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It is well known that the number of modes of a kernel density estimator
is monotone nonincreasing in the bandwidth if the kernel is a Gaussian
density. There is numerical evidence of nonmonotonicity in the case of
some non-Gaussian kernels,but little additional information is available. The
present paper provides theoretical and numerical descriptions of the extent
to which the number of modes is a nonmonotone function of bandwidth
in the case of general compactly supported densities. Our results address
popular kernels used in practice, for example, the Epanechnikov, biweight
and triweight kernels, and show that in such cases nonmonotonicity is
present with strictly positive probability for all sample sizesn ≥ 3. In
the Epanechnikov and biweight cases the probabilityof nonmonotonicity
equals 1 for alln ≥ 2. Nevertheless, in spite of the prevalence of lack
of monotonicity revealed by these results, it is shown that the notion of
a critical bandwidth (the smallest bandwidth above which the number of
modes is guaranteed to be monotone) is still well defined. Moreover, just
as in the Gaussian case, the critical bandwidth is of the same size as the
bandwidth that minimises mean squared error of the density estimator. These
theoretical results, and new numerical evidence, show that the main effects of
nonmonotonicity occur for relatively small bandwidths, and have negligible
impact on many aspects of bump hunting.

1. Introduction. Compactly supported kernels, particularly the biweight,
are predominantly used in practice when constructing a nonparametric density
estimator. There are at least two reasons: ease of computation (calculation is
simplified if a curve estimate at a given point uses only a relatively small fraction
of the data); and, more philosophically, a desire to ensure that a density estimator
uses only local information. However, many “shape” properties of kernel density
estimators are well understood only in the case of infinitely supported, Gaussian
kernels.

Responding to this issue, in the present paper we quantify a range of properties
of non-Gaussian kernels when used to identify bumps in nonparametric density
estimation. Numerical results [e.g., Minnotte and Scott (1993)] have shown that in
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practical circumstances some commonly used, compactly supported kernels may
not give rise to nonparametric density estimators whose modality is a monotone
function of bandwidth. However, theoretical explanations of this property are not
available, and neither is it clear whether the nonmonotonicity property will upset
the sorts of bump-hunting applications to which kernel density estimators are
often put. For example, can the biweight kernel be profitably used to implement
Silverman’s (1981) test for unimodality, or does the nonmonotonicity property
interfere at too high a level for this to be feasible?

This paper provides answers to these questions. In Section 2 we give general
theoretical results that address nonmonotonicity problems arising with compactly
supported kernels. The results are illustrated theoretically in terms of commonly
employed “multiweight” kernels, such as the uniweight (or Epanechnikov) density,
and the biweight and triweight densities. Nevertheless our results are very general,
and apply to a wide range of compactly supported kernels. Numerical illustrations
of theoretical properties are given in Section 4.

To give an example, it follows from our results that when density estimators are
calculated using the biweight kernel, the number of modes of a kernel density
estimator is, with probability 1, a nonmonotone function of the bandwidth,h,
whenever sample size,n, equals two or more. Interestingly, this result fails for
the triweight kernel. In that case, forn = 2 and with probability 1, the number of
modes is monotone inh. However the probability that it is nonmonotone is strictly
positive whenevern ≥ 3.

Results of this type add considerably to the information provided by more
conventional analytical results, such as those of Schoenberg (1950). From those
it may be deduced only that for compactly supported kernels, and sufficiently
large sample sizes, there exist deterministic data constructions for which the
nonmonotonicity property fails. By way of contrast, our results show that
nonmonotonicity fails for the sorts of datasets that arise in practice, and for a wide
range of sample sizes (generally, forn ≥ 3).

These properties lead pointedly to the question of whether the critical band-
width, in the case of compactly supported kernels, is of the same size as it would
be for a Gaussian kernel. The critical bandwidth is defined as the “smallest” band-
width, in some sense, such that a nonparametric density estimator is unimodal.
When the Gaussian kernel is used, monotonicity of the number of modes as a
function of bandwidth means that there is no ambiguity in the definition of “small-
est.”

The situation is much less clear for compactly supported kernels, however.
Nevertheless, we shall show that provided the kernel is unimodal and concave
at the mode, one may unambiguously define the “smallest” bandwidthhcrit to be
the infimum of valuesh1 > 0 such that the number of modes of a density estimator
equals 1 for allh ≥ h1. This version ofhcrit is well defined, and strictly positive,
with probability 1. Moreover, the mode tree technology developed by Minnotte
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and Scott (1993) [see also Minnotte (1997)] enables this definition to be used in
practice without difficulty.

