CONVERGENCE RATES FOR POSTERIOR DISTRIBUTIONS AND ADAPTIVE ESTIMATION

BY TZEE-MING HUANG

Iowa State University

The goal of this paper is to provide theorems on convergence rates of posterior distributions that can be applied to obtain good convergence rates in the context of density estimation as well as regression. We show how to choose priors so that the posterior distributions converge at the optimal rate without prior knowledge of the degree of smoothness of the density function or the regression function to be estimated.

1. Introduction. Bayesian methods have been used for nonparametric inference problems, and many theoretical results have been developed to investigate the asymptotic properties of nonparametric Bayesian methods. So far, the positive results are on consistency and convergence rates. For example, Doob (1949) proved the consistency of posterior distributions with respect to the joint distribution of the data and the prior under some weak conditions, and Schwartz (1965) extended Doob's result to Bayes decision procedures with possibly nonconvex loss functions. For the frequentist version of consistency, see Diaconis and Freedman (1986) for a review on consistency results on tail-free and Dirichlet priors. Barron, Schervish and Wasserman (1999) gave some conditions to achieve the frequentist version of consistency in general. Ghosal, Ghosh and Ramamoorthi (1999) also gave a similar consistency result and applied it to Dirichlet mixtures.

For convergence rates, there are some general results by Ghosal, Ghosh and van der Vaart (2000) and Shen and Wasserman (2001). However, there are few results on adaptive estimation in the study of posterior convergence rates. Belitser and Ghosal (2003) dealt with adaptive estimation in the infinite normal mean set-up. In this paper, we also have results on adaptive estimation, but these are done in the density estimation and regression setups.

The goal of this paper is to develop theorems on convergence rates for posterior distributions which can be used for adaptive estimation. In this paper we have theorems on convergence rates in two contexts: density estimation and regression. In either case, we consider the Bayesian estimation of some function f (a density function or a regression function) based on a sample (Z_1, \ldots, Z_n) and are interested in the convergence rates for the posterior distributions for f.

Below is the specific problem setup. Suppose that when f is given, (Z_1, \ldots, Z_n) is a random sample from a distribution with density p_f with respect to a measure μ

Received May 2000; revised August 2003.

AMS 2000 subject classifications. Primary 62A15; secondary 62G20, 62G07.

Key words and phrases. Convergence rate, nonparametric regression, density estimation, Bayesian, adaptive estimation, sieves.

on a sample space $(\mathscr{S}, \mathscr{B})$, f_o is the true value for f, and f_o belongs to some function space \mathscr{F} . Suppose that $\tilde{\pi}$ is a prior on \mathscr{F} and $\tilde{B}_d(s_n) = \{f \in \mathscr{F} : d(f, f_o) \leq s_n\}$ is an s_n neighborhood of f_o with respect to the metric d, where d is the Hellinger distance in the density estimation case and is the L_2 distance in the regression case.

We would like to show that the posterior probability

(1)
$$\tilde{\pi}\left(\tilde{B}_d(s_n)^c | Z_1, \dots, Z_n\right) = \frac{\int_{\tilde{B}_d(s_n)^c} \prod_{i=1}^n p_f(Z_i) d\tilde{\pi}(f)}{\int_{\mathcal{F}} \prod_{i=1}^n p_f(Z_i) d\tilde{\pi}(f)}$$

converges to zero in $P_{f_o}^n$ probability, and the rate s_n is as good as if the degree of smoothness of f_o were known. This is known as the adaptive estimation problem.

For the purpose of adaptive estimation, we take \mathcal{F} to be $\bigcup_{j \in J} \mathcal{F}_j$, where *J* is a countable index set (not necessarily a set of integers) and the \mathcal{F}_j 's are function spaces of different degrees of smoothness. A natural way to construct priors on \mathcal{F} is to consider sieve priors. A sieve prior is a prior $\tilde{\pi}$ of the following form:

$$\tilde{\pi} = \sum_{j \in J} a_j \tilde{\pi}_j,$$

where $a_j \ge 0$, $\sum_{j \in J} a_j = 1$, and each $\tilde{\pi}_j$ is a prior defined on \mathcal{F} but supported on \mathcal{F}_j . To make it easier to specify the $\tilde{\pi}_j$'s, we assume that each \mathcal{F}_j is finite-dimensional and can be represented as $\{f_{\theta,j}: \theta \in \Theta_j\}$ for some parameter space Θ_j . We also assume that each $\tilde{\pi}_j$ is induced by a prior π_j defined on Θ_j . Then the posterior probability in (1) can be written as U_n/V_n , where

$$U_{n} = \sum_{j} a_{j} \int_{B_{d,j}(s_{n})^{c}} \prod_{i=1}^{n} \frac{p_{f_{\theta,j}}(Z_{i})}{p_{f_{o}}(Z_{i})} d\pi_{j}(\theta)$$

