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This paper introduces and studies a new class of nonparametric prior
distributions. Random probability distribution functions are constructed via
normalization of random measures driven by increasing additive processes.
In particular, we present results for the distribution of means under both
prior and posterior conditions and, via the use of strategic latent variables,
undertake a full Bayesian analysis. Our class of priors includes the well-
known and widely used mixture of a Dirichlet process.

1. Introduction. This paper considers the problem of constructing a stochas-
tic process, defined on the real line, which has sample paths behaving almost surely
(a.s.) as a probability distribution function (d.f.). The law governing the process
acts as a prior in Bayesian nonparametric problems. One popular idea is to take the
random probability d.f. as a normalized increasing processF(t) = Z(t)/�Z, where
�Z = lim t→∞ Z(t) < +∞ (a.s.). For example, the Dirichlet process [Ferguson
(1973)] arises whenZ is a suitably reparameterized gamma process. We con-
sider the case ofnormalized random d.f.s driven by an increasing additive process
(IAP) L, that is, Z(t) = ∫

k(t, x) dL(x) and provide regularity conditions on
k andL to ensureF is a random probability d.f. (a.s.).

This paper represents a natural development of the work of Regazzini, Lijoi
and Prünster (2003). These authors introduce the class of normalized random d.f.s
with independent increments (RMI), a particular case of IAP driven random d.f.s,
and consider the problem of determining the exact distribution of means of a
normalized RMI. The study of means of random probability d.f.s has become,
after the pioneering work of Cifarelli and Regazzini (1979, 1990), a very active
area of research, touching on both analytical and simulation based approaches.
We mention, among others, Muliere and Tardella (1998), Guglielmi and Tweedie
(2001), Regazzini, Guglielmi and Di Nunno (2002) and Lijoi and Regazzini (2004)
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for results in the Dirichlet case and Epifani, Lijoi and Prünster (2003), Hjort (2003)
and Regazzini, Lijoi and Prünster (2003) for results beyond the Dirichlet case.

In this paper we also consider both analytical and simulation based approaches
to the study of means, providing a comprehensive treatment of the subject. By
extending the methodology proposed in Regazzini, Lijoi and Prünster (2003) to
our more general case, we determine the exact law of any mean of a normalized
IAP driven random d.f. This approach exploits Gurland’s inversion formula and
gives expressions for the posterior distributions in terms of the Liouville–Weyl
fractional integral.

An important class of normalized IAP driven random d.f.s is obtained if
lim t→∞ k(t, x) is a constant for allx. Then we obtain the class of mixtures of
normalized RMI, that is,F(t) = ∫

k(t, x) dG(x). Moreover, if G is a Dirichlet
process we have a mixture of a Dirichlet process, first introduced by Lo (1984).
This family was the focus of much attention during the 1990s as a consequence of
the introduction of simulation based inference, first considered by Escobar (1988)
in his Ph.D. dissertation, and later developed by Escobar and West (1995) and
MacEachern and Müller (1998), among others. The model is comprehensively
reviewed in the book edited by Dey, Müller and Sinha (1998). By exploiting the
above mentioned general results, we are able to give exact prior and posterior
distributions for any mean of a mixture of a Dirichlet prior and, furthermore,
provide a new simulation algorithm. Finally, we illustrate our results both
theoretically and numerically by applying them to what we call a Dirichlet driven
random probability d.f.

Before proceeding we introduce the fundamental concepts and tools for the
paper. LetL := {L(y) :y ≥ 0} be any IAP defined on(�,F ,P ). In general, an
IAP can be expressed as

L(y) = ∑
j : τj ≤y

L{τj } + Lc(y),(1)

whereM = {τ1, τ2, . . .} is the set of fixed points of discontinuity andLc is the part
of the process without fixed points of discontinuity. HenceL is characterized by
the density functions of the jumps{L{τ1},L{τ2}, . . .}, indicated by{fτ1, fτ2, . . .},
and the family of Lévy measures,{ν :ν(y, dv), y ≥ 0}, related toLc through
the celebrated Lévy–Khintchine representation. For an exhaustive account of the
theory of IAPs see, for example, Sato (1999).

Consider any nondegenerate measureα on B(R) such thatα(R) = a ∈
(0,+∞) and denote byA the corresponding d.f. The time changey = A(x) yields
an a.s. [P ] finite IAP LA = {LA(x) :x ∈ R} uniquely determined by the family
of Lévy measures{να :να(x, dv) = ν(G−1

α (x), dv), x ∈ R}, where Gα(y) :=
inf{x :A(x) ≥ y} for y ∈ (0, α(R)). Its Laplace transform is thus given by

E
[
e−λLA(x)

] = exp
[
−

∫ ∞
0

{1− e−λv}να(x, dv)

]
for anyλ ≥ 0.
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In the following it will be convenient to characterizeLA in terms of its Poisson
intensity measure, indicated bỹνα , instead of its corresponding family of Lévy
measures. Recall that̃να((−∞, x] × C) = να(x,C) for every x ∈ R and C ∈
B((0,+∞)).

