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TUSNADY’S INEQUALITY REVISITED

BY ANDREW CARTER AND DAVID POLLARD
University of California, Santa Barbara and Yale University

Tusnady’'s inequality is the key ingredient in the KMT/Hungarian
coupling of the empirical distribution function with a Brownian bridge. We
present an elementary proof of a result that sharpens the Tusnady inequality,
modulo constants. Our method uses the beta integral representation of
Binomial tails, simple Taylor expansion and some novel bounds for the ratios
of normal tail probabilities.

1. Introduction. In one of the most important probability papers of the last
forty years, Komlés, Major and Tusnady (1975) sketched a proof for a very
tight coupling of the standardized empirical distribution function with a Brownian
bridge, a result now often referred to as the KMT, or Hungarian, construction.
Their coupling greatly simplifies the derivation of many classical statistical
results—see Shorack and Wellner [(1986), Chapter 12 et seq.], for example.

The construction has taken on added significance for statistics with its
use by Nussbaum (1996) in establishing asymptotic equivalence of density
estimation and white noise models. Brown, Carter, Low and Zhang (2004) have
somewhat simplified and expanded Nussbaum’s argument using our Theorem 2,
via inequality (5).

At the heart of the KMT method [with refinements as in the exposition
by Cstr@ and Révész (1981), Section 4.4] lies the quantile coupling of the
Bin(n, 1/2) and N (n/2, n/4) distributions, which may be defined as follows. Let
Y be a random variable distributéd(n/2, n/4). Find the cutpoints-co = Bg <
B1 < -+ < By < Bur1= oo for which

P{Bin(n,1/2) >k} =P{Y > B}  fork=0,1,...,n.

When By < Y < Bi11, let X take the valuek. Then X has a Bitin, 1/2)
distribution.

It is often more convenient to work with the tails of the standard normal
®(z) = P{N(0,1) > z} and the standardized cutpoint = 2(8x — n/2)//n,
thereby replacind®{Y > Bi} by ®(z).

Symmetry considerations show th8{_;11 = n — B¢, so that it suffices to
consider only half the range fdr. More precisely, whem is even, say: = 2m,
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the interval (8,,, Bn+1) iS symmetric abou/2, so we have only to consider
k>m+1=nm+2)/2. Whenn is odd, say: = 2m + 1, the interval 8,,, Bin+2) IS
symmetric about /2 = B,,+1, SO we have only to considér>m+2= (n+3)/2.

The usual normal approximation with continuity correction suggestsghat
k —1/2, which, if true, would boundX — Y| by a constant that does not change
with n. Of course, such an approximation for ik too good to be true, but results
almost as good have been established. The most elegant version appeared in the
unpublished disstation (in Hungarian) of Tusnady (1977), whose key inequality
may be expressed as the assertion

3
1) k—155k5?”—\/2n(n—k) forn/2 <k <n.

As explained by Csoiand Révész [(1981), Section 4.4], Tusnady’s inequality
implies that|X —n/2| <|Y —n/2|+ 1 and|X — Y| < 1+ Z2/8, whereZ
denotes the standardized variali® — n)/./n. They also noted that Tusnady’s
proof of inequality (1) was “elementary,” but “not at all simple.” Bretagnolle and
Massart [(1989), Appendix] published another proof of Tusnady’'s inequality—
an exquisitely delicate exercise in elementary calculus and careful handling of
Stirling’s formula to approximate individual Binomial probabilities. With no
criticism intended, we note that their proof is quite difficult. More recently,
Dudley [(2000), Chapter 1] and Massart (2002) have reworked and refined the
Bretagnolle/Massart calculations. Clearly, there is a continuing perceived need for
an accessible treatment of the coupling result that underlies the KMT construction.

With this paper we offer another approach, which actually leads to an
improvement (modulo constants) of the Tusnady inequality. In fact, the Tusnady
upper bound greatly overestimatgs for moderate to largé. (See below.) Our
method differs from that of Bretagnolle and Massart, in that we work directly
with the whole tail probability. Our method is closer to that of Peizer and Pratt
(1968), who suggested a Gush—Fisher expansion of the Binomial percentiles—
but, as noted by Pratt [(1968), Sections 5 and 8], a rigorous proof by this method
is difficult. To avoid the difficulty, Mdenaar [(1970), Section Ill.2] made a more
direct calculation starting from the representation of the Binomial tail as a beta
integral,

(2) P{Bin(n, 1/2) > k} n! / 1/Zz"‘l(l Nk dr
n, >k} =——— — .
(k—D!n—k)!Jo

He indicated that his expansion would be valid proviged /2| = O(y/n). Pratt
seemed to be claiming validity for his expansion for the ralige n/2| = o(n),
but we believe extra work is needed fér— n /2| large.

