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BY LIQUN WANG
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This paper is concerned with general nonlinear regression models where
the predictor variables are subject to Berkson-type measurement errors. The
measurement errors are assumed to have a general parametric distribution,
which is not necessarily normal. In addition, the distribution of the random
error in the regression equation is nonparametric. A minimum distance
estimator is proposed, which is based on the first two conditional moments of
the response variable given the observed predictor variables. To overcome the
possible computational difficulty of minimizing an objective function which
involves multiple integrals, a simulation-based estimator is constructed.
Consistency and asymptotic normality tmoth estimators are derived under
fairly general regularity conditions.

1. Introduction. In many scientific studies researchers are interested in the
nonlinear relationship

1) Y =g(X;0) +e,

whereY € R is the response variabl¥, € R is the predictor variable) € R? is
the unknown regression parameter anslthe random error. In many experiments,
it is too costly or impossible to measure the predictagxactly. Instead, a prox¥
of X is measured.

For example, an epidemiologist studies the severity of a lung disEéaamong
the residents in a city in relation to the amount of certain air pollutaéhtg\ssume
the air pollutants are measured at certain observation stations in the city. The actual
exposure of the residents to the pollutaitshowever, may vary randomly from
the valuesZ measured at these stations. In this caean be expressed &splus
a random error, which represents the individual variation in the exposure from the
measured exposure.

Other examples include agricultural or medical studies, where the relations
between the yield of a crop or the efficacy of a drifg,and the amount of a
fertilizer or drug usedX, are studied. Suppose the fertilizer or the drug is applied
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at predetermined doses. The actual absorption of the fertilizer in the crop or
the drug in the patients’ blood, however, may vary randomly around the set doses,
because of the local earth conditions or the individual biological conditions. In
these cases, if the amountis properly calibrated, then the actual absorption
will vary aroundZ randomly, so that in average the random variafior Z will
be zero.

In all situations mentioned above, a reasonable model for the measurement
errors is the so-called Berkson model

(2) X=7Z+4§,

where § is the unobserved random measurement error which is assumed to
be independent of the observed predictor variableMore explanations and
motivations of the Berkson-error model can be found in Fuller [(1987), pages
79 and 80].

The stochastic structure of the Berkson measurement error model (2) is
fundamentally different from the classical errors-in-variables model, where the
measurement error is independentof but dependent oiZ. This distinctive
feature leads to completely different procedures in parameter estimation and
inference for the models.

Estimation of the linear Berkson measurement error models is discussed in
Fuller [(1987), pages 81-83] and Cheng and Van Ness [(1995), pages 35-38].
For nonlinear models, an approximative method called regression calibration
is presented by Carroll, Ruppert and Stefanski [(1995), Chapter 3]. Recently,
Huwang and Huang (2000) studied a univariate polynomial model wiare)
is a polynomial inx of a known order and showed that the least squares estimators
based on the first two conditional momentsofgiven Z are consistent. Wang
(2003) considered general univariate nonlinear models where all random errors
are normally distributed and showed that the minimum distance estimator based
on the first two conditional moments Bfgiven Z is consistent and asymptotically
normally distributed.

In many practical applications, however, there is often more than one predictor
variable which is subject to measurement errors. Moreover, the random errors
andé may have distributions other than the normal distribution. The goal of this
paper is to generalize the results of Wang (2003) to the nonlinear models with
multivariate predictor variables, where the measurement &rfoas a general
parametric distributionfs(z; ¥), ¥ € ¥ C R?, and the random erros has a
nonparametric distribution with mean zero and variange Thus, (1) and (2)
represent a semiparametric model. Our main interest is to estimate parameters
y =@,y 082)’. We show that the minimum distance estimator of Wang (2003)
is still consistent and asymptotically normally distributed. For the general model in
this paper, however, a computational issue arises, because the objective function to
be minimized involves multiple integrals for which explicit forms may not always
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be obtained. To overcome this difficulty, we propose a simulation-based estimator
which is shown to be consistent and asymptotically normally distributed under
regularity conditions similar to those for the minimum distance estimator.

Throughout the paper we assume ti#ats and ¢ are independent anéf
has finite second moment. In addition, we adopt the common assumption in
the literature thathe measurement error is “nondifferential” in the sense that
the conditional expectation df given X and Z is the same as the conditional
expectation ofY given X. Although in this paperZ is assumed to be a
random variable, it is easy to see that all results continue to hold if the
observations ofZ, 71, 7>, ..., Z,, are treated as fixed constants such that the
limits lim, o0 X7 Z;i/n and lim,_. o X7 Z; Z; /n are finite.

The paper is organized as follows. In Section 2 we give three examples to
motivate our estimation method. In Section 3 we formally define the minimum
distance estimator and derive its consistency and asymptotic normality under some
regularity conditions. In Section 4 we propose a simulation-based estimator and
derive its consistency and asymptotic normality. Finally, conclusion and discussion
are given in Section 5, whereas proofs of the theorems are given in Section 6.