Consider now the stochastic process given by a convolution ofLA with k :R ×
R → R+,

Z :=
{
Z(t) =

∫
R

k(t, x) dLA(x) : t ∈ R

}
.

Supposek andν̃α satisfy simultaneously the following conditions:

(I) t �→ k(t, x) is nondecreasing and right continuous with limt→−∞ k(t, x) = 0
for everyx ∈ R;

(II)
∫
R×(0,+∞)[1 − exp{−λvk̄(x)}]ν̃α(dx dv) < +∞ for every λ > 0, where

k̄(x) := lim t→+∞ k(t, x);
(III) ν̃α(R × (0,+∞)) = +∞.

ThenZ is a random d.f. a.s. [P ] and F = {F(t) = Z(t)/�Z : t ∈ R} is a random
probability d.f. a.s. [P ], having set�Z := lim t→+∞ Z(t). For details about the
determination of conditions (I)–(III), refer to the Appendix.

In this context, according to Barndorff-Nielsen and Shephard (2001),LA can be
seen as abackground driving IAP. Hence,Z andF will be called anIAP driven
random d.f.and anormalized IAP driven random d.f., respectively. There are now
a number of works based on Lévy driven processes; we mention Wolpert, Ickstadt
and Hansen (2003) and Brockwell (2001) who introduce a Lévy driven CARMA
model. By choosingk(t, x) = I(−∞,t](x) a normalized IAP driven random d.f.
reduces to a normalized RMI, whose trajectories are discrete a.s. [P ]. This
property of normalized RMI may be undesirable in many situations. It is easily
seen that a normalized IAP driven random d.f. has absolutely continuous sample
paths with respect to the Lebesgue measure onR a.s. [P ] if and only if t �→ k(t, x)

is absolutely continuous for everyx ∈ R. If this is the case, the corresponding
normalized IAP driven random density function is given by

f (t) =
∫
R

k′(t, x) dLA(x)

�Z , (t ∈ R) a.s.[P ],

wherek′(t, x) := ∂
∂t

k(t, x). In the following we will always assumeF to admit a
density.

In Section 2 we derive the exact distributions of means of normalized IAP driven
random measures under prior and posterior conditions and derive distributional
results for means of normalized gamma driven random d.f.s and, in particular, for
the mixture of a Dirichlet process. In Section 3 a sampling strategy for drawing
samples from the posterior distribution ofF is presented, and we provide a
numerical illustration. All proofs are deferred to the Appendix.



2346 L. E. NIETO-BARAJAS, I. PRÜNSTER AND S. G. WALKER

2. Distribution of means of normalized IAP driven d.f.s. In this section
we are concerned with the problem of determining the prior and posterior
distribution of means of normalized IAP driven random d.f.s, extending the results
of Regazzini, Lijoi and Prünster (2003) (RLP).

2.1. Existence and distribution of means.First of all we need to estab-
lish the existence of

∫
R

g(t) dF (t), or equivalently of
∫
R

g(t) dZ(t). Suppose∫
R

|g(t)|dZ(t) < +∞ a.s. [P ]. By application of Fubini’s theorem,∫
R

g(t) dZ(t) =
∫

R

g(t)

∫
R

k′(t, x) dLA(x) dt

(2)
=

∫
R

h(x) dLA(x) a.s.[P ],
where h(x) = ∫

R
g(t)k′(t, x) dt . Hence, a linear functional of an IAP driven

random d.f. can be expressed as another linear functional of an IAP, which
actually reduces our problem to the one considered by RLP. In terms of
existence, the previous relation guarantees that

∫
R

|g(t)|dF (t) = ∫
R

h̃(x) dLA(x)

a.s. [P ], having seth̃(x) = ∫
R

|g(t)|k′(t, x) dt . Thus, by a slight modification of
Proposition 1 in RLP, we have the required necessary and sufficient condition.

PROPOSITION1. Let F be any normalized IAP driven random d.f. and letg
be any measurable functiong :R → R. Set h̃(x) := ∫

R
|g(t)|k′(t, x) dt . Then∫

R
|g(t)|dF (t) < +∞ a.s. [P ] if and only if

∫
R×(0,+∞)[1 − exp(−λvh̃(x))] ×

ν̃α(dx dv) < +∞ holds for everyλ > 0.