We should point out that Peizer, Pratt and Molenaar were actually concerned
with normal approximations to distributions more general than th€rBity2)
case needed for the KMT construction. We have specialized their results to this
case.
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Our method also starts from the integral representation (2), to derive an
approximation via Laplace’s method for integrals [de Bruijn (1981), Section 4.3]
using only Taylor’s theorem and Stirling’s formula [Feller (1968), Section 11.9]

n!=~/2mexp((n + %) logn —n + 4,)

3
®) with (122 + 1)1 <a, <(@20)~ L

In fact [Komlds, Major and Tusnady (1975), page 130], the KMT construction
only needs a result like the Tusnady inequality for valueg af a range where
|2k — n| < gon for some fixedeg < 1. For that range, a suitable bound can
be derived from classical large deviation approximations for Binomial tails. For
example, in an expanded version of the argument sketched in the 1975 paper,
Major (2000) used the large deviation approximation

P{X >k} = d(e/n) exp(A,(e))  wheree = (2k —n)/n,
with
|Aa(e) = O(me® +n~Y?  uniformlyin 0<e <egg < 1.
Mason (2001) derived the KMT coupling from an analogous approximation with
An(e) =ner(e) + O(c +n~Y?  uniformlyin0<e <gp <1,

whereA(-) is a power series whose coefficients depend on the cumulants of the
Binomial distribution. Such an approximation follows from a minor variation on
the general method explained by Petrov [(1975), Section 8.2]. Symmetry of the
Bin(n, 1/2) makes the third cumulant zero; the power sesi@s(s) starts with a
multiple of &2,

Our method gives a sharper approximation to the(Bit/2) tails over the
rangen/2 < k < n — 1 (which, by symmetry, actually covers the range 8 < n).
Only at the extremé; = n, does the calculation fail.

THEOREM1. Let X haveaBin(n, 1/2) distribution, with n > 28. Define

_ (1+8)logl+e)+ (1—g)log(l—e) — &2

> =Y ¥ /(2r+3)(2r +4),

r=0
an increasing function with y(0) = 1/12 and y(1) = —1/2 + log2 ~ 0.1931.
Definee = (2K — N)/N,where K =k — 1 and N =n — 1. Define ,, asin (3).
Then thereisa constant C such that

P{X >k} = D(ev/N) exp(An(e)),

y(€)

where
An(e) =—Nety(e) — 2log(l — &%) — Ay—k +rx and —ClogN <Nr, <C

for all ¢ correspondingtotherangen/2 <k <n — 1.
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Notice that thek,_; can be absorbed into the error terms, and thatllegs?)
is small compared witiNe* + O (n~1), whene < gg < 1.

A very precise approximation for the cutpoings follows from Theorem 1
using inequalities (see Section 3) for the tails of the normal distribution.

THEOREM 2. Letzp =2(Br —n/2)/4/n ande = (2K — N)/N. Let S(¢) =
V14 282)/(8) for y (¢), asin Theorem 1. Then, for some constant C” and n > 28,

log(1 — &2) + 24—k
— /N S(e) + +o
2% =evN S() 26/N S(e) k

with —C’(es/N + 1) < N6, < C'(e/N + logN) for all ¢ corresponding to the
rangen/2 <k <n—1.

