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NORMALIZED RANDOM MEASURES DRIVEN
BY INCREASING ADDITIVE PROCESSES
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ITAM-Méxicq Universita degli Studi di Pavia and University of Kent

This paper introduces and studies a new class of nonparametric prior
distributions. Random pbability distribution functions are constructed via
normalization of random measures driven by increasing additive processes.
In particular, we present results for the distribution of means under both
prior and posterior conditions and, via the use of strategic latent variables,
undertake a full Bayesian analysis. Our class of priors includes the well-
known and widely used mixture of a Dirichlet process.

1. Introduction. This paper considers the problem of constructing a stochas-
tic process, defined on the real line, which has sample paths behaving almost surely
(a.s.) as a probability distribution function (d.f.). The law governing the process
acts as a prior in Bayesian nonparametric problems. One popular idea is to take the
random probability d.f. as a nmalized increasing procesd(r) = Z(t)/Z, where
Z =1lim;_o Z(t) < 400 (a.s.). For example, the Dirichlet process [Ferguson
(1973)] arises wher¥ is a suitably reparameterized gamma process. We con-
sider the case aformalized random d.f.s driven by an increasing additive process
(IAP) L, that is, Z(t) = [k(t,x)dL(x) and provide regularity conditions on
k andL to ensureF is a random probability d.f. (a.s.).

This paper represents a natural development of the work of Regazzini, Lijoi
and Prinster (2003). These authors introduce the class of normalized random d.f.s
with independent increments (RMI), a particular case of IAP driven random d.f.s,
and consider the problem of determining the exact distribution of means of a
normalized RMI. The study of means of random probability d.f.s has become,
after the pioneering work of Cifarelli and Regazzini (1979, 1990), a very active
area of research, touching on both analytical and simulation based approaches.
We mention, among others, Muliere and Tardella (1998), Guglielmi and Tweedie
(2001), Regazzini, Guglielmi and Di Nunno (2002) and Lijoi and Regazzini (2004)
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for results in the Dirichlet case and Epifani, Lijoi and Priinster (2003), Hjort (2003)
and Regazzini, Lijoi and Prinster (2003) for results beyond the Dirichlet case.

In this paper we also consider both analytical and simulation based approaches
to the study of means, providing a comprehensive treatment of the subject. By
extending the methodology proposed in Regazzini, Lijoi and Priinster (2003) to
our more general case, we determine the exact law of any mean of a normalized
IAP driven random d.f. This approach exploits Gurland’s inversion formula and
gives expressions for the posterior distributions in terms of the Liouville-Weyl
fractional integral.

An important class of normalized IAP driven random d.f.s is obtained if
lim,_  k(z, x) is a constant for alk. Then we obtain the class of mixtures of
normalized RMI, that isF(t) = [k(t,x)dG(x). Moreover, if G is a Dirichlet
process we have a mixture of a Dirichlet process, first introduced by Lo (1984).
This family was the focus of much attention during the 1990s as a consequence of
the introduction of simulation based inference, first considered by Escobar (1988)
in his Ph.D. dissertation, and later developed by Escobar and West (1995) and
MacEachern and Miiller (1998), among others. The model is comprehensively
reviewed in the book edited by Dey, Miller and Sinha (1998). By exploiting the
above mentioned general results, we are able to give exact prior and posterior
distributions for any mean of a mixture of a Dirichlet prior and, furthermore,
provide a new simulation algorithm. Finally, we illustrate our results both
theoretically and numerically by applying them to what we call a Dirichlet driven
random probability d.f.

Before proceeding we introduce the fundamental concepts and tools for the
paper. LetL := {L(y):y > 0} be any IAP defined o2, #, P). In general, an
IAP can be expressed as

(1) Ly)= Y L{tjj+ LW,
j:tjfy
whereM = {11, 12, ...} is the set of fixed points of discontinuity aid is the part
of the process without fixed points of discontinuity. Hericés characterized by
the density functions of the jumg&.{z1}, L{z2}, ...}, indicated by{ f+,, f=,, ...},
and the family of Lévy measure$y:v(y,dv),y > 0}, related toL¢ through
the celebrated Lévy—Khintchine representation. For an exhaustive account of the
theory of IAPs see, for example, Sato (1999).