2. Examples. To motivate our estimation method, let us consider some exam-
ples. To simplify notation, let us consider the case where the measurement error
8 = (81,82, ...,8) has the normal distributiotV (0, o2I;), where 0< o < o0
andl; is thek-dimensional identity matrix.

EXAMPLE 1. First consider the modef(x;6) = 01x1 + 63¢722, where
6203 £ 0. For this model the conditional moment Bf given Z can be written
as

E(Y|Z)=01Z1 + 01E(81) + 03¢"72 E(%2%?)
3)
= 171 + p3e¥?72,

where g1 = 01, g2 = 62 and g3 = 93e922"82/2. Similarly, the second conditional
moment ofY givenZ can be written as

E(Y?|Z) = 0E[(Z1+ 81)°| Z] + 03 E[e¥7 72499 7]
+20103E[(Z1 + 81)e™ 7272 | Z] + E(e?)
(4) = 02(Z2 + o) + 6362272 E (¢222)
+ 20103Z16%72 E (€%22) 4 52
= ga+ 0123 + 95e™?72 + 201937169272,

wherep, = 0202402 andygs = 9§e2922‘762. Since(3) and(4) are the usual nonlinear
regression equations and bdttandZ are observabldy;) are identified by these
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equations and, therefore, can be consistently estimated using the nonlinear least
squares method. Furthermore, the original parameea—;rs(sz, %2) are identified
because the mapping;, o2, o2) > (¢;) is bijective. Indeed, it is straightforward

&
to calculate thaby = g1, 62 = 02, 03 = 92/ /g5, o = 00(¢s/93)/¢% ando? =
04 — ¢2100(¢5/93) /p3.

EXAMPLE 2. Now consider another model(x; 6) = 01 exp(x'62), where
61 #0, 0#£ 6, e R?~1 and p > 1. For this model the first conditional moment
of Y givenZ can be written as

E(Y|Z) = 617 %2 E(5%)
5) »
= p1e” %2,
where g1 = 61 exp(@é@zo(sz/Z) and g2 = 6. The second conditional moment is
given by

E(Y?|Z) = 03e*72E (e%2) + E(¢?)
(6) oy
w2

= @3e + @4,

where g3 = 012e29§92‘752 and ¢4 = o2. Again, (¢;) are identified by(5) and (6)
and the nonlinear least squares method. Furthermore, the original parameters
(6;,02,02) are identified because the mappiy, o2, o2) > (¢;) is bijective.

Indeed, straightforward calculation shows tifat= ¢?/./g3, 62 = @2, 02 =
log(¢s/¢2)/¢sp2 ando? = pa.

ExamMpPLE 3. Further, let us consider the polynomial mogét; ) = 61x1 +
B2x2 + 03x2 + O4x2 + Osx1x2. For this model the first two conditional moments
are, respectively,

(1) E(Y1Z)= 03+ 02)0F + 0121+ 0272 + 0325 + 0425 + 052122
and

E(Y?|Z) = E[gX(Z + 6, 0)|Z] + E(£?|Z)

(8) 5 )
=E[g(Z+68;0)|Z] +of.

Again, it is easy to see that parametéts andcrs2 are identified by the nonlinear
regression equatio(v), whereas;f is identified by(8). Thus, all parameters in
this model can be consistently estimated using the first two conditional moment
equations.

The above examples suggest that in many situations, parameters in nonlinear
models can be identified and, therefore, consistently estimated using the first
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two conditional moments o¥ given Z. The fact that parameters of Berkson
measurement error models may be identified in nonlinear regression was first
noticed by Rudemo, Ruppert and Streibig (1989). The identifiability of the
univariate polynomial model was shown by Huwang and Huang (2000). For
general nonlinear models, it is worthwhile noting that even in the case where the
mapping(6;, o, o) - (¢;) is not bijective, the original parametet®, o2, o.2)

can still be identified, if appropriate restrictions on them are imposed. In the next
section, we develop a minimum distance estimator for the general nonlinear model
(1) and(2) based on the first two conditional moments and derive its asymptotic
properties.

3. Minimum distance estimator. Under the assumptions for moddl) and
(2), the first two conditional moments &f given Z are respectively given by

E(Y|Z)=E[g(Z+5;0)|Z]1+ E(¢|Z)

(9)
- /g<z+r; 0) f3(t: ) di
and
E(Y?Z) = E[g%(Z + 8:0)|Z] + E(¢?|Z)
(10)

:/g2(2+t;9)fa(t; ¥)dt +o2.

Throughout this paper, unless otherwise stated explicitly, all integrals are taken
to be over the spadg®. Further, lety = (¢, ¥, 02)’ denote the vector of model
parameters and It = ©® x W x ¥ c RPT9+! denote the parameter space. The
true parameter value of mod@) and(2) is denoted by € I'. For everyz € R¥

andy €T, define

(12) mi(z y) = / ¢+ 1:0) fo(t: ¥ i,
(12) mo(z;y) = /gz(z +1;0) fs(t; ) dt +%2-

Thenm1(Z: yo) = E(Y|Z) andm2(Z; yo) = E(Y?|Z).
Now suppos&Y;, Z))’,i =1,2,...,n, is an i.i.d. random sample and let

p(Yi, Zisy) = (Yi —m1(Zis ), Y2 —ma(Zis v)) .

