gt
v = ∅, h �= v.(17)

Consider next the mappingMt :Gt
h −→ G�

s which removes any gap in the sequence
of nonempty components within each equivalence class. More precisely, given
g ∈ Gt

h, let jm1 < · · · < jm,hm be the corresponding nonempty components in
C(m), m = 1, . . . ,N(t). The mappingMt changes, for allm, the components
jm1, . . . , jm,hm into m.1, . . . ,m.hm, respectively. Denote the range ofMt by
Eh = Mt(G

t
h), noting that from the definition ofGt

h it is immediate thatMt(G
t
h) =

Mr(G
r
h) for any t, r ≥ s(h). The mappingMt does not affect the class occupancy

of a membership vector; thusHs(Eh) = {h}, although in generalEh is a subset of
H−1

s (h) = Gs
h. Because of the equivalence of components within each class, the

mappingMt leaves unchangedf (x, g|t, φt , αt ),

f (x|t, g,φt )f (g|t, αt ) = f (x|t, g̃, φt )f (g̃|t, αt ), g ∈ Gt
h, g̃ = Mt(g).(18)

DEFINITION 3.7. Letγ t
h be defined as follows:

γ t
h =




hi(t)

c(i(t), t)

N(t)∏
m=1

(
c(m, t)

hm

)
, h ∈ Ht ,

0, h /∈ Ht .

(19)

LEMMA 3.2. Any element of Eh is the image under Mt of γ t
h membership

vectors in Gt
h.

Lemma 3.2 says thatGt
h consists ofγ t

h subsets alike toEh, except for which
hm components in each classC(m) are nonempty. Coupled with (18), Lemma 3.2
gives ∑

g∈Gt
h

f (x|t, g,φt )f (g|t, αt ) = γ t
h

∑
g∈Eh

f (x|t, g,φt )f (g|t, αt ).(20)
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DEFINITION 3.8. Letf †
h be the portion offs , s = s(h), that accounts for the

membership vectors inGs
h,

f
†
h = ∑

g∈Gs
h

f (x|s, g,φs)f (g|s, αs), s = s(h).(21)

The following lemma is instrumental in proving the main result, Theorem 3.2.

LEMMA 3.3. The function f �
t defined in (9) can be rewritten as follows:

f �
t =

t∑
r=1

atr

∑
h∈H r

r

γ t
h

γ r
h

f
†
h .(22)

THEOREM 3.2. Suppose that Conditions C.1and C.2are verified. Then

fk =
k∑

r=1

akr

∑
h∈H r

r

γ
r,k
h f

†
h ,(23)

where f
†
h is defined in (21),

γ
r,k
h = 1

γ r
h

k∑
t=r

γ t
h(24)

and γ t
h is given in (19).Moreover,

fk = ak,k−1fk−1 +
k∑

r=1

akr

∑
h∈H r

r

γ k
h

γ r
h

f
†
h .(25)

It is worthwhile to consider explicitly the cases where all components are
equivalent and where no two components are equivalent.

PROPOSITION 3.1. Suppose that Conditions C.1 and C.2 are satisfied and
that all mixture components are equivalent. Then

fk =
k∧n∑
h=1

(
k

h

)
akhf

†
h(26)

= ak,k−1fk−1 +
k∧n∑
h=1

(
k − 1
h − 1

)
akhf

†
h .(27)

PROOF. Recall that if all the components are equivalent thenN(t) ≡ 1,
c(1, t) = t andi(t) ≡ 1. Therefore the class occupancyh is a scalar, the number
of nonempty components in the unique equivalence class. From formula (13) the
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range ofh is Ht = {1, . . . , t ∧ n}, with t ∧ n = min(t, n). From Definition 3.4
the smallest number of components needed to accommodateh is s(h) = h. Hence
H t

r = {r}, r ≤ t ∧ n, andH t
r = ∅, r > t ∧ n. Here the range ofMt is Eh = Gh

h, the
subset ofGh consisting of membership vectors that allocate at least one observation
to each component, while (21) gives the part of the marginal likelihoodfh

corresponding to no empty components,

f
†
h = ∑

g∈Gh
h

f (x|h,g,φh)f (g|h,αh).(28)

In this case expression (23) becomesfk = ∑k∧n
h=1 akhγ

h,k
h f

†
h . From (19) one has

γ t
h = ( t−1

h−1

)
so thatγ h,k

h = ∑k
t=h

( t−1
h−1

) = (k
h

)
and (26) follows. Equation (27) can

be derived from (25) after making substitutions similar to the ones performed to
obtain (26). �

Formula (26) provides a representation of the marginal likelihood ofk

components as a linear combination of the portions of marginal likelihoods
corresponding to no empty components.

PROPOSITION 3.2. Suppose that Conditions C.1 and C.2 hold and that no
two mixture components are equivalent. Then

fk =
k∑

t=1

aktf
�
t(29)

= ak,k−1fk−1 + f �
k .(30)

The proof is left as an exercise for the interested reader.
Note that the conclusion of Proposition 3.2 coincides with that of Theorem 3.1,

if no two components are equivalent there is no additional symmetry to be
exploited beyond what is assumed by Theorem 3.1. The following corollary
summarizes some special cases.

COROLLARY 3.1. For the model of Section 2,under Assumptions A.1and A.2,
one has the following:

(i) representations (23) and (25) hold with akr as given in (10);
(ii) in the special case where all mixture components are equivalent with the

Dirichlet prior on the mixture weights having hyperparameter αjk = α, one has

fk =
k∧n∑
h=1

(
k

h

)
�(kα)

�(kα + n)

�(hα + n)

�(hα)
f

†
h(31)

=
n∏

i=1

(
kα − α − 1+ i

kα − 1+ i

)
fk−1 +

k∧n∑
h=1

(
k − 1
h − 1

)
�(kα)

�(kα + n)

�(hα + n)

�(hα)
f

†
h ;(32)
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(iii) in case (ii) above with α = 1 one has

fk =
k∧n∑
h=1

k!
h!(k − h)!