Consider any nondegenerate measuren #(R) such thata(R) = a €
(0, +00) and denote by the corresponding d.f. The time change: A(x) yields
an a.s. P] finite IAP L4 = {L4(x):x € R} uniquely determined by the family
of Lévy measureguv, : vy (x,dv) = v(G;l(x),dv),x € R}, where Gy(y) :=
inf{x: A(x) > y} for y € (0, x(R)). Its Laplace transform is thus given by

E[e"A®] = exp[—/ (1— e g (x, dv)] for anyx > 0.
0
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In the following it will be convenient to characteride, in terms of its Poisson
intensity measure, indicated by, instead of its corresponding family of Lévy
measures. Recall that, ((—oo, x] x C) = ve(x, C) for everyx € R and C ¢
#((0, +00)).

Consider now the stochastic process given by a convolutidiyofvith & : R x
R — RT,

Z:= {Z(Z) :/Rk(t,x)dLA(x) it GR}.

Supposé andvp, satisfy simultaneously the following conditions:

() t+— k(z, x) is nondecreasing and right continuous withlim o, k(¢,x) =0
for everyx e R;
() Ry 1001 — EXP{—AVk(x)}]0a(dx dv) < +oo for every A > O, where
k(x) := im0 k(2, X);
(1) v (R x (0, 400)) = +00.

Then Z is a random d.f. a.s.H] and F = {F(r) = Z(t)/Z:t € R} is a random
probability d.f. a.s. P], having setZ := lim,_, ., Z(¢). For details about the
determination of conditions (I)—(l11), refer to the Appendix.

In this context, according to Barndorff-Nielsen and Shephard (2d0Ql&.an be
seen as ®dackground driving IAPHence,Z and F will be called anlAP driven
random d.fand anormalized IAP driven random d.fespectively. There are now
a number of works based on Lévy driven processes; we mention Wolpert, Ickstadt
and Hansen (2003) and Brockwell (2001) who introduce a Lévy driven CARMA
model. By choosing(¢, x) = I(—x,(x) a normalized IAP driven random d.f.
reduces to a normalized RMI, whose trajectories are discrete A]s.This
property of normalized RMI may be undesirable in many situations. It is easily
seen that a normalized IAP driven random d.f. has absolutely continuous sample
paths with respect to the Lebesgue measurR ars. [P] if and only if # — k(z, x)
is absolutely continuous for eveny € R. If this is the case, the corresponding
normalized IAP driven random density function is given by

Jrk'(t,x)dLA(x)
Z

wherek/(t, x) := %k(r, x). In the following we will always assumg to admit a
density.

In Section 2 we derive the exact distributions of means of normalized IAP driven
random measures under prior and posterior conditions and derive distributional
results for means of normalized gamma driven random d.f.s and, in particular, for
the mixture of a Dirichlet process. In Section 3 a sampling strategy for drawing
samples from the posterior distribution @f is presented, and we provide a
numerical illustration. All proofs are deferred to the Appendix.

f@) = , (t eR) a.s[P],
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2. Distribution of means of normalized 1AP driven d.f.s. In this section
we are concerned with the problem of determining the prior and posterior
distribution of means of normalized IAP driven random d.f.s, extending the results
of Regazzini, Lijoi and Prinster (2003) (RLP).

2.1. Existence and distribution of meandrirst of all we need to estab-
lish the existence off g(r) dF (), or equivalently of [ g(t)dZ(t). Suppose
Jrlg®|dZ(t) < 400 a.s. [P]. By application of Fubini’'s theorem,

/R ¢ dZ(1) = /R ¢ (1) /R K (1, x)dLa(x) dt
0
=./Rh(X)dLA(X) a.s.[P],

where h(x) = [p g(1)k'(t,x)dt. Hence, a linear functional of an IAP driven
random d.f. can be expressed as another linear functional of an IAP, which
actually reduces our problem to the one considered by RLP. In terms of
existence, the previous relation guarantees fhag (1)| d F (1) = [ h(x)dL z(x)

a.s. [P], having seti(x) = g |g(t)|k(z, x) dt. Thus, by a slight modification of
Proposition 1 in RLP, we have the required necessary and sufficient condition.

