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ESTIMATION OF NONLINEAR MODELS WITH BERKSON
MEASUREMENT ERRORS1

BY LIQUN WANG

University of Manitoba

This paper is concerned with general nonlinear regression models where
the predictor variables are subject to Berkson-type measurement errors. The
measurement errors are assumed to have a general parametric distribution,
which is not necessarily normal. In addition, the distribution of the random
error in the regression equation is nonparametric. A minimum distance
estimator is proposed, which is based on the first two conditional moments of
the response variable given the observed predictor variables. To overcome the
possible computational difficulty of minimizing an objective function which
involves multiple integrals, a simulation-based estimator is constructed.
Consistency and asymptotic normality for both estimators are derived under
fairly general regularity conditions.

1. Introduction. In many scientific studies researchers are interested in the
nonlinear relationship

Y = g(X; θ) + ε,(1)

whereY ∈ R is the response variable,X ∈ R
k is the predictor variable,θ ∈ R

p is
the unknown regression parameter andε is the random error. In many experiments,
it is too costly or impossible to measure the predictorX exactly. Instead, a proxyZ
of X is measured.

For example, an epidemiologist studies the severity of a lung disease,Y , among
the residents in a city in relation to the amount of certain air pollutants,X. Assume
the air pollutants are measured at certain observation stations in the city. The actual
exposure of the residents to the pollutantsX, however, may vary randomly from
the valuesZ measured at these stations. In this case,X can be expressed asZ plus
a random error, which represents the individual variation in the exposure from the
measured exposure.

Other examples include agricultural or medical studies, where the relations
between the yield of a crop or the efficacy of a drug,Y , and the amount of a
fertilizer or drug used,X, are studied. Suppose the fertilizer or the drug is applied
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at predetermined dosesZ. The actual absorption of the fertilizer in the crop or
the drug in the patients’ blood, however, may vary randomly around the set doses,
because of the local earth conditions or the individual biological conditions. In
these cases, if the amountZ is properly calibrated, then the actual absorptionX

will vary aroundZ randomly, so that in average the random variationX − Z will
be zero.

In all situations mentioned above, a reasonable model for the measurement
errors is the so-called Berkson model

X = Z + δ,(2)

where δ is the unobserved random measurement error which is assumed to
be independent of the observed predictor variableZ. More explanations and
motivations of the Berkson-error model can be found in Fuller [(1987), pages
79 and 80].

The stochastic structure of the Berkson measurement error model (2) is
fundamentally different from the classical errors-in-variables model, where the
measurement error is independent ofX, but dependent onZ. This distinctive
feature leads to completely different procedures in parameter estimation and
inference for the models.

Estimation of the linear Berkson measurement error models is discussed in
Fuller [(1987), pages 81–83] and Cheng and Van Ness [(1995), pages 35–38].
For nonlinear models, an approximative method called regression calibration
is presented by Carroll, Ruppert and Stefanski [(1995), Chapter 3]. Recently,
Huwang and Huang (2000) studied a univariate polynomial model whereg(x; θ)

is a polynomial inx of a known order and showed that the least squares estimators
based on the first two conditional moments ofY given Z are consistent. Wang
(2003) considered general univariate nonlinear models where all random errors
are normally distributed and showed that the minimum distance estimator based
on the first two conditional moments ofY givenZ is consistent and asymptotically
normally distributed.

In many practical applications, however, there is often more than one predictor
variable which is subject to measurement errors. Moreover, the random errorsε

andδ may have distributions other than the normal distribution. The goal of this
paper is to generalize the results of Wang (2003) to the nonlinear models with
multivariate predictor variables, where the measurement errorδ has a general
parametric distributionfδ(t;ψ), ψ ∈ � ⊂ R

q , and the random errorε has a
nonparametric distribution with mean zero and varianceσ 2

ε . Thus, (1) and (2)
represent a semiparametric model. Our main interest is to estimate parameters
γ = (θ ′,ψ ′, σ 2

ε )′. We show that the minimum distance estimator of Wang (2003)
is still consistent and asymptotically normally distributed. For the general model in
this paper, however, a computational issue arises, because the objective function to
be minimized involves multiple integrals for which explicit forms may not always
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be obtained. To overcome this difficulty, we propose a simulation-based estimator
which is shown to be consistent and asymptotically normally distributed under
regularity conditions similar to those for the minimum distance estimator.

Throughout the paper we assume thatZ,δ and ε are independent andY
has finite second moment. In addition, we adopt the common assumption in
the literature thatthe measurement error is “nondifferential” in the sense that
the conditional expectation ofY given X andZ is the same as the conditional
expectation ofY given X. Although in this paperZ is assumed to be a
random variable, it is easy to see that all results continue to hold if the
observations ofZ, Z1,Z2, . . . ,Zn, are treated as fixed constants such that the
limits limn→∞

∑n
i=1 Zi/n and limn→∞

∑n
i=1 ZiZ

′
i/n are finite.

The paper is organized as follows. In Section 2 we give three examples to
motivate our estimation method. In Section 3 we formally define the minimum
distance estimator and derive its consistency and asymptotic normality under some
regularity conditions. In Section 4 we propose a simulation-based estimator and
derive its consistency and asymptotic normality. Finally, conclusion and discussion
are given in Section 5, whereas proofs of the theorems are given in Section 6.

2. Examples. To motivate our estimation method, let us consider some exam-
ples. To simplify notation, let us consider the case where the measurement error
δ = (δ1, δ2, . . . , δk)

′ has the normal distributionN(0, σ 2
δ Ik), where 0< σ 2

δ < ∞
andIk is thek-dimensional identity matrix.