Then the minimum distance estimator (MDg)for y based on moment equations
(9) and (10) is defined as

Vo =argmingQ, (y),
yell
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where the objective function

n

(13) 0n(V) =)0 Yi. Zis; W (Zi)p(Yi, Zis v)
i=1

andW (Z;) is a 2x 2 weighting matrix which may depend &f.

Regularity conditions under whicf, is identified, consistent and asymptoti-
cally normally distributed are well known in the nonlinear regression literature;
see, for example, Amemiya [(1985), Chapter 5], Gallant [(1987), Chapter 5] and
Seber and Wild [(1989), Clmer 12]. Usually these conditions are expressed in
a variety of forms.

In the following, we adopt the setup of Amemiya (1985) and express these
regularity conditions in terms of the regression functign; ) and measurement
error distributionfs (¢; ¥). Let u denote the Lebesgue measure angl lgt denote
the Euclidean norm irR?. Then we assume the following conditions for the
consistency of the MDE,.

ASSUMPTIONAL. g(x;0)is ameasurable function effor everyd € ®, and
is continuous i@ € ©, for p-almost allx.

ASSUMPTIONAZ2. fs5(t; ) is continuous iny € ¥ for p-almost allz.
AsSSUMPTIONA3. The parameter spadec R?T4+1 js compact.

ASSUMPTIONA4. The weightW(Z) is nonnegative definite with probabil-
ity 1 and satisfieE ||W(Z)|| < oo.

ASSUMPTION A5. [supy fs(t;¥)dt < oo and E(|W(2Z)| + 1 x
S SURyww 84(Z +150) f5(1; ¥) dt < o0.

ASSUMPTIONAG. E[p(Y,Z;y)—p(Y,Z; vl W(D)p(Y.Z;y)—p(Y, Z;
vo)] =0 if and only ify = yq.

The above regularity conditions are common in the literature of nonlinear
regression. In particular, Assumptions A1 and A2 are usually used to ensure
that the objective functiom,, (y) is continuous iny. Similarly, the compactness
of the parameter space is often assumed. From a practical point of view,
Assumption A3 is not as restrictive as it seems to be, because for any given
problem one usually has some information about the possible range of the
parameters. Assumption A5 contains moment conditions which imply the uniform
convergence oD, (y). In view of (9) and (10), this assumption means thi@nde
have finite fourth moments. It is easy to see that Assumptions A1, A2 and A5 are
satisfied, ifg(x; 6) is a polynomial inx and the measurement erhas a normal
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distribution. Finally, Assumption A6 is the usual condition for identifiability of
parameters, which means that the true parameter yglisethe unique minimizer
of the objective functiorQ,, (y) for largen.

THEOREM1. Under Assumptions A1~A6, the MDE 7, - yo, asn — oo.

To derive the asymptotic distribution for the MDEg,, we assume further
regularity conditions as follows.

ASSUMPTIONATY. There exist open subsdigc ©g C ® andyg € ¥o C W,
in whichg(x; 6) is twice continuously differentiable with respecttand fs(z; ¥)
is twice continuously differentiable with respectiqg for w-almost allx ands,
respectively. Furthermore, their first two derivatives satisfy

EIIW(Z)II/(M)?XJE0 WH?‘W; V) dt < 00,
EIIW(Z)II/®§IXJBO % zfs(t;lﬂ)dt < 00,
EIW (@) /S‘I';f)p %‘p“’) dt < oo,

EW@] [ Sup (2 +1:0) %ﬂ dt < oo,
EIIW(Z)II/GSE\BO ag(Za—gt;@) i 3fa;:;1//) dt < oo,
E||W(Z)||/®§380|g(2+t;9)| 823{2(7;1;/) dt < oo,
E||W(z>||/®§350g2(z+t;e) 823{2(7;1;/) dt < oo,

ASSUMPTIONA8. The matrix

a0’ (Y, Z: oY, Z:
B:E[ o' (Y, ’VO)W(Z) o( Vo)]
dy ay’

is nonsingular, where

'Y, Z; yo) _ _<8m1(Z; o) dm2(Z; yo))
dy Iy )
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Again, Assumptions A7 and A8 are commonly seen regularity conditions which
are sufficient for the asymptotic normality of the minimum distance estimators.
Assumption A7 ensures that the first derivative @f(y) admits a first-order
Taylor expansion and the second derivativegpf(y) converges uniformly. This
assumption and the dominated convergence theorem together imply that the
first derivativesdm1(z; y)/dy and dmo(z; y)/dy exist and their elements are
respectively given by

Imy(z;y) 8g(z+t )
| fo(es ),
Bml(z amy(z; y) / (z+1:6) fagww) ’
8m1(z Y) _0
80

and

0 ; ad +1;0

IS o [ LD ok 1 6) ot i,
a6 a

Ima(z; y) / 2 L\ 0fs(t5 )
" g (z+t,0)7aw dt,

oma(z; y)
3‘752 B

Finally, Assumption A8 implies that the second derivative @f(y) has a

nonsingular limiting matrix. Again, Assumptions A7 and A8 are satisfied for the
polynomial modef (x; 6) and the normal measurement ersor

1.