PROPOSITION1. LetF be any normalized IAP driven randonf.cand letg
be any measurable functiog:R — R. Seth(x) := Jr gk (z,x)dt. Then
Jrlg®IdF(t) < +oo as. [P] if and only if fRX(O’JFOO)[l — exp(—Avh(x))] x
Ve (dx dv) < 400 holds for every. > 0.

We now proceed to determine the probability distributionf@fg(¢)dF(z).
Assuming the conditions of Proposition 1 hold, we observe that fowaaR,

Pl[ewarm zo|=p{ [ tho - okwyaLaeo <ol.

whereh(x) := [p g(OK (1, x) dt andk(x) := lim,_ 4 k(z, x). Hence, we are able
to extend Proposition 2 in RLP, which is based on the inversion formula given in
Gurland (1948), to our more general case, with obvious modifications.

PrOPOSITION2. LetF be anormalized IAP driven randomfdlet F be the
probability df. of [ g(r) d F(t) and seti(x) = [ g()k' (¢, x) dt. For everyo € R,
we have

1
E[F(G) +F(o —0)]

1 1

. 1 - -
=5 TITITOO/O B exp{/Rx(O,+oo)[COS(SU(h(X) —ok(x))) — 1]V (dx dv)}

x Sin(/Rx(O,+oo) sin{sv(h(x) — ok(x))} Py (dx dv)) ds.
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2.2. Posterior distribution of means.Here we aim at providing expressions
for the posterior distribution of means of normalized IAP driven random d.f.s.
This is done by introducing an appropriate sequence of nested partitions and by
discretizingF through the discretization of bothand the space of observations.
This construction guarantees the discretized posterior distribution of the mean to
determine uniquely the limiting one, by a.s. convergence in distribution. Hence,
we give an explicit expression for the posterior density of the discretized mean,
which can be used as an approximation of the limiting one. In certain cases, once
the Lévy measure is specified, it is also possible to derive an explicit representation
of the limiting distribution.

Assume that$2, ¥, P) also supports a sequente= (7,),>1 of exchangeable
random variables. The first step consists in discretizihglo this end, let us
introduce a sequence of partitio®,,),>1 of R, where $,, := {A4,,;:i =0,

..., ks + 1}, which satisfy the following properties:

() Pn+1is arefinement of?,,.

(b) A(R) is generated by J,,~1 0 (Pn), Whereo (£,,) denotes the -algebra
generated by?,,. -

(€) em :=2max<;<k, diam(A,, ;) | 0 (asm — +00).

(d) Am,O = (_Ooa _Rm)v Am,i = [tm,h tm,i-i—l) fori = 17 ) km - 11 Am,km =
[tm,km s tm,km—i-l]v andAm,km+1 = (Rm’ +OO), with Im1= _Rm1 tm,km—i-l = Rm and
R,, > 0 foranym > 1.

Now we have to select points, ; in A, ; fori =1, ..., k, and puta,, 0= —R;,
anday, i, +1 = Rn. Whenever theth element[T,, in the sample lies i, ;, it is
as if we had observed, ;. The discretized random d.f. is defined as

@) Fu):= Y fR[k(tmvj‘Flvx)_Zk([m,j,X)]dLA(x)

for everyr e R

{j:am,jft}

with the conventiong(z,, 0, x) = 0 andk (t, k,,+2, x) = liM; 10 k(t, x) = k(x).
SetT" = (T, ..., T,) and denote by." its distribution. The prior probability
d.f. of a meanfg(t)dﬁm(t) is denoted byF,,(-; g) and its posterior d.f. by
Fn.m (-5 g). Having (3) at hand, it is easy to verify that the approximation result
given in Propositia 4 of RLP holds true also in this quite different setup. Hence,
for everyo belonging to the set of continuity points Bf:,
(4) mir[goo F,m(o:g)=Fm(o;g)  as.[u"].
Having derivedF,, according to Proposition 2, one can see that Proposition 3 in
RLP extends also to our more general case. Thus, supp@Gsihgis an interval
containing all theg (a,, ;)’s and assuming interchangeability of the derivative with
the integral, one has that the posterior density functiorf @f) d F,, (¢), given
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T" =1" withn;, > Oterms setequalt@, ;, (p=1,...,q)suchthab_ n;, =n,
is given by