For example, the theorem impligs — k + 1/2 = o(1) uniformly over a range
where|k —n /2| = 0(n%3). Also, where < g9 < 1/2, the log term can be absorbed
into theO (¢/+/n) errors. Even wheh gets close ta — 1, the log term contributes
only an 0 (n~1/2logn) to the approximation. More precisely,kf=n — B for a
fixed B > 1, our approximation simplifies to

1 1428
4) Bup= —;Cn _ :C logn+0(1)  wherec=S(1) ~1.177,

which agrees up t@ (1) terms with the result obtained by direct calculation from

B
B n .o e n —n = n
P{in—B}—<<0)+ +<B>)2 _B!2"(1+0(1))
and the well-known approximation for normal percentiles,

- lo
P ip=y-— o9y + 01/y) asp — 0, wherey = /2log(1/p).
y
By contrast, the upper bound f8y,_ from (1) is about 088 too large.
Itis also an easy consequence of Theorem 2 that there exist positive cogstants
for which

C1 lk—n/23 1 Cslogn lk—n/23
5 4+ Cp—— <P —k+ =< C
®) tCo— s —=h—kt+5= T 4=

for n/2 < k <n and alln. For the quantile coupling between ah distributed
Bin(n,1/2) andaY =n/2+ \/nZ/2 distributedN (n/2, n/4), it follows that there
is a positive constan® for which

nl3

Y—f‘ and |[X—v|<c+Slx-2
2 - n2 2
Using the fact thatX — n/2| < n/2, we could also write the upper bound for

|X — Y| as a constant multiple of 4+ Z%(1 A |Z|//n), which improves on
Tusnady’s 1+ Z2/8, modulo multiplicative constants. (We have made no attempt
to find the best constants, even though, in principle, explicit values could be found

by our method.)

’X "‘<C+
E
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2. Outlineof our method. As in Theorem 1, write = (2K — N)/N, where
K=k—1andN =n—1. ThenK/N =(1+¢)/2 and therange/2 <k <n
corresponds to

2 2K
(6) 1- S >e=""_1>
N N
Define 2H (1) = (14¢)logr + (1 —¢) log(1 — 1) for 0 < ¢ < 1. Representation (2)
can then be rewritten as
nN!

! 1/2
P{X >k} = m/o exp(K logs + (N — K)log(1 —t)) dt

1/2
=7HN' // eNH(t)dl‘
K!(N —K)!Jo

By Stirling’s formula (3),

N! 1 [ 4N
KN —K) ﬁ\/% exp(A — NH(K/N))

whereA := AN —Ax —AN_K-

N1 whenn is even
2N~1 whenn is odd

Thus, the beta integral equals

1 AN rl/2
- exp(A — Slog(1— &%) — NH(K/N)),/ o / NHO gy,
N 2 27 Jo

The functionH (-) is concave o0, 1). It achieves its global maximum & /N,
which lies outside the range of integration. On the inte@all/2] the maximi-
mum is achieved at/R. On the range of integratioi{ (r) — H(K/N) is never
greater than

H(1/2)— H(K/N)=-3(1+e¢)log(1l+e) — 1(1—e)log(l— &)

= —%82 — 84)/(8).

The concave functioi(s) := H((1—s)/2) — H(1/2) achieves its maximum value
of zero ats = 0 and

1
P{X > k} :eA\/E/ eNh(S)_st/zdS,
27 Jo

(7) L
whereA =log(1+ N~1) + A — Zlog(1 — £2) — Ney (o).

The A contributesO(1/n) — Ay — % log(1 — £2) — Ne*y (¢) to the A, (¢) from
Theorem 1. Taylor's expansion bfs) abouts = 0 and concavity of(-) show that
the exponeniV i (s) drops off rapidly as moves away from zero. Indeed,

@) h(s) = —es — %sz + %s3h/”(s*) withO < s* <s

362 —3(s +e)? for s near zero

%
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See Section 4 for the more precise statement of the approximation.
Most of the contribution to the integral (7) comes fromin a small
neighborhood of 0. Ignoring tail contributions to the integral, we will then have

N [® 1 B}
9) P{xzk}wA\/;/o exp(—EN(s—i—s)z)ds:eAdD(Sx/ﬁ),

as asserted by Theorem 1.
To derive Theorem 2 we perturb the argumerfN slightly to absorb the
factor exgA, (¢)). We seek g for which

D(ev/N + y) ~ exp(A,(e))D(ev/'N) = d(zx).
That is, we need
P(ev/'N +y)/®(eV/N) ~ exp(—Ney (e) — Slog(1 — £2)).

As shown in the next section, the ratio of normal tail probabilitgs + y)/®(x)
behaves like exp-xy — y2/2), at least whenx is large. Ignore the logarithmic
term for the moment. Then the heuristic suggests that we chepdasemake
e Ny + y2/2~ Nety (e), that is,

y R —ex/ﬁ+\/N82+2Ne4y(8)

and, hence,
Zk ~ e/ N +y wsx/ﬁvl—l—Zezy(e).

