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HYBRID SHRINKAGE ESTIMATORS USING PENALTY BASES
FOR THE ORDINAL ONE-WAY LAYOUT

By RuDOLF BERAN?
University of California, Davis

This paper constructs improved estimators of the means in the Gaussian
saturated one-way layout with an ordinal factor. The least squares estimator
for the mean vector in this saturated model is usually inadmissible. The
hybrid shrinkage estimators of thisaper exploit thepossibility of slow
variation in the dependence of the means on the ordered factor levels but do
not assume it and respond well to faster variation if present. To motivate the
development, candidate penalized least squares (PLS) estimators for the mean
vector of a one-way layout are represented as shrinkage estimators relative
to the penalty basis for the regression space. This canonical representation
suggests further classes of candidate estimators for the unknown means:
monotone shrinkage (MS) estimators or soft-thresholding (ST) estimators
or, most generally, hybrid shrinkage (HS) estimators that combine the
preceding two strategies. Adaptation selects the estimator within a candidate
class that minimizes estimated risk. Under the Gaussian saturated one-way
layout model, such adaptive estimators minimize risk asymptotically over
the class of candidate estimators as the number of factor levels tends to
infinity. Thereby, adaptive HS estimators asymptotically dominate adaptive
MS and adaptive ST estimators as well as the least squares estimator.
Local annihilators of polynomials, among them difference operators, generate
penalty bases suitable for a range of numerical examples. In case studies,
adaptive HS estimators recover high frequency details in the mean vector
more reliably than PLS or MS estimators and low frequency details more
reliably than ST estimators.

1. Introduction. Consider the one-way layout of ANOVA. A single factor
that influences the observed responses hadistinct levels{s;:1 < i < p}.
These factor levels can be either nominal (i.e., pure labels that bear no ordering
information) or ordinal (i.e., real numbers whose order and spacing carries
information). In the case of an ordinal factor, we will suppose that the factor levels
have been ordered from smallest to largest. At levelve observe measurements
{yij:1 < j <n;}. Thesaturated Gaussian model for the one-way layout asserts
that the observationg;;} satisfy

(1.1) Yij = Wi + eij, l<i<p,1<j<n.

Received August 2001; revised May 2003.

1supported in part by NSF Grant DMS-03-00806.

AMS 2000 subject classification. 62J07.

Key words and phrases. One-way layout, ordinal factor, adaptation, estimated risk, penalized
least squares, monotone shrinkage, soft-thresholding, local annihilator.

2532



HYBRID SHRINKAGE IN ONE-WAY ANOVA 2533

Here the errors: = {¢;;} are independent, identically distributed, each having
an N (0, o'2) distribution and the meanig:;} are unknown real numbers subject

to no restrictions. That the means depend on the respective factor levels can be
expressed formally by

(1.2) wi =m(s;), 1<i<p.

In equation (1.2), the functiom is real-valued, unknown, and is subjectrio
restrictions.

At first glance, the saturated one-way layout model expressed by equations
(1.1) and (1.2) resembles a model for curve estimation. However, there is a
fundamental distinction. In curve estimation, the domainnofs a continuum,
usually a closed subset of the real line. In the one-way layout, the domain of the
functionm is a discrete set of factor levels. Even in ordinal one-way layouts, no
credible extension oz to a larger domain may exist. Tukey [(1977), Chapter 7]
fitted several examples of ordinal one-way layouts that are not curve estimation
problems because of intrinsic limitations on the domain of the funetion

Hereafter, unless otherwise stated, we consider only ordinal one-way layouts.

The following examples will serve as test cases for our methods:

ExAMPLE 1. The top subplot in Figure 1 displays monthly Australian red
wine sales (in kiloliters) from January 1980 to October 1991. The data was
reported by Brockwell and Davis (1996) and was analyzed there with techniques
based on ARMA models. ARMA models are only one class of hypothetical
probability models that might be entertained as a way of mimicking the wine sales
data. Because the data is not actually random, it is prudent to carry out alternative
analyses. As Tukey (1980) pointed out, “In practice, methodologies have no
assumptions and deliver no certainties.” We will analyze the wine-sales data with
mean estimators derived for the ordinal one-way layout model. Motivating this
approach is the traditional decomposition of an econometric times series into
a deterministic term (trend plus seasonal variation), plus a random noise term. The
factor levels are the 142 successive months in the period considered and are clearly
ordinal. Ipso facto, mean monthly wine-sales are defined only on the discrete time
grid of months. Our analysis in Section 2.5 finds a highly intelligible seasonal
pattern in the wine sales.

ExaMpPLE 2. The artificial ordinal one-way layouts analyzed in Figures
3 and 4 are designed to bracket the situation found in the case study of Example 1.
In each of Figures 3 and 4, the data in the top subplot is obtained by adding
pseudo-random errors to the means displayed in the second subplot. The means
in Figure 3 vary slowly while those in Figure 4 vary rapidly. To the human eye,
the pattern of variation in the means is not visible in the data. In Section 2.6,
comparing competing estimators of means on these two artificial ordinal one-way
layouts adds to our understanding of their performance.
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Raw Data for Red Wine Sales
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Fic. 1. Competing D4-basis fits to the Australian monthly red wine-sales data.
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Signed Root |z| with D4
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FiG. 2. Diagnogtics for D4-basis fits to the Australian monthly red wine-sales data: residuals
for the HS(D4)fit, the empirical basis economy plot and the shrinkage vectors used by competing
D4-basis estimators.
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FiG. 3. Competing D4-basisfitsto the Smooth artificial data and the empirical basis economy plot.
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FIG. 4. Competing D4-basis fitsto the Very Wiggly artificial data and the empirical basis economy
plot. Interpolating lines are added to guide the eye through the sequence of means or estimated
means. They have no further significance.
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Formthen x 1 observationvector = {{y;;: 1 < j <n;},1<i < p}, wheren is
the total number of observations. LEtbe then x p incidence matrix that links
observations to the relevant factor level. Thecolumn ofX contains:; ones, the
other elements being zeroes. Let= (1, puo, ..., np)', Whereu; satisfies (1.2)
with m unrestricted. The saturated model (1.1) is equivalent to the assertion

(1.3) y NN(n,azln) wheren = X .