EXAMPLE 1. First consider the modelg(x; θ) = θ1x1 + θ3e
θ2x2, where

θ2θ3 �= 0. For this model the conditional moment ofY given Z can be written
as

E(Y |Z) = θ1Z1 + θ1E(δ1) + θ3e
θ2Z2E(eθ2δ2)

(3)
= ϕ1Z1 + ϕ3e

ϕ2Z2,

whereϕ1 = θ1, ϕ2 = θ2 and ϕ3 = θ3e
θ2

2σ2
δ /2. Similarly, the second conditional

moment ofY givenZ can be written as

E(Y 2|Z) = θ2
1E[(Z1 + δ1)

2|Z] + θ2
3E

[
e2θ2(Z2+δ2)|Z]

+ 2θ1θ3E
[
(Z1 + δ1)e

θ2(Z2+δ2)|Z] + E(ε2)

= θ2
1(Z2

1 + σ 2
δ ) + θ2

3e2θ2Z2E(e2θ2δ2)(4)

+ 2θ1θ3Z1e
θ2Z2E(eθ2δ2) + σ 2

ε

= ϕ4 + ϕ2
1Z2

1 + ϕ5e
2ϕ2Z2 + 2ϕ1ϕ3Z1e

ϕ2Z2,

whereϕ4 = θ2
1σ 2

δ +σ 2
ε andϕ5 = θ2

3e2θ2
2σ2

δ . Since(3) and(4) are the usual nonlinear
regression equations and bothY andZ are observable,(ϕi) are identified by these
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equations and, therefore, can be consistently estimated using the nonlinear least
squares method. Furthermore, the original parameters(θi, σ

2
δ , σ 2

ε ) are identified
because the mapping(θi, σ

2
δ , σ 2

ε ) �→ (ϕi) is bijective. Indeed, it is straightforward
to calculate thatθ1 = ϕ1, θ2 = ϕ2, θ3 = ϕ2

3/
√

ϕ5, σ 2
δ = log(ϕ5/ϕ

2
3)/ϕ2

2 andσ 2
ε =

ϕ4 − ϕ2
1 log(ϕ5/ϕ

2
3)/ϕ2

2.

EXAMPLE 2. Now consider another modelg(x; θ) = θ1 exp(x′θ2), where
θ1 �= 0, 0 �= θ2 ∈ R

p−1 andp > 1. For this model the first conditional moment
of Y givenZ can be written as

E(Y |Z) = θ1e
Z′θ2E

(
eδ′θ2

)
(5)

= ϕ1e
Z′ϕ2,

whereϕ1 = θ1 exp(θ ′
2θ2σ

2
δ /2) and ϕ2 = θ2. The second conditional moment is

given by

E(Y 2|Z) = θ2
1e2Z′θ2E

(
e2δ′θ2

) + E(ε2)
(6)

= ϕ3e
2Z′ϕ2 + ϕ4,

whereϕ3 = θ2
1e2θ ′

2θ2σ
2
δ and ϕ4 = σ 2

ε . Again, (ϕi) are identified by(5) and (6)

and the nonlinear least squares method. Furthermore, the original parameters
(θi, σ

2
δ , σ 2

ε ) are identified because the mapping(θi, σ
2
δ , σ 2

ε ) �→ (ϕi) is bijective.
Indeed, straightforward calculation shows thatθ1 = ϕ2

1/
√

ϕ3, θ2 = ϕ2, σ 2
δ =

log(ϕ3/ϕ
2
1)/ϕ′

2ϕ2 andσ 2
ε = ϕ4.

EXAMPLE 3. Further, let us consider the polynomial modelg(x; θ) = θ1x1 +
θ2x2 + θ3x

2
1 + θ4x

2
2 + θ5x1x2. For this model the first two conditional moments

are, respectively,

E(Y |Z) = (θ3 + θ4)σ
2
δ + θ1Z1 + θ2Z2 + θ3Z

2
1 + θ4Z

2
2 + θ5Z1Z2(7)

and

E(Y 2|Z) = E[g2(Z + δ; θ)|Z] + E(ε2|Z)
(8)

= E[g2(Z + δ; θ)|Z] + σ 2
ε .

Again, it is easy to see that parameters(θi) andσ 2
δ are identified by the nonlinear

regression equation(7), whereasσ 2
ε is identified by(8). Thus, all parameters in

this model can be consistently estimated using the first two conditional moment
equations.

The above examples suggest that in many situations, parameters in nonlinear
models can be identified and, therefore, consistently estimated using the first
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two conditional moments ofY given Z. The fact that parameters of Berkson
measurement error models may be identified in nonlinear regression was first
noticed by Rudemo, Ruppert and Streibig (1989). The identifiability of the
univariate polynomial model was shown by Huwang and Huang (2000). For
general nonlinear models, it is worthwhile noting that even in the case where the
mapping(θi, σ

2
δ , σ 2

ε ) �→ (ϕi) is not bijective, the original parameters(θi, σ
2
δ , σ 2

ε )

can still be identified, if appropriate restrictions on them are imposed. In the next
section, we develop a minimum distance estimator for the general nonlinear model
(1) and(2) based on the first two conditional moments and derive its asymptotic
properties.

3. Minimum distance estimator. Under the assumptions for model(1) and
(2), the first two conditional moments ofY givenZ are respectively given by

E(Y |Z) = E[g(Z + δ; θ)|Z] + E(ε|Z)

(9)
=

∫
g(Z + t; θ)fδ(t;ψ)dt

and

E(Y 2|Z) = E[g2(Z + δ; θ)|Z] + E(ε2|Z)

(10)
=

∫
g2(Z + t; θ)fδ(t;ψ)dt + σ 2

ε .

Throughout this paper, unless otherwise stated explicitly, all integrals are taken
to be over the spaceRk . Further, letγ = (θ ′,ψ ′, σ 2

ε )′ denote the vector of model
parameters and let	 = 
 × � × � ⊂ R

p+q+1 denote the parameter space. The
true parameter value of model(1) and(2) is denoted byγ0 ∈ 	. For everyz ∈ R

k

andγ ∈ 	, define

m1(z;γ ) =
∫

g(z + t; θ)fδ(t;ψ)dt,(11)

m2(z;γ ) =
∫

g2(z + t; θ)fδ(t;ψ)dt + σ 2
ε .(12)

Thenm1(Z;γ0) = E(Y |Z) andm2(Z;γ0) = E(Y 2|Z).
Now suppose(Yi,Z

′
i )

′, i = 1,2, . . . , n, is an i.i.d. random sample and let

ρ(Yi,Zi;γ ) = (
Yi − m1(Zi;γ ),Y 2

i − m2(Zi;γ )
)′
.

Then the minimum distance estimator (MDE)γ̂n for γ based on moment equations
(9) and (10) is defined as

γ̂n = arg min
γ∈	

Qn(γ ),
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where the objective function

Qn(γ ) =
n∑

i=1

ρ′(Yi,Zi;γ )W(Zi)ρ(Yi,Zi;γ )(13)

andW(Zi) is a 2× 2 weighting matrix which may depend onZi .
Regularity conditions under whicĥγn is identified, consistent and asymptoti-

cally normally distributed are well known in the nonlinear regression literature;
see, for example, Amemiya [(1985), Chapter 5], Gallant [(1987), Chapter 5] and
Seber and Wild [(1989), Chapter 12]. Usually these conditions are expressed in
a variety of forms.