We now proceed to determine the probability distribution of
∫
R

g(t) dF (t).
Assuming the conditions of Proposition 1 hold, we observe that for anyσ ∈ R,

P

{∫
R

g(t) dF (t) ≤ σ

}
= P

{∫
R

{h(x) − σ k̄(x)}dLA(x) ≤ 0
}
,

whereh(x) := ∫
R

g(t)k′(t, x) dt andk̄(x) := limt→+∞ k(t, x). Hence, we are able
to extend Proposition 2 in RLP, which is based on the inversion formula given in
Gurland (1948), to our more general case, with obvious modifications.

PROPOSITION2. Let F be a normalized IAP driven random d.f., let F be the
probability d.f. of

∫
R

g(t) dF (t) and seth(x) = ∫
R

g(t)k′(t, x) dt . For everyσ ∈ R,
we have
1

2
[F(σ ) + F(σ − 0)]

= 1

2
− 1

π
lim

T ↑+∞

∫ T

0

1

s
exp

{∫
R×(0,+∞)

[
cos

(
sv

(
h(x) − σ k̄(x)

)) −1
]
ν̃α(dx dv)

}

× sin
(∫

R×(0,+∞)
sin

{
sv

(
h(x) − σ k̄(x)

)}
ν̃α(dx dv)

)
ds.
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2.2. Posterior distribution of means.Here we aim at providing expressions
for the posterior distribution of means of normalized IAP driven random d.f.s.
This is done by introducing an appropriate sequence of nested partitions and by
discretizingF through the discretization of bothk and the space of observations.
This construction guarantees the discretized posterior distribution of the mean to
determine uniquely the limiting one, by a.s. convergence in distribution. Hence,
we give an explicit expression for the posterior density of the discretized mean,
which can be used as an approximation of the limiting one. In certain cases, once
the Lévy measure is specified, it is also possible to derive an explicit representation
of the limiting distribution.

Assume that(�,F ,P ) also supports a sequenceT = (Tn)n≥1 of exchangeable
random variables. The first step consists in discretizingF . To this end, let us
introduce a sequence of partitions(Pm)m≥1 of R, wherePm := {Am,i : i = 0,

. . . , km + 1}, which satisfy the following properties:

(a) Pm+1 is a refinement ofPm.
(b) B(R) is generated by

⋃
m≥1 σ(Pm), whereσ(Pm) denotes theσ -algebra

generated byPm.
(c) εm := 2 max1≤i≤km diam(Am,i) ↓ 0 (asm → +∞).
(d) Am,0 = (−∞,−Rm), Am,i = [tm,i , tm,i+1) for i = 1, . . . , km − 1, Am,km =

[tm,km, tm,km+1], andAm,km+1 = (Rm,+∞), with tm,1 = −Rm, tm,km+1 = Rm and
Rm > 0 for anym ≥ 1.

Now we have to select pointsam,i in Am,i for i = 1, . . . , km and putam,0 = −Rm

andam,km+1 = Rm. Whenever ther th element,Tr , in the sample lies inAm,i , it is
as if we had observedam,i . The discretized random d.f. is defined as

Fm(t) := ∑
{j :am,j≤t}

∫
R
[k(tm,j+1, x) − k(tm,j , x)]dLA(x)

�Z for everyt ∈ R(3)

with the conventionsk(tm,0, x) = 0 andk(tm,km+2, x) = limt→+∞ k(t, x) = k̄(x).
SetT n = (T1, . . . , Tn) and denote byµn its distribution. The prior probability

d.f. of a mean
∫

g(t) dF̃m(t) is denoted byFm(·;g) and its posterior d.f. by
Fm,tn(·;g). Having (3) at hand, it is easy to verify that the approximation result
given in Proposition 4 of RLP holds true also in this quite different setup. Hence,
for everyσ belonging to the set of continuity points ofFtn ,

lim
m→+∞ F

∗
m,tn(σ ;g) = Ftn(σ ;g) a.s.[µn].(4)

Having derivedFm according to Proposition 2, one can see that Proposition 3 in
RLP extends also to our more general case. Thus, supposing(a, b) is an interval
containing all theg(am,i)’s and assuming interchangeability of the derivative with
the integral, one has that the posterior density function of

∫
g(t) dFm(t), given
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T n = tn with nip > 0 terms set equal toam,ip (p = 1, . . . , q) such that
∑

p nip = n,
is given by

ρm,tn = (−1)n

µn(tn)

(5)
× ∂n

∂r
ni1
i1

· · · ∂r
niq

iq

I n−1
a+ Fm(σ ; r0, . . . , rk+1)

∣∣∣∣
(r0,...,rk+1)=(g(am,0),...,g(am,k+1))

,

where In
a+h(σ ) = ∫ σ

a
(σ−u)n−1

(n−1)! h(u) du is the Liouville–Weyl fractional integral,

for n ≥ 1, andI0
a+ represents the identity operator.