THEOREM 2. Under Assumptions A1-A8, as n — oo, /n(¥» — y0) Y
N, B~1cB~1), where

3p/(Y,Z; 0) (Y. Z: v0)
(14) €= E[TVW(Z)MY, Zyo)p' (Y. Z; yo)W(Z)T/y]'
Furthermore,

1 n a /Yi’Zi;’\ 8 YZ’ZZ;A
(15) B = plim Z[ 05, 225 90) 7 00 2 yn)}
n—>ool’ll 1 8)/ a)/
and
10 9
(16) AC = p“m_ Qn(Vn) Qn(yn)’
n—oon a)/ 8)/

where

901(y) _ 55 00/, 215 7)

=2
9y i=1 Iy

W(Z)p(Yi, Zi; y).
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The MDE y, depends on the weight (Z). A natural question is how to choose
W (Z) to obtain the most efficient estimator. To answer this question, we first note
that, sincedp’(Y, Z; yp)/0y does not depend an, matrixC in (14) can be written
as

c :E[ap/(Y, Z; VO)W(Z)V(Z)W(Z)ap(Y’ Z; J/O)]’
ay ay’

where

V(Z)=Elp(Y, Z; y0)p' (Y, Z; y0)| Z]
and has elements
vi1 = E[(Y — m1(Z: )| Z].
voo = E[(Y2 — ma(Z: y0))°1Z]
and

vi2=E[(Y — m1(Z; y0))(Y? — ma(Z; y0)) | Z].
Then, analogous to weighted (nonlinear) least squares estimation, we have

E[ap%Y, Z; yo) op(Y, Z; Vo)}_l

dy dy’
(in the sense that the difference is nonnegative definite), and the lower bound is
attained forw (Z) = V(Z)~1 in B andC. The matrixV (Z) is invertible, if its
determinaniyqvz, — v3, > 0.

In general,V (Z) is unknown, and it must be estimated before the MRE
using W (Z) = V(Z)~! is computed. This can be done using the following two-
stage procedure. First, minimize, (y) using the identity matrix¥ (Z) = I, to
obtain the first-stage estimat@y. Second, estimaté(Z) by

. 13 ~ 02

b1 = > (Y —m1(Zis 7)),
i=1

~ 1 u 2 A\ 2

v22 = Z(Yl- —m(Zi; Vn))
i=1

(17) B icB 1> v(z)~t

and

n

. 1 . .
bra= =3 (¥ —m1(Zi; D) (Y2 = ma(Zis D)),
i=1
and then minimizeQ,, (v) again withW(Z) = V(Z)~! to obtain the two-stage
estimatory,,. Since the estimators;; are consistent fow;;, the asymptotic
covariance matrix of the two-stage estimafgy is the same as the right-hand
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side of (17) and, thereforé,n is asymptotically more efficient than the first-stage
estimatory,,. More detailed discussions about the so-called feasible generalized
least squares estimators can be found in, for example, Amemiya (1974) and Gallant
[(1987), Chapter 5].

4. Simulation-based estimator. The MDE 7, in the previous section is
obtained by minimizing the objective functiaf, (y) in (13). The computation
can be carried out using the usual numerical optimization procedures, if the
explicit forms of m1(z; y) andma(z; y) can be obtained. For some regression
functionsg(x; 6), however, explicit forms of the integrals in (11) and (12) may
be difficult or impossible to derive. In this case, numerical integration techniques
such as quadrature methods can be used. In practice, the numerical optimization of
an objective function involving multiple integrals can be troublesome, especially
when the dimension of the function is higher than three or four. To overcome this
computational difficulty, in this section we consider a simulation-based approach
for estimation in which the integrals are simulated by Monte Carlo methods such
as importance sampling. This approach is similar to the method of simulated
moments (MSM) of McFadden (1989) or Pakes and Pollard (1989).