(k − 1)!
(k − 1+ n)!

(h − 1+ n)!
(h − 1)! f

†
h

= k − 1

k + n − 1
fk−1 +

k∧n∑
h=1

(k − 1)!
(h − 1)!(k − h)!

(k − 1)!
(k − 1+ n)!

(h − 1+ n)!
(h − 1)! f

†
h .

The representations of the marginal likelihoodsfk provided in Theorems
3.1 and 3.2 and its corollaries lead to a set of linear constraints on thefk ’s.
Solving the triangular system (11) for thef �

t ’s in terms of thefk ’s, one obtains (12)
f �

k = fk −ak,k−1fk−1. As thef �
t ’s are, from equation (9), sums of strictly positive

terms, this implies that

fk > ak,k−1fk−1.(33)

The constraints (33) hold no matter how the mixture components partition into
classes of equivalence. In the case of no equivalent components treated in
Proposition 3.2, the constraints (33) cannot be made any stronger, since by how
muchfk exceedsak,k−1fk−1, that is,f �

k , depends on vectors which allocate at
least one observation to componentk. At the opposite extreme of all equivalent
components, dealt with in Proposition 3.1, stronger constraints are obtained by
solving the triangular system (26) for thef

†
h ’s in terms of thefk ’s, and then setting

the solution to be positive. These constraints, explicitly derived in formula (36),
are stronger than (33) because, of all thef

†
h ’s in the sum

∑k∧n
h=1 in (27), onlyf

†
k

involves vectors allocating observations to thekth component. As a very special
case, consider equation (26) withk > n. Then fk is a linear combination of
f

†
1 , . . . , f †

n . However,f †
1 , . . . , f †

n can be obtained by solving (26) withk = 1,

. . . , n. Therefore,fk with k > n is completely determined by the marginal
likelihoodsf1, . . . , fn; this is a much stronger result than is obtainable when no
components are equivalent. The general case where only some components are
equivalent is covered by Theorem 3.2. As usual the constraints (33) hold, but,
contrary to the case of all equivalent components, one cannot solve system (23)
for thef

†
h ’s. Nevertheless, there might be a function of thef

†
h ’s, finer thanf �

t is,
such that system (23) can be solved for it.

The remainder of this section deals exclusively with the case where all mixture
components are equivalent. The triangular system (26) withk = 1, . . . , n can be
rewritten as

fk = f
†
k +

k−1∑
t=1

bktf
†
t , k ≤ n,(34)

with bkt = (k
t

)
akt . Denote byBn the matrix of coefficients of system (34). In this

case one can provide a simple explicit expression for the elements ofB−1
n . The

following lemma is needed.
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LEMMA 3.4. Consider the q-dimensional unit lower triangular matrix B =
{bkt} with bkt = (k

t

)
akt and akt as in Condition C.2. Let C be the unit lower

triangular matrix with generic element ckt = (−1)k+t bkt . Then B−1 = C.

PROPOSITION 3.3. Suppose that Conditions C.1 and C.2 are satisfied and
that all mixture components are equivalent. Then

f
†
k = fk +

k−1∑
t=1

(−1)k+t

(
k

t

)
aktft , k ≤ n.(35)

PROOF. The matrix Bn of the coefficients of system (34) is unit lower
triangular with generic elementbkt = (k

t

)
akt . From Lemma 3.4, the inverseB−1

n

has generic elementbkt = (−1)k+t
(k
t

)
akt , k > t , and the result follows. �

The following corollary follows immediately from Proposition 3.3 and summa-
rizes some special cases.

COROLLARY 3.2. For the model of Section 2,under Assumptions A.1 and A.2,
one has the following:

(i) if all components are equivalent with Dirichlet prior on the weights having
hyperparameter α, then

f
†
k =

k∑
t=1

(−1)k+t

(
k

t

)
�(kα)

�(kα + n)

�(tα + n)

�(tα)
ft , k ≤ n;

(ii) in case (i) above with α = 1,

f
†
k =

k∑
t=1

(−1)k+t k!
t !(k − t)!

(k − 1)!
(k − 1+ n)!

(t − 1+ n)!
(t − 1)! ft , k ≤ n.

Briefly returning to the topic of the inequality constraints on thefk ’s, from (35)
one has

fk >

k−1∑
t=1

(−1)k+t+1
(

k

t

)
aktft , k ≤ n.(36)

The following section discusses possible uses of these constraints; the present
one concludes by addressing the problem of expressingfk with k > n in
Proposition 3.1 in terms off1, . . . , fn.

PROPOSITION 3.4. Suppose that Conditions C.1 and C.2 are satisfied and
that all mixture components are equivalent. Then

fk =
n∑

t=1

(−1)n−t

(
k

t

)(
k − t − 1

n − t

)
aktft , k > n.(37)
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4. Applications. This section explores some uses of the representations of the
marginal likelihoods derived in Section 3.

1. When all mixture components are equivalent, a proper prior on the number of
components is necessary in order to have a proper posterior.

2. Bounds on the posterior probability of k mixture components can be derived
that hold for any sample of given size and for any family of component
distributions.

3. An “internal” consistency check of Markov chain Monte Carlo estimates of the
marginal likelihoodsf (x|k) can be performed by verifying that they satisfy
the constraints. Estimates that fail the check can seemingly be improved by
modifying them so that the constraints are satisfied.

4. Expressions can be obtained for the prior and posterior distributions of the
number of nonempty components in the mixture, that is, the number of
components to which observations are allocated.