=y
Pt = ey
(5) " n—1
X iy gt Em (0570, -+, Tkt1) ,
ar. t---or. ? 10y ees Tk 1) =(8 (@, 0)s -+ 8 (A k1))

i1 iq
n—1 . . . . .
where I", h(o) = [ %h(u)du is the Liouville—Weyl fractional integral,
forn > 1, andlg+ represents the identity operator.

2.3. Normalized gamma and mixtures of Dirichlet procedglany Bayesian
nonparametric priors are constructed via transformations of gamma processes.
Hence, it seems natural to focus attention on normalized gamma driven random
d.f.s. Here, a complete treatment of the distributional properties of means of
normalized gamma driven random d.f.s is provided.

Before proceeding, let us briefly recall that a reparameterized gamma process,
"4, is characterized by a Poisson intensity measure of the fypéx dv) :=
e Yv1dvda(x), while the extended gamma proceﬁg,, introduced by Dykstra
and Laud (1981), is characterized by a Poisson intensity measure of the type
Do (dx dv) = e P®y~1dvda(x), whereg is a nonnegative piecewise contin-
uous function. These two IAPs are connected to the normalized gamma driven
random d.f. and, in particular, to the mixture of Dirichlet process (MDP) through
the following relations.

PROPOSITION3. Supposé is a normalized IAP driven randomfdThen

) FLy= Fﬁ, F can be represented as a normalized gamma driven random
d.f.s, thatis

Jek(t,2)dTR () _ fpk(t, ) (BE) AT A)
Jok@)dr? () Jrk@)(B(x))~LdT a(x)

(i) If Ly =T 4, F can be represented as a mixture of a normalized extended
gamma processhat is

as. [P].

1/k

Jrk(t,x)dT o(x) . k(t,x)dl'y " (x) as [P]
Jpk()dTa) —Jr k() FYE B

having sef}f = 1limy s 4oo F/lf(x). Moreoverif k(x) = b1, thenF is an MDP
Jr bk(t,x)dZ4(x), whereZ, denotes the Dirichlet randomfd
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(i) If L4 =T 4, any mean off', provided it existsmay be represented as a
mean of a normalized extended gamma prodéss is

_grik
[swaro=[ ™42 ase)
R R r /

k
A

with 7(x) = (k(x))"! frg(®OK (t,x)dt. If, moreover k(x) = b~%, then

frg()dF (t) becomes a mean of a Dirichlet procegg bh(x)dZ4(x), where

h(x) = [r gk (t,x)dt.

Thus, we have that a normalized extended gamma driven random d.f. is
equivalent to a normalized gamma driven random d.f. and that MDPs are a special
case. Nonetheless, in studying means of normalized gamma driven random d.f.s
we confine ourselves to MDPs, because to date nothing is known about exact
distributions of their means. This is done without loss of generality, since the
following results are easily extended to any normalized gamma driven random d.f.

With reference to existence of a mean of an M}Pg(r) d F (t), by Proposi-
tion 3, the condition reduces to the well-known

(6) / log(1+ A|h(x)|)a(dx) < 400 for everya > 0,
R

with h(x) = [rg(®)k'(t,x)dt as previously. See Feigin and Tweedie (1989)
and Cifarelli and Regazzini (1990, 1996). Consequently the d.f. of a mean
fr &) dF(t) is given by

1 1 ™1
) H=3" ;fo s eXp{‘ /R log{1+s%(h(x) a)z}wfx)}
X sin(/]R arctarjs (h(x) — a)]a(dx)) ds.

The fact that our mean is just another mean with respect to the Dirichlet
process implies that its law is absolutely continuous with respect to the Lebesgue
measure. See Regazzini, Guglielmi and Di Nunno (2002) for expressions of the
corresponding density function.