One of the particularly attractive features of the critical bandwidth for a
Gaussian kernel is that it is of sizen−1/5, this being the order that produces optimal
mean squared error performance for density estimators in a standard second-order
setting. In Section 3 we show that the same is true for a wide range of compactly
supported kernels, including the biweight, provided our alternative definition of the
critical bandwidth is used. In this sense the effect of nonmonotonicity of number
of modes occurs at a relatively low level, and is not so great as to hinder the
main features of a kernel density estimator. The mathematical argument behind
this result is nonstandard, since a conventional approach relies on monotonicity,
but nevertheless the result can be viewed as an extension of its counterpart for a
Gaussian kernel.

All our methods and results have application to problems involving nonpara-
metric regression, where only minor modifications are necessary. We have chosen
to state them in the context of density estimation since passing in the reverse di-
rection, from regression to density estimation, is not so straightforward; see the
discussion by Chaudhuri and Marron [(2000), page 213].

There is no problem extending our results to the case of modes in estimators
of density derivatives. As far as bimodality, or multimodality, is concerned, the
main issue of interest is whether the bandwidth above which monotonicity of the
number of modes (as a function of bandwidth) occurs is one for which the density
estimator is multimodal with an appropriate number of modes. Indeed, ifk ≥ 2
is given then it is possible, when using a compactly supported kernel, that the
density estimator will not have at leastk modes for a bandwidth,h, in a range
[h0,∞) where the number of modes is monotone inh. (This is relatively likely to
occur if the actual density has strictly fewer thank modes.) This possibility does
not arise whenk = 1, and for generalk it does not occur when using a Gaussian
kernel. As a result, it is relatively unattractive to use compactly supported kernels
in problems where strict multimodality is being investigated.

There is a diverse and extensive literature on bump hunting in nonparametric
density estimation, much of it starting from contributions of Good and Gaskins
(1980) and Silverman (1981). Formal and informal approaches to assessing
modality include those of Hartigan andHartigan (1985), Izenman and Sommer
(1988), Roeder (1990, 1994), Cuevas and Gonzáles-Manteiga (1991), Müller and
Sawitzki (1991), Minnotte and Scott (1993), Fisher, Mammen and Marron (1994),
Escobar and West (1995), Polonik (1995a, b), Minnotte (1997), Chaudhuri and
Marron (1999, 2000), Cheng and Hall (1999) and Fisher and Marron (2001).
A small number of techniques, for example, the recent scale-space methods
introduced by Chaudhuri and Marron (1999, 2000), rely on monotonicity of
number of modes (as a function of bandwidth) in order to convey information.
However, others, in particular formal or informal hypothesis testing approaches,
require little more than the notion of a critical bandwidth and therefore suffer
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hardly at all from nonmonotonicity; as we show, lack of monotonicity occurs only
for relatively small bandwidths. In these cases, and others, our results indicate
that nonmonotonicity for popular kernels such as the biweight is generally not a
significant problem. This serves to encourage their use in bump hunting problems.

2. Theory describing nonmonotonicity for non-Gaussian kernels.

2.1. Preliminaries. We say that a continuous densityf (or density estima-
tor f̂ ), continuously differentiable on its support, has justk modes if it has only
a finite number of points of inflection on its support, and justk local maxima
x1, . . . , xk. The values ofxj are called the modes off . We say thatf is strictly
unimodal iff has just one mode in the sense defined above.

The assumption of continuity is made solely to simplify the definition of a
density withk modes; it may be weakened. Likewise we may remove the condition
that the density has only isolated points of inflection on its support, although it
should be appreciated that this alters the type of information contained in our
results. We are not aware of any kernel used in practice that violates this condition.

Given a kernelK , bandwidthh and sampleX = {X1, . . . ,Xn}, let f̂ = f̂h,
defined by

f̂h(x) = 1

nh

n∑
i=1

K

(
x − Xi

h

)
,(2.1)

denote a conventional kernel density estimator. It is clear that ifK is strictly
unimodal, continuous on the real line, and supported on a compact interval, and if
the dataXi are distinct, then for all sufficiently smallh, f̂h has justn modes. We
shall say that “the number of modes of the kernel estimatorf̂h is not monotone
in h” if there exist 0< h1 < h2 such that the number of modes off̂h1 is strictly
less than the number of modes off̂h2.

2.2. Monotonicity of number of modes for large bandwidths. First we intro-
duce a unimodality condition:

K is compactly supported and strictly unimodal, and is concave in
a neighborhood of its mode.

(2.2)

Theorem 2.1 shows that (2.2) ensuresf̂h is unimodal for all sufficiently largeh.

THEOREM 2.1. If (2.2) holds, and if the data X come from a continuous
distribution, then with probability 1 there exists a bandwidth ĥ = ĥ(X) such that
f̂h is strictly unimodal for all h > ĥ.