In the following, we adopt the setup of Amemiya (1985) and express these
regularity conditions in terms of the regression functiong(x; θ) and measurement
error distributionfδ(t;ψ). Letµ denote the Lebesgue measure and let‖ · ‖ denote
the Euclidean norm inRd . Then we assume the following conditions for the
consistency of the MDÊγn.

ASSUMPTIONA1. g(x; θ) is a measurable function ofx for everyθ ∈ 
, and
is continuous inθ ∈ 
, for µ-almost allx.

ASSUMPTIONA2. fδ(t;ψ) is continuous inψ ∈ � for µ-almost allt .

ASSUMPTIONA3. The parameter space	 ⊂ R
p+q+1 is compact.

ASSUMPTION A4. The weightW(Z) is nonnegative definite with probabil-
ity 1 and satisfiesE‖W(Z)‖ < ∞.

ASSUMPTION A5.
∫

sup� fδ(t;ψ)dt < ∞ and E(‖W(Z)‖ + 1) ×∫
sup
×� g4(Z + t; θ)fδ(t;ψ)dt < ∞.

ASSUMPTIONA6. E[ρ(Y,Z;γ )−ρ(Y,Z;γ0)]′W(Z)[ρ(Y,Z;γ )−ρ(Y,Z;
γ0)] = 0 if and only ifγ = γ0.

The above regularity conditions are common in the literature of nonlinear
regression. In particular, Assumptions A1 and A2 are usually used to ensure
that the objective functionQn(γ ) is continuous inγ . Similarly, the compactness
of the parameter space	 is often assumed. From a practical point of view,
Assumption A3 is not as restrictive as it seems to be, because for any given
problem one usually has some information about the possible range of the
parameters. Assumption A5 contains moment conditions which imply the uniform
convergence ofQn(γ ). In view of (9) and (10), this assumption means thatY andε

have finite fourth moments. It is easy to see that Assumptions A1, A2 and A5 are
satisfied, ifg(x; θ) is a polynomial inx and the measurement errorδ has a normal
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distribution. Finally, Assumption A6 is the usual condition for identifiability of
parameters, which means that the true parameter valueγ0 is the unique minimizer
of the objective functionQn(γ ) for largen.

THEOREM 1. Under Assumptions A1–A6, the MDE γ̂n
P→ γ0, as n → ∞.

To derive the asymptotic distribution for the MDÊγn, we assume further
regularity conditions as follows.

ASSUMPTIONA7. There exist open subsetsθ0 ∈ 
0 ⊂ 
 andψ0 ∈ �0 ⊂ �,
in whichg(x; θ) is twice continuously differentiable with respect toθ andfδ(t;ψ)

is twice continuously differentiable with respect toψ , for µ-almost allx and t ,
respectively. Furthermore, their first two derivatives satisfy

E‖W(Z)‖
∫

sup

0×�0

∥∥∥∥∂g(Z + t; θ)

∂θ

∥∥∥∥
2

fδ(t;ψ)dt < ∞,

E‖W(Z)‖
∫

sup

0×�0

∥∥∥∥∂2g(Z + t; θ)

∂θ ∂θ ′
∥∥∥∥

2

fδ(t;ψ)dt < ∞,

E‖W(Z)‖
∫

sup
�0

∥∥∥∥∂fδ(t;ψ)

∂ψ

∥∥∥∥dt < ∞,

E‖W(Z)‖
∫

sup

0×�0

g2(Z + t; θ)

∥∥∥∥∂fδ(t;ψ)

∂ψ

∥∥∥∥dt < ∞,

E‖W(Z)‖
∫

sup

0×�0

∥∥∥∥∂g(Z + t; θ)

∂θ

∥∥∥∥
2∥∥∥∥∂fδ(t;ψ)

∂ψ

∥∥∥∥dt < ∞,

E‖W(Z)‖
∫

sup

0×�0

|g(Z + t; θ)|
∥∥∥∥∂2fδ(t;ψ)

∂ψ ∂ψ ′
∥∥∥∥dt < ∞,

E‖W(Z)‖
∫

sup

0×�0

g2(Z + t; θ)

∥∥∥∥∂2fδ(t;ψ)

∂ψ ∂ψ ′
∥∥∥∥dt < ∞.

ASSUMPTIONA8. The matrix

B = E

[
∂ρ′(Y,Z;γ0)

∂γ
W(Z)

∂ρ(Y,Z;γ0)

∂γ ′
]

is nonsingular, where

∂ρ′(Y,Z;γ0)

∂γ
= −

(
∂m1(Z;γ0)

∂γ
,
∂m2(Z;γ0)

∂γ

)
.
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Again, Assumptions A7 and A8 are commonly seen regularity conditions which
are sufficient for the asymptotic normality of the minimum distance estimators.
Assumption A7 ensures that the first derivative ofQn(γ ) admits a first-order
Taylor expansion and the second derivative ofQn(γ ) converges uniformly. This
assumption and the dominated convergence theorem together imply that the
first derivatives∂m1(z;γ )/∂γ and ∂m2(z;γ )/∂γ exist and their elements are
respectively given by

∂m1(z;γ )

∂θ
=

∫
∂g(z + t; θ)

∂θ
fδ(t;ψ)dt,

∂m1(z;γ )

∂ψ
=

∫
g(z + t; θ)

∂fδ(t;ψ)

∂ψ
dt,

∂m1(z;γ )

∂σ 2
ε

= 0

and
∂m2(z;γ )

∂θ
= 2

∫
∂g(z + t; θ)

∂θ
g(z + t; θ)fδ(t;ψ)dt,

∂m2(z;γ )

∂ψ
=

∫
g2(z + t; θ)

∂fδ(t;ψ)

∂ψ
dt,

∂m2(z;γ )

∂σ 2
ε

= 1.

Finally, Assumption A8 implies that the second derivative ofQn(γ ) has a
nonsingular limiting matrix. Again, Assumptions A7 and A8 are satisfied for the
polynomial modelg(x; θ) and the normal measurement errorδ.

