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A BERNSTEIN-VON MISES THEOREM IN THE
NONPARAMETRIC RIGHT-CENSORING MODEL?

BY YONGDAI KIM AND JAEYONG LEE
Seoul National University

In the recent Bayesian nonparametiiterature, many examples have
been reported in which Bayesian estimators and posterior distributions do
not achieve the optimal convergence rate, indicating that the Bernstein—von
Mises theorem does not hold. In this article, we give a positive result in this
direction by showing that the Bernstein—von Mises theorem holds in survival
models for a large class of prior processes neutral to the right. We also show
that, for an arbitrarily given convergence rate® with 0 <« < 1/2, a prior
process neutral to the right can be chosen so that its posterior distribution
achieves the convergence rate”.

1. Introduction. The asymptotic properties of posterior distributions and
Bayes estimators in nonparametric models have been given much attention in
the recent literate. Diaconis and Freedman (198§)ened the discussion in this
area by showing that in nonparametric models even an innocent looking prior can
produce an inconsistent posterior. This disturbing result stirred Bayesians, because
it says that a Bayesian can be more and more sure of a wrong parameter value as
the sample size increases. It also initiated research efforts to garner “safe” priors
in the asymptotic sense. For the research work regarding posterior consistency, see
Freedman (1963), Schwartz (1965), Barron, Schervish and Wasserman (1999) and
Ghosal, Ghosh and Ramamoorthi (1999). In the context of survival models, Kim
and Lee (2001) showed that not all the prior processes neutral to the right have
consistent posterior distributions and gave sufficient conditions for the consistency.

Cox (1993) and Zhao (2000) showed that this unfortunate phenomenon
continues to occur in the posterior convergence rate. For example, Zhao (2000)
showed that in an infinite dimensional normal model, there is no independent
normal prior supported on the parameter space that has a Bayes estimator that
attains the optimal minimax rate. (In the same article, however, she constructed
a class of priors, mixtures of normal priors supported on the parameter space,
which achieves the optimal minimax rate.) These examples cast doubt on the
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Bernstein—von Mises theorem in nonparametric models even with the prior that
has a consistent posterior.

The Bernstein—von Mises theorem states that the posterior distribution centered
at the maximum likelihood estimator (MLE) is asymptotically equivalent to the
sampling distribution of the MLE. Due to the recent advent of the Markov
chain Monte Carlo method, Bayesians’ computational ability exceeds that of
frequentists. In the situations where frequentists do not have a computational tool
while Bayesians do, frequentists often use the Bayesian credible set as a frequentist
confidence interval. The theoretical justification of this practice is the Bernstein—
von Mises theorem. Hence, if the Bernstein—von Mises theorem does not hold, this
practice is not warranted. The Bernstein—von Mises theorem is squarely important
to Bayesians as well, because invalidity of the Bernstein—von Mises theorem often
means that a Bayesian credible set has zero efficiency relative to the frequentist
confidence interval.

In this article we provide a positive result in this direction by showing that
the Bernstein—von Mises theorem does hold in survival models for a large class
of prior processes. Indeed, for popular prior processes such as Dirichlet, beta
and gamma processes, the Bernstein—von Mises theorem holds. The situation is
subtle, however. In an example provided in Section 4, we also show that for any
given O< o < 1/2, there is a consistent prior process neutral to the right that
has a posterior convergence rate that is exactly. This result suggests that,
for a given model and data, one prior process can be much slower extracting
information from the data than another. This confirms the findings in the literature
that posterior consistency does not guarantee the optimal convergence rate and
in practice a prior must be carefully examined before it is used. In the same
example, an interesting prior process is found. This prior process achieves the
optimal posterior convergence rate, but its posterior distribution is not equivalent
to the sampling distribution of the MLE; hence, the Bernstein—von Mises theorem
does not hold. This example shows that the optimal convergence rate does not
guarantee the Bernstein—von Mises theorem.

The Bernstein—von Mises theorem for parametric models is a well-known
result. See, for instance, Section 7.4.2 of Schervish (1995) and references therein.
Previous research on the Bernstein—von Mises theorem for nonparametric models
includes Lo (1983, 1986, 1993), Brunner and Lo (1996), Diaconis and Freedman
(1998), Conti (1999) and Freedman (1999). Among them, Lo (1983, 1986, 1993),
Brunner and Lo (1996) and Conti (1999) reported some of the earlier positive
results on the Bernstein—von Mises theorem for some nonparametric models. See
also Ghosal, Ghosh and van der Vaart (2000) and Shen and Wasserman (2001) for
a related theory of posterior convergence rates.

In Section 2 the survival model and prior processes neutral to the right are briefly
introduced. In Section 3 the main result of this article, the Bernstein—von Mises
theorem of survival models, is given. In Section 4 a class of prior processes with
arbitrary posterior convergence rate®, 0 < o < 1/2, and a simulation study are
given. The proof of the Bernstein—von Mises theorem is given in Section 5.
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2. Survival models and processes neutral to the right. Let X1,..., X,
be i.i.d. survival times with cumulative distribution function (c.d.E)and let
C1,...,C, be independent censoring times with c.ds, independent of the
X;'s. Since the observations are subject to right censoring, we observe only
(T, 61), ..., (T,, 8,), whereT; = min(C;, X;) and$; = I(X; < C;). Let D, =
{(Ty1,61),...,(T,,8,)}. Let A be the cumulative hazard function (c.h.f.) &f,

A@t) = [p dF(s)/ (L= F(s-)).