and

$$V_n = \sum_j a_j \int_{\Theta_j} \prod_{i=1}^n \frac{p_{f_{\theta,j}}(Z_i)}{p_{f_o}(Z_i)} d\pi_j(\theta),$$

where $B_{d,j}(s_n) = \{ \theta \in \Theta_j : d(f_{\theta,j}, f_o) \le s_n \}.$

This paper is organized as follows. Section 2 gives a theorem on convergence rates in the density estimation case and some examples of applying the theorem to obtain adaptive rates. Section 3 contains the same things as in Section 2, but in the context of regression. Proofs are in Section 4.

2. Density estimation.

2.1. *Theorem.* This section gives a convergence rate theorem for Bayesian density estimation. The setup is as described in Section 1, with $p_f = f$ and d being the Hellinger metric $d_{\rm H}$, which is defined by

$$d_{\rm H}(f,g) = \sqrt{\int \left(\sqrt{f} - \sqrt{g}\right)^2 d\mu}.$$

To make the posterior probability $U_n/V_n \rightarrow 0$, we need some conditions to give bounds for U_n and V_n .

To bound U_n , we will make an assumption about the structure of each parameter space Θ_i , and then specify the a_i accordingly. Let $\|\cdot\|_{\infty}$ denote the sup norm

$$B_{d_{\mathrm{H}},j}(\eta,r) = \{\theta \in \Theta_j : d_{\mathrm{H}}(f_{\eta,j}, f_{\theta,j}) \le r\}$$

and $N(B, \delta, d')$ denote the δ -covering number of a set B with respect to a metric d', which is defined as the smallest number of δ -balls (with respect to d') that are needed to cover the set B. Here is the assumption.

ASSUMPTION 1. For each $j \in J$, there exist constants A_j and m_j such that $A_j \ge 0.0056$, $m_j \ge 1$, and for any r > 0, $\delta \le 0.0056r$, $\theta \in \Theta_j$,

$$N(B_{d_{\mathrm{H},j}}(\theta,r),\delta,d_{j,\infty}) \leq \left(\frac{A_{j}r}{\delta}\right)^{m_{j}},$$

where $d_{j,\infty}(\theta, \eta)$ is defined as $\|\log f_{\theta,j} - \log f_{\eta,j}\|_{\infty}$ for all $\theta, \eta \in \Theta_j$.

Suppose Assumption 1 holds. We specify the a_i 's in the following way:

(2)
$$a_j = \alpha \exp\left(-\left(1 + \frac{1 - 4\gamma}{8}\right)\eta_j\right),$$

where α is a normalizing constant so that $\sum_j a_j = 1$, $\gamma \doteq 0.1975$ is the solution to $0.13\gamma/\sqrt{1-4\gamma} = 0.0056$, and

(3)
$$\eta_j = \frac{4m_j}{1 - 4\gamma} \log\left(\frac{46.2A_j\sqrt{1 - 4\gamma}}{\gamma}\right) + \frac{8C_j}{1 - 4\gamma}$$

for some C_j such that $C_j \ge 0$ and $\sum_j e^{-C_j} \le 1$. Note:

- 1. Assumption 1 is based on Assumption 1 in Yang and Barron (1998) so that their results can be applied here. The constants A_j and m_j can be figured out based on the local structure of Θ_j . In many cases, m_j can be taken as the dimension of Θ_j , as stated in Lemma 2.
- 2. The constants C_j 's are here to make sure that $\sum_j a_j < \infty$ since $a_j \le \alpha e^{-C_j}$. Indeed, we may take η_j to be some large constant times $m_j \log A_j$, if this choice makes $\{a_j\}$ summable. Also, specific constant values are given in (2) and (3) for calculational convenience. Different choices are possible.

To find a bound for V_n , we will use Lemma 1 of Shen and Wasserman (2001), which says we can bound V_n from below if the prior puts enough probability on a small neighborhood of the true density f_o . To guarantee enough prior probability

around f_o , we proceed as follows.

- 1. Find a model \mathcal{F}_{j_n} that receives enough weight a_{j_n} and is close to f_o , that is, there exists β_n in Θ_{j_n} so that f_{β_n, j_n} is close to f_o .
- 2. Make sure the prior π_{j_n} puts enough probability on a neighborhood of β_n . This helps $\tilde{\pi}$ put some probability around f_o since a_{j_n} is not too small.

For the first step, we simply assume that it is possible.