Throughout this section attention is focused on the case where all mixture
components are equivalent, for a variety of reasons: it is important in practice,
it is amenable to a notationally simpler treatment and it leads to stronger results.
In order to lighten the notation, the explicit indication of the hyperparameters is
abandoned in most of this section, so, for instance, I will writeπ(k|x) andf (x|k)

in place ofπ(k|x,φ,α) andf (x|k,φk,αk). Fortran and S-PLUS programs used
for the computations in this section are available from the author upon request.

4.1. Proper posterior of k. From Bayes’ theorem, the posterior distribution of
the number of components is

π(k|x) = π(k)f (x|k)∑∞
j=1π(j)f (x|j)

= π(k)
∑k∧n

h=1
(k
h

)
akhf

†
h∑∞

j=1π(j)
∑j∧n

h=1

(j
h

)
ajhf

†
h

,(38)

where the representation of the marginal likelihoods given in (26) was used. Since
the series in the denominator of (38) is of positive terms, one can change the order
of summation to obtain

π(k|x) =
∑k∧n

h=1f
†
h π(k)

(k
h

)
akh∑n

h=1f
†
h {∑∞

j=h π(j)
(j
h

)
ajh}

.(39)

A proper prior distributionπ(k) ensures that the posterior is also a proper
probability distribution. The following theorem shows that, when all mixture
components are equivalent, this condition is not only sufficient but also necessary.

THEOREM 4.1. Consider the model of Section 2, under Assumptions
A.1 and A.2, and suppose that all mixture components are equivalent. Then the
posterior π(k|x) of the number of components is a proper distribution if and only
if the prior π(k) is proper.
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PROOF. The posteriorπ(k|x) is proper if and only if the series in braces in
the denominator of (39) converges. Using formula (10) forajh the series become

�(α0h + n)

�(α0h)h!
∞∑

j=h

j !
(j − h)!

�(α0j )

�(α0j + n)
π(j), h = 1, . . . , n.

Clearly, if the above series converges whenh = n, it also converges forh < n.
Thusπ(k|x) is proper if and only if the following series converges:

∞∑
j=n

j

α0j + n − 1

j − 1

α0j + n − 2
· · · j − n + 1

α0j

π(j).(40)

Since all components are equivalent,α0j = jα for someα > 0. Lettingcj denote
the generic term of series (40), it is easy to see that

π(j)

(nα + n − 1)n
< cj <

π(j)

αn
.(41)

To prove the right-hand side inequalitynote that each of then terms in the product
in (40) is smaller than 1/α. For the left-hand side inequality, note that each of
those terms is larger than(j − n + 1)/(jα + n − 1), which in turn is no smaller
than 1/(nα + n − 1). If the prior onk is proper, it then follows, from the right-
hand side inequality of (41) and the comparison test for series, that the posterior
is also proper. Similarly, if the prior is not proper, the posterior is also seen to be
improper, by an application of the comparison test to the left-hand side inequality
of (41). �

4.2. Bounds on the posterior of k. In this subsection it is assumed that the
prior distribution on the number of components is proper. A bound onπ(k|x)

results from the maximization of the right-hand side of (39) with respect to
{f †

h }nh=1 subject tof †
h ≥ 0. The following result simplifies computations.

PROPOSITION 4.1. Among the vectors that maximize the right-hand side
of (39) there is at least one vector {f †

h }nh=1 with only one nonzero component f
†
t ,

with t ∈ {1, . . . , k ∧ n}.

Note that the nonzero component of the maximizer in Proposition 4.1 need not
be the(k ∧ n)th. Also, note that, as a function of{f †

h }nh=1, the right-hand side
of (39) is constant over lines through the origin; that is, it is homogeneous of zero
degree, so that in computing it one can setf

†
t = 1. Proposition 4.1 restricts the set

of vectors{f †
h }nh=1 one has to compute to find a maximizer of (39) to thek ∧ n

vectors with all but one component equal to 0; one can simply compute the right-
hand side of (39) for each of them and then pick the one that yields the maximum
value.
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TABLE 1
Posterior distribution of k which gives maximum probability to k = 3, assuming that n = 82,

π(k) = k−1
max, k = 1, . . . , kmax= 30 and α = 1

k 1 2 3 4 5 6 7 8 9

π(k|x) 0 0 0.8623 0.1217 1.42× 10−2 1.63× 10−3 1.94× 10−4 2.44× 10−5 3.26× 10−6

The bound thus obtained holds, whatever the distributional form of the
components in the mixture, as long as they are all equivalent. Moreover, it only
depends on the data through the sample sizen. As an example, consider the
posterior ofk for a sample of sizen = 82, with a discrete uniform prior onk
over {1, . . . , kmax = 30} andαjk = α = 1 for all j, k. A maximizer of (39) with
k = 3 isf

†
3 = 1,f †

h = 0,h �= 3. The posterior ofk corresponding to the maximizer
is reported in Table 1. The bound isπ(3|x) ≤ 0.8623. These numerical results
remain essentially unchanged for any discrete uniform prior withkmax≥ 10.

Table 2 contains bounds onπ(k|x) for several values ofk andn, under a uniform
prior onk over{1, . . . , kmax= 50} andα = 1. Tables 3 and 4 contain bounds when
α = 2 andα = 0.5, respectively.