We say that a prior process on c.dif.is a process neutral to the right if the
corresponding c.h.fA is a nonstationary subordinator (a positive nondecreasing
independent increment process) such thél) =0, 0< AA(¢r) < 1 for all r with
probability 1 and eitheA(r) = 1 for somet > 0 or lim;_, o A(t) = oo with
probability 1. See Doksum (1974) for the original definition of processes neutral
to the right and see Hjort (1990), Kim (1999) and Kim and Lee (2001) for the
connection between the definition given here and Doksum'’s definition. In what
follows, the ternsubordinator is used for a prior process of c.h4.which induces
a process neutral to the right éh

Kim (1999) used the following characterization of subordinators. This charac-
terization can be dated back to Lévy [see the note in Breiman (1968), page 318].
Similar characterization can also be found in Theorem 6.3VIll in Daley and Vere-
Jones (1988) and Theorem 3 in Fristedt and Gray [(1997), page 606]. For any
given subordinator(¢) on [0, o0), there exists a unique random measuren
[0, 00) x [0, 1] such that

1) A() =/ xu(ds,dx).
[0,7]1x[0,1]

In fact, u is defined by

n([0,1]1 x B) =) _I(AA(s) € B)

s<t

for any Borel subseB of [0, 1] and for allz > 0. Sinceu is a Poisson random
measure [Jacod and Shiryaev (1987), page 70], there exists a unifjnie
measure on[0, oo) x [0, 1] such that

2) E(u([0, 1] x B)) = v([0.1] x B)

for all # > 0. Conversely, for a givea-finite measure such that

t rl
/ / xv(ds,dx) < o0
0JO

for all ¢, there exists a unique Poisson random meaguwe[0, co) x [0, 1] which
satisfies (2) [Jacod (1979)] and so we can construct a subordindatoough (1).
Conclusively, we can useto characterize a subordinatar
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Suppose that a given subordinatdrhas fixed discontinuity points aj <
to < --- and that the Lévy formula is given by

1
E(exp(—0A(1))) = []‘[ E(exp(—@AA(t,-)))} exp(—/ (1— e st(x))
<t 0

where L;(x) is the Lévy measure. Then it can be shown [see Theorem 11.4.8 in
Jacod and Shiryaev (1987)] that

WO x B = [ dLw+ Y [ ari
B y=<t’B

for all + > 0 and for any Borel seB of [0, 1], where H;(x) is the distribution
function of AA(%;). When there are no fixed discontinuities, is a Poisson
random measure defined f#) co) x [0, 1] with intensity measure andd L, (x) =
Jio.qv(ds, dx). Hence, the measune simply extends/L, by incorporating the
fixed discontinuity points. However, this simple extension provides a convenient
notational device. The posterior distribution, which typically has many fixed
discontinuity points, can be summarized neatly by use of the corresponding
measures without separating out the stochastically continuous part and the fixed
discontinuity points as was done in previous work [Ferguson and Phadia (1979)
and Hjort (1990)]. For this reason, we calsimply theLévy measure of A.

From the Lévy measune, we can easily calculate the mean and variance of the
subordinator using the formulas [Kim (1999)]

t rl
3) E(A(t)):/O/0 xv(ds,dx)

and
2

t pl 1
Var(A(t)) = / / xzv(ds, dx) — Z(/ xv({s}, dx)) .
0Jo = \Jo
These formulas constitute basic facts for the asymptotic theory of the posterior and
will be used subsequently herein.

The characterization of subordinators with Lévy measures is also convenient in
representing the posterior distribution, for the class of processes neutral to the right
is conjugate with respect to right censored survival data. Suppose a prisra
subordinator with Lévy measure

4) v(ds,dx) = fy(x)dxds fors>0and0<x <1,
with lim;_ o fé foles(x)dx ds = oo. Then the posterior distribution of given
D, is again a subordinator with Lévy measuwregiven by

1
P — _ Yu(s) [—
(5) vP(ds,dx)=(1—x) fs(x)dxds + dHg(x) AN, ) dN,(s),
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whereH;(x) is a distribution function ofi0, 1] and is defined by
dHy(x) o xAN ) (1 — x)n&O=ANa(S) £ () dx

andN, (1) =37 I(T; <t,8; =1), Yo (1) =371 I(T; > 1), AN, (t) = Nu(t) —
N, (t—). Note that the posterior process is the sum of stochastically continuous
and discrete parts, which correspond to the first and the second terms in (5),
respectively. Note also th&; is the distribution of jump size atif AN, (s) #0.
This fact is used later. For the proof of (5), see Hjort (1990) or Kim (1999).
Let Fp be the true distribution of th&;’s and letAg be the c.h.f. ofFy. We will
study the asymptotic behavior dfon a fixed compact interv@0, t]. Throughout
this article we assume the following two conditions:

CONDITION C1. Fp(z—) <landG(r—-) < 1.
CONDITION C2. Agis continuous ori0, t].
Condition C1 guarantees thBi(t) — oo asn — oo with probability 1, which
is essential for the asymptotic theory of survival models. Condition C2 implies that

AN, (s) has a value of either 0 or 1.