2.3. Normalized gamma and mixtures of Dirichlet process.Many Bayesian
nonparametric priors are constructed via transformations of gamma processes.
Hence, it seems natural to focus attention on normalized gamma driven random
d.f.s. Here, a complete treatment of the distributional properties of means of
normalized gamma driven random d.f.s is provided.

Before proceeding, let us briefly recall that a reparameterized gamma process,
�A, is characterized by a Poisson intensity measure of the typeν̃α(dx dv) :=
e−vv−1 dv dα(x), while the extended gamma process,�

β
A, introduced by Dykstra

and Laud (1981), is characterized by a Poisson intensity measure of the type
ν̃α(dx dv) := e−β(x)vv−1 dv dα(x), whereβ is a nonnegative piecewise contin-
uous function. These two IAPs are connected to the normalized gamma driven
random d.f. and, in particular, to the mixture of Dirichlet process (MDP) through
the following relations.

PROPOSITION3. SupposeF is a normalized IAP driven random d.f. Then:

(i) If LA = �
β
A, F can be represented as a normalized gamma driven random

d.f.s, that is,∫
R

k(t, x) d�
β
A(x)∫

R
k̄(x) d�

β
A(x)

=
∫
R

k(t, x)(β(x))−1 d�A(x)∫
R

k̄(x)(β(x))−1 d�A(x)
a.s. [P ].

(ii) If LA = �A, F can be represented as a mixture of a normalized extended
gamma process, that is,∫

R
k(t, x) d�A(x)∫

R
k̄(x) d�A(x)

=
∫

R

k(t, x)

k̄(x)

d�
1/k̄
A (x)

��1/k̄
A

a.s. [P ],

having set��1/k̄
A := limx→+∞ �

1/k̄
A (x). Moreover, if k̄(x) = b−1, thenF is an MDP,∫

R
bk(t, x) dDA(x), whereDA denotes the Dirichlet random d.f.
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(iii) If LA = �A, any mean ofF , provided it exists, may be represented as a
mean of a normalized extended gamma process, that is,∫

R

g(t) dF (t) =
∫

R

h̄(x)
d�

1/k̄
A (x)

�
1/k̄
A

a.s. [P ],

with h̄(x) = (k̄(x))−1 ∫
R

g(t)k′(t, x) dt. If, moreover, k̄(x) = b−1, then∫
R

g(t) dF (t) becomes a mean of a Dirichlet process,
∫
R

bh(x) dDA(x), where
h(x) = ∫

R
g(t)k′(t, x) dt .

Thus, we have that a normalized extended gamma driven random d.f. is
equivalent to a normalized gamma driven random d.f. and that MDPs are a special
case. Nonetheless, in studying means of normalized gamma driven random d.f.s
we confine ourselves to MDPs, because to date nothing is known about exact
distributions of their means. This is done without loss of generality, since the
following results are easily extended to any normalized gamma driven random d.f.

With reference to existence of a mean of an MDP,
∫
R

g(t) dF (t), by Proposi-
tion 3, the condition reduces to the well-known∫

R

log
(
1+ λ|h(x)|)α(dx) < +∞ for everyλ > 0,(6)

with h(x) = ∫
R

g(t)k′(t, x) dt as previously. See Feigin and Tweedie (1989)
and Cifarelli and Regazzini (1990, 1996). Consequently the d.f. of a mean∫
R

g(t) dF (t) is given by

F(σ ) = 1

2
− 1

π

∫ +∞
0

1

s
exp

{
−

∫
R

log
{
1+ s2(h(x) − σ

)2}
α(dx)

}
(7)

× sin
(∫

R

arctan
[
s
(
h(x) − σ

)]
α(dx)

)
ds.

The fact that our mean is just another mean with respect to the Dirichlet
process implies that its law is absolutely continuous with respect to the Lebesgue
measure. See Regazzini, Guglielmi and Di Nunno (2002) for expressions of the
corresponding density function.

We now move on in stating our main result, which provides intuitive insight into
the mixing character of the posterior behavior of means of MDPs.

THEOREM 1. SupposeF is an MDP and its mean
∫
R

g(t) dF (t) exists,
that is, g satisfies(6). Then its posterior distribution, givenT n = tn, is absolutely
continuous (with respect to the Lebesgue measure onR) and a posterior
probability density function is given by

ρtn(σ ) =
∫

Rn
ρun(σ )G(du1, . . . , dun|tn),(8)
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where

G(du1, . . . , dun|tn) =
∏n

j=1k′(tj , uj )α
n(du1, . . . , dun)∫

Rn

∏n
j=1k′(tj , uj )α

n(du1, . . . , dun)

represents the distribution of the latent variablesUn, given the observations
T n = tn, with αn defined as the n-fold product measure

∏n
k=1(α + ∑k−1

i=1 δui
), and

ρun denotes the posterior distribution of
∫
R

h(x) dDA(x), given Un = un, with
h(x) = ∫

R
g(t)k′(t, x) dt , and given by

ρun(σ ) = a

π

∫ +∞
0

Re
(

exp
{
−

∫
R

log
[
1+ is

(
h(x) − σ

)]
α∗(dx)

})
ds,

having setα∗ = α + ∑n
i=1 δui

.