Tables 2–4 are still correct, at the reported precision, for any discrete uniform
prior on k with kmax > 50. Since the bounds involve the data only through the
sample sizen, they provide a glimpse of the strength of the prior distribution. Thus,
it is to be expected that, for fixedk, the bounds become weaker as sample size
increases. Perhaps less obvious is that, for fixed sample size, the bounds become
stronger ask increases. An intuitive explanation is as follows. Suppose that the
model with k components has considerable posterior mass. The posterior mass
of the model withk + 1 components is at least in part due to thek + 1 copies
of Gk embedded inGk+1, all corresponding to at least one empty component.
How large this part is depends on the prior distribution, but it may well increase
with k since the larger space containsk + 1 copies of the smaller one. The values
of the hyperparametersαjk = α also greatly affect the bounds, as one can see
by comparing Tables 2–4. Increasingα leads to Dirichlet distributions that make

TABLE 2
Bounds on π(k|x) for several sample sizes n, π(k) = k−1

max, k = 1, . . . , kmax= 50,α = 1

k

n 1 2 3 4 5 6 7 8 9 10

20 0.9000 0.7286 0.5299 0.3456 0.2880 0.2419 0.1954 0.1756 0.1505 0.1335
50 0.9600 0.8847 0.7826 0.6645 0.5414 0.4233 0.3175 0.3119 0.2835 0.2402

100 0.9800 0.9412 0.8858 0.8170 0.7385 0.6541 0.5677 0.4828 0.4023 0.3322
500 0.9960 0.9880 0.9762 0.9607 0.9417 0.9193 0.8938 0.8656 0.8350 0.8022
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TABLE 3
Bounds on π(k|x) for several sample sizes n, π(k) = k−1

max, k = 1, . . . , kmax= 50,α = 2

k

n 1 2 3 4 5 6 7 8 9 10

20 0.9756 0.8976 0.7636 0.5932 0.4168 0.2958 0.2718 0.2084 0.1915 0.1554
50 0.9956 0.9797 0.9473 0.8963 0.8268 0.7414 0.6447 0.5426 0.4411 0.3459

100 0.9989 0.9945 0.9852 0.9695 0.9465 0.9156 0.8766 0.8299 0.7762 0.7167
500 1.0000 0.9998 0.9993 0.9986 0.9975 0.9958 0.9937 0.9908 0.9873 0.9830

very small mixture weights less probable. In turn this reduces the probability mass
assigned by the prior ong to membership vectors with empty components. The
effect is to “loosen” the link between the marginal likelihoods of different numbers
of components, thus making the bounds weaker. Therefore, a more informative
prior on the mixture weights leads to weaker constraints on the posterior ofk.

4.3. Estimation. In Section 3 the set of constraints (36) on the marginal
likelihoods was derived for the case where all components are equivalent. These
constraints can be used to perform a check of internal consistency of Markov
chain Monte Carlo estimates of the marginal likelihoodsf (x|k), or of the marginal
likelihoods implied by MCMC estimates of the posterior ofk. The easiest way to
check whether the constraints (36) are satisfied is to compute thef

†
k in (35) and see

whether they are positive. As an example, Richardson and Green (1997) estimate
a Bayesian mixture of univariate normals for the galaxy data set. They assume
that all mixture components are equivalent, the prior onk is π(k) = k−1

max, k = 1,

. . . , kmax = 30, and the Dirichlet distributions on weights have hyperparameters
αjk = 1. They report the reversible jump MCMC estimate ofπ(k|x) contained
in Table 5. Since the prior distribution ofk is uniform, the marginal likelihoods
are proportional to the posterior ofk. Substituting the above estimates ofπ(k|x)

for the ft ’s in (35), after disregarding the estimate fork ≥ 16, produces, up to a
proportionality constant, thef †

k ’s implicit in Richardson and Green’s estimate.

TABLE 4
Bounds on π(k|x) for several sample sizes n, π(k) = k−1

max, k = 1, . . . , kmax= 50,α = 0.5

k

n 1 2 3 4 5 6 7 8 9 10

20 0.7342 0.4684 0.2734 0.2575 0.1863 0.1783 0.1449 0.1343 0.1202 0.1030
50 0.8354 0.6477 0.4709 0.3229 0.2983 0.2618 0.2096 0.2047 0.1782 0.1664

100 0.8847 0.7456 0.6032 0.4703 0.3546 0.3166 0.2972 0.2610 0.2236 0.2189
500 0.9491 0.8833 0.8090 0.7306 0.6515 0.5742 0.5006 0.4320 0.3691 0.3392
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TABLE 5
Reversible jump MCMC estimate of π(k|x) for the galaxy data set reported by

Richardson and Green (1997)

k 1 2 3 4 5 6 7 8

π̂(k|x) 0.000 0.000 0.061 0.128 0.182 0.199 0.160 0.109

k 9 10 11 12 13 14 15 ≥ 16

π̂(k|x) 0.071 0.040 0.023 0.013 0.006 0.003 0.002 0.003

These quantities are reported in Table 6. Three values off̂
†
k are negative, for

k = 12,13 and 15. However, these violations are rather slight, almost within
rounding error and occur for values ofk that account for little posterior probability
and are, therefore, more difficult to estimate. Thus, if anything, the check gives
support to Richardson and Green’s estimate.

Checking whether MCMC estimates off (x|k) or π(k|x) satisfy the constraints
only makes marginal use of the information supplied by them. This information
can be more fully exploited by incorporating it in the estimation procedure. For
instance, one could estimate thef

†
k ’s by MCMC methods and then use (26) to

transform those estimates into estimates of the marginal likelihoodsfk ’s. I will
return to this point at the end of Section 4.4. Here I only sketch some approaches
to transform estimates of thefk ’s into estimates that satisfy the inequalities (36).