3. Bernstein—von Misestheorem. Assume that a priord is a nonstationary
subordinator with Lévy measure

tp1
(6) v([0,1] x B) = fo /B 8 () dx M) ds,
wherej g;(x)dx = 1forallz € [0, ].

REMARK. Comparing (4) and (6), we can see that) = folet(x)dx and
g:(x) = xf;(x)/A(t) providedi(r) > 0.

We need the following conditions for the Bernstein—von Mises theorem:
CONDITION ALl.  g* =SUR¢(0 ¢].xef0.1)(1 — %) g (x) < o0.

ConDITION A2. There exists a functiog () defined on[0, ] such that
0 <inf/ef0,71¢(t) <SUR¢0,,1¢(t) < oo and, for somer > 0 ande > 0,

sup

8 (x) — c](t)‘
— | < OQ.
1€[0,7],x€[0,¢] x¢

CONDITION A3. A(t) is bounded and positive d, 7).
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The convergence rate of the posterior distribution depends mainly on the
behavior of the prior process in the neighborhood of 0. This is because the
jump sizes of the posterior process get smallen agets larger. Condition Al
is a technical one to make the posterior mass of the jump sizes of the fixed
discontinuity points outside the neighborhood of 0 be asymptotically negligible.
Condition A2 is the main condition, in whial measures the smoothnesspfx)
in x around 0. The constantplays a crucial role in determining the convergence
rate of the posterior distribution. In fact, the Bernstein—von Mises theorem may
not hold if « < 1/2. For an example, see Section 4. The boundednessiof
Condition A3 makes the posterior distribution eventually be dominated by data.
The positiveness of in Condition A3 is also necessary. Suppose) = 0 for
t € [c,d], where O< ¢ < d < t. Then both the prior and posterior put mass 1
to the set of c.h.f.sA, with A(d) = A(c). Hence the posterior distribution of
A(d) — A(c) has mass 1 at 0 and the Bernstein—von Mises theorem does not hold
unlessAg(d) = Ag(c).

Before stating the theorems, we introduce some notation. For a given random
variable Z,,, we write Z, = O(n®) with probability 1 if there exists a constant
M > 0 such that|Z,|/n® < M for all but finitely manyn with probability 1.

Let 6, be the degenerate probability measurecatDenote by £L(X|Y) the
conditional distribution ofX given Y. Let W be a standard Brownian motion
and letA,, be the Aalen—Nelson estimator defined Ay(¢) = [6 dN,(s)/Yu(s).
The sampling distribution of/ﬁ(An — Ag) converges in distribution t&# (Ug(+)),
whereUy(t) = fé dAg(s)/Q(s), with Q(¢) = Pr(Ty > t) [see Theorem IV.1.2 in
Andersen, Borgan, Gill and Keiding (1993)]. Hetg is well defined, because
inf;c[0,-1 Q(t) > 0 due to Condition C1.

The following theorem is a general result on the convergence of the posterior
distribution. The Bernstein—von Mises theorem and an example of suboptimal
convergent rates in Section 4 will be based on this theoreny,Lbé the number
of distinct uncensored observations and ek 1, < --- < t,, be the distinct
uncensored observations. L&} (1) = Z,-qil AA(t). Let D[O, t] be the space of
cadlag functions ofD, t] equipped with the uniform topology and the baifield.

THEOREM 1. Under Conditions A1-A3:

() LOAAC) — Ag(-)IDn) > 80 on DIO, 7] with probability 1;

(i) L(JM(Aa() — E(Aa()IDa))IDs) > W (Uo()) on DIO, ] with probabil-
ity 1; . .
(iii) sup,cp0.21 IE(Aq(1)|D,) — A, (1)| = O (n~ ™) with probability 1.

The proof is given in Section 5.

Part (i) of Theorem 1 states that the stochastically continuous part of the
posterior processi — A4, vanishes with a rate faster than the optimal rate/2.
Part (ii) states that the fixed discontinuous part of the posterior proegss,
centered at its mean is asymptotically equivalent to the frequentist sampling
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distribution of A, since W(Up(r)) in Theorem 1(ii) is the limiting sampling
distribution of ﬁ(An(t) — Apo(1)). Part (iii) states that the difference of the
posterior mean ofi; and A, vanishes with varying orden,~ ™%} for o > 0.
Hence, ifa < 1/2, the overall convergence rate of the posterior distribution
could be dominated by the convergence rate of (iii), which results in suboptimal
convergence rates. Indeed, in Section 4 such an example is given.