The primary task in this paper is to devise regularized estimators, ar,
equivalently, ofp = (X’X)~1X’n, that (asymptotically inp) dominate the least
squares estimatoj s = X (X’X)~1X’y under the saturated ordinal model. We
note that the desirability of analyzing the risk of estimators ohder the saturated
model is a basic way in which estimation in the one-way layout differs from curve
estimation.

Suppose that we assess any estimattirough its normalized quadratic loss
and corresponding risk

(1.4) LG.w=p Yi—n%  R@#.n.0%=EL®, ),

the expectation being calculated under the saturated model. Equivalently, we could
discuss estimation gf under the loss functiop= (& — 1)’ X' X (i — ). The risk

of AL s is evidentlyo2. It is well known that this value is the smallest risk attainable

by unbiased estimators @fin the saturated model whether the factor is nominal

or ordinal. Nevertheless, for both types of factiirg is an inadmissible estimator

of n whenever the number of factor levels exceeds two [Stein (1956)].

The James-Stein (1961) shrinkage estimator iofiproves significantly on the
quadratic risk offj s and is a good answer when the factor is nominal. For an
ordinal factor, estimators foy that have still lower risk in the one-way layout
are often possible. The better estimatorsnofleveloped in this paper rely on
a regularization strategy that enables the data to influence estimator construction.
Our hybrid shrinkage estimators exploit the possibility of slow variation in the
dependence of the means on the ordered factor levels, bowtdmssume it, and
respond well to faster variation if present.

The broad approach is the following: (a) use prior conjecture about the unknown
means in the Gaussian saturated one-way layout to motivate classes of candidate
estimators for these means; (b) estimate the risk of each candidate estimator
under the saturated model; (c) define an adaptive estimator to be the candidate
procedure with smallest estimated risk; (d) experiment with the adaptive estimator
on both observed and artificial data; (e) study the asymptotic risk of such adaptive
estimators under the saturated model.

The inadmissibility of least squares fits to the means of a Gaussian saturated
one-way layout has inspired considerable work on competing estimators. Candi-
date model selection, ridge regression or penalized least squares (PLS) estima-
tors are all particular symmetric linear estimators. Important studies of symmetric
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linear estimators include Stein (1981), Li and Hwang (1984), Buja, Hastie and
Tibshirani (1989) and Kneip (1994). Tukey (1977) proposed and experimented
with certain smoothing algorithms for fitting ordinal one-way layouts. Beran and
Dumbgen (1998) used a finite-dimensional version of Pinsker’s (1980) asymp-
totic minimax bound to assess adaptive symmetric linear estimators that perform
monotone shrinkage relative to a fixed orthonormal basis.

Adaptive hybrid shrinkage (HS) estimators for the veetothe main contribu-
tion of this paper, combine monotone shrinkage (MS)—a generalization of PLS—
with the soft-thresholding (ST) idea in Donoho and Johnstone (1995). The adap-
tive HS estimators are devised to dominate asymptotically both adaptive MS and
adaptive ST estimators gf Theorem 4.1 gives the supporting risk analysis under
the saturated model as the numlpeof factor levels tends to infinity. Interpreta-
tion of asymptotic minimax Theorem 3.1 isolates basis economy as a key factor
in superior performance of MS estimators and approximate basis economy as a
key factor in superior performance of HS estimators. Applied to the penalty bases
used in this paper, this interpretation suggests that HS estimators behave like MS
estimators when the means of an ordinal one-way layout vary slowly and share
the superior ability of ST estimators to track means that vary more rapidly. Re-
lated to HS estimators in strategy but not in tactics are the hybrid wavelet fits of
Efromovich (1999). These combine a certain linear shrinkage strategy with hard-
thresholding of wavelet coefficients.

Sections 2.5 and 2.6 continue the analysis of Examples 1 and 2. Comparisons
through estimated risks are supplemented by basis economy plots and shrinkage
vector plots that reveal working details of the competing estimators. The diagnostic
plots in these examples support the claim made above that basis economy is
important for superior performance of MS estimators and that approximate basis
economy is important for superior performance of HS estimators. In particular,
the numerical experiments confirm the superior ability of adaptive HS estimators
constructed odth difference penalty bases to recover both low and high frequency
features in the means of an ordinal one-way layout.

Curve estimation can be split conceptually into two problems: (a) estimation of
means on the ordinal one-way layout of observed factor levels; and (b) estimation
of the mean function between adjacent factor levels through some form of
interpolation. The choice of function class in curve estimation strongly affects
the implicit interpolation scheme. For nonparametric curve estimation, adaptive
curve estimators that achieve the Pinsker asymptotic minimax bound over specified
function classes were developed by Efromovich and Pinsker (1984) and by
Golubev (1987). On the other hand, data does not come with an attached
probability model. A data analyst interested in curve estimation, but not certain
of an appropriate function class, might reasonably use the techniques of this paper
to estimate the means at the observed factor levels; and might then experiment with
curve estimates obtained from these by various interpolation schemes.
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This paper distinguishes strictly among data, statistical procedure, probability
model and pseudo-random numbers. Modern computing environments for applied
and experimental statistics have returned the distinctions to prominence. An adap-
tive procedure implicitly fits the probability model that motivates it. However,
using such a procedure on data differs from believing that a probability model
governs the data. Data is not certifiably random. Mathematical study of a sta-
tistical procedure under a probability model tests the procedure only on virtual
data governed by that model. Such mathematical explorations become pertinent
to statistical theory if the probability model can approximate salient relative fre-
guencies in actual data of interest. Our understanding of statistical procedures is
ultimately empirical, aided considedgtby suitable diagndg plots, knowledge
of the substantive field, and intuitive interpretations of relevant mathematical re-
sults [cf. Brillinger and Tiey (1985), Section 17, Beran (2001), Section 3, and
Friedman (2001)]. In such respects, statistics does not differ from other sciences
that address the world around us.

2. HS estimators. This section begins by defining PLS estimators for the
mean vector of the saturated ordinal one-way layout and then MS or ST estimators
that use the same penalty basis. This background enables the definition of HS
estimators that combine the MS and ST shrinkage strategies. Adaptive HS
estimators are designed to perform well whether the components of the mean
vector vary slowly or more rapidly. Our treatment covers both balanced and
unbalanced one-way layouts. Section 4 develops asymptotic theory under the
saturated model that supports the adaptation methodology used.