2128 P. HALL, M. C. MINNOTTE AND C. ZHANG

Proofs of Theorems 2.1 and 2.2 are given in Sections 5.1 and 5.2, respectively.
A derivation of Theorem 2.3 is similar. Theorem 2.1 implies that the “critical
bandwidth,” given by

hcrit = inf{h1 > 0: f̂h is unimodal for allh > h1},(2.3)

is well defined with probability 1. Moreover, assuming the sampled distribution
is continuous,P (hcrit > 0) = 1. Throughout the paper,hcrit is given by (2.3).
Minnotte and Scott’s (1993) mode tree algorithm permits calculation ofhcrit.
Without the algorithm, checking large bandwidths to see if the corresponding
density estimator was unimodal could be computationally difficult.

2.3. Theorems applicable to multiweight kernels. Consider the condition

K is a symmetric and strictly unimodal probability density with
support equal toI = [−1,1], continuous on the real line and
continuously differentiable onI, has two continuous derivatives
in [1 − ε,1] for someε > 0, and satisfiesK ′′(x) < 0 for some
x ∈ (1

2,1).

(2.4)

THEOREM 2.2. If (2.4) holds, if n ≥ 2, and if X = {X1, . . . ,Xn} denotes a
random sample drawn from a continuous distribution, then with probability 1 the
number of modes of the kernel estimator f̂h is not monotone in h.

Any kernel of the formK(x) = Cθ(1 − x2)θ on I, where 0< θ < 5/2
and Cθ ensures

∫
K = 1, satisfies (2.4). This class includes the uniweight (or

Epanechnikov) and biweight kernels.
Theorem 2.2 does not address the triweight case (θ = 3). In fact, whenn = 2,

and whenK is the triweight kernel and the sampled distribution is continuous,
with probability 1 the number of modes of̂fh is monotone nonincreasing as a
function of the bandwidth. This result is available for more general kernels, too;
it is sufficient that (2.2) hold and thatK be a symmetric probability density with
support equal toI, continuous on the real line, twice continuously differentiable
on I, with a unique point of inflection (ξ , say) on(0,1), and such that the
only solutions 0< x1 ≤ x2 < 1 of the equationsK ′(x1) = K ′(x2) andK ′′(x1) =
−K ′′(x2) are x1 = x2 = ξ . We ask too thatK have 2k ≥ 4 derivatives in a
neighborhood ofξ , with K(2j)(ξ) = 0 for 1≤ j ≤ k − 1 andK(2k)(ξ) < 0. These
conditions hold withk = 3 whenK is the triweight kernel.

Our next result will show, however, that nonmonotonicity can occur with the
triweight kernel providedn ≥ 3. To this end, putκξ (x) = K(ξ + x) + K(ξ − x) +
K(x), and assume that:

K is a symmetric and strictly unimodal probability density with
support equal toI = [−1,1], continuous on the real line, four
times continuously differentiable onI, and with the property that
κ ′′
ξ (0) > 0, κ ′

ξ (η) = 0 andκ ′′
ξ (η) > 0 for someξ, η ∈ (0,1).

(2.5)
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THEOREM 2.3. If (2.5) holds, if n ≥ 3, and if X = {X1, . . . ,Xn} denotes a
random sample drawn from a continuous distribution, then with strictly positive
probability the number of modes of f̂h is not monotone in h.

Any kernel of the formK(x) = Cθ(1 − x2)θ on I, where 5/2 ≤ θ ≤ 11/2,
satisfies (2.5). This class includes the triweight kernel, for whichθ = 3 and
appropriate values ofξ andη areξ = 0.9 andη = 0.45.

3. Critical bandwidths and bootstrap tests.

3.1. Methodology. The “classic” form of Silverman’s (1981) bandwidth test
for unimodality is based on computing a critical bandwidth that, in some sense, is
as small as possible subject to the density estimatorf̂h at (2.1) being unimodal.
If K is a Gaussian density then there can be no ambiguity in defining the
critical bandwidth: the number of modes is a monotone nonincreasing function
of bandwidth, and so for any given dataset there is a bandwidth below which all
density estimators have at least two modes, and above which all density estimators
are unimodal [Schoenberg (1950)].

While this is not generally true for non-Gaussian kernels, that does not inhibit
the definition of critical bandwidth given at (2.3). From a practical viewpoint it is
quite feasible to definehcrit, as we do at (2.3), by decreasing through bandwidths
for which f̂h is unimodal, although it is generally not possible to define a critical
bandwidth by increasing through bandwidths for whichf̂h is multimodal.