Although a rigorous proof of Theorem 1 is given in Section 5, we sketch the
proof here. For (i), we first approximate the first two moments of the posterior
distribution of A by those of the posterior with a beta process prior (see Example 1
for a definition of beta process). Since the closed forms of the first two moments
of the posterior with the beta process prior are known [Hjort (1990)], one can
easily prove (i) using Lemma 7. Part (iii) is proved similarly. For (ii), the posterior
distribution of A; consists of the sum of independent random variables, and so
the central limit theorem for independent random variables [e.g., Theorem 19 in
Section V.4 in Pollard (1984)] can be applied.

THEOREM 2 (Bernstein—von Mises theorem)Under Conditions A1-A3 with
a>1/2,

- d
L(Vn(AC) — Ay ())|Dy) = W (Uo())
on DI[0, t] with probability 1.
PrRoOOF This theorem is an immediate consequence of Theorem 1, because
we can decompose
nY2(A@t) — A1) = nY2(A(r) — Ag(1)) + nY?(Aq(t) — E(A4(1)|D,))
+nY2(E(Aq(1)|D,) — A, (2)). O

COROLLARY 1. Under the same conditionsin Theorem 2,

L(VA(SC) = 5,())|Dn) S —So(-)W (Uo()

on D[0, T] with probability 1, where S, S, and Sp are the corresponding survival
functionsof A, A,, and Ag.

PROOF Note that the survival function is recovered from the cumulative haz-
ard function by the product integration operator which is Hadamard differentiable.
The result follows from the functional delta method. See Gill (1989).

REMARK. If Conditions A1-A3 as well & Condition Clhold for all T > 0,
Theorem 2 and Corollary 1 are valid @O0, co), because the weak convergence
on D[0, co) is defined by the weak convergence B{D, t] for all > 0 [Pollard
(1984)].
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A convenient sufficient condition for Condition A2 with= 1 can be given as
follows. Suppose that for some> 0

1
(7) sup gV ()] < o0,
te[0,7],x€(0,¢)

wheregt(l) (x) is the first derivative of;(x) in x on[0, 1]. Then, by the mean value
theorem, Condition A2 holds witkh = 1 andg(¢) = g;(0).

In the next three examples, we illustrate that the Bernstein—von Mises theorem
holds for beta, Dirichlet and gamma prior processes.

EXAMPLE 1 (Beta processes). The beta process with m&aand scale
parametelc is a nonstationary subordinator with Lévy measure(dt, dx) =
c)x YL —x)*O~1dx dA(r). Supposer(r) = [§ A(s) ds, wherei(r) is positive
continuous on(0, ) and O< inf,c[0.7)¢(t)(= cx) < SUR¢[g.) c(t)(= ) < oo.
Condition Al & true because

sup [1—x)g@)|= sup |e()(1—x)D|<c* <oo.
te[0,7],x€[0,1] te[0,7],x€[0,1]

For Condition A2, sincg? (x) = c(t)(c(t) — 1)(1 — x)*D~2, we have

sup [P ()] < c*(e* + D) maxd, (1— )2}
tel0,7],x€(0,¢)
Thus, by (7), Condition A2 holds withi(¢) = c¢(¢). Since Condition A3 is assumed,
the Bernstein—von Mises theorem holds.

ExampPLE 2 (Dirichlet processes). Hjort (1990) showed that when the prior
of the distributionF is the Dirichlet process with base measurethe induced
prior of the c.h.f. is the beta process witly) = «([0, c0))(1 — H(¢)) and A(z),
the c.h.f. ofH(¢), whereH (1) = « ([0, t])/x ([0, 00)). SUPPOSEN (¢) = fé A(s)ds.
Then if A(¢) is positive bounded of0, ) andH(t) < 1, then, as in Example 1, it
can be shown that Conditions A1-A3 are satisfied.

ExXAMPLE 3 (Gamma processes). A priori, assume that) = —log(1l —
F(t)) is a gamma process with parameteFs(z), d(t)) with H(t) = féh(s)dx.
Here the gamma process with parametéfsr), d(r)) is defined byY(¢r) =
fé Wls) dX (s), whereX (¢) is a subordinator that has a marginal distributioX@f)

that is a gamma distribution with parametef§a’(s) dH(s),1). See Lo (1982) for
details. This prior process was used by Doksum (1974), Kalbfleisch (1978) and
Ferguson and Phadia (1979) . Since

log E(exp(—6Y (1)) = /O t /0 Tt - 1)@ exp(—d (s)x) dx dH (s),

X
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it can be shown that the c.hA. of F is a subordinator with Lévy measuregiven
by

([0, 7] x B) :/OIC(S)/Bm(l—x)d“)_lddi(s),

where

(" x a-1, ) "
c(t)_</o —|0g(1—x)(1_x) dx)

and
t
A(z):/ @a’H(s).
0 c(s)
Therefore, we have
gt(x)=C(t)m(1—x)dm_l, O<x<1,

andr() =d@)h()/c().