2.1. Canonical representation of PLS estimators. As described in the Intro-
duction, the saturated model for the ordinal one-way layout writhctor levels as-
serts that the observation vectohas anV (1, 01,,) distribution, where; = X .
Here X is the incidence matrix that links observations to the relevant factor lev-
els andrn is the total sample size. The task is to estimate the mean vectat
D be any matrix withp columns, letv be an element of the extended nonnega-
tive reals[0, oo], and let| - | denote quadratic norm. The candidate PLS estimator
of nis

(2.1) npLs(D, v) = XapLs(D, v),

where

(2.2) fipLs(D, v) = argmir(|y — X | + v|Du?].
HERP

It is understood thafip (D, 00) = lim,_ » fipLs(D, v). The foregoing displays
yield the explicit formula

(2.3) fps(D,v) = X(X'X +vD'D)1X'y.
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Both D andv are to be chosen so to control the quadratic risk of the PLS estimator
under the saturated model.

In the leading case of a balanced one-way layout, the mtiiis a multiple of
the identity matrix. Consequentlyp_s may be computed equivalently by applying
the PLS strategy to the averages.: 1 <i < p}, rather than to the original data.
Thus, the case = p implicitly includes the general balanced one-way layout.

Of course, estimating? is easier whem exceedy (see Section 2.2).

A revealing canonical representation @ _s(D, v) is obtained through the
following algebraic reduction. The replication matrik = X'X is a p x p
diagonal matrix whoséth diagonal element is the number of observations at
factor levels;. Let M denote the the regression space of the one-way layout—
the subspace spanned by the columns of the incidence n¥trihe columns
of the matrix Uy = XR~Y/2 provide an orthonormal basis for this regression
space. LetB = R~Y2D’'DR~1/2 have spectral representatidn=I"AT’, where
the eigenvector matrix satisfies'T’ = I'l" = I, and the diagonal matrix
A =diag{A;} gives the ordered eigenvalues with<Or; < 1p < --- < X,. This
eigenvalue ordering, the reverse of the customary, is used here because the
eigenvectors associated with the smallest eigenvalues largely determine the value
and performance of candidate estimafgis(D,v). Let U = Upl". It follows
from (2.3) that

(2.4) fpLs(D, v) =U (I, + vA) " 1Uy.

The columns of the matrixU define the orthonormapenalty basis for the
regression spac#( of the one-way layout.

Let z = U’y and let f(v) denote the column vectofl/(1 + vi1),1/
(14+v22),...,1/(1+vAp))’, with the understanding that(co) = lim,_, o f(v).
The distribution ofz is then N, (&, azl,,), whereé = U’n. The candidate PLS
estimator of implied by expression (2.4) is

(2.5) EpLs(D, v) = U'fipLs(D, v) = f(v)z,

where the multiplication of vectors in the expression to the right is performed
componentwise as in the S language. Equivalently,

(2.6) fipLs(D, v) = UépLs(D, v) = U diag( f (W)}U'y.

REMARK. The successive columni:;:1 < j < p} of the penalty basis
matrix U = Upl", whereUg = X R—Y/2, have a variational characterization:

e Lety; denote theth column of the eigenvector matrix.

e Find a unit vectoruy in M that minimizes the penaltyD(X’X)"1X'u1|2.
The answer isu1 = Upgy, wherey is a p x 1 unit vector that minimizes
IDR~Y2y|2=y'By. Thusu1 = Ugys.
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e Find a unitvector, in M that minimizes the penaltyd (X’ X)~1X"u»|? subject
to the constraint that, is orthogonal ta:;. The answer igo = Uy, wherey is
ap x 1 unit vector orthogonal tg; that minimize§DR~Y2y|2 = y'By. Thus,
uz = Ugy2.
e Continue sequential constrained minimization to obtain the penalty basis matrix

(2.7) U = (Uoys, Uoya, - - ., Ugyp) = UoT.
2.2. Adaptive MS estimators. The canonical representation (2.6) of PLS

estimators suggests a larger class of candidate shrinkage estimators that use the
same penalty basig. Let

(2.8) Fus=Fus(p) ={f€l0. U’ fi> fa=---> fp}
and let
(2.9) Ews(D. f)=fz. [ €Fus.

The candidate MS estimators fpassociated with penalty matrix are defined by

(2.10)  Aws(D, f) =Uéus(D, f)=Udiag f}U'y,  f € Fus.

It follows from (2.6) that the candidate PLS estimators are a proper subset of the
MS family in which the shrinkage vectof is restricted to the formf f(v):v €
[0, ool}.

For any vector, let avéx) denote the average of its components. Define the
function

(211)  rus(f.&,0d) =avdf202+ (1 - %2,  fel0,1)”.

Becausdius(D, f) — nl?2 = |fz — &2, it follows that the normalized quadratic
risk of the candidate MS estimator is

(2.12) R(fms(D, f),n,0%) =rus(f, &, 02), f € Fus.

In particular, the risk of the candidate PLS estimator is jwgi( /' (v), &, 02).

The risk functionrys( £, &, %) depends on the unknown parametgfsindo 2.
Having obtained a variance estima®f, we may estimaté? by z2 — 62 and,
hence, the risk function by

Pus(D, f) = ave f26% + (1 — £)%(z2 — 69)]
—ave(f — §)°z°] + 62 ave(d),

where f € Fus and ¢ = (z2 — 62)/z%. Expression (2.13) is Stein’s (1981)
unbiased risk estimator combined with an estimatoar%JfAIternativer, the risk
estimatorfys(D, f) follows from the argument for Mallows’ (19738),, criterion.

(2.13)
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For fixed penalty matriD, theshrinkage-adaptive MS(D) estimator is defined
to befms(D, fus), where

(2.14) fMS = arg minfys(D, f) =argminave (f — §)2z].
feFus feFus

To accomplish the minimization, |6X = {k € R? :ky > ko > --- > k,,} and let

(2.15) k = argminaved (k — £)%z].
ke X

Computation of is a weighted isotonic least squares problem that can be solved in
a finite number of steps with the pool-adjacent-violators algorithm [cf. Robertson,
Wright and Dykstra (1988)]. Each componentfifs is then the positive part of

the corresponding componentiafas shown in Beran and Diimbgen (1998).

REMARK. The shrinkage adaptive PIB) estimator is obtained by re-
stricting the minimization in (2.14) to monotone shrinkage vectors of the form
f = f (). This weighted nonlinear least squares computation is harder than con-
structing the more ambitious shrinkage adaptive(Mpestimator.