A deficiency of the previous intuitive result is represented by the dimension of
the integration region in (8), which grows as the sample size grows. This can be
overcome by an application of Lemma 2 in Lo (1984), which essentially allows
one to account for coincidences within the latent observations. To this end let us
introduce some notation. Denote byP := {Ci : i = 1, . . . ,N(P )} a partition of
{1,2, . . . , n}, whereN(P ) indicates the number of cells andCi the ith cell in the
partition. Moreover, letci be the number of elements inCi .

COROLLARY 1. Suppose
∫
R

g(t) dF (t) is a mean of an MDP andg satis-
fies(6). Then its posterior density function, givenT n = tn, is given by

ρtn(σ ) =
∑

P (
∏N(P )

i=1 [(ci − 1)! ∫
R

ρuci (σ )
∏

p∈Ci
k′(tp, u)α(du)])∑

P (
∏N(P )

i=1 [(ci − 1)! ∫
R

∏
p∈Ci

k′(tp, u)α(du)]) ,

whereρuci denotes the posterior density of
∫
R

h(x) dDA(x), givenci observations
equal tou.

It is worth pointing out that the burden involved in posterior densities, when
dealing with more than a few observations, becomes overwhelming for currently
available computational tools. The necessity of a simulation algorithm is evident.

3. Posterior simulation. In this section we provide a method to sample from
the posterior distribution ofF , and f , given a set ofn observationsT n. The
algorithm depends on the strategic and novel introduction of latent variables. Let
S andU be latent variables, and consider the joint distribution

p(t, s, u|LA) = exp(−u�Z )k′(t, s) dLA(s), u ≥ 0, s ∈ R,

where, as previously,LA is a reparameterized IAP andk′(t, s) = ∂
∂t

k(t, s).
Note thatLA is a pure jump process and so the support ofs will be the

location of the jumps ofLA, that is,p(s|t, u,LA) ∝ LA{s}k′(t, s) andLA{s} =
LA(s) − LA(s−). Clearlyp(t|LA) = f (t), as required.
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Having established the general sampling strategy, let us consider, in particular,
normalized gamma driven random d.f.s. For computational reasons, we allowLA

to have fixed points of discontinuity. Recall the representation of such an IAP given
in (1) together with the related notation. We work with a normalized extended
gamma driven random d.f. which we know to be equivalent to a normalized
gamma driven random d.f. by Proposition 3. Some other authors have obtained
posterior distributions when working with additive processes in different contexts
[see, e.g., Dykstra and Laud (1981), Hjort (1990), Walker and Muliere (1997) and
Nieto-Barajas and Walker (2004)]. Let us start with a single observationT1; then
we obtain the following result, whereG denotes a gamma distribution.

PROPOSITION4. LetF(t) = Z(t)/Z(ϒ) be a normalized IAP driven random
measure, whereϒ is the maximum time up to where the process is observed and
T1 is a random sample fromF . Denote byM the set of prior fixed points of
discontinuity ofLA and by� an updated parameter/function.

(i) GivenT1 = t1, S1 = s1 ∈ M and U1 = u1, the posterior parameters are
M� = M ,

f �
τj

(x) ∝
{

xe−u1k(ϒ,τj )xfτj
(x), if τj = s1,

e−u1k(ϒ,τj )xfτj
(x), if τj 
= s1, τj ≤ ϒ.

(ii) GivenT1 = t1, S1 = s1 /∈ M and U1 = u1, the posterior parameters are
M� = M ∪ {s1}, with

fs1(x) = G
(
x|1, β(s1) + u1k(ϒ, s1)

)
,

f �
τj

(x) ∝ e−u1k(ϒ,τj )xfτj
(x) if τj ≤ ϒ.

Furthermore, given T1 = t1 and U1 = u1, the posterior distribution for the
continuous partLc

A(·) is Lc
A(s) ∼ �A{α(s), β�(s)}, where β�(s) = β(s) +

u1k(ϒ, s). Thus, the posterior distribution of the normalized random measure is
F�(t) = Z�(t)/�Z� with Z�(t) = ∫

k(t, x) dL�
A(x).

Proposition 4 also holds forϒ = ∞. However, for simulation purposes we
need to truncate atϒ . Given this result, posterior simulation becomes quite
straightforward. Forn observations we have

p(tn, sn, un|LA) =
n∏

i=1

exp(−ui
�Z )k′(ti , si) dLA(si).