Let f = (f (x|2), . . . , f (x|kmax))
� be the vector of marginal likelihoods of the

models withk components,k = 2, . . . , kmax. Also, let̂f be the corresponding vector
of MCMC estimates. When the mixture components parameters have conjugate
prior distributions,f1 = f (x|1) can be computed exactly; if this is not the case,
the vectorsf and̂f also includef (x|1) and its estimate. The estimatesf̂ might be
directly available, as in the approaches of Nobile (1994), Carlin and Chib (1995),

TABLE 6
Estimates, up to a proportionality constant, of f

†
k implicit in Richardson and Green (1997)

MCMC estimate of π(k|x), galaxy data set

k 1 2 3 4 5 6 7 8

f̂
†
k 0.0000 0.0000 0.0610 0.1194 0.1532 0.1413 0.0792 0.0352

k 9 10 11 12 13 14 15

f̂
†
k 0.0167 0.0015 0.0035 −0.0005 −0.0008 0.0013 −0.0006
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Raftery (1996) and Roeder and Wasserman (1997). Alternatively, they may only
be computed up to a proportionality constant, from the prior on the number of
components and an estimatêπ(k|x) of its posterior, as in the approaches of Phillips
and Smith (1996), Richardson and Green (1997) and Stephens (2000). In this latter
case, the constraint proceeding from

∑kmax
k=1 π̂(k|x) = 1 is disregarded. Estimates of

the variability of̂f can be computed, either by replicating the MCMC runs or by
using single run methods, such as batching and time series methods [see, e.g.,
Chapter 6 of Ripley (1987) or Geyer (1992)]. It is assumed that as the MCMC
sample size increases, the distribution off̂ approaches a multivariate normal

	̂−1/2(̂f − f )
D−→ N(0, I ),(42)

where	̂ is a consistent estimate of the variance–covariance matrix off̂. Let R be
the region where the constraints (36) are satisfied. Iff̂ /∈ R, an estimate off which
satisfies the constraints is the maximizer overR of the likelihoodL(f ) associated
with (42). From a Bayesian viewpoint, this is equivalent to using	̂ as a plug-in
estimate of	, employingIR(f ) as the prior distribution off and estimatingf by
the mode of its posterior distribution, which is proportional to

exp
{−1

2(f − f̂ )�	̂−1(f − f̂ )
}
IR(f ).(43)

The posterior mode is the point inR which is closest tôf with respect to the
metric induced bŷ	. Hence, unlesŝf ∈ R, the mode will occur on the boundary
of R, where the multivariate normal contours are tangent toR. The maximization
of (43) is equivalent to the minimization of(1/2)f�	̂−1f − f̂ 	̂−1f subject to

[b2
...b3

... · · · ...bkmax]f ≥ −b1f1, where the vectorbk has generic entrybkt =
(−1)k+t

(k
t

)
akt I (k ≥ t), t = 2, . . . , kmax. This is a simple problem in quadratic

programming, for which software is publicly available; for instance, Goodall
(1995) provides a basic S-PLUS implementation. Table 7 contains thef which
maximizes (43) witĥf equal to the estimates of Richardson and Green (1997)
given in Table 5.

TABLE 7
Mode of (43),galaxy data, f̂ is the Richardson and Green (1997)estimate

given in Table 5

k 1 2 3 4 5 6 7 8

fk 0.000 0.000 0.061 0.128 0.181 0.198 0.160 0.109

k 9 10 11 12 13 14 15

fk 0.071 0.041 0.023 0.013 0.007 0.003 0.002
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TABLE 8
Estimate of the mean of (43),galaxy data, f̂ is the Richardson and Green

(1997)estimate given in Table 5. The estimate has been rescaled
in order that

∑
k fk = 1

k 1 2 3 4 5 6 7 8

fk 0.000 0.000 0.061 0.126 0.182 0.197 0.156 0.109

k 9 10 11 12 13 14 15 ≥ 16

fk 0.069 0.040 0.023 0.013 0.008 0.005 0.003 0.008

Another estimate off, which satisfies the constraints (36) and does not lie on
the boundary ofR, is the mean of the distribution (43), which can be estimated by
averaging independent draws from the posterior (43). However, drawing from the
N(̂f, 	̂) distribution and using a rejection technique can be very inefficient, ifR is
in the tail of the distribution. When this occurs, Gibbs sampling provides a more
efficient alternative; working in terms of the distribution of thef †’s, a multivariate
normal restricted to the positive orthant, leads to full conditional distributions that
are univariate normals restricted to the positive reals. Table 8 contains an estimate
of the posterior mean computed from 20,000 draws from (43), obtained using
rejection, witĥf being Richardson and Green’s (1997) estimate for the galaxy data.
On the whole, the mean of (43) agrees with the estimate of Richardson and Green
(1997), although it tends to give some more weight to models with a larger number
of components. Table 9 displays thef

†
k ’s corresponding to the estimate of the mean

of (43) given in Table 8. These estimates of thef
†
k ’s agree with those reported in

Table 6 for values ofk up to 9, then they drop off much more regularly while
remaining positive.

4.4. The number of nonempty components. Bayesian and classical analyses
of the same data may lead to widely contrasting conclusions about the number

TABLE 9
Estimates of f

†
k corresponding to the mean of (43) given in Table 8

k 1 2 3 4 5 6 7 8

f̂
†
k 0.0000 0.0000 0.0612 0.1180 0.1536 0.1395 0.0766 0.0370

k 9 10 11 12 13 14 15

f̂
†
k 0.0146 0.0033 0.0019 0.0007 0.0003 0.0002 0.0002
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of mixture components. A stylized account of a typical situation is as follows:
a classical analysis identifies̃k components as sufficient to provide a good fit to
the data. On the other hand, the posterior of the number of components assigns
considerable probability to values ofk > k̃. Moreover, the posterior predictive
distribution, conditional onk, of the next observation remains essentially the same
for all k ≥ k̃. Much of this divergence of conclusions derives from the use of the
same term, in the two approaches, to denote different entities. In the Bayesian
approach the parameterk denotes the number of components in the mixture
model, not the number of components from which data are actually observed. It
is instead this second meaning that is attached to “number of components” in the
classical approach; accordingly, determining the number of components amounts
to finding k such thatk mixture components afford a good fit of the data. The
difference between the two approaches can be highlighted by positing a very small
sample size, sayn = 3; the classical approach will point at just one component,
while the posterior ofk will be much the same as the prior. In the Bayesian
approach it is quite possible for the posterior ofk to assign much probability to
values larger than the number of components from which the data have originated.
In fact, in Section 4.2 it was shown that, for a certain prior distribution, when
n = 82 the posterior probability of three components is no larger than 0.8623,
whatever the data are. This occurs because the posterior probabilities of four
and more components cannot be too small, since they also account for allocation
vectors with only three nonempty mixture components. As noted in Section 4.2,
the strength of this link depends on the prior distribution of the mixture weights
and it tends to abate as the sample size increases. However, the usefulness of the
posterior ofk, as a tool for selecting or estimating the number of components
in a mixture, tends to be put in question by the fact that it may, to a very large
extent, reflect probability mass associated with membership vectors that allocate
observations to fewer thank components.