The simulation-based estimator can be constructed in the following way.
First, choose a known density functignz) and, for each ¥k i < n, generate
an i.i.d. random samplér;,,s = 1,2,...,2S} from ¢(¢). Clearly, all samples
{tis,s=212,...,25,i =1,2,...,n} form a sequence of i.i.d. random variables.
Thenm1(z; y) andma(z; y) can be approximated by the Monte Carlo simulators
as

1 y Zi is; 0 iss
mis(Zi;y) = Zg( + 153 0) f5(tis; )

S5 b (i) :
1 2 g(Z; +ti5;0) f5s(tis; V)
Zl'; = — ’
ml’ZS( y) S s:XS—:i-l ¢(tis)
! - g Zi iss iss
mas(Ziny) = 23 S O foltisi ) 2

S s=1 ¢(tls) &’

1 B g2(Zi +1i5:0) f(tis: V)
maos(Zizy) =< ) § 53 0) Jolhis: ¥ +0?

6"
SS=S+1 ¢([i5)

Therefore, a simulated version of the objective functiyn(y) can be defined as

(18) 0ns() =30 W (Z)® ),
i=1
where

s
,0,-( '(y) = (Yi —m1s(Zis y), Yi2 —ma.s(Zi; y))
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and
25)
() = (Y; —m12s(Zis ¥), Y2 —ma25(Zi3 v)) .

It is not difficult to see tha), s(y) approximates), (y) asS — oo, because by
construction

Elmys(Zi; v)Zi1 = Elmy2s(Zi; v Zil =mi(Z;; y)
and
Elmo s(Zi; Y)Zi1 = Elm,25(Zi; V)| Zi1=mo(Z;; y).

In addition, O, s(y) is an unbiased simulator foQ,(y) in the sense that
EQ, s(y)=EQ,(y), because, giveti;, Z;, pl-(S)(y) andpl_(zs)(y) are condition-

ally independent and hence
E[0® )W @Zp )] = E[E(0™ 0IYi. Z)W(Z)E (07 )1Yi. Z:)]
=Elp(Y;, Zi; y)W(Zi)p(Yi, Zi; y)].
Finally, the simulation-based estimator (SE) fois defined by

);n,S =arg minQn,S(y)-
yell
Note that, sinca, s(y) does not involve integrals any more, it is continuous in,
and differentiable with respect tg,, as long as functiong(x; 8) and fs(z; ¥)
have these properties. In particular, the first derivativpi(t%)f(y) becomes

S/
00> (v) _(aml,s(z,-; y) dmas(Zi; y))
ay 8)/ k) ay ’
wheredm1 s(Z;; y)/dy is the column vector with elements

3mls(zl,)/) EZ 08(Z;i +tis; 0) f5(tis; V)
a0 S

a0 d)(tis)

’

[N

S=

dmys(Zisy) gig@ + 1353 6) 33 (tis; V)
oy SZ o) oy

om1 s(Zi;y)
80

=0

andomy s(Z;; y)/dy is the column vector with elements

amZS(Zl7 )/) 2 ag(z +t157 9) g(Z + tis; 9)fa(l‘u,‘ﬂ)

96 s Z ¢ (1i5)

’



2570 L. WANG

doma.s(Zi; y) gi 8%(Zi + tis; 0) 35 (tis; V)
oy S&o Pl oy
amz s(Zi; y) _1
do2 ’

The derivative$m1 25(Z;; y)/9y andomyo 2s(Z;; y)/dy can be given similarly.
For the simulation-based estimator, we have the following results.

THEOREM 3. Suppose the support of ¢ (¢) coversthe support of f5(z; y) for
all ¢ € W. Then the simulation estimator y, s has the following properties:

1. Under Assumptions A1-A6, 7, s £ yp asn — o0.
2. Under Assumptions A1-A8, \/n(J.s — v0) = N(0, B~1CsB~L), where

(SY )
2Cs = [ﬂmz )02 1002 (oW (24 )ﬂ}
(19) ’ZS)/ a
+ E[a‘)laiy(y")vv(zl)p(”)(yo)p(” (YO W (Z1 >%}
Furthermore,
(20) ACg = pllm 00n.5(Vn.s) 9Qn.s(Vn.5)

n—oo N ay ay’

In general, the simulation-based estimatpk is less efficient than the MDE,
of the previous section, due to the simulation approximatiop; o) by p; S)(y)

and,ol.(zs)(y). A natural question is how much efficiency is lost due to simulation.
The following corollary provides an answer to this question.

COROLLARY 4. Under the conditions of Theorem 3, it holds that

Cs=C+ iE[apiW(Z)(,Oll — p1) 3(p11— pl):W(Z)pl:|
1) 25 Iy dy
L _E[a(pll— 1) W(Z)(p12 — p1) 3(p12 — p1) W(Z)(p11 — /01)]
452 ay 8)// ,

where p1 = p (Y1, Z1; yo) and

_ ( 8(Zi + tis; 60) f3(tis: v0) 2 83(Zi +1is: 60) fs(tis: Y0) 5 )/
pis =Y — Y — )
¢ (tis) ¢ (tis)

is the summand in o> (yo) = X°5_; pi,/5.
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The above corollary shows that the efficiency loss caused by simulation has
a magnitude ofo(1/S). Therefore, the larger the simulation sigethe smaller
the efficiency loss. Furthermore, the efficiency loss reduces at @afgs).
Asymptotically, the importance density(r) has no effect on the efficiency of
the estimator, as long as it satisfies the condition of Theorem 3. In practice,
however, the choice ap () will affect the finite sample variances of the Monte
Carlo estimators such asi s(Z;; y). Theoretically, the best choice @f(z) is
proportional to the absolute value of the integrand, whiclgis + ¢; 0) f5(z; ¥)|
for m1(z; y). Practically, however, a density close to being proportional to the
integrand is a good choice. For more detailed discussion about importance
sampling and variance reduction methods for numerical integration, see, for
example, Evans and Swartz [(2000), Chapter 6].