Silverman’s (1981) bandwidth test for unimodality consists of rejecting the null
hypothesis of unimodality ifhcrit is “too large,” where the latter is determined
using the bootstrap. Specifically, put̂fcrit = f̂hcrit , let X∗

1, . . . ,X∗
n be a resample

drawn by sampling randomly (conditional onX) and with replacement from the
distribution with densityf̂crit, and define

f̂ ∗
h (x) = (nh)−1

n∑
i=1

K

(
x − X∗

i

h

)
.(3.1)

Let h∗
crit denote the version ofhcrit in this setting, withf̂ ∗

h replacingf̂h in the
definition of hcrit. Given a nominal levelα for the test, the null hypothesis of
unimodality is rejected if

P (h∗
crit/hcrit ≤ 1|X) ≥ 1− α.(3.2)

The technique, using our definition ofhcrit, can also be applied to assess
unimodality in a subinterval of the support of a density.
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3.2. Large-sample properties of critical bandwidth. Assume that:

f has two continuous derivatives when considered as a function
restricted to its support, which we take to equalS = [a, b] where
−∞ < a < b < ∞; that f (a) = f (b) = 0, f ′(a+) > 0 and
f ′(b−) < 0; and that in the interior ofS the equationf ′(x) = 0
has a unique solutionx0 ∈ (a, b), and thatf ′′(x0) < 0.

(3.3)

Assume too that:

K is a symmetric and strictly unimodal probability density with
support equal toI = [−1,1], is continuously differentiable on the
real line, and has three bounded derivatives when viewed as a
function defined only onI.

(3.4)

This condition is satisfied by the biweight kernel, for example.
The part of condition (3.3) which asserts thatf decreases steeply to zero at

either end of its support serves only to remove the effects of spurious “wiggles”
in the tails of f̂h. Without such a constraint the size of the critical bandwidth
can be determined by random clusters of data in the tails of the distribution. In
practice such effects are usually excluded by restricting attention to the body of
the distribution when formally testing for unimodality. However, there is a wide
variety of ways of doing this, and for our purposes it is more appropriate to impose
a condition which simply excludes tail effects. See Mammen, Marron and Fisher
(1992) and Silverman (1983), for further discussion of this issue; they impose a
condition close to (3.3).

Given a standard Brownian motionW , define the stochastic process

ω(t, u) = f (x0)
1/2u−1

∫
K

(
t + v

u

)
dW(v) − 1

2
|f ′′(x0)|t2

for −∞ < t < ∞ andu > 0. Putω′(t, u) = (∂/∂t)ω(t, u). Our first result argues
that for all sufficiently largeu, the stochastic processω(·, u) is unimodal.

THEOREM 3.1. Assume (3.4) holds. Then the probability that, for all u ≥ v,
ω(·, u) has a unique local maximum and no local minimum [equivalently, ω′(·, u)

has a unique downcrossing of 0 and no upcrossing of 0] on the real line converges
to 1 as v → ∞.

It is readily shown that the probability that for someu ≥ v, ω(·, u) has both
a local maximum and a local minimum, converges to 1 asv ↓ 0. This result and
Theorem 3.1 imply that with probability 1 the infimum,Ucrit say, of the set of
valuesv > 0 such that, for allu ≥ v, ω(·, u) has a unique local maximum and no
local minimum, is well defined and strictly positive.

Our next result shows thathcrit is asymptotically of conventional sizen−1/5,
and that the “constant” of proportionality equalsUcrit.
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THEOREM 3.2. Assume (3.3) and (3.4) hold. Then with probability 1, hcrit
is well defined for all sufficiently large n, and n1/5hcrit converges in distribution
to Ucrit.

3.3. Properties of bootstrap test. First we describe large-sample properties of
the distribution ofh∗

crit, conditional on the data. Theorem 3.1 implies the existence
of a unique point,t = T say, at which

f (x0)
1/2U−2

crit

∫
K ′

(
t + v

Ucrit

)
dW(v) − |f ′′(x0)|t

changes sign. LetW ∗ denote a standard Wiener process independent ofW , and
put

	∗(t, u) = f (x0)
1/2u−2

∫
K ′

(
t + v

u

)
dW ∗(v)

+ f (x0)
1/2U−2

crit

∫
K ′

(
T + tu + v

Ucrit

)
dW(v) − |f ′′(x0)|(T + tu).

The argument used to prove Theorem 3.1 may be employed to show that the
infimum U∗

crit of the set ofv > 0 such that, for allu ≥ v, 	∗(·, u) has a unique
downcrossing of 0 and no upcrossing of 0, is well defined and strictly positive. The
strong approximation argument leading to the proof of Theorem 3.2 may be used
to prove that, assuming both (3.3) and (3.4), and employing suitable constructions
of W andW ∗,

sup
−∞<x<∞

∣∣P (h∗
crit/hcrit ≤ x|X) − P (U∗

crit/Ucrit ≤ x|W)
∣∣ → 0

in probability.
It follows that the asymptotic level of the test defined at (3.2) is

π(α) = P {P (U∗
crit/Ucrit ≤ 1|W) ≥ 1− α}.(3.5)

Note that 0< π(α) < 1 for eachα. On the other hand, if the sampled density is
not unimodal thenP (h∗

crit/hcrit ≤ x) → 1 for eachx > 0, and so the probability at
(3.2) converges to 1. That is, when the null hypothesis is false, the probability that
the test leads to rejection converges to 1 asn → ∞. It is not true thatπ(α) = α, and
this equality also fails in the case of a Gaussian kernel; see Hall and York (2001)
for discussion of the size of the error.