For the rigorous proof of Theorem 2 we need to replace these heuristic
approximations by iequalities givig upper and lower bounds fab(z;), then
invoke the inequalities for normal tails derived in the next section.

3. Tailsof thenormal distributions. The classical tail bounds for the normal
distribution [cf. Feller (1968), Section VII.1 and Problem 7.1] show tibak)
behaves roughly like the densidy(x):

1 1 - 1
(5~ a)p00 < 800 < o)
X X

X

(20) forx > 0.

d(x) < S exp(—x?/2)

The first upper bound is good for large the second forx ~ 0. For the proofs

of both Theorem 1 (in Section 4) and Theorem 2 (in Section 5), we will need to
bound the ratiod (x + y)/®(x). It is possible to derive suitable bounds directly
from (10), but we have found it easier to work with inequalities that interpolate
smoothly between the different cases in (10). We express our results in logarithmic
form, using the function (x) := —log ®(x) and its derivative

d -
px) = =W (x) =)/ P(x).
X
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To a first approximation, the positive function(x) increases likex. By
inequality (10), the error of approximation(x) := p(x) — x, is positive forx > 0
and, forx > 1,

r(x) < x_ 1 =0(1/x) asx — oo.

x2

In fact, as shown by the proof of the next lemma;) is increasing and(-) is
decreasing and positive on the whole real line.

LEmMMA 1. Thefunction p(-) isincreasing and the function »(-) isdecreasing,
With r(c0) = p(—o00) = 0and r(0) = p(0) = 2/+/2r ~ 0.7979.For all x € R and
8 > 0, the increments of the function ¥ (x) := —log®(x) satisfy the following
inequalities:

(i) Sp(x) <W(x+8) —W(x) <dp(x+9),
(i) 8r(x +8) < W(x +8) — W(x) — 3(x +8)% + x2 < 8r(x),
i)y x8+ 282 < W(x +8) — W(x) < p(x)8 + 362

PROOF Let Z be N(0, 1) distributed. DefineV (x) = Pe—*|%I, a decreasing
function of x with log M (x) strictly convex. Notice that

o) =VErexpu?/2) [ T+ x)dz

= /OO exp(—xz —z2/2)dz = \/iM(X)-
0 2

Thus,—logM (x) —log /7 /2 =log p(x) = ¥ (x) — x2/2 —log~/27 is a concave,
increasing function ok with derivativep(x) — x = r(x). It follows thatr(-) is a
decreasing function, because

dZ
r(x) = —73 logM(x) <0 by convexity of logV/ (x).
X

Inequality (i) follows from the equality
W(x +68) —W(x)=8V'(y") =68p(y") for somex < y* < x + 6,
together with the fact thai(-) is an increasing function. Similarly, the fact that
d 1 . : ,
d—(tl/(y) — Eyz) =p(y)—y=r() which is a decreasing function
y

gives inequality (ii). Inequality (iii) follows from (ii) becaus® (x + §) > 0 and
x8+r(x)s=pkx)5. O

Reexpressed in terms of the tail functidn the three inequalities from the
lemma become:
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(i) exp(—8p(x)) > P(x +8)/P(x) > exp(—dp(x +8)),
(i) exp(—=8r(x +8)) > exp(xs + 82/2)®(x + 8)/P(x) > exp(—dr(x)),
(iii) exp(—x8 —82/2) > d(x +8)/D(x) > exp(—p(x)8 — §2/2).

Less formally,
P{Z<x+8|Z<x}=1—D(x+8)/P(x)~3p(x) for smalls,
which corresponds to the fact thais the hazard rate for th¥ (0, 1) distribution.
4. Detailsof the proof for Theorem 1. To make the proof rigorous, we need

to replace the approximation in the Taylor expansion (8) by upper and lower
bounds involving the third derivative

1—¢ 1+e 654252 +(2+ 659
1+s5)3 (1-93 (1—52)3

The derivative of this function is negative for allThus,

h"(s) <h”(0)=—2¢ forO<s <1

h///(s) —

and
hs) < 362 —3(s+e)? for0O<s<1.