In light of Corollary 4, the discussion in the previous section about the optimal
choice of the weighW (Z) = vV (Z)~1 applies to the simulation-based estimator
too, and will not be repeated here.

5. Conclusion. We have considered general nonlinear regression models with
Berkson measurement errors in predictor variables. The measurement errors
are assumed to have a general parametric distribution which is not necessarily
normal, whereas the distribution of the random error in the regression equation is
nonparametric. We have proposed a minimum distance estimator based on the first
two conditional moments of the response variable given the observed predictor
variables. We have shown that this estimator is consistent and asymptotically
normally distributed under fairly general regularity conditions. To overcome the
computational difficulty which may arise in the case where the objective function
involves multiple integrals, a simulation-based estimator has been constructed. The
consistency and asymptotic normality for this estimator have also been derived
under regularity conditions similar to those for the minimum distance estimator.
The results obtained generalize those of Wang (2003), which deals with the
univariate model under normal distributions.

6. Proofs.

6.1. Preliminary. First, for ease of reading we restate some existing results
which are used in the proofs. For this purposeXlet (X1, Xo, ..., X;) beani.i.d.
random sample and letbe a vector of unknown parameters. FurtherHeéX 1, )
andsS, (X, y) be measurable functions for apye I", and be continuous ip € T’
for almost all possible values dof. In addition, the parameter spafec R? is
compact. Using this notation, Theorems 4.2.1, 4.1.1 and 4.1.5 of Amemiya (1985)
can be stated as follows.

LEMMA 5. Suppose E sup, . |H (X1, y)| < oo. Then % Y1 H(X;,y) con-
vergesin probability to EH (X1, y) uniformlyiny €T.
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LEMMA 6. Suppose, as n — oo, S,(X,y) converges in probability to a
nonstochastic function S(y) uniformly in y € I', and S(y) attains a unique
minimum at yo € T'. Then the estimator y, = argmin, - S, (X, y) converges in
probability to yg.

LEMMA 7. Suppose, as n — oo, S,(X,y) converges in probability to a
nonstochastic function S(y) uniformly in y in an open neighborhood of yg, and
S(y) is continuous at yo. Then plim,,_, .. ¥, = yo implies plim,,_, o S, (X, y») =
S(v0)-

To simplify the notation in the proofs, we will denotgY;, Z;; y) as p; (y),
and W(zZ;) as W;, as far as these cause no confusion. For any matrixts
Euclidean norm is denoted 44 || = /tracgA’A), and vea denotes the column
vector consisting of the columns df. Further,® denotes the Kronecker product
operator.

PROOF OFTHEOREM 1. We show that Assumptions A1-A6 are sufficient for
all conditions of Lemma 6. First, by Holder’s inequality and Assumption A5 we
have

(22) E/§u5|g<2+r; O)Y f3(t: ) di < o0

for j = 1,2, 3. It follows from Assumptions Al, A2 and the dominated conver-
gence theorem that(z; y), ma(z; y) and thereforeQ,(y) are continuous in
y el Let

0(y) = Epy(n)W(Z1)pa(y).
Again by Hélder’s inequality, (22) and Assumption A3 we have
E W] suY1 — m1(Z1; )1
r

< 2E||Wy||Y? 4 2E | W1 supm3(Z1; y)
r

§2E||W1||Y12+2EIIW1II/ supg(Zy+1;0) f5(t; ¥) dt
OxW¥

< X
and
E||W1||SUfYZ — ma(Z1; )12
r

S3E||W1||Yf+3E||W1||/§U5g4(21+t;9)f5(t;w)dt

+3E|| W1 sups;’ < oo,
P
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which imply
E sgppi(wwlpl(y) < E||Wy]| sgpnpl(y)nz < 00.

It follows from Lemma 5 tha% 0. (y) converges in probability t@ (y) uniformly
in y € . Further, since

E[p1(x0)W1(p1(¥) — p1(¥0))] = E[E(p1(»0)| Z1) W1(p1(¥) — p1(y0))]
= 0’
we have

Q(y) = Qo) + E[(p1(¥) — p1(»0)) Wi(p1(y) — p1(y0))]-
It follows that Q(y) > Q(yp) and, by Assumption A6, equality holds if and only

if ¥ = yo. Thus all conditions of Lemma 6 hold and, therefq?,e,i o follows.
O

PROOF OFTHEOREM 2. By Assumption A7 the first derivativéQ,, (y)/dy
exists and has a first-order Taylor expansionin a neighborhigadI” of . Since