4. Numerical properties for non-Gaussian kernels.

4.1. Distribution of characteristics of nonmonotonicity. The theoretical re-
sults in Section 2 may be illustrated using the mode tree of Minnotte and
Scott (1993), for small samples and various kernels. In particular, the casen = 3 is
treated in Figure 1. There we took the sample to be{X1,X2,X3} = {−1,0,1}. We
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FIG. 1. Mode trees for the n = 3 sample {−1,0,1}. Kernels used to produce the results in panels
(a)–(d)are, respectively, (a)Epanechnikov, (b) biweight, (c) triweight and (d) Gaussian.

usedσ = 1/3 for the Gaussian kernel. This gave effective support similar to that
for the compact kernels.

The four panels in Figure 1 correspond, respectively, to the kernels: (a) Epan-
echnikov, (b) biweight, (c) triweight and (d) Gaussian. Panels (a)–(c) show that
false modes appear at the points±1/2 for each of the non-Gaussian kernels.
This leads to nonmonotone behavior in each instance, and in fact ash increases,
3 modes→ 5 → 3 → 1 for the Epanechnikov, 3→ 5 → 2 → 3 → 1 for the
biweight and 3→ 4 → 2 → 1 for the triweight. Clearly, the possibility of
nonmonotonicity is very real for these kernels.

To further investigate the mode behavior of multiweight kernels for this three-
point dataset, the number of modes was found for 500 values ofh and 480 choices
of θ in the kernelKθ(x) = Cθ(1 − x2)θ , ranging from 0.025 to 12. The result in
“mode space” may be seen in Figure 2. The number of modes, between 1 and 6,
is represented by the increasing density of six greyscale levels, as follows: 1 mode
is indicated by the light grey in the north–west corner of the figure; 2 modes
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FIG. 2. Image of “mode space.” The figure shows the numbers of modes of density estimates
computed from the sample {−1,0,1}, using the kernel Kθ(x) = Cθ (1 − x2)θ . Values of θ and h

are indicated on the horizontal and vertical axes, respectively. Mode counts range from 1 (light grey,
upper left part of the figure), through 3 (medium grey, lower right part), to 6 (black).

by the slightly darker adjacent region to its right, not touching any of the figure
boundaries; 3 modes by the medium grey region that covers most of the south–east
half of the figure, and also by the small area against the left-hand figure boundary
immediately below the 1-mode region; 4 modes by the small sliver of a region
between the 2-mode and 3-mode areas; 5 modes by the very dark patch which
meets the left-hand figure boundary at values ofh between about 0.5 and 1.0; and
a very small region of black, hardly detectable on the figure, representing 6 modes
near(θ, h) = (2.5,1.02).

The possibility of finding 6 modes in a density estimate from 3 points is
demonstrated in Figure 3. Panel (a) shows a portion of the mode tree for the
caseθ = 2.5, while panels (b) and (c) show the density estimate, in full and in
modal close-up, respectively, for the estimate withh = 1.02 and the same kernel.
The estimate is nearly flat, but six modes appear, ranging from small to extremely
small.

Although clearly Figure 2 does not generalize directly to other datasets, it
demonstrates both the complexity of the data-θ -h interactions with respect to
modes, and the ubiquity of modal nonmonotonicity. Even though it is often
assumed thatKθ provides a good approximation to the normal kernel for moderate
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FIG. 3. Six modes for estimates from the sample {−1,0,1} using K5/2(x) = C5/2 (1 − x2)5/2.
Panel (a) depicts part of the mode tree, while panel (b) shows the estimate using h = 1.02.Panel (c)
displays a close-up of the modes from the same estimate.

values ofθ , the monotonicity property does not appear for this simple dataset until
θ is close to 11.

Next we investigated the relationship betweenhcrit, defined in Section 2, and the
bandwidthhnonm, defined to be the smallest bandwidth at which nonmonotonicity
appears ash is decreased fromhcrit. We drew 1000 samples of sizen from the
distribution whose density was the Epanechnikov kernel, this choice being made
because there the density estimates suffer in only minor ways from spurious
modes in the tails. For each sample we computed density estimates using
(a) Epanechnikov, (b) biweight and (c) triweight kernels, and formed the ratio
R = hcrit/hnonm. Estimates of the probability densities of log(R) are plotted in
Figure 4, forn = 10 (dotted line), 100 (dashed line) and 1000 (solid line). For each
estimate, the Gaussian kernel and the Sheather and Jones (1991) direct plug-in
bandwidth were used. Note that both scales for the three panels vary considerably.