THEOREM 2. Under Assumptions A1–A8, as n → ∞,
√

n(γ̂n − γ0)
L→

N(0,B−1CB−1), where

C = E

[
∂ρ′(Y,Z;γ0)

∂γ
W(Z)ρ(Y,Z;γ0)ρ

′(Y,Z;γ0)W(Z)
∂ρ(Y,Z;γ0)

∂γ ′
]
.(14)

Furthermore,

B = plim
n→∞

1

n

n∑
i=1

[
∂ρ′(Yi,Zi; γ̂n)

∂γ
W(Zi)

∂ρ(Yi,Zi; γ̂n)

∂γ ′

]
(15)

and

4C = plim
n→∞

1

n

∂Qn(γ̂n)

∂γ

∂Qn(γ̂n)

∂γ ′ ,(16)

where

∂Qn(γ )

∂γ
= 2

n∑
i=1

∂ρ′(Yi,Zi;γ )

∂γ
W(Zi)ρ(Yi,Zi;γ ).
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The MDEγ̂n depends on the weightW(Z). A natural question is how to choose
W(Z) to obtain the most efficient estimator. To answer this question, we first note
that, since∂ρ′(Y,Z;γ0)/∂γ does not depend onY , matrixC in (14) can be written
as

C = E

[
∂ρ′(Y,Z;γ0)

∂γ
W(Z)V (Z)W(Z)

∂ρ(Y,Z;γ0)

∂γ ′
]
,

where

V (Z) = E[ρ(Y,Z;γ0)ρ
′(Y,Z;γ0)|Z]

and has elements

v11 = E
[(

Y − m1(Z;γ0)
)2|Z]

,

v22 = E
[(

Y 2 − m2(Z;γ0)
)2|Z]

and

v12 = E
[(

Y − m1(Z;γ0)
)(

Y 2 − m2(Z;γ0)
)|Z]

.

Then, analogous to weighted (nonlinear) least squares estimation, we have

B−1CB−1 ≥ E

[
∂ρ′(Y,Z;γ0)

∂γ
V (Z)−1∂ρ(Y,Z;γ0)

∂γ ′
]−1

(17)

(in the sense that the difference is nonnegative definite), and the lower bound is
attained forW(Z) = V (Z)−1 in B andC. The matrixV (Z) is invertible, if its
determinantv11v22 − v2

12 > 0.
In general,V (Z) is unknown, and it must be estimated before the MDEγ̂n

usingW(Z) = V (Z)−1 is computed. This can be done using the following two-
stage procedure. First, minimizeQn(γ ) using the identity matrixW(Z) = I2 to
obtain the first-stage estimatorγ̂n. Second, estimateV (Z) by

v̂11 = 1

n

n∑
i=1

(
Yi − m1(Zi; γ̂n)

)2
,

v̂22 = 1

n

n∑
i=1

(
Y 2

i − m2(Zi; γ̂n)
)2

and

v̂12 = 1

n

n∑
i=1

(
Yi − m1(Zi; γ̂n)

)(
Y 2

i − m2(Zi; γ̂n)
)
,

and then minimizeQn(γ ) again withW(Z) = V̂ (Z)−1 to obtain the two-stage
estimator ˆ̂γ n. Since the estimatorŝvij are consistent forvij , the asymptotic

covariance matrix of the two-stage estimatorˆ̂γ n is the same as the right-hand
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side of (17) and, therefore,ˆ̂γ n is asymptotically more efficient than the first-stage
estimatorγ̂n. More detailed discussions about the so-called feasible generalized
least squares estimators can be found in, for example, Amemiya (1974) and Gallant
[(1987), Chapter 5].

4. Simulation-based estimator. The MDE γ̂n in the previous section is
obtained by minimizing the objective functionQn(γ ) in (13). The computation
can be carried out using the usual numerical optimization procedures, if the
explicit forms of m1(z;γ ) and m2(z;γ ) can be obtained. For some regression
functionsg(x; θ), however, explicit forms of the integrals in (11) and (12) may
be difficult or impossible to derive. In this case, numerical integration techniques
such as quadrature methods can be used. In practice, the numerical optimization of
an objective function involving multiple integrals can be troublesome, especially
when the dimension of the function is higher than three or four. To overcome this
computational difficulty, in this section we consider a simulation-based approach
for estimation in which the integrals are simulated by Monte Carlo methods such
as importance sampling. This approach is similar to the method of simulated
moments (MSM) of McFadden (1989) or Pakes and Pollard (1989).

The simulation-based estimator can be constructed in the following way.
First, choose a known density functionφ(t) and, for each 1≤ i ≤ n, generate
an i.i.d. random sample{tis , s = 1,2, . . . ,2S} from φ(t). Clearly, all samples
{tis , s = 1,2, . . . ,2S, i = 1,2, . . . , n} form a sequence of i.i.d. random variables.
Thenm1(z;γ ) andm2(z;γ ) can be approximated by the Monte Carlo simulators
as

m1,S(Zi;γ ) = 1

S

S∑
s=1

g(Zi + tis ; θ)fδ(tis;ψ)

φ(tis)
,

m1,2S(Zi;γ ) = 1

S

2S∑
s=S+1

g(Zi + tis; θ)fδ(tis ;ψ)

φ(tis)
,

m2,S(Zi;γ ) = 1

S

S∑
s=1

g2(Zi + tis; θ)fδ(tis;ψ)

φ(tis)
+ σ 2

ε ,

m2,2S(Zi;γ ) = 1

S

2S∑
s=S+1

g2(Zi + tis; θ)fδ(tis ;ψ)

φ(tis)
+ σ 2

ε .

Therefore, a simulated version of the objective functionQn(γ ) can be defined as

Qn,S(γ ) =
n∑

i=1

ρ
(S)′
i (γ )W(Zi)ρ

(2S)
i (γ ),(18)

where

ρ
(S)
i (γ ) = (

Yi − m1,S(Zi;γ ),Y 2
i − m2,S(Zi;γ )

)′
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and

ρ
(2S)
i (γ ) = (

Yi − m1,2S(Zi;γ ),Y 2
i − m2,2S(Zi;γ )

)′
.

It is not difficult to see thatQn,S(γ ) approximatesQn(γ ) asS → ∞, because by
construction

E[m1,S(Zi;γ )|Zi] = E[m1,2S(Zi;γ )|Zi] = m1(Zi;γ )

and

E[m2,S(Zi;γ )|Zi] = E[m2,2S(Zi;γ )|Zi] = m2(Zi;γ ).

In addition, Qn,S(γ ) is an unbiased simulator forQn(γ ) in the sense that
EQn,S(γ ) = EQn(γ ), because, givenYi,Zi , ρ

(S)
i (γ ) andρ

(2S)
i (γ ) are condition-

ally independent and hence

E
[
ρ

(S)′
i (γ )W(Zi)ρ

(2S)
i (γ )

] = E
[
E

(
ρ

(S)′
i (γ )|Yi,Zi

)
W(Zi)E

(
ρ

(2S)
i (γ )|Yi,Zi

)]
= E[ρ(Yi,Zi;γ )W(Zi)ρ(Yi,Zi;γ )].