The right-hand side of the approximation (9) is actually an upper bound, because
the integrand is nonnegative ¢h, oo). That s,

P{X >k} <e®®(e/N),

which gives the upper bound fe,, (¢) stated in the theorem.

For the lower bound, for some small positiyediscard the contribution to the
integral in (7) from the rangéy, 1), and bound:”” from below bys”' () on the
range(0, n), then integrate to get

IN 1 1
P{X >k} > ® —/ ex ——N(s+e)2+éanzh’”(n))ds
I N 1 1
e® P /ex ——NKZ(S+8/K2)2+ Ns /K ENez)ds
T

_ % eXp(ENSZ/KZ - ENSZ)@(SW/K) — (VN /i +knVN)),

where

NIl

K?=1—3nh"" () <1+6n(n+e) ifn<
From Lemma 1, parts (iii) and (ii),

P(ev/N /i +knv/N) < ®(ev/N /i) exp(—Nen — SNi?n?)
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and
exp(iNe)d(ev/N ) < exp(iNe?/k2)B(eV/N /x).
Thus
(11) P{X > k} > exp(A — |OgK)d_>(8\/ﬁ)[]_ — e)(q_]\/'g,7 _ %NKZUZ)],

We need log = O(¢y), where ¢y = N~1llogN, for otherwise the asserted
inequality —ClogN < r;y would be violated. As log < 6(° + ne), this
requirement suggests that we takas a solution to the equatic%'n2 + ne =Ly,
thatis,n := —e 4+ v/e2 + 2¢y. We would then have? < 1+ 12¢, andn < 1/2, at

least forn > 28. Also, the exponentNen — 3N«2y? is smaller than-log N,
which ensures that the final, bracketed term in (11) only contributes another
O(N~1) to theA, (¢) from Theorem 1.

5. Details of the proof for Theorem 2. Written using thed function from
Lemma 1, the assertion of Theorem 1 implies that

W(zg) =W (ev/N) + Bule) + ,
where, for some constant,
By(e) = Ne*y(e) + 3log(l — e?) + A,k and —CNt<z < Cly
for ¢ corresponding to the rangg2 >k <n — 1, thatis,forO<e <1-— 2N~1,
Define
log(1 — &2) + 24—k
2¢e/NS()

We need to show that there is a constaitfor which z; = wy + 6, with
—C'(ev/N +1) < N < C'(e/N +10gN) for 0 < e <1 — 2N~L. Consider
two cases.

wp = ev'N S(¢) +

5.1. Suppose ¢ < Co/~/N for some constant Cg. Uniformly over that range
Bn(¢) = O(N™Y) and wy = e/N + O(N~1). From Lemma 1(i), for all
nonnegative; andsy,

W(x) +81p0(x) < W(x+481) and W(x —3d2) +d2p(x —82) < W(x).
With x equal toe/N andC; a large enough constant, deduce that
W(ev/N —CIN7Y) < W(z) < W(ev/'N + C1ly)
and, hence,

wp —ONH —CiIN T <zt <wp + O(N™Y + Crty.
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5.2. Suppose Co/+/N <& <1—2N-1. Write x for e+/N andp for B, (¢) +
. = W(zx) — ¥Y(x). For all ¢ in this range, ifCq is large enough, we have
B > 0 andr(x) < 2/x. The functionh(r) =t — V12 + 28 is negative, increasing
and concave, with'(r) < 28/t2. The positive numbers; = —h(x) and 8, =
—h(p(x)) are roots of two quadratic equatiordsx + 162 = B = 82p(x) + 353
From Lemma 1(jii),

W(z) — W(x) = x81 + 282 < W(x +81) — W (x),
W(x +82) — W(x) < p(x)82 + 385 = W(zx) — W(x),
which imply thatx 4+ 62 < zx < x + 1. These bounds forcg to lie close tax + 61
0<x+81—2 <81—82=h(p(x)) —h(x) <r(x)h'(x) <48/x>=0(e/V/'N).
And x + 81 lies close towy:

x+8=VNe? 428

log(1 — &2) + 24, ¢ + 7\ /2
= 1
evV/N S(e)( + N2 (e)2 )

VN €3).

Tk
wy+———+4+0
KT 26N S(e) (
The assertion of Theorem 2 follows.
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