Given LA, sampling fromp(si|tn, un,LA) and p(ui|tn, sn,LA) is trivial, and
given (tn, sn, un), the conditional posterior ofLA remains an additive process.
We will need to implement a Gibbs sampler in the following way. Assuming
thatM = ∅, then initiate the algorithm by generatingui ∼ G(1,1), ŝi ∼ U(0, ti)

for i = 1, . . . , n, where U denotes the uniform distribution. For iterations
h = 1, . . . ,H do:
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1. GenerateL(h)
A from p(LA|tn, sn(h−1)

, un(h−1)
) with the following specifica-

tions:

(a) The Lévy measure is given by

να,s(dv) = dv

∫
(−∞,s]

v−1 exp{−vβ�(x)}α(dx),

whereβ�(x) = β(x) + k(ϒ,x)
∑n

i=1 u
(h−1)
i .

(b) The set of fixed jumpsM(h) = {s�(h)
1 , . . . , s

�(h)
m } is formed by all different

{s(h−1)
i } with r

(h)
j , j = 1, . . . ,m, the number ofs(h−1)

i = s
�(h)
j for i = 1, . . . , n.

(c) The distribution of the fixed jumpsLA{s�(h)
j } is

f
(h)

s�
j

= G

(
r
(h)
j , β

(
s
�(h)
j

) + k
(
ϒ, s�

j
(h)) n∑

i=1

u
(h−1)
i

)
.

2. Generates(h)
i from p(si|tn, un(h−1)

,L
(h)
A ) for i = 1, . . . , n given by

p
(
sj |tn, un(h−1)

,L
(h)
A

) ∝ k′(ti , si) dL
(h)
A (si)I(−∞,ti )(si).

3. Generateu(h)
i from p(ui |tn, sn(h)

,L
(h)
A ) for i = 1, . . . , n given by

p
(
ui|tn, sn(h)

,L
(h)
A

) = G

(
ui

∣∣∣1,

∫ ϒ

0
k(ϒ,x) dL

(h)
A (x)

)
.

REMARK. In order to simulate from the continuous part of the posterior Lévy
processLc

A(s), one option, which we employed, is to use the Ferguson and Klass
(1972) algorithm. An alternative is the inverse Lévy method adopted by Wolpert
and Ickstadt (1998). Both rely on approximations, making finite an infinite number
of jumps. See Walker and Damien (2000) for the ideas.

3.1. Numerical example.Let us consider the case in whichLA = �A and
k(t, x) = 1

a
[1 − exp{−a(t − x)}]I[0,t](x) (a ∈ R+), whereI denotes the indicator

function. This kernel has been motivated and used by Nieto-Barajas and Walker
(2004). ThusF is an MDP or, better, aDirichlet driven random probability d.f.of
the form

F(t) =
∫ t

0
[1− exp{−a(t − x)}]dDA(x)

and its corresponding random density is given by

f (t) =
∫ t

0
a exp{−a(t − x)}dDA(x).

In this case one easily verifies that the arithmetic mean
∫ ∞
0 t dF (t) can be written

as
∫ ∞
0 (x + 1

a
) dDA(x); hence, its distribution is that of

∫ ∞
0 x dDA(x) shifted by the
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FIG. 1. Prior and posterior estimates of the d.f. (———) True d.f., (· · · · · · · · ·) prior estimate,
(− − − − −) posterior estimate.

factor 1/a. The posterior density function of the mean, having observedT n = tn, is
given by a slight modification of (8). Since the expression is difficult to deal with,
we resort to our simulation algorithm, having setα(dx) = I[0,5](x) dx anda = 2.
We simulatedn = 100 data points from aG(1,1). Recall that the jumps of an IAP,
when using the Ferguson and Klass algorithm, are simulated in a decreasing order
according to their size. We truncated the number of jumps by calculating the
relative error of a new jump and keeping only the jumps whose relative errors
are greater than 0.0001. We ran the Gibbs sampling for 10,000 iterations with a
burn-in of 1,000, keeping the last 9,000 simulations to obtain posterior summaries.
Figure 1 presents the prior and posterior estimates of the normalized increasing
processF . The prior estimate is placed away from the true d.f. and the posterior
estimate follows very closely the true d.f., as expected.

In Figure 2 we can observe the prior and posterior distributions of the mean
for g(t) = t . Due to the fact that the data were generated from aG(1,1), the true
value of the mean is 1. The prior distribution of the mean is situated away from the
true value of the mean and has a large variance. The prior expected value of the
mean is 2.74. On the other hand, the posterior distribution of the mean has a small
variance and is concentrated around 1. The posterior expected value of the mean
is 1.05.
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FIG. 2. Prior and posterior distributions of the mean. (———) Exact prior distribution, (· · · · · · · · ·)
simulated prior distribution, (− − − − −) simulated posterior distribution.