Useful in risk estimation is the high component variance estimagomhich
uses the strategy of pooling sums of squares from analysis of variance. @hoose
so that the concatenated mat(i¥|U ) is orthogonal. Sef = U’y in analogy to
the earlie; = U’y. Then

p p
(2.16) 5§=(n—q)—1[ 3 Zl-2+|2|2i|:(n—q)_1|: 3 z?+|y—ﬁLs|2},

i=q+1 i=q+1

whereg < min{p,n — 1}. The bias of67 is (n — ¢)~* 3/ ;&% Consistency

of 8,_2, is assured when this bias tends to zeromas ¢ tends to infinity.
When ¢ = p < n, the estimatorgy reduces to the least squares estimator
6% = (n — p)~Y|y — fiLs|?, which is unbiased. Whep = n, the estimato62 is

a pure pooling estimator whose bias is smalpif- ¢) 1 Z{’:(Hl S,-Z is nearly zero.
We will seek to arrange this through choice of the penalty mdxix

2.3. Adaptive ST estimators. Forr >0 and 1<i < p, let h;i(t,z) = [1 —
t/)zill+- Let
(2.17) Fst=Fst(p)={f€[0,1): fi =hi(t,z)fort >0and 1<i < p}.

Unlike the monotone claskys defined in (2.8), the clasBsT of shrinkage vectors
is data dependent. Let

(2.18) EsT(D, f)={fz: f € FsTh,
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multiplication being performed compomvise as in S. The algebraic identity
hi(t, 2)zi = sgn(zi)[|zi| — t]+ connectsést(D, f) with the definition of soft-
thresholding in Donoho and Johnstone (1995). The candidate ST estimatgrs for
associated with penalty matri are

(219)  #sT(D, f)=Uést(D, f)=Udiag f}U'y,  f € Fsr.

Let G denote the empiricalcumulative distribution function of the
{lzil:1<i < p}, let G = E(G) and define

(2.20) ret(f.€,02) =021 —2G(1)] + fo WA AGwW),  f e Fer

where A denotes the minimum operator. It follows from Stein (1981) that the
normalized quadratic risk of the candidate ST estimator is

(2.21) R(Ast(D, f),n,0%) =rs1(f,£,09), f € Fst.
Having devised a variance estimaéot, we may estimate this risk by

(2.22) Fsr(D, f)=6%[1-2G()] + /Ooo(u AD2dG ), f € Fsr.

Let 1, = (2log(p))/2. For fixed penalty matrixD, the shrinkage-adaptive
ST(D) estimator is defined to bisT(D, fsT), where

(2.23) fst=h(f,z)  wheref = argminfs(D, 1),
te[0,1,]

as in Donoho and Johnstone (1995). Becauseast be one of the valug¢g;|:1 <
i < p}, it can be computed readily.

2.4. Adaptive HS estimators. Let p1 = |ap], where|-] denotes integer part
and thesplit fraction « € [0, 1]. For any vectork € R?, define the subvectors
k= {ki:1<i < p1} andkp) = {k; : p1 + 1 <i < p} of respective dimensions
p1andp2 = p — p1. Candidate HS estimators apply separate shrinkage strategies
to the subvectors(1) andz ) of z. We focus on the M& ST hybrid because it
proves particularly effective in the examples to be considered. The definitions of
the MSx MS, STx ST and of STx MS hybrids are analogous.

Efromovich (1999) considered HS of wavelet coefficients in which MS is
replaced by a certain linear shrinkage methodology and ST is replaced by hard-
thresholding. In both that paper and here, the aim is to compromise beneficially
between a shrinkage approach that assumes regression coefficients are ordered in
importance and a shrinkage approach that relies on sparsity of important regression
coefficients. Considerable technical differences exist. We apply adaptive MS rather
than Efromovich—Pinsker shrinkage to the low-frequency regression coefficients.
On the remaining coefficients, we use ST rather than hard-thresholding and
select the soft-threshold to minimize estimated risk. The regularity conditions for
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Stein’s (1981) risk estimator are satisfied by soft-thresholding but not by hard-
thresholding.

Let
(2.24) Fus={f: f € Fus(p1), f2) € Fs1(p2)}
and let
(2.25) Ens(D,a, f) = fz, f € Fus.

The candidate M& ST HS estimators fon associated with penalty matri are
defined by

(2.26) fns(D,a, f) = Uéus(D,«, f) =Udiag f}U'y,  f € Fus.

From the preceding sections, it follows that the normalized quadratic risk of this
candidate HS estimator is

R(fns(D, a, f),1,0?)

= p Y prrms(fay: Eay» 02) + parst(f2), £2). 2], f € Fus.

Write 7ms(D, f(1)) for the risk estimator (2.13) computed on the subvector
Similarly, write 7s1(D, f(2)) for the risk estimator (2.22) computed on the
subvector ;). The risk of the candidate HS estimator is then estimated by

(2.28) Fus(D,a, f) = p [ pifus(D, fw) + parst(D, f2)]. f € Fus.

For fixed penalty matrixD and split fractiony, the shrinkage-adaptive HS(D)
estimator is defined to biys(D, o, fys), where

(2.29) frs = argminfus(D, a, f).

f€Fus

(2.27)

The minimization is accomplished by minimizing separately each of the two
summands on the right-hand side of (2.28) in the manner discussed previously.

2.5. A case study. Figure 1 presents competing fits to monthly Australian
red wine sales (in kiloliters) from January 1980 to October 1991. The data are
taken from Brockwell and Davis (1996) and the ordinal factor is month. Here
n = p = 142. The penalty matrix is the fourth difference operator D4, which is
defined explicitly in Section 3.2. The high component variance estir&,étis
determined by (2.16) with = | 0.85p . The partition in the definition of HS(D4)
usesx = 0.3. Adaptation to minimize estimated risk selected the values arid
of the penalty matrix from a class of possibilities described in Section 3.3. The
estimated risks of the competing estimators are shown in Table 1.

The LS fit (not shown) coincides with the raw data. On the basis of estimated
risk, PLS(D4) is only a modest improvement over LS, MS(D4) is preferable, while
ST(D4) and HS(D4) are substantially preferable, the hybrid estimator being best.
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TABLE 1

LS PLS(D4) MS(D4) ST(D4) HS(D4)

0.0115  0.0093 0.0071  0.0047  0.0039

Theorem 4.1 shows that, under modell), the estimated risks of these adaptive
estimators approximate their risks under the saturated mogelexsds to infinity.