00, (7») /0y =0 andy, i o, for sufficiently largen we have
_30a(v0) | 320n(n) .,
=%, + 3y (Yn —v0),

wherel||y, — ol < ll7» — yoll- The first derivative oD, (y) in (23) is given by

(23) 0

00 (y) _ Zi p;(y) Wipr ()
i=1

dy dy

where

apj(y) _<8m1(Zi; y) dma(Z;; y))
ay ay ’ oy

and the first derivatives o1 (Z;; y) andma(Z;; y) with respect toy are given in
Assumption A8. Therefore, by the central limit theorem we have

100,(v0) L
24 — N(0,40),
where
9p}(y0) 9pi (vo)
C:E[ 5 Y0 Wi i (ro) o} (ro) W - 22 }
y oy

as is given in (14). The second derivative@f(y) in (23) is given by

02Qu(y) =2i[a"5(” avec(Bp,f(y)/ay)}
dydy’ L dy dy’ ’

8 .
W, pl(J//)
Iy

+ (PI(PIW;i ® Ipyq+1)
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where

dveadp/(y)/dy) _(82m1(z; y) 82ma(z; y))/
ay’ dy dy’ = dydy’

Again, by Assumption A7, the nonzero element$fm1(z; y)/dy 9y’ are
3°m1(z; y) 92g(z +1;0)
e[ fts ) d,

006 06’ 26 06’

PZmi(zy) / 082 +1:0) 3fs(t: )
03y 90 Y’ ’
82m1(z; v) 9% fs(t; ¥,
PN = [sern0= 00T oy oy

and the nonzero elementsdAma(z; y)/dy 9y’ are

20 (- 2 ;
¥ma(zy) :Z/Mg(z+t;e>fs<r; ¥)di

06 36’ 06 36’

2/ 8g(Z+t 9) 8g(za+t e)fa(t 0y,
3%mo(z; y) 0g(z+1;0) ofs(t; )
Sory =3[ se RS
Pmazy) [ o . 02055 Y)
W—/g (Z—{—I,G)Wdf

Analogously to the proof of Theorem 1, we can verify by Assumption A7 and
Lemma 5 that1/n) 820, (y)/dy 9y’ converges in probability t62Q(y)/dy 9y’
uniformly in y € I'p. Therefore, by Lemma 7 we have

19204 ()
n dyady’
P 3p1(vo) .. p1(vo) dveadp;(y0)/dy)
(25) —>2E[ 5y Wy ™ + (P1(YO) W1 ® Iy g+1) P ]
= 2B,
where the second equality holds, because
dveddp;(y0)/dy)
E[(pi(yo>wl®1p+q+1) ot [0y ]
dveadp;(y0)/dy)
=E|:(E(,0:/L(VO)|Zl)Wl®Ip+q+l) alyf/ /% ]

=0.
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It follows then from (23)—(25), Assumption A8 and the Slutsky theorem that
(e — v0) = N(0, B-LC B~Y). Finally, (15) and (16) can be similarly verified
by Lemma 7. O

PROOF OF THEOREM 3. The proof for part 1 of Theorem 3 is analogous
to that for Theorem 1. First, Assumptions Al and A2 imply ti@f s(y) is
continuous iny € T'. Then, by Lemma 5 we have, as—» oo, uniformly iny e T’
that

—Qn s() 5> E[p )W (Z1)p ()]

= E[E(p\> ()IY1, Z)W(ZD)E (02 ()Y1, Z1)]
= E[p}(y)W(Z1)p1(»)]
= Q).

Finally, y,, s £ o follows from Assumption A6 and Lemma 6.

The proof of part 2 of Theorem 3 is analogous to that of Theorem 2. First, by
Assumption A7 we have the first-order Taylor expansiord o, s(y)/dy in a
neighborhood o C T" of yy,

) 92 Y .
(26) 0— Qn,S(VO) n Qn,S(Vn,S) ()/n,S — ),
oy ay oy’

where||y,.s — voll < |I7x.s — yoll and the first derivative oD,, s(y) is given by

3Qns()/) _Z[ap, CO NN G CA PN CY ]
ay

Since ,ol.(s)(y) has the same distribution a§(28)(y), all terms in the above
summation are i.i.d. and have the common covariance matrix

Sy ()
3p (y0) 25 25) 9p;”" (vo)
— ,p,( )(VO)P,-( )(VO)Wili/
ay oy
—o (S o2
9p;”" (vo) 2 (Y0
+E T Wip 2 (Vo)pfs) (Yo) Wi 7,
L 14 ay i
— . (28) (S) -
90,7 (v0) @ 9p;”" (vo)
+E| W Win™ (ro) o2 (yoy Wi H—
L 14 oy’
_ 28 25) _
90,7 (vo) p;7" (v0)
+ E| ——— zpls)(yo)pls) o) Wi———
Ly oy’

= 4Cs.
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It follows by the central limit theorem that, as— oo,

1 aQn s(y0) L
iy

Now, the second derivative if26) is given by

(27) — N(0,4Cy).