Finally, the simulation-based estimator (SE) forγ is defined by

γ̂n,S = arg min
γ∈	

Qn,S(γ ).

Note that, sinceQn,S(γ ) does not involve integrals any more, it is continuous in,
and differentiable with respect to,γ , as long as functionsg(x; θ) andfδ(t;ψ)

have these properties. In particular, the first derivative ofρ
(S)
i (γ ) becomes

∂ρ
(S)′
i (γ )

∂γ
= −

(
∂m1,S(Zi;γ )

∂γ
,
∂m2,S(Zi;γ )

∂γ

)
,

where∂m1,S(Zi;γ )/∂γ is the column vector with elements

∂m1,S(Zi;γ )

∂θ
= 1

S

S∑
s=1

∂g(Zi + tis; θ)

∂θ

fδ(tis;ψ)

φ(tis)
,

∂m1,S(Zi;γ )

∂ψ
= 1

S

S∑
s=1

g(Zi + tis; θ)

φ(tis)

∂fδ(tis ;ψ)

∂ψ
,

∂m1,S(Zi;γ )

∂σ 2
ε

= 0

and∂m2,S(Zi;γ )/∂γ is the column vector with elements

∂m2,S(Zi;γ )

∂θ
= 2

S

S∑
s=1

∂g(Zi + tis; θ)

∂θ

g(Zi + tis; θ)fδ(tis ;ψ)

φ(tis)
,
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∂m2,S(Zi;γ )

∂ψ
= 1

S

S∑
s=1

g2(Zi + tis; θ)

φ(tis)

∂fδ(tis;ψ)

∂ψ
,

∂m2,S(Zi;γ )

∂σ 2
ε

= 1.

The derivatives∂m1,2S(Zi;γ )/∂γ and∂m2,2S(Zi;γ )/∂γ can be given similarly.
For the simulation-based estimator, we have the following results.

THEOREM 3. Suppose the support of φ(t) covers the support of fδ(t;ψ) for
all ψ ∈ �. Then the simulation estimator γ̂n,S has the following properties:

1. Under Assumptions A1–A6, γ̂n,S
P→ γ0 as n → ∞.

2. Under Assumptions A1–A8,
√

n(γ̂n,S − γ0)
L→ N(0,B−1CSB−1), where

2CS = E

[
∂ρ

(S)′
1 (γ0)

∂γ
W(Z1)ρ

(2S)
1 (γ0)ρ

(2S)′
1 (γ0)W(Z1)

∂ρ
(S)
1 (γ0)

∂γ ′
]

(19)

+ E

[
∂ρ

(S)′
1 (γ0)

∂γ
W(Z1)ρ

(2S)
1 (γ0)ρ

(S)′
1 (γ0)W(Z1)

∂ρ
(2S)
1 (γ0)

∂γ ′
]
.

Furthermore,

4CS = plim
n→∞

1

n

∂Qn,S(γ̂n,S)

∂γ

∂Qn,S(γ̂n,S)

∂γ ′ .(20)

In general, the simulation-based estimatorγ̂n,S is less efficient than the MDÊγn

of the previous section, due to the simulation approximation ofρi(γ ) by ρ
(S)
i (γ )

andρ
(2S)
i (γ ). A natural question is how much efficiency is lost due to simulation.

The following corollary provides an answer to this question.

COROLLARY 4. Under the conditions of Theorem 3, it holds that

CS = C + 1

2S
E

[
∂ρ′

1W(Z)(ρ11 − ρ1)

∂γ

∂(ρ11 − ρ1)
′W(Z)ρ1

∂γ ′
]

(21)

+ 1

4S2
E

[
∂(ρ11 − ρ1)

′W(Z)(ρ12 − ρ1)

∂γ

∂(ρ12 − ρ1)
′W(Z)(ρ11 − ρ1)

∂γ ′
]
,

where ρ1 = ρ(Y1,Z1;γ0) and

ρis =
(
Yi − g(Zi + tis; θ0)fδ(tis;ψ0)

φ(tis)
, Y 2

i − g2(Zi + tis ; θ0)fδ(tis;ψ0)

φ(tis )
− σ 2

ε0

)′

is the summand in ρ
(S)
i (γ0) = ∑S

s=1ρis/S.
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The above corollary shows that the efficiency loss caused by simulation has
a magnitude ofO(1/S). Therefore, the larger the simulation sizeS, the smaller
the efficiency loss. Furthermore, the efficiency loss reduces at rateO(1/S).
Asymptotically, the importance densityφ(t) has no effect on the efficiency of
the estimator, as long as it satisfies the condition of Theorem 3. In practice,
however, the choice ofφ(t) will affect the finite sample variances of the Monte
Carlo estimators such asm1,S(Zi;γ ). Theoretically, the best choice ofφ(t) is
proportional to the absolute value of the integrand, which is|g(z + t; θ)fδ(t;ψ)|
for m1(z;γ ). Practically, however, a density close to being proportional to the
integrand is a good choice. For more detailed discussion about importance
sampling and variance reduction methods for numerical integration, see, for
example, Evans and Swartz [(2000), Chapter 6].

In light of Corollary 4, the discussion in the previous section about the optimal
choice of the weightW(Z) = V (Z)−1 applies to the simulation-based estimator
too, and will not be repeated here.

5. Conclusion. We have considered general nonlinear regression models with
Berkson measurement errors in predictor variables. The measurement errors
are assumed to have a general parametric distribution which is not necessarily
normal, whereas the distribution of the random error in the regression equation is
nonparametric. We have proposed a minimum distance estimator based on the first
two conditional moments of the response variable given the observed predictor
variables. We have shown that this estimator is consistent and asymptotically
normally distributed under fairly general regularity conditions. To overcome the
computational difficulty which may arise in the case where the objective function
involves multiple integrals, a simulation-based estimator has been constructed. The
consistency and asymptotic normality for this estimator have also been derived
under regularity conditions similar to those for the minimum distance estimator.
The results obtained generalize those of Wang (2003), which deals with the
univariate model under normal distributions.

6. Proofs.

6.1. Preliminary. First, for ease of reading we restate some existing results
which are used in the proofs. For this purpose, letX = (X1,X2, . . . ,Xn) be an i.i.d.
random sample and letγ be a vector of unknown parameters. Further, letH(X1, γ )

andSn(X,γ ) be measurable functions for anyγ ∈ 	, and be continuous inγ ∈ 	

for almost all possible values ofX. In addition, the parameter space	 ⊂ R
d is

compact. Using this notation, Theorems 4.2.1, 4.1.1 and 4.1.5 of Amemiya (1985)
can be stated as follows.