On looking closely at Figure 1, we discern a regular seasonal pattern in the
HS(D4) and ST(D4) fits. Each year, estimated mean monthly red wine sales rise
steadily from an annual low in January to a peak around July or August (winter
in Australia) and then drop into a trough with a secondary peak around November
or December (in time for the Christmas holiday season). The adaptive fits with
smallest estimated risk have recovered a highly intelligible seasonal pattern in sales
that may be linked to seasonal patterns in market demand and in winery operations
after harvest and fermentation.

Figure 2 examines what is going on behind the fits. The residuals from the
HS(D4) fit are plausibly homoscedastic. A Q—Q plot (not shown) indicates that
their marginal distribution is roughly normal, apart from outliers. This illustrates
the tendency of our procedures to fit the data in terms of the motivating model.
Subplot(1, 2) plots the transformed componefits |Y/2sgnz;) : 1 < i < p} of the
coefficientsc = U’y. The square root transformation reduces the vertical range of
the plot and makes more visible the behavior of small component€nfidently,
the first four columns ot/ are crucial in representingand soy. Blips in this plot
at certain higher-order components suggest that the corresponding basis vectors
may also be important in estimating We call subplot(1, 2) anempirical basis
economy plot. The concept of basis economy is treated formally in Section 3.1.
As well, this subplot suggests the choicegathat enters into the high-component
variant estimatoé;3.

The four shrinkage vector subplots in Figure 2 display the shrinkage vectors that
define the competing adaptive fits. Because the shrinkage vectors of the PLS(D4)
and MS(D4) estimates are necessarily monotone, both give considerable weight
to many components af so as not to disregard the small blips discussed above.
The ST(D4) and HS(D4) estimates are better able to select the more important
components ot, thereby reducing estimated risk through tradeoff of estimated
variance against bias. Note that the HS(D4) estimate disregards more of the higher-
order components afthan does ST(D4).

2.6. Experiments with artificial data. Figures 3 and 4 exhibit the competing
adaptive estimators on two sets of artificial monthly data that bracket the situation
found in Example 1. In this experimenp = n = 200, the factor levels are
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{s; =i:1<i <200, and the means at which we have one noisy observation are

Smooth: m1(s;) = 2 — 50((s; /200— 0.25)(s; /200— 0.75))2,
Very Wiggly: ma(si) = m1(s; /200) — 0.25 sin 100z (s; /200)).

The observations are given by=m(s;) +e¢;, where thge; } form a single pseudo-
random sample drawn from thé(0, o21,q0) distribution witho = 0.5. In the data
analysis, the variance? is estimated by the high component estimagidefined
in (2.16), withg = 0.75p.

Fitting this artificial data is a one-way layout problem rather than a curve
estimation problem because the measurements are deemed to be monthly as in
Example 1. The means in the Smooth case vary more slowly than those estimated
in Example 1, while the means in the Very Wiggly case vary more rapidly.
The goal is to learn how the competing adaptive estimators perform in both
scenarios. The first rows of Figures 3 and 4 give the scatterplots of the Smooth and
Very Wiggly data, respectively. To the human eye, these scatterplots are scarcely
distinguishable. Good estimators of the unknown mean vectors seek to do better
than the eye.

The penalty matrix used for both sets of artificial data is the fourth difference
operator D4. The partition in the definition of HS(D4) uses 0.05. Adaptation to
minimize estimated risk selected these valueg ahd of the penalty matrix from
a class of possibilities described in Section 3.3. According to the asymptotics in
Section 4, the risk, loss and estimated risk all converge to a common limit. In the
present experiment with artificial data, the losses are readily computed. For the
Smooth data, the estimated risks and actual losses of the competing estimators are
shown in Table 2.

We note that the estimated risks for the shrinkage adaptive estimators are
negative. The actual losses are small and convergence to asymptotic limits has not
happened. Nevertheless, the estimated risks reflect the ordering of the true losses.
In Figure 3 the visual quality of the competing fits follows the same ordering. The
interpolated ST(D4) estimate is unsatisfactorily jagged, though certainly better
than the LS estimate. The MS(D4) and HS(D4) estimates are close to the truth,
though the latter exhibits a small ripple not present in the actual mean vector. The
basis economy plot in the last subplot of Figure 3 suggests that the D4 penalty basis
is economical in this example. This is verified by examining the corresponding plot
of & (not shown) computed from the true mean function.

TABLE 2

LS MS(D4) ST(D4) HS(D4)

Estimated risk  0.2846—0.0434 —0.0296 —0.0449
Loss 0.2325 @®O72 Q0358 Q0077
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TABLE 3

LS MS(D4) ST(D4) HS(D4)

Estimated risk  0.2842—-0.0063 —0.0239 —0.0350
Loss 0.2325 (@313 Q0447 00285

For the Very Wiggly data, the estimated risks and actual losses of the competing
estimators are shown in Table 3.

In Figure 4, interpolating lines have been added to guide the eye through the
sequence of means or estimated means. They have no further significance because
we are not doing curve estimation. The HS(D4) estimate is best visually, as
well as in loss. The HS(D4) and ST(D4) estimates both indicate the amplitude
of the high frequency component in the unknown mean more successfully than
the MS(D4) estimate. However, the actual loss of the ST(D4) estimate exceeds that
of the MS(D4) estimate. Both casual scrutiny and the ordering of the estimated
losses make ST(D4) look better than it is. Evidently the asymptotics have not
fully taken hold. The basis economy plot in subpi8t2) of Figure 4 reveals the
possible importance of componenby. In the Very Wiggly case, the D4 penalty
basis is sparse in the sense that most componegtam@ small. However, it is not
economical because a high-order basis vector is needed to approximate the high
frequency sinusoidal component in the mean.

In this experiment, the HS(D4) estimate, unlike the others considered, performs
well in both the Smooth case and the Veery Wiggly case. This is empirical evidence
in its favor.