In summary, while the classical approach addresses the question:

Q1. How many components are needed to fit the data well?

The posterior ofk is suited to answer:

Q2. How many components are likely to be in the model that generated the
data?

While Q2 is concerned with the number of components in the mixture, Q1 deals
with the number ofnonempty components. Since the Dirichlet prior on the mixture
weights determines how likely empty components are to arise, it appears that the
answer to Q2 depends on the prior specification more than the answer to Q1. This
section seeks to pursue in a Bayesian way the objective of the classical approach,
by deriving an expression for the posterior distribution of the number of nonempty
components.
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Let h denote the number of nonempty components in the mixture. The joint
prior distribution of the number of componentsk and the membership vectorsg
induces a prior onh. Sinceh ≤ k, one has

f (h) =
∞∑

k=h

π(k)f (h|k), h = 1, . . . , n.

Let G̃k
h be the set of all membership vectors inGk which assign observations to

exactlyh components,

G̃k
h =

k⋃
t=h

Gt
h.(44)

Then the conditional distribution ofh given k can be computed by summing
f (g|k,αk) overG̃k

h,

f (h|k) = ∑
g∈G̃k

h

f (g|k,αk), h = 1, . . . , k ∧ n.(45)

The following proposition provides a representation off (h|k) which makes its
computation feasible for sample sizes up to about 100; for larger samples sizes an
estimate can be obtained by stochastic simulation.

PROPOSITION 4.2. Consider the model of Section 2 under Assumptions
A.1 and A.2 and suppose that all mixture components are equivalent. Let d =
d(n1, . . . , nh) be the number of distinct entries in the vector (n1, . . . , nh)

�; also
let m1, . . . ,md be the frequencies of the distinct nj ’s in (n1, . . . , nh)

�. Then

f (h|k) = �(kα)

�(kα + n)

(
k

h

)

× ∑
0< n1 ≤ · · · ≤ nh

n1 + · · · + nh = n

(
n

n1, . . . , nh

)(
h

m1, . . . ,md

)

×
h∏

j=1

�(α + nj )

�(α)
, h = 1, . . . , k ∧ n.

(46)

Note that the sum in (46) does not involvek; this allows one to easily obtain
f (h|k) with k > h from f (h|k) with k = h. Therefore, one only needs to compute
the sum in (46) at mostn times. The total number of terms in thesen sums is the
numberp(n) of partitions ofn into integer summands without regard to order;
tabulated values ofp(n) are in Table 24.5 of Abramowitz and Stegun (1964).
Figure 1 contains a plot of the prior distribution ofh corresponding to the prior
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FIG. 1. Prior distribution of the number h of nonempty components when n = 82, π(k) =
1/k−1

max, k = 1, . . . , kmax= 30 and α = 1.

used by Richardson and Green (1997) for the galaxy data. The computation was
done in Fortran and took six minutes on a PC with a 1.1 GHz processor.

The posterior distribution of the number of nonempty components can be
written as

f (h|x) =
∞∑

k=h

π(k|x)f (h|k, x), h = 1, . . . , n.(47)

The following result provides a representation of the posterior ofh in terms of
the f

†
h ’s, the portions of the marginal likelihoods corresponding to no empty

components.

PROPOSITION 4.3. Consider the model of Section 2 under Assumptions
A.1 and A.2 and suppose that all mixture components are equivalent. Then

f (h|x) = f
†
h

f (x)

∞∑
k=h

π(k)

(
k

h

)
�(kα)

�(kα + n)

�(hα + n)

�(hα)
, h = 1, . . . , n.(48)

Since the prior distribution ofh is only specified indirectly, through the priors
onk and the mixture weights, one may prefer to consider, rather than the posterior
of h, the marginal likelihoodf (x|h) for h nonempty components. This quantity is
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FIG. 2. Estimates of f (x|k) and f (x|h) for the galaxy data, both normalized to sum to 1. Circles
denote the estimate of f (x|k) reported in Table 8; dots are the estimate of f (x|h) obtained using

the f
†
h ’s given in Table 9.

readily derived from (48):

f (x|h) = f
†
h

f (h)

∞∑
k=h

π(k)

(
k

h

)
�(kα)

�(kα + n)

�(hα + n)

�(hα)
.

Estimates off (x|h) are obtained by replacing thef †
h ’s with the estimates

produced in Section 4.3. Figure 2 displays estimates off (x|h), normalized to sum
to 1, along with normalized estimates of the marginal likelihoodsf (x|k), for the
galaxy data using the prior of Richardson and Green (1997). As one would expect,
the marginal likelihoods of the number of nonempty components favor a smaller
number of components than the posterior ofk, effectively narrowing the plausible
range of normal components in the observed data to between three and eight.