APPENDIX

Details for the determination of conditions (I)–(III). We have to show that,
under (I)–(III), the sample paths ofF := {F(t) = Z(t)/�Z : t ∈ R} are random
probability d.f.s a.s. [P ].

Let us start with the denominator. We have to guarantee that 0< �Z <

+∞ a.s. [P ]. Supposing
∫
R

lim t→+∞ k(t, x) dLA(x) is finite, we have�Z =∫
R

lim t→+∞ k(t, x) dLA(x), a linear functional of a reparameterized IAP. Hence,
Proposition 1 in RLP applies, leading one to state that�Z is finite a.s. [P ] if and
only (II) holds.

Consider now the problem of the a.s. [P ] positiveness of�Z. Notice that, if (II)
holds, we have

exp
{
−

∫
R×(0,+∞)

[
1− exp

(−λvk̄(x)
)]

ν̃α(dx dv)

}
= E

[
e−λ�Z ]

= P {�Z = 0} + E
[
e−λ�Z

I
(0,+∞)

(�Z )
]
,

whereI denotes the indicator function. By the monotone convergence theorem,
P {�Z = 0} = limλ→+∞ exp[∫−R×(0,+∞)[1 − exp(−λvk̄(x))]ν̃α(dx dv)]. This en-
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tails thatP {�Z = 0} = 0 if and only if limλ→+∞
∫
R×(0,+∞)[1 − exp(−λvk̄(x))] ×

ν̃α(dx dv) = ∞. Finally, we again apply monotone convergence so thatP {�Z >

0} = 1 if and only if
∫
R×(0,+∞) ν̃α(dx dv) = +∞.

Turn to the numerator. In order to guaranteet �→ Z(t) to be nondecreasing and
right continuous it is enough to supposet �→ k(t, x) to be so for everyx ∈ R.
Furthermore, if limt→−∞ k(t, x) = 0, we will have limt→−∞ Z(t) = 0.

PROOF OFPROPOSITION3. (i) Let us start from the denominator. For every
s ∈ R,

E

[
exp

(
is

∫
R

k̄(x) d�
β
A(x)

)]

= exp
[
−

∫
R

log
(

1+ is
k̄(x)

β(x)

)
dA(x)

]

= exp
[
−

∫
R×(0,+∞)

(
1− exp

(
isv

k̄(x)

β(x)

))
exp(−v)

v
dv dA(x)

]

= E

[
exp

(
is

∫
R

k̄(x)

β(x)
d�A

)]
.

Applying the same arguments to the numerator, (i) follows.

(ii) The relation follows by application of the same arguments as in (i).
(iii) Follows immediately by application of Fubini’s theorem.�

PROOF OF THEOREM 1. In order to derive the posterior distribution, given
T n = tn, we start by discretizing the MDP according to the procedure outlined in
Section 2.2. The discretized random mean, at any fixed levelm of the tree of nested
partitions, will be of the form

∫
R

g(t) dFm(t) = ∫
R

∑km+1
j=0 g(am,j )[k(tm,j+1, x) −

k(tm,j , x)]dDA(x) and hence its d.f. can be written as

Fm(σ ) = 1

2

− 1

π

∫ +∞
0

1

s
Im

{
exp

{
−

∫
R

log

[
1+ is

(
k+1∑
j=0

rm,j

(
k(tm,j+1, x)

(9)

− k(tm,j , x)
) − σ

)]

× α(dx)

}}
ds,
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whererm,j = g(am,j ), for j = 0, . . . , km + 1, and Imz stands for the imaginary
part ofz ∈ C. Moreover, recall that

In
a+h(σ ) =

∫ σ

a

(σ − u)n−1

(n − 1)! h(u) du

is the Liouville–Weyl fractional integral, forn ≥ 1, andI0
a+ represents the identity

operator. By applying (5) to (9) together with some algebra, one obtains that its
posterior density, givenT n = tn, can be represented as

ρtn(σ ) =


(−1)q+1

π
In−1
a+ Imψm(σ), if n = 2q,

(−1)q+1

π
In−1
a+ Reψm(σ), if n = 2q + 1,

(10)

with

ψm(σ) = 1

µn(tn)

×
∫ +∞

0
sn−1

∫
Rn

exp

(
−

∫
R

log

[
1+ is

(
k+1∑
j=0

rj
(
k(tm,j+1, x)

− k(tm,j , x)
) − σ

)]

× α∗(dx)

)

×
n∏

p=1

[
k
(
tm,ip+1, up

) − k
(
tm,ip , up

)]
× αn(du1, . . . , dun) ds,

whereαn is then-fold product measure
∏n

k=1(α + ∑k−1
i=1 δui

) andα∗ is given by
α + ∑n

i=1 δui
. In this case the expression forµn(tn) is known, since it follows

immediately by repeated application of Lemma 1 in Lo (1984),

µn(tn) =
(

n∏
i=1

(
α(R) + i − 1

))−1

(11)

×
∫

Rn

n∏
p=1

[
k
(
tm,ip+1, up

) − k
(
tm,ip , up

)]
αn(du1, . . . , dun).