3. Penalty matrix and split fraction. For monotone shrinkage, the ideal
choice of basig€/ would have its first column proportional to the unknown mean
vectorn so that only the first component & U’n is nonzero. Then the choice of
shrinkage vector to minimize risk would have first component equal to 1 and all
other components equal to 0. Though unrealizable, this ideal choice indicates that
prior information or conjecture aboutshould be exploited in selectirig. We say
informally that the columns of/ provide aneconomical basis for the regression
space if all but the first few componentsfoére very nearly zero. Construction of
the basid via a penalty matrixD—the method used in this paper—is a practical
way of using vague prior information or conjecture about the functioto find
a plausibly economical basis for expressing the mean vector

3.1. The role of basis economy. Mathematical analysis of an idealized
economy concept reveals the importance of basis economy in reducing risk
through monotone shrinkage. For evebye (0,1], let &y(b) = {a € R?:
ai=1if1<i<bp,1<app4+1=---<a, <oo}. For everya € &u(b), every
r > 0 and every2 > 0, define the ellipsoid

(3.1) E(r,a,0?) = {& € R” :ave(a&?) < o%r).
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If &€ E(r,a,oz) anda; = oo, it is to be understood thdt =0 andai‘1 =0.
We consider bases such that, in the resulting canonical modgk E(r, a, o2
for somer > 0, someu € &y (b) and some € (0, 1].

A finite-dimensional specialization of Pinsker’s (1980) theorem, given by Beran
and DUmbgen (1998), implies the next theorem on asymptotic minimaxity of
adaptive MS estimators gf The proof follows from the discussionin Section 4 of
Beran (2000). Le$Z = o2[(y /a)Y/? — 1], wherey is the unique positive number
such that av&?) = o%r. Define

(3.2) vy (r,a,0?) =c?avdel /(0% + £2)].

THEOREM3.1. FixthepenaltybasisU by choiceof D or otherwise. For every
b€ (0,1], everya € &m(b), every r > 0 and every o2 > 0,

(3.3) lim [ir]f sup R(ﬁ,n,az)/vp(r,a,az)]:l.

Pl teE(ra,0?)

The shrinkage-adaptive estimator fius(D, fms) achieves asymptotic minimax
bound (3.3)in that

@4 Jim[ sup  Rlus(D. fus).n.0%)/vy(rao?] =1
p £€E(r,a,02)

What does this theorem tell us? First, note that the asymptotic minimax
risk v,(r,a, 02) in (3.3) is monotone decreasing in the vectar Thus, if
£ =U'n € E(r,a, o? for relatively smallb and relatively large vectar—in other
words, if the basis is economical for expressipgthen the asymptotic minimax
risk is relatively small compared to the rigk? of the LS estimator. Second,
(3.4) indicates that the adaptive MS estimator achieves the asymptotic minimax
risk for every degree of basis economy. Even a poor choice of basis for adaptive
MS estimation does not lead to disaster relative to LS estimation.

A special case of Theorem 3.1 makes both points obvious, albeit in a simplified
setting. LetB () ={a € &ub):a; = o if |bp] +1<i < p}. In Theorem 3.1,
replacinga € & (b) with the stronger restriction € 8(b) andv,(r, a, o2) with
the evaluation2rb/ (r 4+ b) gives a valid statement. In this simplified setting, basis
economy corresponds to a small valueboflhe ratio of the asymptotic minimax
risk to the risk of the LS estimator is small whenebds small; and the adaptive
MS estimator is still asymptotically minimax.

3.2. Local annihilators. Difference operators are well-established as penalty
matrices for PLS when the ordinal factor levels= (s1,s2,...,5,), With
s1<sp<---<sp, are equally spaced [cf. Press, Teukolsky, Vetterling and
Flannery (1992), Section 18.5]. To define tt difference matrixD,, first define
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the (p — 1) x p matrix A(p) = {&; ;}, in which§;; =1, 6; ;11 = —1 for everyi
and all other entries are zero. Then
(3.5) Di=A(p), Dy;=A(p—d+21)Dy 1 for2<d < p.

Evidently, the(p — d) x p matrix D; annihilates powers of up to powerd — 1
in the sense that

(3.6) Dysk=0  forO<k<d-1
Here s* denotes the column vectas?, . .., sk)'. Moreover, in rowi of Dy, the
elements not in columnsi 4+ 1, ...,i + d are zero.

Suppose for simplicity thak = 7,. Let U be the penalty basis generated by
penalty matrixD,. By the variational characterization f given in Section 2.1,
the space spanned by the ficstolumns ofU consists of vectors that satisfy
Dgv = 0. Whenm behaves locally like a polynomial of degrée- 1 and the value
of d is modest, then this penalty basis is economicalfoBuch considerations
support the use of difference operators as candidate penalty matrices when the
factor levels are equally spaced.

Whenm is expected to behave locally like a polynomial of degiee 1, but
the factor levels iy are not equally spaced, we replabg as follows. For every
integer 1< d < p, thelocal polynomial annihilator A; is a(p — d) x p matrix
characterized through three conditions. First, for every possilak elements in
theith row of A; other than(a; ; :i < j <i+d} are zero. Secondy, satisfies the
orthogonality conditions

(3.7) Agsk¥=0  forO<k<d-1

Third, each row vector i ; has unit length. These requirements are met by setting
the nonzero elements in thh row of A; equal to the basis vector of degrée

in the orthonormal polynomial basis that is defined ondhe 1 design points
(si,...,sitq). The S-Plus functiopol y accomplishes this computation. When
the components of are equally spacedi, is just a scalar multiple of théth
difference matrixD,.

3.3. Adaptive choice of penalty matrix and split. As we have seen, a penalty
basis ideally exploits, through choice of the penalty matrix, informed conjecture
about the functionn in (1.1). When this is the case, penalty bases are often
reasonably economical. However, if the prior information is weak or flawed, some
of the higher-order components éf may not be negligible. Soft-thresholding
handles possibly isolated higher-order componengstbft need to be considered
in the fit. The choice of dividing poing; between monotone shrinkage and soft-
thresholding in the M& ST HS estimator then becomes important. We will use
the strategy of minimizing estimated risk to seléztand p4, in addition to the
shrinkage vectors.
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Given a setD of candidate penalty matrices, sucdg :1 < d < k}, we select
an empirically best MS estimator as follows. Over shrinkage cfags and over
penalty matrix classD, the fully adaptive MS estimator of is defined to be

Ho.Ms = ims(D, ), where

(3.8) (D, f)y= argmin #(D, f).
De®D, feFus

The fully adaptive ST estimatofjp st is defined analogously, replacingus
in (3.8) with £sT.