As a conclusion, note that the path here followed from estimates of thefk ’s to
estimates of thef †

h ’s to estimates off (x|h) can also be travelled in the opposite
direction. For instance, it would be immediate to obtain estimates off (h|x) using
Richardson and Green’s (1997) reversible jump algorithm. These could then be
turned, using (48), into estimates, up to a proportionality constant, of thef

†
h ’s

and finally estimates of the marginal likelihoodsfk automatically satisfying the
constraints (36).
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APPENDIX: PROOFS

PROOF OFLEMMA 3.2. The inverse image underMt of g̃ ∈ Eh consists of
all theg ∈ Gt

h which differ from g̃ only in that the nonempty components in each
class can be any of the components in the class that are smaller thant , rather
than being the first ones. Ifm �= i(t), there arec(m, t) components inC(m)

no larger thant , of which only hm are nonempty; this yields
(c(m,t)

hm

)
ways of

selecting the nonempty components out of thec(m, t) candidates. AsGt
h ⊂ G�

t ,
componentt is nonempty; this leaveshi(t) − 1 nonempty components to be
selected amongc(i(t), t) − 1 candidates inC(i(t)), yielding

(c(i(t),t)−1
hi(t)−1

)
possible

selections. Multiplying together the numbers of possible selections in theN(t)

classes yields (19).�

PROOF OF LEMMA 3.3. Use in (9) the partition ofG�
t given in (17) to

obtainf �
t = ∑

h∈Ht

∑
g∈Gt

h
f (x|t, g,φt )f (g|t, αt ). Replace the inner sum with the

expression in (20):f �
t = ∑

h∈Ht
γ t
h

∑
g∈Eh

f (x|t, g,φt )f (g|t, αt ). Next recall that
Eh ⊂ G�

s and use C.1 and C.2:f �
t = ∑

h∈Ht
atsγ

t
h

∑
g∈Eh

f (x|s, g,φs)f (g|s, αs).
Then use again (20) and then (21) to producef �

t = ∑
h∈Ht

ats(γ
t
h/γ s

h )
∑

g∈Gs
h
f (x|

s, g,φs)f (g|s, αs) = ∑
h∈Ht

ats(γ
t
h/γ s

h)f
†
h . From the partition ofHt in (15) it

follows thatf �
t = ∑t

r=1
∑

h∈H t
r
atr (γ

t
h/γ r

h )f
†
h = ∑t

r=1atr

∑
h∈H r

r
I (h ∈ H t

r )(γ
t
h/

γ r
h )f

†
h , where the second equality uses the relationship in (16). Now (22) follows

since, for allh ∈ H r
r , I (h ∈ H t

r ) = 0 implies thatγ t
h = 0. To see this consider

h ∈ H r
r \H t

r . Since s(h) = r , h ∈ Ht would imply h ∈ H t
r contrary to the

hypothesis; henceh /∈ Ht and from Definition 3.7γ t
h = 0. �

PROOF OF THEOREM 3.2. Substitute formula (22) in (11) to obtainfk =∑k
t=1 akt

∑t
r=1atr

∑
h∈H r

r
(γ t

h/γ r
h )f

†
h . Next recall thataktatr = akr and inter-

change the order of the two outer sums,fk = ∑k
r=1akr

∑k
t=r

∑
h∈H r

r
(γ t

h/γ r
h )f

†
h =∑k

r=1akr

∑
h∈H r

r
f

†
h (1/γ r

h )
∑k

t=r γ t
h. Finally, use (24) to produce (23). To

prove (25) replacef �
k in (12) with the expression provided by (22) witht = k.

�

PROOF OF COROLLARY 3.1. Part (i) follows from Lemma 3.1 and Theo-
rem 3.2. Equations (31) and (32) of part (ii) are obtained by replacingakh in (26)
and (27) with the expression given in (10) and usingα0k = kα. Part (iii) follows
straightforwardly from part (ii) withα = 1. �

PROOF OF LEMMA 3.4. Let D = {dkt} with D = BC. Then D is lower
triangular with generic elementdkt = ∑q

r=1bkrcrt = ∑q
r=1(−1)r+tbkrbrt =∑k

r=t (−1)r+t bkrbrt , with the last equality holding sinceB is lower triangular.
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It then immediately follows thatD has unit diagonal elements, since so hasB.
Therefore, it only remains to show thatdkt = 0, k > t . Now use the definition
of bkt and Condition C.2,

dkt =
k∑

r=t

(−1)r+t

(
k

r

)
akr

(
r

t

)
art

=
k∑

r=t

(−1)r+t k!
r!(k − r)!

r!
t !(r − t)!akt =

(
k

t

)
akt

k∑
r=t

(−1)r+t

(
k − t

k − r

)
.

Next, change the summation index toj = r − t to obtain

dkt =
(

k

t

)
akt

k−t∑
j=0

(−1)j+2t

(
k − t

k − t − j

)
=

(
k

t

)
akt

k−t∑
j=0

(−1)j
(

k − t

j

)
= 0,

as the sum
∑

j is null because of a basic property of binomial coefficients [see,
e.g., Abramowitz and Stegun (1964), page 10, Property 3.1.7].�

PROOF OFPROPOSITION3.4. In the formula forfk given in (26) withk > n,
replacef †

t with the expression in (35) to produce

fk =
n∑

t=1

(
k

t

)
akt

t∑
r=1

(−1)t+r

(
t

r

)
atrfr

=
n∑

r=1

akrfr

n∑
t=r

(−1)t+r

(
k

t

)(
t

r

)

=
n∑

r=1

akrfr

(
k

r

) n∑
t=r

(−1)t+r

(
k − r

k − t

)
.(49)

Call S the inner sum and rewrite it by changing the summation index toj = t − r

and making use of
( k−r
k−r−j

) = (k−r
j

)
,

S =
n−r∑
j=0

(−1)j
(

k − r

j

)
.(50)