Supposéen(t) is positive and bounded one (0, r) and O< inf;¢[0 -1d (1) (=
dy) < SUR¢po.r1 4 (1) (= d*) < co. We will show that Conditions A1-A3 hold under
these conditions. First, we show thatQinf; (0,7 c(¢)(= ¢x) < SUR¢(p 7 c(t)(=
¢*) < co. Note that

. . 1 X du—1 -1
ZEI[r(])ft] c(t) = (/0 —— o9 —x) (1-—x) dx)

1 — \d+/2 -1 -1
=(/ x(lix)(l_x)d*/z—ldx) > ( m ) >0,
o —log(1—x) dy/2

wherem = sup,o.1; —x (1 — x)%/?/log(1 — x). By a similar argument, we can
show that sup g ,; ¢(¢) < co. Now, Condition Al follows because

X
sup |1-x)g@l= sup |e(t)—————(1—x)®
1€[0,7],x€[0,1] ' 1€[0,7],x€[0,1] —log(1—x)
X
< sup  le()——i——(1—x)"
1€[0,7],x€[0,1] —log(1—x)
1—x)
< c* sup & < 00
xef0,171 — log(1 —x)

Similarly, Condition A2 can be shown by (7) wi(z) = ¢(¢) and Condition A3
follows from inf;cpo,71 ¢ () > 0.
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4. An example: suboptimal convergence rates. In this section, we show
that, for a given convergence rate® with 0 < « < 1/2, there exists a prior
process neutral to the right whose posterior convergence rate“isConsider
the class of prior processes neutral to the right with Lévy measure

1
(8) ve(dt,dx) = =1+ x%) dxdt, x€(0,1],t>0.
x

In the next theorem we show that, for eack @ < 1/2, the posterior with the
prior process,, achieves convergence rate®.

THEOREM 3. A priori let A be a subordinator with Lévy measure v, in (8).
Then:

() For 0 < a < 1/2, L®(A() — A,())ID,) % 87,¢) on DIO, t] with
probability 1, where J,, (1) = o' (@ + 1) fé dAg(s)/ Q% (s).
(i) Fora=1/2, LnY2(A() — A,())IDa) > W(Uo() + Jij2(-) on DIO, 7]
with probability 1.
(i) For a > 1/2, LOY2(A() — A,(-))IDy) <> W (Uo(-)) on DIO, 7] with
probability 1.

REMARK 1. When O< « < 1/2, the posterior convergence rate:is*, which
is slower than the optimal rate /2.

REMARK 2. Whena = 1/2, the posterior convergence rate is optimal, but the
limiting posterior distribution is the limiting sampling distribution of the Aalen—
Nelson estimator plus a bias tetfy,. So the Bayesian credible set does not have
appropriate frequentist coverage protigh although it has the optimal posterior
convergence rate.

REMARK 3. The Bernstein—von Mises theorem holds whes 1/2. Al-
though we do not know whether Conditions A1-A3 are necessary and sufficient
conditions for the Bernstein—von Mises theorem, this example shows that these
conditions are fairly minimal.

To prove Theorem 3 we need the following lemma, the proof of which can be
found in Appendix A.
LEMMA 1. ForO<a <1/2,

s[gp]|n°‘(E(Ad<r>|Dn) — Ay(0) = Ju ()] > 0
tel0,T

with probability 1.
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PROOF OF THEOREM 3. It is easy to see that, in (8) satisfies Condi-
tions A1-A3 withg(¢) = (o + 1) /(a + 2) andA(z) = 1. Now note that

n®(A) — Ay(1)) = n*(A®) — Aa(1)) +n*(Aq(t) — E(A4(1)|Dy))
+n%(E(Ag(1)|D,) — An(2)).

The first term of the right-hand side converges weakly to 0 faz all0; the second
term converges weakly to 0 far < 1/2 and converges weakly t& (Up(-)) for

a >1/2 by Theorem 1. Finally, the third term converges weaklyfdor o < 1/2
and converges weakly to 0 far> 1/2 by Lemma 1. Hence, the proof is complete
by Slutsky’s theorem. O

Theorem 3 shows that the posterior with the prior (8) witl- 1/2 can be
used to construct an asymptotically valid frequentist confidence interval, while the
posterior witha < 1/2 cannot. A simulation study was conducted to see the effect
of « and sample siza on empirical coverage probability. Right censored data
were generated from ExponentiBl for the survival time and Exponent{@l25)
for the right-censoring times, which amounts to censoring probabilRy Bor
each of seven sample sizas= 10, 50, 100, 500, 100Q 200Q 5000, 1000 data
sets were generated. The posterior distribution was computed, based on an
algorithm modified from Lee and Kim (2004), for each data set with the prior (8)
for « = 0.25,0.5,1,5. The empirical coverage probability is the proportion of
the data sets that have credible setsA@P), the c.h.f. atr = 2, that contain
the true valueA(2) =2. The simulation result is reported in Figure 1. The

i By

Fic. 1. Empirical coverage probabilities of the Bayesian credible set of A(2), thec.h.f. atr =2,
with nominal level 90%. Empirical coverage probabilities are based on 1000 data sets for each of
sample sizes n = 10, 50, 100, 500, 100Q 200Q 5000 with the prior (8) at « = 0.25,0.5,1,5. The
three solid lines represent the nominal level and 2 standard errors away fromit. The dotted lines are
the empirical coverage probabilities.
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three solid lines represent the nominal coverage probabiltyabd 2 standard
errors 2/0.9-0.1/1000= 0.01897 away from it. The coverage probability with

a =0.25 gets worse as the sample size grows. Whesa 0.5, the coverage
probability shows a difference from the nominal level which does not get smaller
as the sample size increases. However, with 1 and 5, the coverage probability

is inside the error bounds from= 100 on. All of these agree with Theorem 3.