We now move on in stating our main result, which provides intuitive insight into
the mixing character of the posterior behavior of means of MDPs.

THEOREM 1. SupposeF is an MDP and its meary, g(t) dF(t) exists
that is, g satisfieq6). Then its posterior distributiorgivenT” = ", is absolutely
continuous (with respect to the Lebesgue measure Rh and a posterior
probability density function is given by

(8) pr (@)= [ pur(@)Gdus.....duslt").
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where
H?’:l k/(l‘j, uja(duy, ..., duy,)
Jre ;!zlk/(tj,uj)an(dul,...,dun)

represents the distribution of the latent variabl&?', given the observations
T" =1", with «" defined as the n-fold product measfif¢_, (o + Zf‘ll 84;), and

pyr denotes the posterior distribution g 2 (x)dZ4(x), givenU" = u", with
h(x) = [g g(1)k'(t, x) dt, and given by

pun(0) = = f0+oo Re(exp{— /R log[ 1+ is (h(x) — a)]a*(dx)}) ds,

i

G(duz, ..., duy|t") =

having setr* = o + >"7_1 8,

A deficiency of the previous intuitive result is represented by the dimension of
the integration region in (8), which grows as the sample size grows. This can be
overcome by an application of Lemma 2 in Lo (1984), which essentially allows
one to account for coincidences within the latent observations. To this end let us
introduce some notation. Denote B := {C;:i =1,..., N(#)} a partition of
{1,2,...,n}, whereN (£) indicates the number of cells aiiij theith cell in the
partition. Moreover, let; be the number of elements @}.

COROLLARY 1. Supposefp g(1)dF(t) is a mean of an MDP ang satis-
fies(6). Then its posterior density functipgivenT” = ¢", is given by
Yo T Ut — D! i puci (0) T pec, K (. wa(du)])
p (11 = D! faTlpec, Kty wadw)])

wherep,; denotes the posterior density Gf(x) d Z4(x), givenc; observations
equal tou.

pm (o) =

It is worth pointing out that the burden involved in posterior densities, when
dealing with more than a few observations, becomes overwhelming for currently
available computational tools. The necessity of a simulation algorithm is evident.

3. Posterior simulation. In this section we provide a method to sample from
the posterior distribution of, and f, given a set ofn observationsT'”. The
algorithm depends on the strategic and novel introduction of latent variables. Let
S andU be latent variables, and consider the joint distribution

p(t,s,ulL ) =exp(—uZ)k'(t,s)dLs(s), u>0,seR,

where, as previously, 4 is a reparameterized IAP akd, s) = %k(t, s).

Note thatL, is a pure jump process and so the supports ofill be the
location of the jumps of_ 4, that is, p(s|t, u, La) o< La{s}k'(¢,s) andLa{s} =
La(s) —La(s—).Clearlyp(t|L4) = f(¢), as required.
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Having established the general sampling strategy, let us consider, in particular,
normalized gamma driven random d.f.s. For computational reasons, welajlow
to have fixed points of discontinuity. Recall the representation of such an IAP given
in (1) together with the related notation. We work with a normalized extended
gamma driven random d.f. which we know to be equivalent to a normalized
gamma driven random d.f. by Proposition 3. Some other authors have obtained
posterior distributions when working with additive processes in different contexts
[see, e.g., Dykstra and Laud (1981), Hjort (1990), Walker and Muliere (1997) and
Nieto-Barajas and Walker (2004)]. Let us start with a single observdtipthen
we obtain the following result, wheig denotes a gamma distribution.

PROPOSITION4. LetF(t)=Z(t)/Z(Y) be anormalized IAP driven random
measurewhereY is the maximum time up to where the process is observed and
T:1 is a random sample fron¥. Denote byM the set of prior fixed points of
discontinuity ofL 4 and byx an updated parameter/function

(i) GivenTy =11, S1 =s1 € M and Uy = u3, the posterior parameters are
M =M,

xe k(T Tj)x Sz (%), if 7; =s1,
e—ulk(T,T_j)Xij (-x)a If Tj ?é S1, Tj S T.
(i) GivenTy =1, S1=s1¢ M and U1 = uj, the posterior parameters are
M* = M U {s1}, with
fs1(x) = G(x11, B(s1) + u1k(Y, s1)),
[ oce I ()i <

Furthermore given Ty = 11 and U1 = u1, the posterior distribution for the
continuous partLg(:) is LG (s) ~ Tafa(s), B*(s)}, where *(s) = B(s) +
u1k(Y,s). Thus the posterior distribution of the normalized random measure is
F*(t) = Z*(t)/ Z* with Z*(t) = [ k(t, x) dL*(x).