Panel (a) of Figure 4, for the case of the Epanechnikov kernel, shows that for
all three sample sizes, nonmonotonicity tends to occur at a bandwidth that is

FIG. 4. Estimates of probability density of log(R = hcrit/hnonm). Panels (a)–(c) correspond to
the (a) Epanechnikov, (b) biweight and (c) triweight kernels, respectively. Sample sizes were n = 10
(represented by the dotted line), n = 100 (dashed line), and n = 1000 (solid line).
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close to hcrit. The biweight-kernel results presented in panel (b) show that
nonmonotonicities are still very common,but that they now often appear at a
bandwidth which is significantly smaller thanhcrit. By way of contrast, panel (c)
reveals that the triweight kernel is much less susceptible to nonmonotonicity, and
that in this case sample size plays a larger role. The large peaks on the right in
all three triweight estimates appear to be artifacts due to the discretized nature of
the original estimates (400 points on[−1,1]). It appears possible that a triweight
kernel-based estimate suffers relatively few effective nonmonotonicities.

4.2. Bump hunting. In this section we summarize numerical information
about the extent to which level accuracy of Silverman’s bandwidth test, discussed
in Section 3, is influenced by kernel type. Epanechnikov, biweight, triweight and
Gaussian kernels are treated. It is well known that the Gaussian kernel produces
asymptotically conservative tests, in the sense that the asymptotic levelπ(α),
defined at (3.5), tends to be less thanα. It is of interest to learn what happens
for other kernels.

Figure 5 illustrates results in the case of data simulated from the Beta(3,4)

distribution. The value ofhcrit was found by grid search. The bootstrap form,h∗
crit,

of hcrit was calculated by averaging over 500 bootstrap resamples from each
sample, and the value ofπ(α) was approximated by averaging results over
100 replicates. The resulting curve approximations were slightly smoothed to
reduce variability.

Panels (a) and (b) in Figure 5 correspond ton = 100 and n = 10000,
respectively. Each panel displays four approximations toπ(α), indicated on the
vertical axis, as functions ofα. The four curves represent the Epanechnikov
(unbroken line), biweight (dotted line), triweight (dot-dash line) and Gaussian

FIG. 5. Level accuracy of bandwidth test. The four curves in each panel represent numerical
approximations to levels of the bandwidth test when the Epanechnikov, biweight, triweight or
Gaussian kernel is used to implement the test. Line types are as indicated in boxes. Panels (a)and (b)
are for n = 100and n = 10000,respectively.
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(dashed line) kernels. The conservative nature of the bandwidth test is indicated
by the fact that each curve lies below the diagonal, with little to distinguish the
different kernels. This lends support to the view that using non-Gaussian kernels
when testing for modality does not substantially alter the conclusions of a test. The
conservatism could be alleviated by using any of several available corrections, for
example, that suggested by Hall and York (2001).

5. Technical arguments.

5.1. Proof of Theorem 2.1. Without loss of generality the mode ofK equals 0.
It suffices to show that for eachn there existsε = ε(n) > 0 such that, whenever
X1, . . . ,Xn come from a continuous distribution supported on[−ε, ε] [call this
assumption (A)], the mixture densityg = n−1 ∑

i K(x + Xi) is strictly unimodal
with probability 1.

If (A) holds theng′(x) ≥ 0 wheneverx < −ε, and equality occurs if and only if
K ′(x +Xi) = 0 for eachi, which by assumption is true only at points of inflection
of K(· + Xi) (by assumption there is only a finite number of these) or at points
outside the support ofK(· +Xi). Therefore if (A) holds theng′ ≥ 0 on(−∞,−ε)

andg′ ≤ 0 on(ε,∞), with equality holding in either case only outside the support
of g or at points of inflection inside the support ofg, there being at most a finite
number of these. Call this property (P).

Since, for someη > 0, K is concave in the neighborhood(m − η,m + η)

of m, then, provided assumption (A) holds for sufficiently smallε, g is concave
in (m − 1

2η,m + 1
2η). Combining this property with (P) we deduce thatg is

strictly unimodal on its support, except for the possibility that the set of points
that gives a maximum ofg form a nondegenerate interval. However, this entails∑

i K
′(x + Xi) = 0 for all x in that interval, which, since the sampled distribution

is continuous andK is strictly unimodal, holds with probability 0.

5.2. Proof of Theorem 2.2. Let 0< ε < 1
2. Now,

gε(x) ≡ 1
2{K(−1+ ε + x) + K(1− ε + x)}

= K(1− ε) + 1
2x2K ′′(1− ε) + o(x2)

asx → 0. Therefore, if 0< ε < 1
2 thenK(−1+ ε + x) + K(1− ε + x) is strictly

concave in the neighborhood of the origin. It follows that the densitygε has at least
three modes.