5. Proof of Theorem 1. Throughout this section, the statements of Theorem 1
are assumed. L&k (a, b) = [ x*~1(1 — x)*~1dx. Then Stirling’s formula yields
that, fora > 0,

9 nli_)moono‘B(oe, n)=I(x).

LEMMA 2. Let W, bea sequenceof nonnegative stochastic processeson [0, 7]
such that

(10) s[gp] |Wn()/n— Q@) — 0
telO,T

with probability 1. Then

sup |n* B(k, W, (1)) — T'(k)/ Q% (t)| — O
t€[0,7]

with probability 1 asn — oo, for everyinteger k > 1.

PROOE We can write

k
nkB(k, W, (1)) = ( ) WX (@) B(k, W, (1)).

n
W (1)
Since (10) implies inko,-] W, () — oo with probability 1, (9) yields

sup |WX @) B(k, W, (1)) =T (k)| — 0
te[0,7]

with probability 1. Also (10) implies

su ( n )k 1 ‘—>0
P\w.or) T ofm

te[0,7]

with probability 1, which completes the prooflJ
Let Y, F (1) = Y, (t) — AN, (t) andCy (1) = 3 x*(1 — x)"n O g, (x) dx.

LEMMA 3. For k>0,
(11) sup [Cx(1) —q()B(k + 1, Y, (1) + 1)| = O (n~*+1+e)
]

tel0,T
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and

(12) sup [ 1Ci (1) —q) Tk + 1) Q"% V()| - 0
te[0,7]

with probability 1.

PrROOF For (11), letp;(x) = (1 — x)(g:(x) — g (t))/x*. Then Conditions Al
and A2 together imply sypjg ;} xcf0.1) |+ (X)|(= p*) < co. Now
|Ce() —q()B(k+1.Y,7(1) +1)]
:LL{”“Wl—xf?@4pAde
<p*Blk+a+1,Y,](1)).
Since sup.(o 1Y, (t)/n — Q(t)| — 0 with probability 1, Lemma 2 yields

sup |Cr (1) —q)B(k + 1, Y,F (1) + 1)| = O (n~*+1F)
te[0,7]

with probability 1. Equation (12) is an easy consequence of (11) and Lemma 2.
O

LEMMA 4. Wehave
Ci(  Bk+1Y O)+1)|_

13 0 —(k+a)
(13) ol Co) T BL YO+ D) ()
and

(14) sup E((AAq(1))*ID,) = 0(n™").

i=1,....q,

PROOF For (13), we can write

‘ck(z) _ Bk+1, Y. F(t) +1)
Co(t) B(L Y, (t)+1)

(15) - ‘Ck(t) —q®)Bk+1, Yn+(t)+l)’

Co(t)
B(k+ 1Y () +1)(Co(t) —q(t)B(L, Y, (1) + 1))
Co(H)B(L, Y, (1) + 1) '

(16) + ‘

Since (12) yields

17 inf inf -1
(17) tel[rg)’t]nco(t)—>t€|[rgmq(t)Q (1) >0,
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(11) implies
— +
¥ sup Ce() —q@BE+1Y, 1) +1)
te[0,7] Co(t)
_ e sup o 1CK0) — g B®K + 1, Y, (1) + 1))

- inf;c[0,-1nCo(t)

=0(1)

with probability 1, and hencél5) is O (n~*+®). On the other hand, since (11)
yields

inf nB(1,Y" 1 inf 01 0
zel[r(]),r]n (LY, 1)+ )—>ZEI{(1)’T]Q (t) >0,

(11) together with Lemma 2 and (17) implies
tra gyp | BE+L Y0 +D(Co) —gBA Y, (1) +1)
te[0,7] Co(t)B(L, Y, (1) + 1)
_ SUBepo IPTBG+ 1Y, (1) + 1))
- inf,ci0,.17Co(t)
. SURcio. 117 (Coh) =g B(L Y, (1) + 1)
infiero,rnB(L Yo (1) + 1)

n

=0(1)

with probability 1, and s@16) is O (n~*+®), which completes the proof of (13).
For (14), note that the distribution function &fA,(t;) is H;(x). Hence
E((AA4(1;))¥ID,) = Ci(t;)/ Co(t;), which together with (14) completes the proof.