LEMMA 5. Suppose E supγ∈	 |H(X1, γ )| < ∞. Then 1
n

∑n
i=1 H(Xi, γ ) con-

verges in probability to EH(X1, γ ) uniformly in γ ∈ 	.
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LEMMA 6. Suppose, as n → ∞, Sn(X,γ ) converges in probability to a
nonstochastic function S(γ ) uniformly in γ ∈ 	, and S(γ ) attains a unique
minimum at γ0 ∈ 	. Then the estimator γ̂n = arg minγ∈	 Sn(X,γ ) converges in
probability to γ0.

LEMMA 7. Suppose, as n → ∞, Sn(X,γ ) converges in probability to a
nonstochastic function S(γ ) uniformly in γ in an open neighborhood of γ0, and
S(γ ) is continuous at γ0. Then plimn→∞ γ̂n = γ0 implies plimn→∞ Sn(X, γ̂n) =
S(γ0).

To simplify the notation in the proofs, we will denoteρ(Yi,Zi;γ ) asρi(γ ),
and W(Zi) as Wi , as far as these cause no confusion. For any matrixA, its
Euclidean norm is denoted as‖A‖ = √

trace(A′A), and vecA denotes the column
vector consisting of the columns ofA. Further,⊗ denotes the Kronecker product
operator.

PROOF OFTHEOREM 1. We show that Assumptions A1–A6 are sufficient for
all conditions of Lemma 6. First, by Hölder’s inequality and Assumption A5 we
have

E

∫
sup

×�

|g(Z + t; θ)|j fδ(t;ψ)dt < ∞(22)

for j = 1,2,3. It follows from Assumptions A1, A2 and the dominated conver-
gence theorem thatm1(z;γ ), m2(z;γ ) and thereforeQn(γ ) are continuous in
γ ∈ 	. Let

Q(γ ) = Eρ′
1(γ )W(Z1)ρ1(γ ).

Again by Hölder’s inequality, (22) and Assumption A3 we have

E‖W1‖sup
	

[Y1 − m1(Z1;γ )]2

≤ 2E‖W1‖Y 2
1 + 2E‖W1‖sup

	

m2
1(Z1;γ )

≤ 2E‖W1‖Y 2
1 + 2E‖W1‖

∫
sup

×�

g2(Z1 + t; θ)fδ(t;ψ)dt

< ∞
and

E‖W1‖sup
	

[Y 2
1 − m2(Z1;γ )]2

≤ 3E‖W1‖Y 4
1 + 3E‖W1‖

∫
sup

×�

g4(Z1 + t; θ)fδ(t;ψ)dt

+ 3E‖W1‖sup
�

σ 4
ε < ∞,
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which imply

E sup
	

ρ′
1(γ )W1ρ1(γ ) ≤ E‖W1‖sup

	

‖ρ1(γ )‖2 < ∞.

It follows from Lemma 5 that1
n
Qn(γ ) converges in probability toQ(γ ) uniformly

in γ ∈ 	. Further, since

E
[
ρ′

1(γ0)W1
(
ρ1(γ ) − ρ1(γ0)

)] = E
[
E

(
ρ′

1(γ0)|Z1
)
W1

(
ρ1(γ ) − ρ1(γ0)

)]
= 0,

we have

Q(γ ) = Q(γ0) + E
[(

ρ1(γ ) − ρ1(γ0)
)′
W1

(
ρ1(γ ) − ρ1(γ0)

)]
.

It follows thatQ(γ ) ≥ Q(γ0) and, by Assumption A6, equality holds if and only

if γ = γ0. Thus all conditions of Lemma 6 hold and, therefore,γ̂n
P→ γ0 follows.

�

PROOF OFTHEOREM 2. By Assumption A7 the first derivative∂Qn(γ )/∂γ

exists and has a first-order Taylor expansion in a neighborhood	0 ⊂ 	 of γ0. Since

∂Qn(γ̂n)/∂γ = 0 andγ̂n
P→ γ0, for sufficiently largen we have

0 = ∂Qn(γ0)

∂γ
+ ∂2Qn(γ̃n)

∂γ ∂γ ′ (γ̂n − γ0),(23)

where‖γ̃n − γ0‖ ≤ ‖γ̂n − γ0‖. The first derivative ofQn(γ ) in (23) is given by

∂Qn(γ )

∂γ
= 2

n∑
i=1

∂ρ′
i(γ )

∂γ
Wiρi(γ ),

where

∂ρ′
i(γ )

∂γ
= −

(
∂m1(Zi;γ )

∂γ
,
∂m2(Zi;γ )

∂γ

)

and the first derivatives ofm1(Zi;γ ) andm2(Zi;γ ) with respect toγ are given in
Assumption A8. Therefore, by the central limit theorem we have

1√
n

∂Qn(γ0)

∂γ

L→ N(0,4C),(24)

where

C = E

[
∂ρ′

i(γ0)

∂γ
Wiρi(γ0)ρ

′
i (γ0)Wi

∂ρi(γ0)

∂γ ′
]
,

as is given in (14). The second derivative ofQn(γ ) in (23) is given by

∂2Qn(γ )

∂γ ∂γ ′ = 2
n∑

i=1

[
∂ρ′

i(γ )

∂γ
Wi

∂ρi(γ )

∂γ ′ + (
ρ′

i(γ )Wi ⊗ Ip+q+1
)∂ vec(∂ρ′

i (γ )/∂γ )

∂γ ′
]
,
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where

∂ vec(∂ρ′
i (γ )/∂γ )

∂γ ′ = −
(

∂2m1(z;γ )

∂γ ∂γ ′ ,
∂2m2(z;γ )

∂γ ∂γ ′
)′

.