Equivalently, the density

1

2h
K

(
x − X1

h

)
+ 1

2h
K

(
x − X2

h

)
,(5.1)

equal to the kernel density estimator computed from the sample{X1,X2} of
size n = 2, has at least three modes if1

2|X1 − X2| < h < |X1 − X2|, and has
precisely two modes ifh ≤ 1

2|X1 − X2|.



BUMP HUNTING 2137

More generally, given a sampleX of size n ≥ 2 we may order the data as
X(1) ≤ · · · ≤ X(n). Let Si = X(i+1) − X(i), for 1 ≤ i ≤ n − 1, denote theith
spacing. If the sampled distribution is continuous then with probability 1 no two
spacings are equal, and so they may be ranked in order of strictly increasing
size, without ties. LetSmin denote the smallest spacing. Then with probability 1
the density estimator̂fh has at leastn + 1 modes if 1

2Smin < h < Smin, and has
preciselyn modes ifh ≤ 1

2Smin.

5.3. Proof of Theorem 3.1. Assumptions (3.4) imply thatω(t, u) has two
continuous derivatives with respect tot , and thatu−1ω′(tu,u) is proportional to
ω1(t, u) = u−3/2ω2(t, u) − ct , where

ω2(t, u) =
∫

K ′′(t + v)Wu(v) dv,

c = |f ′′(x0)|/f (x0)
1/2 and Wu(v) = −W(uv)/u1/2 is a standard Brownian

motion. If −1
2 < t1 < t2 < 1

2 then

|ω2(t1, u) − ω2(t2, u)| ≤
∫ 1−t2

−1−t1

|K ′′(t2 + v) − K ′′(t1 + v)||Wu(v)|dv

+
∫ −1−t1

−1−t2

|K ′′(t2 + v)||Wu(v)|dv

(5.2)

+
∫ 1−t1

1−t2

|K ′′(t1 + v)||Wu(v)|dv

≤ 4(t2 − t1)

(
sup
I

|K ′′| + sup
I

|K ′′′|
)
S(u),

where S(u) = ∫
−2≤v≤2 |Wu(v)|dv. (These bounds requireK to have three

derivatives as a function onI, but not as a function on the real line.) For eachε > 0,
S(u) = O(uε) with probability 1 asu → ∞. Therefore, by (5.2),

sup
−1<t1<t2<1

∣∣∣∣ω2(t1, u) − ω2(t2, u)

t1 − t2

∣∣∣∣ = O(uε)(5.3)

with probability 1 asu → ∞.
Solutions t = t̂ of ω′(t, u) = 0 are equivalently solutions ofω1(t, u) = 0,

and may be shown by Taylor expansion to satisfy sup|t̂| → 0 asu → ∞, with
probability 1, where the supremum is taken over all solutions. (It is straightforward
to prove that with probability 1, at least one solution exists for all sufficiently
largeu.) Let w > 0 be given, and suppose the probability that for someu ≥ w at
least two distinct solutions exist is bounded away from 0 (along a subsequence of
values ofw) asw → ∞. Taket̂1 andt̂2 to be two such solutions, whenu ≥ w and
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w is an element of the subsequence. Thenu−3/2ω2(t̂j , u) = ct̂j for eachj , whence

u−3/2ω2(t̂1, u) − ω2(t̂2, u)

t̂1 − t̂2
= c.(5.4)

Result (5.3) implies, however, that with probability 1 the left-hand side of (5.4)
converges to 0 asu → ∞. On the other hand, the right-hand side is fixed and
nonzero. This contradiction demonstrates the incorrectness of our assumption that
two distinct solutionŝt1 andt̂2 of ω′(t, u) = 0 exist, and proves the theorem.

5.4. Proof of Theorem 3.2. Puth0 = n−1/5, write H = H(n) for a positive
sequence such thatH(n) → 0 andH(n)/h0 → ∞, and redefinehcrit to be the
infimum of values 0< h1 ≤ H(n) such thatf̂h is strongly unimodal for allh ≥ h1.
It is readily proved that the probability that this version ofhcrit, and the version
defined at (2.3), are identical converges to 1 asn → ∞. Therefore it is sufficient
to prove that for the new version,n1/5hcrit → Ucrit in distribution.

Let Ŝh denote the support of̂fh, and write Ŝ 0
h for the interior of Ŝh. Using

strong approximation of the empirical distribution by a Brownian bridge [Komlós,
Major and Tusnády (1976)], it may be shown that for eachC1, ε > 0 there exists
C2 = C2(C1, ε) > 0 such that for all sufficiently largen,

P {for all h ∈ [C1h
0,H(n)], f̂ ′

h(x) > 0

for x ∈ Ŝ 0
h such thatx ≤ x0 − C2h,(5.5)

andf̂ ′
h(x) < 0 for x ∈ Ŝ 0

h such thatx ≥ x0 + C2h} ≥ 1− ε.