O

PROOF OF THEOREM 1(i). Since a posteriorid — A, is a Lévy process
with Lévy measurev, given by v.(dt,dx) = x 11 — x)"D g, (x) dx A(t) dt,
Condition A1 and Lemma 2 with (3) imply

E(A(t) — A4(1)|Dy) < g*/o A(s)dsB(L Y, (1)) = 0™
with probability 1. Similarly,
V(A@t) — Ag(1)|Dy,) < g*/o L(s)dsB(2,Y,(1)) = 0(n~?)

with probability 1. Hence the proof is completed by Lemma 7 (in Appendix B).
O

PROOF OF THEOREM 1(ii). Let Z,(t) = /n(Au(t) — E(A4(2)|Dy,)). Since
Z, is a Lévy process, we can utilize Theord 9 in Section V.4 in Pollard (1984).
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We first prove the convergence of finite dimensional distributions by showing
Lyapounov’s condition. Suppose<Qs < ¢t < t are given. Note that

Zn(t) = Za(s) = ) n(AA4(6:) —E(AA4(#)|Dy)).

s<t; <t

Let

sup E[(vVa(AAa@) - E(AAd(t,-)|Dn))>4|D,,] =V,.
i=1,....qn

Then (14) in Lemma 4 implies, = O(n=?) with probability 1. Because
SURej0,7] Jo dNa (1) = O(n),

4
Y- E[(VA(aAat) — E(AA4()ID))) [Di]
(18) s<ti<t
t
5/ ViwdN,(u) — 0
with probability 1.
On the other hand, let
Wai = E((AA4(1))°IDy) — (E(AA(1;)|Dy))°
B (B(s, v +1) (B(z, Y @) + 1)>2>
BLY, t)+1) \BLY, )+1/) /)
Lemma 2 together with (12) in Lemma 3 and (13) in Lemma 4 vyields

.....

Var(Z,(t) — Z,(s)|D,)
= 3 n[E((AA4))2ID,) — (E(AAL(1)ID,))?]

s<t; <t

[t Y2(u) (Y, (u) + 1) dN,(u) _
=/ Yn<u>[ | t 2 W

Yar ) +22Y, ) +3) ] Yaw) (57,
Since

[ Y2(u) (Y, (u) + 1) } ’

—1/—0
uel0,o] L (Y () 4+ 2)2(Y, () + 3)
and
_ -1 0
30 |5 — 0w~

with probability 1, we have by Lemma 6,

I on [ Y2u) (Y )+ 1) ]a’N,,(u)

0w + 2200 0 + 3 Taw 00 oW
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uniformly in s andr with probability 1. Since
Y alWal <n® sup [Wyl =0,
s<h <t i=1,....qn
we obtain
(19) SJSGL[JO&]IVar(Zn (t) = Zu(5)ID,) — (Uo(t) — Uo(s))| — 0

with probability 1. Now (18) and (19) imply the convergence of the finite
dimensional posterior distributions &, to those ofW (Up) with probability 1.
Finally, note that

PH{1Z,(t) — Zy(s)| = €D, } < 8—12Var(Zn(t) — Zy(5)|Dy).
By (19), we have

Var(Zn(t) - Zn(s)an) = Uo(t) — Uo(s) +0(1)

with probability 1. SinceUp(¢) is continuous, with probability 1 we can make
PrH{|Z,(t)—Z,(s)| > ¢|D,,} as small as possible for sufficiently larg®y choosing

¢t ands sufficiently close. Hence by Theorem 19 in Section V.4 in Pollard (1984)
we conclude thatZ, given D, converges weakly td¥ (Up) on D[O, t] with
probability 1. O

PROOF OF THEOREM 1(iii). Let W,; = E(AA4(#;)|D,) — 1/Y,/(1;). Then
Lemma 4 yields sup, Wil = O(n~1%). Since

C Y, (s) dNa(s)
E(Ad<r>|Dn)=/0 Y+—(SS) SIS W,

i<t

..... an |

we have

R g Y, (s) |dNy(s) -
20 E(4a()IDy) = An()| < | |1~ o
(20)  sup [E(44(1)ID,) Ol [, 1= e T 00

Since the first term on the right-hand side of (209i6: 1) by Lemma 6, the proof
is done. O

APPENDIX A

ProvingLemmal. Let
M@+ DI, (s)+1)
T () +a+2

1 +
By (s) =/ X1 —x)" @ dx =
0
Then Lemma 2 yields that

(21) sup | (Y7 (s) + 1)* By (s)| > M@ + 1)
s€[0,7]
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and

(22) sup |(Y,[(s) + 1) By(s)| = 0(n™%)
s€[0,7]

with probability 1 fora > 0.

LEMMA 5. With probability 1, we have:

(i)
(23) Yu(s)Bi(s) 1’ — O(n~ ML)y,
s€[0,7] Bo(s) + By (s)
(i) ifa<1/2,
of Ya®)Bi(s) ol o
@) spp (Bo(s) T Ba(s) 1) Fre+DOE ™) =0,
(iii)
n%Yy, () By1(s) _
25 ) 2 o 0
(3) P o) + Bats) | @ TACW T
for o > 0.