Now, if n − r is even, addn − r − 2j to the exponent of(−1). This leavesS
unchanged, so thatS = ∑n−r

j=0(−1)n−r−j
(k−r

j

) = (k−r−1
n−r

)
, where the last equality

follows from a property of the binomial coefficients [see, e.g., Abramowitz and
Stegun (1964), Section 24.1.1, Relations II.B]. Ifn − r is odd, premultiply the
sum

∑
j in (50) by −1 and addn − r − 2j to the exponent of(−1), yielding

S = −(k−r−1
n−r

)
. Thus, in general,S = (−1)n−r

(k−r−1
n−r

)
. Finally, substituting the

above expression ofS for the sum
∑

t in the right-hand side of (49) and changing
the index fromr to t yields (37). �
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PROOF OFPROPOSITION4.1. Rewrite (39) as follows:

π(k|x) =
k∧n∑
h=1

f
†
h dh

/ n∑
h=1

f
†
h bh,(51)

where dh = π(k)
(k
h

)
akh and bh = ∑∞

j=h π(j)
(j
h

)
ajh. It is immediate that a

maximizer hasf †
h = 0, h > k ∧ n, for otherwiseπ(k|x) could be increased by

simply setting these components to 0 and leaving the other ones unchanged.
Suppose next that{f †

h }nh=1 has at least two nonzero components: there exist

t, r ∈ {1, . . . , k ∧ n}, t �= r , such thatf †
t �= 0, f †

r �= 0. Without loss of generality,
assume that

br

bt

≥ dr

dt

.(52)

Define a new vector{f̃h}nh=1 with f̃t = f
†
t + (br/bt )f

†
r , f̃r = 0, f̃h = f

†
h ,h �= t, r .

One can easily verify that replacingf †
h with f̃h in the right-hand side of (51)

leaves the denominator unchanged, while (52) ensures that the numerator does not
decrease;

∑k∧n
h=1 f̃hdh ≥ ∑k∧n

h=1f
†
h dh. Therefore one can replacef †

h with f̃h in (51),
that is, select one of the nonzero components, set it to 0 and correspondingly adjust
the other one, without decreasingπ(k|x). An appeal to induction completes the
proof. �

PROOF OFPROPOSITION 4.2. Substituting in (45)f (g|k,αk) from (3) and
using the fact that all components are equivalent, one obtains

f (h|k) = ∑
g∈G̃k

h

�(kα)

�(kα + n)

k∏
j=1

�(α + nj )

�(α)
.

The sum is over vectorsg with exactlyh nonempty components, so onlyh terms
in the products are not equal to 1. Since the terms in the sum do not depend on
which components are nonempty, the sum is equal to

(k
h

)
times a sum overGh

h, the
subset ofGh comprising vectors which allocate observations to all theh mixture
components. Therefore,

f (h|k) = �(kα)

�(kα + n)

(
k

h

) ∑
g∈Gh

h

h∏
j=1

�(α + nj )

�(α)
.

The terms in the above sum depend ong only through(n1, . . . , nh)
�. Therefore

one can replace the sum overGh
h with a sum over all partitions of then observations

in h groups. Since to each partition(n1, . . . , nh)
� there correspond

( n
n1,...,nh

)



NUMBER OF COMPONENTS IN A FINITE MIXTURE 2071

membership vectors inGh
h, one has

f (h|k) = �(kα)

�(kα + n)

(
k

h

) ∑
nj > 0, j = 1, . . . , h

n1 + · · · + nh = n

(
n

n1, . . . , nh

) h∏
j=1

�(α + nj )

�(α)
.

Finally, since the terms in the sum are invariant to a change in the order of thenj ’s,
the sum above can be replaced by a sum over orderednj ’s. As to each ordered
vector(n1, . . . , nh)

� there correspond
( h
m1,...,md

)
unordered ones, (46) follows.�

PROOF OFPROPOSITION4.3. The conditional distribution ofh givenk andx

in (47) can be obtained by summing the conditional distribution ofg givenk andx

over all membership vectors inGk which allocate observations to exactlyh compo-
nents;f (h|k, x) = ∑

g∈G̃k
h
{f (x|k, g)f (g|k)}/f (x|k). Substituting this expression

in (47) produces

f (h|x) =
∞∑

k=h

f (x|k)π(k)

f (x)

∑
g∈G̃k

h

f (x|k, g)f (g|k)

f (x|k)

= 1

f (x)

∞∑
k=h

π(k)
∑
g∈G̃k

h

f (x|k, g)f (g|k).(53)

Consider now the inner sum in (53):

∑
g∈G̃k

h

f (x|k, g,φk)f (g|k,αk) =
k∑

t=h

∑
g∈Gt

h

f (x|k, g,φk)f (g|k,αk)

=
k∑

t=h

∑
g∈Gt

h

f (x|t, g,φt )f (g|t, αt )akt

=
k∑

t=h

aktγ
t
h

∑
g∈Eh

f (x|t, g,φt )f (g|t, αt ),

where the first equality uses (44), the second one follows from Conditions
C.1 and C.2 and the third uses (20). Now, when all components are equivalent
Eh = Gh

h, so that using again Conditions C.1 and C.2 one obtains

∑
g∈G̃k

h

f (x|k, g,φk)f (g|k,αk) =
k∑

t=h

aktγ
t
h

∑
g∈Gh

h

f (x|h,g,φh)f (g|h,αh)ath

= akhf
†
h

k∑
t=h

γ t
h
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with the second equality following from formula (28). Sinceγ t
h = ( t−1

h−1

)
it follows

that the inner sum in (53) equals
(k
h

)
akhf

†
h , so that

f (h|x) = f
†
h

f (x)

∞∑
k=h

π(k)

(
k

h

)
akh.

As an aside, note that the series in the right-hand side was already met in the
denominator of (39). Substitutingakh with the expression in (10) and using
α0k = kα yields (48). �
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