For HS estimators, it is also desirable to explore competing choices of
p1=|ap|, where |-| denotes integer part and candidate valuegdie in a
specified subset of [0, 1]. Over shrinkage clasBys, over penalty matrix clas®
and over split fraction clasg, the fully adaptive HS estimator of is defined to
benp,4.Hs =fns(D, &, f), where

(3.9) (D,&, fy= argmin  #(D,a, f).
DeD,aeA, fEFHS

The asymptotics in Section 4 support choosingnd D to minimize estimated
risk provided the cardinalities oft and of D grow slowly asp increases. The
numerical examples in Sections 2.5 and 2.6 uged= {D,;:1 < d < 6} and
A = {0.05%:0 < k < 20}. The asymptotics given do not care whether the candidate
bases are constructed as penalty bases. However, minimizing estimated risk over
a very large class of bases should not be expected to yield a good estimator of
For instance, the MS estimator that minimizes the estimated riskddég{ /} U’y
over all f € Fums and over all permutations of the columns of a fixed basis
matrix U is dominated by the LS estimator in the saturated model. Remark A on
page 1829 of Beran and Dimbgen (1998) gives a proof. In such cases, the covering
numbers used in the asymptotics of Section 4 are too large for Theorem 4.1 to hold.

4. Asymptoticsof adaptation. The main purpose of this section is to analyze
the asymptotic loss and risk of the adaptive(BJ and H3 D) estimators under
the saturated Gaussian one-way layout. The results build on techniques developed
by Beran and Dimgben (1998) for adaptive \MB estimators. First we show
that minimizing estimated risk over shrinkage cl&gs or Fst for fixed penalty
matrix D succeeds in minimizing risk asymptotically over that shrinkage class
as the dimensiorp of the regression space tends to infinity. Moreover, the
estimated risk of the adaptive estimator converges to its actual loss and risk. In this
fashion, estimated risks provide a credible tool for ranking competing shrinkage
estimators. Second, we provide conditions under which simultaneous adaptation
over shrinkage clas$ys, over penalty matrix clas® and over split fraction
class works in the senses just described. The results require no smoothness
assumptions on the unknown mean vegtor



2552 R. BERAN

4.1. Adaptation works. For any vectorn € R?, let ||h]| = max <<, |h;|. The
generic subscrip# stands forfys or st or Fys, according to the choice of
candidate estimator class.

THEOREM4.1. Let F beeither Fys or FsT. Quppose that &2 isconsistent in
that, for every ¢ > 0and 62 > 0,
(4.1) lim sup E|6%— o2 =0.

P <c

(@) Let V(f) denote either the loss L(n# (D, f),n) or the estimated risk
F#(D, f). Then, for every penalty matrix D, every ¢ > 0 and every o2 > 0,

(4.2) lim sup E sup|V () — R(iiz (D, f),n.0?)| =0.
PZgzc  feF

(b) If f =argminf#(D, f), then

feF

(4.3) lim sup|R(7i#(D, f),n, 0% — )miQR(ﬁy(D,f),n,oz) =0.
fe

P g <

(c) For W equal to either L(fj#(D, f),n) or R(i# (D, f),n,02),
(4.4) lim sup E|f#(D, f) — W| =0.

P28 <c

(d) Let #D denote the cardinality of . Convergences (4.2)to (4.4) hold for
the fully adaptive MS estimator 7o ws defined through (3.8) if (#D)p~Y? and
(#D)E|62 — o2 both tend to zero as p — oo. They hold for the fully adaptive
ST estimator if (#D)p~1/2(log(p))Y* and (#D)E|62 — 2| both tend to zero as
p — 00.

(e) Convergences (4.2) to (4.4) hold for the fully adaptive HS estima-
tor fp. 4.Hs defined in (3.8) if max#A,#D)p~?(log(p))/* and max#A,
#D)E|62 — 02| both tend to zero as p — .

Parts (a)—(c) refer to the case of fixBd By part (a), the loss, risk and estimated
risk of a candidate estimator converge together, uniformly 6vet Fys or Fst.
This makes the estimated risk of candidate estimators index&d &yrustworthy
surrogate for true risk or loss. By part (b), the risk of the shrinkage-adaptive
estimatorn# (D, f) converges to that of the best candidate estimator. Part (c)
shows that the loss, risk and plug-in estimated risk of an adaptive estimator
converge together asymptotically. Part (d) extends these findings to MS and ST
estimators that adapt over bothand D. Part (e) does the same for HS estimators
that adapt over, D anda.

Condition (4.1) holds for the variance estima&fg if n — p tends to infinity
with p. Asymptotic results for other variance estimators are given in Beran (1996)
and Beran and Dumbgen (1998).
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4.2. Auxiliary result. The proof of Theorem 4.1 uses techniques from empiri-
cal process theory. Theorem 4.2 below is taken from Beran and Diimbgen (1998).
It follows from standard symmetrization arguments and Pisier’s (1983) form of
the chaining lemma [see also Pollard (1990), Sections 2 and 3K l;eEp 19is
where ¢1, ¢, ..., ¢, are independent stochastic processes on an indeX set
All ¢; have continuous sample paths with respect to some metdo 7 such
that (7, p) is separable. Define a random pseudo-meirimn 7 through

p
(4.5) m2(s,1) =Y _[i(s) — ¢ ()12

i=1

For any pseudo-metric on 7, define the covering numbers

(4.6) Nwu,T,v)= mln{ To:ToC T, inf v(tg,t) <uVvVreT }

toeTo

THEOREM 4.2. Suppose that S(z1) = 0 for some 71 € 7. Then there exists
afinite constant C > 0 such that

5
@4.7) EsupS(r) — ES()| < CE/O logY2[N (u, T, i) du,

teT

where D = sup_q (1, 17).

4.3. Proof of Theorem 4.1 The portion of Theorem 4.1 that concerns
F = Fus follows from results in Section 6 of Beran and Dimbgen (1998).
We continue by proving parts (a)—(c) f&f = Fst. For this discussion of soft-
thresholding, leF” = [0, #,,] with ¢, = (2log(p)) /2.