The method of proof consists of showing first that for eachh, Ehf ′
h(x) is strictly

positive on (a − h,x0 − C2h) and strictly negative on(x0 + C2h,b + h), and
thence demonstrating that for eachC1, ε > 0 there existsC2 = C2(C1, ε) > 0 such
that for all sufficiently largen,

P
{
for all h ∈ [C1h

0,H(n)] and allx ∈ (a − h,b + h) for

which |x − x0| > C2h, |f̂ ′
h(x) − Ehf ′

h(x)| > 1
2|Ehf ′

h(x)|} ≥ 1− ε.

The same strong approximation methods may be used to prove that for each
C2, ε > 0 there existsC3 = C3(C2, ε) > 0 such that for all sufficiently largen,

P

{
sup

h∈[C3h
0,H(n)]

sup
|x−x0|≤C2h

|f̂ ′′
h (x) − Ef̂ ′′

h (x)| > ε

}
≥ 1− ε.(5.6)

[In each case the arguments are broadly similar to those of Mammen, Marron and
Fisher (1992). See also Silverman (1983).]

Note too that for eachC1 > 0, E{f̂ ′′
h (x)} = f ′′(x0) + o(1) uniformly in

|x − x0| ≤ C1h andh ≤ H(n). Combining this result with (5.6) we deduce that
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for eachC2, ε > 0 there existsC3 = C3(C2, ε) > 0 such that for all sufficiently
largen,

P {for all h ∈ [C3h
0,H(n)],

(5.7)
f̂h is strictly concave on(x0 − C2h,x0 + C2h)} ≥ 1− ε.

Together (5.5) and (5.7) imply that for eachε > 0 there existsC3 = C3(ε) > 0
such that for all sufficiently largen,

P {for all h ∈ [C3h
0,H(n)],

(5.8)
f̂h is strictly unimodal on its support} ≥ 1− ε.

Strong approximation methods may also be used to prove the existence of a
Brownian motionW such that, defininghu = uh0,

Aj(t, u) = n(2−j)/5{f̂ (j )
hu

(x0 + h0t) − Ef̂
(j)
hu

(x0 + h0t)
}

and

aj (t, u) = f (x0)
1/2u−(j+1)

∫
K(j)

(
v + t

u

)
dW(v),

wherej = 0, 1 or 2, we have for each 0< C1 < C3 < ∞ and eachC2 > 0,

P

{
sup

|t|≤C2

sup
C1≤u≤C3

|Aj(t, u) − aj (t, u)| ≥ n−δ

}
= O(n−λ)(5.9)

for someδ > 0 and allC2, λ > 0. Observe too that ifj = 1,2,

n(2−j)/5{Ef̂
(j)
hu

(x0 + h0t) − f (j)(x0)
} − tf ′′(x0)I (j = 1) → 0(5.10)

uniformly in |t| ≤ C2 andC1 ≤ u ≤ C3.
Denote byN = N(C2, u) the number of crossings of 0 made by the process

a1(·, u) in [−C2,C2], and let the crossings beT1(u), . . . , TN . For eachC2 > 0 and
0 < C1 < C3 < ∞, the value of supC1≤u≤C3

N(C2, u) is finite with probability 1.
The continuous, nondegenerate property of the joint distributions ofa1(·, u) and
a2(·, u) implies that

lim
ε→0

P [|a2{Ti(u), u}| > ε for 1 ≤ i ≤ N(C2, u) andC1 ≤ u ≤ C3] = 1.

Note too thatω′(t, u) = a1(t, u) + tf ′′(x0). The results immediately above, and
(5.9) and (5.10), imply that

P
{
for eachC1 ≤ u ≤ C3, the number of downcrossings of 0 made

by f̂ ′
hu

(x0 + h0t) for t ∈ [−C2,C2], equals the number(5.11)

of downcrossings of 0 made byω′(t, u) for t ∈ [−C2,C2]} → 1

asn → ∞.
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Analogously to (5.8), but more simply, it may be shown that for eachε > 0 there
existsC3 = C3(ε) > 0 such that

P {for all u > C3, there is a uniquet = t̂ ∈ (−∞,∞) at
(5.12)

whichω′(t, u) vanishes, and̂t is a downcrossing} ≥ 1− ε.

Combining (5.5), (5.8), (5.11) and (5.12), we deduce that for allC1 > 0,

P {for all h ∈ [C1h
0,H(n)], the number of downcrossings of 0 made

by f̂h equals the number of downcrossings of 0 made byω′(t, u)} ≥ 1− ε.

The theorem follows from this result and (5.12).
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