I ()

Proposition 4 also holds for = co. However, for simulation purposes we
need to truncate alr. Given this result, posterior simulation becomes quite
straightforward. For observations we have

n
p",s" u"|La) = [ ] exp—ui Z)K (1. 5) dLa(s).

i=1
Given L4, sampling fromp(s;|t", u", L4) and p(u;|t", s, L4) is trivial, and
given (t", s",u™), the conditional posterior oL 4 remains an additive process.
We will need to implement a Gibbs sampler in the following way. Assuming
that M = @, then initiate the algorithm by generating~ 4.(1, 1), 5; ~ U(O, t;)
for i = 1,...,n, where U denotes the uniform distribution. For iterations
h=1,...,Hdo:
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(h) P I S I : .
1. Generatel,’ from p(Lalt",s ,u ) with the following specifica-
tions:

(a) The Lévy measure is given by
Vg s (dv) = a’v/ vt exp—vB* (x)}a(dx),
(—00,s]

wheres*(x) = B(x) +k(Y, x) X0y u" P,

(b) The set of fixed jumpas® = (s} .. sx™} is formed by all different
{s" P} with rj(.h), j=1,...,m, the number of "V = sj*.(h) fori=1...,n

() The distribution of the fixed jumps {s;"} is

fs(,h):g< Q) ’3( *(h) *(h) Z (h— 1))

2. Generatei(h) from p(s;|t", un"” ,LX’)) fori =1,...,n given by
(h—21) h h
plsile™, u™ " L) ock/ (1, 50) d LY (50) T —oo,) (50).

3. Generateth) from p(u;|t", s”(h) L(h)) fori =1,...,n given by
pluilen, s LWy = (u, / k(Y x)dL(h)(x))

REMARK. In order to simulate from the continuous part of the posterior Lévy
procesd.¢ (s), one option, which we employed, is to use the Ferguson and Klass
(1972) algorithm. An alternative is the inverse Lévy method adopted by Wolpert
and Ickstadt (1998). Both rely on approximations, making finite an infinite number
of jumps. See Walker and Damien (2000) for the ideas.

3.1. Numerical example.Let us consider the case in whidhyy = T'4 and
k(t,x)= 51[1 —exp{—a(t — x)}1o,(x) (a € R"), wherel denotes the indicator
function. This kernel has been motivated and used by Nieto-Barajas and Walker
(2004). ThusF is an MDP or, better, ®irichlet driven random probability d.fof
the form

t
F() = [ 11— expl—att = x)}1dZ4(0)
and its corresponding random density is given by
t
f@ :/0 aexpl—a(t —x)}d P4 (x).

In this case one easily verifies that the arithmetic mg&n d F (r) can be written
asfo (x+ %) dZ4(x); hence, its distribution is that gf° x d Z4 (x) shifted by the
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factor 1/a. The posterior density function of the mean, having obsetVes ", is
given by a slight modification of (8). Since the expression is difficult to deal with,
we resort to our simulation algorithm, having s€t/x) = g 5(x) dx anda = 2.
We simulated: = 100 data points from (1, 1). Recall that the jumps of an IAP,
when using the Ferguson and Klass algorithm, are simulated in a decreasing order
according to their size. We truncated the number of jumps by calculating the
relative error of a new jump and keeping only the jumps whose relative errors
are greater than 0.0001. We ran the Gibbs sampling for 10,000 iterations with a
burn-in of 1,000, keeping the last 9,000 simulations to obtain posterior summaries.
Figure 1 presents the prior and posterior estimates of the normalized increasing
processF. The prior estimate is placed away from the true d.f. and the posterior
estimate follows very closely the true d.f., as expected.