(@) Suppose that (f) =rs1(D, f) for f € Fs1. In view of (2.22) and (4.1), it
suffices to show that

(4.8) lim sup EsupG(:) — G(1)| =0
P el<c reT
and
(4.9) lim supEsu#/ (uz/\tz)d[é(u)—G(u)]‘z
P=Cgl<c 1eT

In Theorem 4.2, takep; (1) = p~*1(|zi| < 1). ThenS(r) = G(t), m2(s, 1) =
pYG@t)—G(s)|,1=0,D = p~1/2 and

N@u, T, m) =min{#"‘o:"‘oc 7, inf m2(to, 1) <u’Vte T}
t0€T0
(4.10) -
<1+ (pu®)
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Then

D p1/2
/ logY?[N (u, T, m)]du < / log¥?[1 + (pu®)"11du
(4.11) 0

1
= p‘l/zfo log¥2(1+v=?) dv.

Because the rightmost integral is finite, (4.11) and (4.7) imply
(4.12) EsupG(r) — G(1)| < Cp~ Y2,

teg
Limit (4.8) follows.
Next, observe that

[ w? Aty aGa = p 1Zz21<|z,| ()
(4.13) =t

= 81(1) + S2(2), say.
To analyzeS1(¢), letg; (1) = p_lzl-zl(|z,-| <t). Foranyinteger > 1, let

p
(4.14) ar=p Y Izl
i=1

Now, using Cauchy—Schwarzj2(s, ) < p~tag’?|G(1) — G(s)|Y2 and D <
p~Y245'*. By reasoning akin to that in (4.10),

(4.15) N@u,T,m) <1+ ag(pu®™?!

Consequently, by (4.7) and a calculation like that in (4.11),

E supS1(t) — ESy(1)] < Cp_l/ZEa1/4f log/2(1+ v* dv

teT

(4.16)
<C'p —1/2Ea1/4

To analyzeSy(1), let¢; (t) = p~ 1121 (|z;| > 1). If s <1,
P2Lgi(s) — ¢ (D =[(s* = ) (2] > 1) + 5% (s < |zi] <)
(4.17) <252 — 1221 (|zi| > 1)+ 25* (s < |zi| < 1)
< 822(s — 21|zl > 1) + 221 (s < |zi| < 0).
Similarly for + < s. From this and Cauchy-Schwari, 2(s,1) < ml(s 1) +
m3(s, t), where

(s, 1) = p~18(s — )%z’ *[1— G(maxs, )],
(4.18) o

m5(s, 1) = p~12ag' |G (s) — G(1)|Y2.
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By the first line in (4.17),D < Ap_l/zai/z < Ap—l/zaé/4 for some finite
constantA. Moreover,

N, T, 1) <1+ 8Y2a) %, (pY2u) 2,
(4.19)
N(u, T, h2) <1+ dag(p?u®)~?

by reasoning similar to that fafy ().
Becausen (s, t) < mq(s,t) +moa(s, 1),

(4.20) Nu, T,m) <2maxNu/2, T, 1), Nu/2, T, 1i2)}

and so

.
/ log %[N (u, T, )] du
0
.
(4.21) <112 / logY2[N (u/2, T, )] du
0

D
+21/2f0 logY2[N (u/2, T, i2)] du.

The expectation of the second integral on the right-hand side is bounded from
above by a constant timgs /2, as in (4.16). The expectation of the first integral
on the right-hand side is bounded from above by a constant tilDTTééztll,/Z.

Hence, by Theorem 4.2,
(4.22) EsupSa(t) — ESa(1)| < C{p~ "2+ Cyp~ Y21/,
tel
Limit (4.9) now follows from (4.16) and (4.22). This establishes (4.2) for
V(f)=rst(D, f).

Next, suppose thatV(f) = L(ist(D. f).n) = p~t&st(D, f) — &|? for
f € Fst1. Theith component osT(D, f) is

4.23)  Esti(D, f)=sgnz)(|zil — )4 =z — (|zi] A1) SNz)).
Hence,
P P
VO =p Y G —&)P+p 1D (zl An?
(4.24) i:pl =t
— 23 (zi — &) (lzil A1)SON(z;).
i=1

On the right-hand side of this equation, the convergence, uniformly over> 0,
of the second term is given by (4.9) and is immediate for the first term. It remains
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to verify this mode of convergence for

p

> (@i — &) (lzil A1)sgnz;)

i=1

14 14
(4.25) =Y @i — &zl (zil <D+ (zi — &)t (Izi| > 1)
i=1

i=1
=Ti(t) + To(t),  say

For i = 1,2, the analysis off;(¢) parallels that given forS;(r) after (4.13).
Limit (4.2) nowfollowsforV(f) L(nST(D ,n).

(b) and (c) In analogy t¢f = arg ming ¢ 77 (D, f), let f = arg ming ¢ r# (f,
£,02). Then miryes R(fix (D, f),n,02) =rz(f, &, o?). We first show that (4.2)
implies
(4.26) pllm Sup E|IT —r¢(f,&,0 %) =0,

TPel=e
whereT can beL (i (D, f),n) or L(iz (D, f),n) o ##(D, f).
Indeed, (4.2) withV (/) =F# (D, f) entails
lim sup Elfz(D, f) —rg(f,6,09|=0,

—> 0
p €l <c

lim sup E|f#(D, f) —re(f,&,0%)|=0.

P90 )<

(4.27)

Hence, (4.26) holds fof = ¢ (D, f) and

(4.28) I|m sup Ejrg(f,&,0% —re(f,&,0%)|=0.
X gl <c

On the other hand, (4.2) with ( f) = L(n# (D, f), n) gives

lim sup E|L(fz (D, f).n) —re(f.& 09| =0,

P <c

lim sup E|L(i#(D, f),n) —re(f, & 02| =0.

P9 g <c

(4.29)

These limits, together with (4.28), establish the remaining two cases of (4.26).
The limits (4.3) and (4.4) are immediate consequences of (4.26).
(d) By Theorem 2.1 of Beran and Dumbgen (1998), limit (4.2) with= Fus
can be strengthened to

(4.30) SUpE sup|V(f)— R(is (D, f).n.0%)| < C1p~ 2+ CoE6% — 07,
lEll<c  feFus

where theC; are finite constants. The first assertion of part (d) follows.
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The arguments above f& = Fstimply that

sup E sup |V (f) — R(n#(D, f),n, 02)|
l§ll<c  feFsT

(4.31) Ua i , ,
< C1p~Y?(log(p)¥* + C2E|6% — 62|,

where theC; are finite constants. The second assertion of part (d) follows.
(e) Part (e) similarly follows from (4.30) and (4.31).
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