PROOF For (23), (22) yields
‘ Yu()Bi(s) 1‘
Bo(s) + Ba(s)
B Yu(s) — Y, (s) — 2 (Y, (s) + 1) Bo (s)
OO+ 2@+ O )+ DBals)) L+ (Vi (5) + 1) By (s)

< + sup [(Y,F(s) + 1) Bu(s)|

Y, (1) sel[0,7]
=0 H+0n™%
— O(n—min{l,a})

with probability 1.
For (24), note that
n"‘< Y, (s)Ba(s)
Bo(s) + By (s)
n®(Yu(s) = Y, (s) = 2)

— 1) +T+1)Q0s)™“

26 =
(6) (Y (s) + 2 (14 (Y (s) + 1) By (s))

n* (Y () + DBuls) L
@7) a [1+(Y,r(s)+1)30,(s) Me+1)Ow) ]
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Sincea < 1/2, SUR (g ¢ [(26) < 21% /¥, (x) — O with probability 1. For (26), let
p()=T(a@+1)Q(s)~®. Then

127)| < [n¥(Y,F (5) + 1) Bo(s) — p(&)| + | p(s) (¥,F (s) + 1) Ba(s)].
Here
[n*(Y,F(s) + 1) By (s) — p(s)|

(YH(s) + DeHIr(rt(s) + 1)
LY (s)+a+2)

J(Grer) —ew

Y )+ ) +1) 1
L(Ya (5) + o +2)

<T'(a+1)

+T@+DO36)™

Since supo . Y,F(t) = O(n), we conclude SUR(0.7] [n*(Y,F(s) + 1)By(s) —
p(s)| — 0 with probability 1 by (9). Also we have sugq . 1p(s)(Y, (s) +
1) B, (s)| — 0 with probability 1 by (22) and the proof is done.

For (25), (21) yields

n%Y,(s)By11(s)
Bo(s) 4+ By (s)
_ (n/Yn(s)* ( Y, (s)
L+ V() + DBa(s) \ Vi (s) +1
T (a+2)0(s)“

1+a )
) (Y, (s) +2)"" Byya(s)

uniformly in s € [0, =] with probability 1. [J
PrRooOF oFLEMMA 1. Note that

E(A4()|D,) /t —1 /1 1 )Y+(s)(1+ YdxdN, (s)
n) = —x)n XdNy(s).

¢ 0 Bos)+Bu(s) Jo " *

Hence, we have

E(Aq()|Dy) — Ay (1)
:/’ Bi(s) + By+1(s)
0 Bo(s) + By(s)
_ / ( Y, (s)Ba(s) _1) dNu(s) [ Yu($)Bata(s) dNu(s)
0 \Bo(s) + By(s) Y,(s)  Jo Bo(s) + By(s) Y(s)

AN, (s) — An(2)
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ForO<a <1/2, (24) in Lemma5 and Lemma 6 yield

/, of Ya®)Bi(s)  \dNu(s)
[ Y

Sor BoGs) 1 Bas) ) Yu(s)

te[0,7]

(28)

-0

+ /I F(a+1)Q(s)"* dAo(s)
0

with probability 1, and (25) in Lemma 5 and Lemma 6 imply

/tn“ Y, (s)Byy1(s) dN,(s)
0 Bo(s) + By (s) Yn(s)

sup
te[0,7]

(29)

-0

t
—/0 C(a+2)0(s)"*dAo(s)

with probability 1. Combining (28) and (29), we have

sup
t€[0,7]

n“(E(Aq(1)|Dy)

. t
—An(t))—/o (T(a+2) —T(a+1)Q(s) " “dAg(s)| — 0

with probability 1.
Fora > 1/2, (23) in Lemma 5 and Lemma 6 yield

/’ nl/z( Yu(s)Bi(s) 1) dNy(s)
0 Bo(s) 4 By (s) Y, (s)
with probability 1, and (25) in Lemma 5 and Lemma 6 imply
/t 412 Yy (s)Byy1(s) dNy(s)
0 Bo(s) + By (s) Y,(s)
with probability 1. Combining (30) and (31), we have

sup |n*/2(E(Aq(1)|D,) — An(1))| > 0
te[0,7]

with probability 1. O

-0

(30) sup
te[0,7]

(32) sup
t€[0,7]

APPENDIX B
Technical lemmas.

LEMMA 6. Let X1(r), X2(t), ... be stochastic processes defined on [0, t].
Suppose that there exists a continuous function X (¢) defined on [0, t] such that

lim sup |X,(t) —X@®)|=0

=0 te0,7]
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with probability 1. Then

sup -0

t€[0,7]
with probability 1.

1 1 1
fo X ) 5 ANa(s) = /0 X (s) dAo(s)

PROOF Thislemmais an easy consequence of the Glivenko—Cantelli theorem
and Lemma A.2 in Tsiatis (1981).

LEMMA 7. Let X,, be a sequence of subordinators such that E(X,(¢)) —
Xo(t) and Var(X,,(t)) — 0 for some continuous function Xo(z) and all 7 € [0, t].

Then £(X,,) > 8x, on D[O, 1.

PROOF Note thatX( should be a monotonically increasing function since
X, are subordinators. Hence, the continuityXyf together with the assumptions
implies that sup.(g | X, (#) — Xo(t)| — O in probability. [
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