In Figure 2 we can observe the prior and posterior distributions of the mean
for g(t) =t. Due to the fact that the data were generated frofpila 1), the true
value of the mean is 1. The prior distribution of the mean is situated away from the
true value of the mean and has a large variance. The prior expected value of the
mean is 2.74. On the other hand, the posterior distribution of the mean has a small
variance and is concentrated around 1. The posterior expected value of the mean
is 1.05.
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APPENDIX

Details for the determination of conditions (1)—111). We have to show that,

under ()I1), the sampé paths of F := {F(r) = Z(t)/Z:t € R} are random
probability d.f.s a.s.P].

Let us start with the denominator. We have to guarantee that 2 <
+00 a.s. [P]. Supposing g lim,_, 100 k(t, x)dL 4(x) is finite, we haveZ =
Jrlim; oo k(t, x)dL 4 (x), a linear functional of a reparameterized IAP. Hence,
Proposition 1 in RLP applies, leading one to state thas finite a.s. ] if and
only (1) holds.

Consider now the problem of the a.®][positiveness oZ. Notice that, if (II)
holds, we have

eXp{ B /Rx(o,+oo)[l — exp(—Avk(x)) v (dx dv)}
= E[e_)‘z]

= P{Z=0}+E[e ", (D)].

wherel denotes the indicator function. By the monotone convergence theorem,
P{Z =0} =Ilim)_ 00 exq[_Rx(o,Jroo)[l — eXp(—Avk(x))]vy (dx dv)]. This en-
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tails thatP{Z = 0} = 0 if and only if lim;_, ;. JRx (04001 — exp(—Avk(x))] x
e (dx dv) = co. Finally, we again apply monotone convergence so gl >
0} = 1if and only if [, (0 +o0) Va(dx dv) = +00

Turn to the numerator. In order to guarantee Z(t) to be nondecreasing and
right continuous it is enough to suppose> k(z, x) to be so for every € R.
Furthermore, if lim_, _oc k(z, x) =0, we will have lim_, _o Z() =0

PROOF OFPROPOSITION3. (i) Let us start from the denominator. For every

s eR,
E[exp(is / lé(x)drfj(x))]
_exp[ / |Og(1+zs )))dA(x)]
= exp[— /RX(O ) (1 —ex zstZ?))) expf)—v) dv a’A(x)]

- eloa{i [ jegms)]

Applying the same arguments to the numerator, (i) follows.

(i) The relation follows by application of the same arguments as in (i).
(iii) Follows immediately by application of Fubini's theorem(]

PROOF OFTHEOREM 1. In order to derive the posterior distribution, given
T" =", we start by discretizing the MDP according to the procedure outlined in
Section 2.2. The discretized random mean, at any fixed tewdlthe tree of nested
partitions, will be of the formfp g(t) d F,, (1) = [ Z']""ng g(am Dk(tm, j+1,x) —
k(tm,j, x)1dZ4(x) and hence its d.f. can be written as

1
Fin(o) = E

+ool k+1
- —/ Im{exp{ /Iog[l+zs<2rmj k(tm,j+1,X)

—k(tm,j, x)) — a>i|
X a(dx)“ds

(9)
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wherer,, j = g(an,j), for j =0,...,k, + 1, and Inx stands for the imaginary
part ofz € C. Moreover, recall that
o ( )n 1

I" h :/ 7}1 d

+h(o) P (u) du
is the Liouville—Weyl fractional integral, for > 1, andl£+ represents the identity
operator. By applying (5) to (9) together with some algebra, one obtains that its
posterior density, give#” = ¢, can be represented as

_1)a+1
(17 'tmy o), ifn=2g,
(10) pr (o) = (—1)7 g+1 - .
I Reyy, (o), ifn=2q+1,
with
Ym(o) = ()

k+1

+00
n-l — | log|1+i (k(tm, j 41,
X/O s ./]R"exp< /Rog +is Zr]( (tm, j+1, %)

j=0
— k(.2 X)) —0):|

X a*(dx))

n
X 1_[ tm Jip+1s Mp k(tm,ip’ up)]
p=1

x o (duy, ..., duy)ds,

wherea" is then-fold product measurgl;_; (@ + Y F1s,,) anda* is given by

o+ > " 418, In this case the expression far' (") is known, since it follows
immediately by repeated application of Lemma 1 in Lo (1984),

" -1
wt (1" = (H(a(R) +i— 1))
i=1

(11)

n
X /n H [k (tmiy 1 up) = k(tm,i,» up) o (dug, ..., duy).
p=1
From (4) we know that (10) can be used as an approximate posterior density.