Again, by Assumption A7, the nonzero elements in∂2m1(z;γ )/∂γ ∂γ ′ are

∂2m1(z;γ )

∂θ ∂θ ′ =
∫

∂2g(z + t; θ)

∂θ ∂θ ′ fδ(t;ψ)dt,

∂2m1(z;γ )

∂θ ∂ψ ′ =
∫

∂g(z + t; θ)

∂θ

∂fδ(t;ψ)

∂ψ ′ dt,

∂2m1(z;γ )

∂ψ ∂ψ ′ =
∫

g(z + t; θ)
∂2fδ(t;ψ)

∂ψ ∂ψ ′ dt,

and the nonzero elements in∂2m2(z;γ )/∂γ ∂γ ′ are

∂2m2(z;γ )

∂θ ∂θ ′ = 2
∫

∂2g(z + t; θ)

∂θ ∂θ ′ g(z + t; θ)fδ(t;ψ)dt

+ 2
∫

∂g(z + t; θ)

∂θ

∂g(z + t; θ)

∂θ ′ fδ(t;ψ)dt,

∂2m2(z;γ )

∂θ ∂ψ ′ = 2
∫

g(z + t; θ)
∂g(z + t; θ)

∂θ

∂fδ(t;ψ)

∂ψ ′ dt,

∂2m2(z;γ )

∂ψ ∂ψ ′ =
∫

g2(z + t; θ)
∂2fδ(t;ψ)

∂ψ ∂ψ ′ dt.

Analogously to the proof of Theorem 1, we can verify by Assumption A7 and
Lemma 5 that(1/n) ∂2Qn(γ )/∂γ ∂γ ′ converges in probability to∂2Q(γ )/∂γ ∂γ ′
uniformly in γ ∈ 	0. Therefore, by Lemma 7 we have

1

n

∂2Qn(γ̃n)

∂γ ∂γ ′

P→ 2E

[
∂ρ′

1(γ0)

∂γ
W1

∂ρ1(γ0)

∂γ ′ + (
ρ′

1(γ0)W1 ⊗ Ip+q+1
)∂ vec(∂ρ′

1(γ0)/∂γ )

∂γ ′
]

(25)

= 2B,

where the second equality holds, because

E

[(
ρ′

1(γ0)W1 ⊗ Ip+q+1
)∂ vec(∂ρ′

1(γ0)/∂γ )

∂γ ′
]

= E

[(
E

(
ρ′

1(γ0)|Z1
)
W1 ⊗ Ip+q+1

)∂ vec(∂ρ′
1(γ0)/∂γ )

∂γ ′
]

= 0.
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It follows then from (23)–(25), Assumption A8 and the Slutsky theorem that√
n(γ̂n − γ0)

L→ N(0,B−1CB−1). Finally, (15) and (16) can be similarly verified
by Lemma 7. �

PROOF OF THEOREM 3. The proof for part 1 of Theorem 3 is analogous
to that for Theorem 1. First, Assumptions A1 and A2 imply thatQn,S(γ ) is
continuous inγ ∈ 	. Then, by Lemma 5 we have, asn → ∞, uniformly in γ ∈ 	

that

1

n
Qn,S(γ )

P→ E
[
ρ

(S)′
1 (γ )W(Z1)ρ

(2S)
1 (γ )

]
= E

[
E

(
ρ

(S)′
1 (γ )|Y1,Z1

)
W(Z1)E

(
ρ

(2S)
1 (γ )|Y1,Z1

)]
= E[ρ′

1(γ )W(Z1)ρ1(γ )]
= Q(γ ).

Finally, γ̂n,S
P→ γ0 follows from Assumption A6 and Lemma 6.

The proof of part 2 of Theorem 3 is analogous to that of Theorem 2. First, by
Assumption A7 we have the first-order Taylor expansion of∂Qn,S(γ )/∂γ in a
neighborhood	0 ⊂ 	 of γ0,

0= ∂Qn,S(γ0)

∂γ
+ ∂2Qn,S(γ̃n,S)

∂γ ∂γ ′ (γ̂n,S − γ0),(26)

where‖γ̃n,S − γ0‖ ≤ ‖γ̂n,S − γ0‖ and the first derivative ofQn,S(γ ) is given by

∂Qn,S(γ )

∂γ
=

n∑
i=1

[
∂ρ

(S)′
i (γ )

∂γ
Wiρ

(2S)
i (γ ) + ∂ρ

(2S)′
i (γ )

∂γ
Wiρ

(S)
i (γ )

]
.

Since ρ
(S)
i (γ ) has the same distribution asρ(2S)

i (γ ), all terms in the above
summation are i.i.d. and have the common covariance matrix

E

[
∂ρ

(S)′
i (γ0)

∂γ
Wiρ

(2S)
i (γ0)ρ

(2S)′
i (γ0)Wi

∂ρ
(S)
i (γ0)

∂γ ′
]

+ E

[
∂ρ

(S)′
i (γ0)

∂γ
Wiρ

(2S)
i (γ0)ρ

(S)′
i (γ0)Wi

∂ρ
(2S)
i (γ0)

∂γ ′
]

+ E

[
∂ρ

(2S)′
i (γ0)

∂γ
Wiρ

(S)
i (γ0)ρ

(2S)′
i (γ0)Wi

∂ρ
(S)
i (γ0)

∂γ ′
]

+ E

[
∂ρ

(2S)′
i (γ0)

∂γ
Wiρ

(S)
i (γ0)ρ

(S)′
i (γ0)Wi

∂ρ
(2S)
i (γ0)

∂γ ′
]

= 4CS.
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It follows by the central limit theorem that, asn → ∞,

1√
n

∂Qn,S(γ0)

∂γ

L→ N(0,4CS).(27)

Now, the second derivative in(26) is given by

∂2Qn,S(γ )

∂γ ∂γ ′ =
n∑

i=1

[
∂ρ

(S)′
i (γ )

∂γ
Wi

∂ρ
(2S)
i (γ )

∂γ ′

+ (
ρ

(2S)′
i (γ )Wi ⊗ Ip+q+1

)∂ vec(∂ρ(S)′
i (γ )/∂γ )

∂γ ′
]

+
n∑

i=1

[
∂ρ

(2S)′
i (γ )

∂γ
Wi

∂ρ
(S)
i (γ )

∂γ ′

+ (
ρ

(S)′
i (γ )Wi ⊗ Ip+q+1

)∂ vec(∂ρ(2S)′
i (γ )/∂γ )

∂γ ′
]
,

where

∂ vec(∂ρ(S)′
i (γ )/∂γ )

∂γ ′ = −
(

∂2m1,S(z;γ )

∂γ ∂γ ′ ,
∂2m2,S(z;γ )

∂γ ∂γ ′
)′

and the nonzero elements in∂2m1,S(Zi;γ )/∂γ ∂γ ′ are

∂2m1,S(Zi;γ )

∂θ ∂θ ′ = 1

S

S∑
s=1

∂2g(Zi + tis ; θ)

∂θ ∂θ ′
fδ(tis;ψ)

φ(tis)
,

∂2m1,S(Zi;γ )