From (4) we know that (10) can be used as an approximate posterior density.
Nevertheless, in this case we are able to obtain an explicit representation of the
limiting posterior density.
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Division of both numerator and denominator by
∏n

p=1[tm,ip+1 − tm,ip ] and
application of the dominated convergence theorem yield the limiting posterior
density which is given by (10) with

ψ(σ) =
∏n

i=1(α(R) + i − 1)∫
Rn

∏n
p=1k′(tp, up)αn(du1, . . . , dun)

×
∫ +∞

0
sn−1

∫
Rn

exp
{
−

∫
R

log
[
1+ is

(
h(x) − σ

)]
α∗(dx)

}
(12)

×
n∏

p=1

k′(tp, up)αn(du1, . . . , dun) ds.

Note that by Scheffé’s theorem we have also convergence in total variation ofFm,tn

to Ftn . By application of Fubini’s theorem it is possible to rewrite the posterior
density function as

ρtn(σ ) =
∫

Rn
ρun(σ )

∏n
p=1 k′(tp, up)αn(du1, . . . , dun)∫

Rn

∏n
p=1k′(tp, up)αn(du1, . . . , dun)

,(13)

where, ifn = 2q,

ρun(σ ) = (−1)q+1 ∏n
i=1(α(R) + i − 1)

π

× In−1
a+

∫ +∞
0

sn−1 Im
(

exp
{
−

∫
R

log
[
1+ is

(
h(x) − σ

)]
(14)

× α∗(dx)

})
ds,

while, if n = 2q + 1, ρun(σ ) is obtained by simply substituting Im with Re
in (14). Indeed,ρun is a posterior density, givenUn = un, of a mean of a Dirichlet
process, precisely of

∫
R

h(x) dDA(x). This can be seen by applying the procedure
for derivation of posterior distributions of normalized RMI in Section 4 of RLP.
Given the conjugacy of the Dirichlet process, we can replace (14) with the simpler
expression

ρun(σ ) = a

π

∫ +∞
0

Re
(

exp
{
−

∫
R

log
[
1+ is

(
h(x) − σ

)]
α∗(dx)

})
ds.(15)

Thus one has that a mean of an MDP, resulting from the combination of
(13) and (15), is a mixture of a particular mean of a Dirichlet process, given
the latent dataUn. By (11) it is easy to identify the mixing distribution as the
distribution ofUn conditionally on the real observationsT n. �
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PROOF OFPROPOSITION4. The idea of the proof is to express the likelihood
function in a tractable way so we are able to apply standard Bayesian updating
mechanisms. LetT1 = t1 be a single observation fromF , and letS1 = s1 and
U1 = u1 be auxiliary variables. Then the likelihood function is given by

lik (LA|t1, s1, u1) = exp
{
−u1

∫ ∞
0

k(ϒ,x) dLA(x)

}
k′(t1, s1) dLA(s1).

Using product-integral properties [see, e.g., Gill and Johansen (1990)], the
likelihood function can be rewritten as

lik (LA|t1, s1, u1) =
[ ∏

x∈[0,∞)

exp{−u1k(ϒ,x) dLA(x)}
]
k′(t1, s1) dLA(s1).

Following Dykstra and Laud (1981), the prior processLA(·) can be characterized
by dLc

A(ν) ∼ G(dα(ν),β(ν)) for the continuous part andL{τj } ∼ fτj
(x) for the

prior fixed jumps. Based on the independence between increments in the prior
process, the posterior conditional distribution for the continuous part and for the
prior fixed jumps come straightforward. The only remaining point, to establish
completely the posterior conditional distribution ofLA(·), is the distribution of the
new fixed jump ats1. For this, let

dLA(s1) = LA[s1, s1 + ε),

and then

p
(
LA[s1, s1 + ε)|t1, s1, u1

) ∝ LA[s1, s1 + ε)α[s1,s1+ε)e−{u1k(ϒ,s1)+β(s1)}LA[s1,s1+ε).

Taking the limit asε → 0, we finally obtain that

p(LA{s1}|t1, s1, u1) ∝ e−{u1k(ϒ,s1)+β(s1)}LA{s1},

as stated in the proposition.�
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