Nevertheless, in this case we are able to obtain an explicit representation of the
limiting posterior density.
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Division of both numerator and denominator mzl[tnz,ip—i—l — tm,i,] and
application of the dominated convergence theorem yield the limiting posterior
density which is given by (10) with

[[_1(@@®)+i—1)
Jrn [pea K (tp, up)a (duy, . ..., duy)

(12) X /()+oos”_l/nexp{—/RIog[l+is(h(x) —a)]oz*(dx)}

V(o) =

X l_[ K'(tp,up)a(du, ..., duy)ds.
p=1

Note that by Scheffé’s theorem we have also convergence in total variatitn,of
to F;». By application of Fubini’'s theorem it is possible to rewrite the posterior
density function as
’;Zlk/(t,,, upla(duy, ..., duy)
Jrn H’ll,zlk’(tp, up)e(dus, ..., du,)’

13 @)= [ pu)

where, ifn = 2¢,

(=4I (@(R) +i — 1)
T

(14) x It /0+oo s”‘llm<exp{—/Rlog[1+ is(h(x) —o)]

X a*(dx)}) ds,

pun(0) =

while, if n =29 + 1, p,»(co) is obtained by simply substituting Im with Re

in (14). Indeedp, is a posterior density, giveti” = 1", of a mean of a Dirichlet
process, precisely oy 1(x) d Z4(x). This can be seen by applying the procedure
for derivation of posterior distributions of normalized RMI in Section 4 of RLP.
Given the conjugacy of the Dirichlet process, we can replace (14) with the simpler
expression

(15)  pun(o) = %/OJFOO Re(exp{—/Rlog[l—i— is(h(x) — 0)]0{*((1)6)}) ds.

Thus one has that a mean of an MDP, resulting from the combination of
(23) and (15), is a mixture of a particular mean of a Dirichlet process, given
the latent datay/". By (11) it is easy to identify the mixing distribution as the
distribution of U" conditionally on the real observatio. []
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PROOF OFPROPOSITION4. The idea of the proof is to express the likelihood
function in a tractable way so we are able to apply standard Bayesian updating
mechanisms. Lef} = #1 be a single observation fror, and letS; = s1 and
U1 = u1 be auxiliary variables. Then the likelihood function is given by

liK(Lalt1, s1,u1) = exp{—ulfoook(“r,x) dLA(x)}k/(tl, s1)dLa(s1).

Using product-integral properties [see, e.g., Gill and Johansen (1990)], the
likelihood function can be rewritten as

|ik(LA|t1,Sl,M1)=[ I1 exp{—ulk(T7x)dLA(x)}:|k/(fl,Sl)dLA(Sl)-

x€[0,00)

Following Dykstra and Laud (1981), the prior procdss(-) can be characterized

by dL% (v) ~ §(da(v), B(v)) for the continuous part ant{z;} ~ fz;(x) for the

prior fixed jumps. Based on the independence between increments in the prior
process, the posterior conditional distribution for the continuous part and for the
prior fixed jumps come straightforward. The only remaining point, to establish
completely the posterior conditional distributioniof (-), is the distribution of the

new fixed jump ak;. For this, let

dLa(s1) = Lals1, 51+ ¢),
and then
p(Lals1, s1+ €)1, 51, u1) o L alsq, 51+ £)* 8151+ g~k (L)t pG0}abrste),

Taking the limit ass — 0, we finally obtain that

p(Lafsa}lin, s1, ug) oc e~ ks HAODIAl],

as stated in the proposition]
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