! 2
920, 5(y) i[ap}” @), 00 @)
ayay’ Sl ooy T 8y

aveo(ap,-“)m/ay)]

28)
+ (Ioi( ) Wi ® IP+(1+1) ay’

2 /
" 190 (v) 90 ()
+> W

i=1 oy '

, aveddp® (y)/dy)
+ (P,-(S) Wi @ Ipigt1) V)/oy }

ay’

where

aveadp” ()/dy) _ _<82m1,5<z; y) 9%mas(: y))/
y’ ydy’ ~ ayady

and the nonzero elementsdfmy s(Z;; y)/dy dy’ are

92m1 5(Zis y) 1%82 8(Zi + 153 0) fs(tis; V)

06 06’ 206 06’ ¢ (tis) ’
0®m1s(Zizy) 1O\ 08(Zi + 13 0) 3fstiss ¥) 1

oy  So 06 M P(tis)’
0%ma,s(Zivy) _ 1 Zg(Zi + 1153 0) 92 fs (tis; ¥)

Iy Iy’ S& ) dy oy’

and the nonzero elementsdfm, s(Z;; y)/dydy’ are

0%ma,s(Zizy) _ 2 i[azg@i + 153 0) §(Zi + tig: 0) f3(tis: ¥)

96 96/ 96 06/ b (s
. 08(Zi + ti5: 0) 0g(Z; + ti5: 0) fs(tis; lﬁ)]
00 06’ o (tis) ’

’

0%mas(Ziiy) _ 2 i 8(Zi +1is; 0) 9g(Zi + 1is: 0) fs (tis: ¥)
36 9y’ So 0 o) 90 Y
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9°ma,s(Zizy) _ 1 i 82(Zi +1i5:0) 02 f3(ti: W)
S

Iy oy’ ¢ (tis) Y oy’
Again, by Assumption A7 and Lemma 7, uniformlyjne T,
820n.s() P E[api "), 201700
dy oy’ dy’

aveo@pi”’(yo)/ay)]

2
+ (o8 Y (o)W1 ® Ipyg+1) P

2s)y (S)
0 0
E[ o1 (Y0) Wi o1 (Yo0)
dy ay’

28y
' aveadp; " (yYo)/dy)
(28) + (PiS) (YOW1® Ipig+1) 18)/’ ]
2 28)
[ piS 20 ap{ 9 (v0) N 903 0}, 3pis)(yo)}
dy ay’ oy ! ay’
2
9o 10, 3032 (v0)
=2E W1
oy ay’
= 2B,

where the first equality follows from

aveqapf)kyo)/ay)}
ay’
avec<ap§”’<y>/ay>}
ay’

E [(pf” YOWL® Lprgs1)

=E[E( @) () Z) WL ® Iysgst
:O,

and the last equality holds because

(s) (2S) sy (2S)
E[apl (VO)W (yo)} E[E<Bpl (Vo)‘Zl>WlE< (VO)’Z )]
dy 3)// oy

ap! 9
:E[ 01(»0) Wi /01()’0)]'
oy ay’

By (26)—(28) and the Slutsky theorem, we havgn(y,.s — o) Y N (O,
B~1cgB™1). Finally, (20) can be similarly shown by Lemma 7]

PROOF OFCOROLLARY 4. To simplify notation in the following we denote
oi = pi(yo) and, correspondinglypl.( =p; )(yo) Then the common term of
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d05.s(y0)/dy in (26) can be written as

Sy 28
T— ap;> Wip®
ay
=T+ T2+ T3,
where
T — ahWi,Oi’
ay
N 28
5, Wi = pi) | i Wip™ — o)
2= dy dy
and
S 28
Ao = pi) Wilo;™ = pi)
T3 = .
dy
28

Sincepl.(s) andp;”" are conditionally independent givép andZ;, T1, 7> andT3
are mutually uncorrelated and hence

(29) E(TT') = E(T1T{) + E(T21T,) + E(T3T3),

whereE(TT') = 4Cg andE (T1T]) = 4C. Furthermore, sincpl.(s) andpi(zs) have
the same distribution,

s s
dpiWi (> = pi) (o> — p,-)/W,-p,-]

dy dy’ '
Now write >’ (o) = + 35_; pis, where

8(Zi + tis; 00) f5(tis; Y0) o &2(Zi +1i5300) fs(tis: Y0) >
pis=\Yi — Y — T 0:0) -
¢ (lis) @ (tis)
Then, since;s, s =1,2,..., S, are independent giveny, Z;, we have

E(ToTy) = ZE[

2 5.9 "Wi(pis — pi S 9(0ic — 0:Y W 0:
E(TTy = —E| ). 2 (pis p>z (pis p,/) i
S (— dy — oy
s=1 s=1
(30)

_ EE[apin(pll — p1) 3(p11— ,01)/W1p1]
S oy ay’ '

In the same way, we can show that
E(T3T3)
G 1 E[awn — p0)'W(Z)(p12 = p1) 3(p12 — p1)' W (Z)(p11 - m)}
Y oy ay’ ’
The corollary follows from (29)—(31). O
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