∂θ ∂ψ ′ = 1

S

S∑
s=1

∂g(Zi + tis; θ)

∂θ

∂fδ(tis;ψ)

∂ψ ′
1

φ(tis)
,

∂2m1,S(Zi;γ )

∂ψ ∂ψ ′ = 1

S

S∑
s=1

g(Zi + tis ; θ)

φ(tis)

∂2fδ(tis;ψ)

∂ψ ∂ψ ′ ,

and the nonzero elements in∂2m2,S(Zi;γ )/∂γ ∂γ ′ are

∂2m2,S(Zi;γ )

∂θ ∂θ ′ = 2

S

S∑
s=1

[
∂2g(Zi + tis; θ)

∂θ ∂θ ′
g(Zi + tis; θ)fδ(tis ;ψ)

φ(tis)

+ ∂g(Zi + tis; θ)

∂θ

∂g(Zi + tis ; θ)

∂θ ′
fδ(tis;ψ)

φ(tis )

]
,

∂2m2,S(Zi;γ )

∂θ ∂ψ ′ = 2

S

S∑
s=1

g(Zi + tis; θ)

φ(tis)

∂g(Zi + tis; θ)

∂θ

∂fδ(tis;ψ)

∂ψ ′ ,
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∂2m2,S(Zi;γ )

∂ψ ∂ψ ′ = 1

S

S∑
s=1

g2(Zi + tis ; θ)

φ(tis)

∂2fδ(tis;ψ)

∂ψ ∂ψ ′ .

Again, by Assumption A7 and Lemma 7, uniformly inγ ∈ 	,

∂2Qn,S(γ̃n)

∂γ ∂γ ′
P→E

[
∂ρ

(S)′
1 (γ0)

∂γ
W1

∂ρ
(2S)
1 (γ0)

∂γ ′

+ (
ρ

(2S)′
1 (γ0)W1 ⊗ Ip+q+1

)∂ vec(∂ρ(S)′
1 (γ0)/∂γ )

∂γ ′
]

+ E

[
∂ρ

(2S)′
1 (γ0)

∂γ
W1

∂ρ
(S)
1 (γ0)

∂γ ′

+ (
ρ

(S)′
1 (γ0)W1 ⊗ Ip+q+1

)∂ vec(∂ρ(2S)′
1 (γ0)/∂γ )

∂γ ′
]

(28)

= E

[
∂ρ

(S)′
1 (γ0)

∂γ
W1

∂ρ
(2S)
1 (γ0)

∂γ ′ + ∂ρ
(2S)′
1 (γ0)

∂γ
W1

∂ρ
(S)
1 (γ0)

∂γ ′
]

= 2E

[
∂ρ

(S)′
1 (γ0)

∂γ
W1

∂ρ
(2S)
1 (γ0)

∂γ ′
]

= 2B,

where the first equality follows from

E

[(
ρ

(2S)′
1 (γ0)W1 ⊗ Ip+q+1

)∂ vec(∂ρ(S)′
1 (γ0)/∂γ )

∂γ ′
]

= E

[
E

(
ρ

(2S)′
1 (γ )|Zi

)
W1 ⊗ Ip+q+1

∂ vec(∂ρ(S)′
1 (γ )/∂γ )

∂γ ′
]

= 0,

and the last equality holds because

E

[
∂ρ

(S)′
1 (γ0)

∂γ
W1

∂ρ
(2S)
1 (γ0)

∂γ ′
]

= E

[
E

(
∂ρ

(S)′
1 (γ0)

∂γ

∣∣∣Z1

)
W1E

(
∂ρ

(2S)
1 (γ0)

∂γ ′
∣∣∣Z1

)]

= E

[
∂ρ′

1(γ0)

∂γ
W1

∂ρ1(γ0)

∂γ ′
]
.

By (26)–(28) and the Slutsky theorem, we have
√

n(γ̂n,S − γ0)
L→ N(0,

B−1CSB−1). Finally, (20) can be similarly shown by Lemma 7.�

PROOF OFCOROLLARY 4. To simplify notation, in the following we denote
ρi = ρi(γ0) and, correspondingly,ρ(S)

i = ρ
(S)
i (γ0). Then the common term of
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∂Qn,S(γ0)/∂γ in (26) can be written as

T = ∂ρ
(S)′
i Wiρ

(2S)
i

∂γ

= T1 + T2 + T3,

where

T1 = ∂ρ′
iWiρi

∂γ
,

T2 = ∂ρ′
iWi(ρ

(S)
i − ρi)

∂γ
+ ∂ρ′

iWi(ρ
(2S)
i − ρi)

∂γ

and

T3 = ∂(ρ
(S)
i − ρi)

′Wi(ρ
(2S)
i − ρi)

∂γ
.

Sinceρ
(S)
i andρ

(2S)
i are conditionally independent givenYi andZi , T1, T2 andT3

are mutually uncorrelated and hence

E(T T ′) = E(T1T
′
1) + E(T2T

′
2) + E(T3T

′
3),(29)

whereE(T T ′) = 4CS andE(T1T
′
1) = 4C. Furthermore, sinceρ(S)

i andρ
(2S)
i have

the same distribution,

E(T2T
′
2) = 2E

[
∂ρ′

iWi(ρ
(S)
i − ρi)

∂γ

∂(ρ
(S)
i − ρi)

′Wiρi

∂γ ′
]
.

Now write ρ
(S)
i (γ0) = 1

S

∑S
s=1 ρis , where

ρis =
(
Yi − g(Zi + tis; θ0)fδ(tis;ψ0)

φ(tis)
, Y 2

i − g2(Zi + tis; θ0)fδ(tis;ψ0)

φ(tis)
− σ 2

ε0

)′
.

Then, sinceρis, s = 1,2, . . . , S, are independent givenYi,Zi , we have

E(T2T
′
2) = 2

S2
E

[
S∑

s=1

∂ρ′
iWi(ρis − ρi)

∂γ

S∑
s=1

∂(ρis − ρi)
′Wiρi

∂γ ′

]

(30)

= 2

S
E

[
∂ρ′

1W1(ρ11 − ρ1)

∂γ

∂(ρ11 − ρ1)
′W1ρ1

∂γ ′
]
.

In the same way, we can show that

E(T3T
′
3)

(31)
= 1

S2
E

[
∂(ρ11 − ρ1)

′W(Z)(ρ12 − ρ1)

∂γ

∂(ρ12 − ρ1)
′W(Z)(ρ11 − ρ1)

∂γ ′
]
.

The corollary follows from (29)–(31). �
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