ASSUMPTION 2. There exist j_n and $\beta_n \in \Theta_{j_n}$ such that

(4)
$$\max(D(f_o \| f_{\beta_n, j_n}), V(f_o \| f_{\beta_n, j_n})) + \frac{\eta_{j_n}}{n} \le \varepsilon_n^2$$

for some sequence $\{\varepsilon_n\}$, where $D(f || g) = \int f \log(f/g) d\mu$, $V(f || g) = \int f (\log(f/g))^2 d\mu$, η_{j_n} is as defined in (3) with A_{j_n} and m_{j_n} in Assumption 1.

Before going to assumptions for the second step, we add one more condition here to allow us to use neighborhoods that are different but comparable to the neighborhoods in Lemma 1 of Shen and Wasserman (2001).

ASSUMPTION 3. For the j_n in Assumption 2, there exists a metric d_{j_n} on Θ_{j_n} such that

(5)
$$\int f_o \left(\log \frac{f_{\eta, j_n}}{f_{\theta, j_n}} \right)^2 d\mu \le K'_0 d_{j_n}^2(\eta, \theta)$$

for all η , θ in Θ_{i_n} , and

$$D(f_o \| f_{\theta, j_n}) \le K_0'' V(f_o \| f_{\theta, j_n})$$

for all $\theta \in \Theta_{j_n}$, where K'_0 and K''_0 are constants independent of *n*.

The following two assumptions are for the second step.

ASSUMPTION 4. For j_n , A_{j_n} , m_{j_n} , β_n , ε_n and d_{j_n} in Assumptions 1–3, there exists $b_1 \ge 0$ such that

$$N(\Theta_{j_n}, \varepsilon_n, d_{j_n}) \leq (A_{j_n}^{b_1} K_4)^{m_{j_n}},$$

where $N(\Theta_{j_n}, \varepsilon_n, d_{j_n})$ is the ε_n -covering number of Θ_{j_n} with respect to the metric d_{j_n} .

ASSUMPTION 5. For j_n , A_{j_n} , m_{j_n} , β_n , ε_n and d_{j_n} in Assumptions 1–3, there exist constants K_5 and $b_2 \ge 0$ such that for any $\theta_1 \in \Theta_{j_n}$,

$$\frac{\pi_{j_n}(B_{d_{j_n},j_n}(\theta_1,\varepsilon_n))}{\pi_{j_n}(B_{d_{j_n},j_n}(\beta_n,\varepsilon_n))} \leq \left(A_{j_n}^{b_2}K_5\right)^{m_{j_n}}.$$

Note:

- 1. Assumption 4 is here to give more control of the overall size of Θ_{j_n} in terms of the ε_n -covering number (Assumption 1 essentially deals with the local structure). This control is to prevent the total prior probability from getting spread out so much that each neighborhood gets little probability.
- 2. Assumption 5 is to make sure that the prior supported on Θ_{j_n} puts enough probability near β_n compared to some other neighborhood.

Finally, we assume the following.

ASSUMPTION 6. As $n \to \infty$, $\varepsilon_n \to 0$ and $n\varepsilon_n^2 \to \infty$.

Now we have the following theorem.

THEOREM 1. Suppose that Assumptions 1–6 hold. Then with a_j defined in (2), there exist positive constants c, K_1 and K_2 that are independent of n, so that

(6)
$$\tilde{\pi} \left(\tilde{B}_{d_{\mathrm{H}}}(K_1 \varepsilon_n)^c | X_1, \dots, X_n \right) \le c \exp(-K_2 n \varepsilon_n^2)$$

except on a set of probability converging to zero.

The proof of Theorem 1 is given in Section 4.

2.2. *Example: spline basis.* In this section, we assume that $\log f_o$ is in the Sobolev space $W_{\infty}^s[0,1] = \{g : \|D^sg\|_{L_{\infty}[0,1]} < \infty\}$, where *s* is a positive integer and $\| \cdot \|_{L_{\infty}[0,1]}$ is the essential sup norm with respect to the Lebesgue measure on [0, 1]. We will see that using the sieve prior given below, the posterior distribution converges at the rate $n^{-s/(1+2s)}$ in Hellinger distance.

LEMMA 1. Suppose that $\log f_o \in W^s_{\infty}[0, 1]$ as defined above and μ is the Lebesgue measure on [0, 1]. Let $J = \{(k, q, L) : k, q \text{ and } L \text{ are integers } k \ge 0, q \ge 1, \text{ and } L \ge 1\}$. For $j = (k, q, L) \in J$, let $m_j = k + q$, and for $i \in \{1, \ldots, m_j\}$, let $B_{j,i}$ be the normalized B-spline associated with the knots y_i, \ldots, y_{i+q} as in Definition 4.19, page 124 in Schumaker (1981), where

$$(y_1, \dots, y_q, y_{q+1}, \dots, y_{q+k}, y_{q+k+1}, \dots, y_{2q+k}) = (\underbrace{0, \dots, 0}_{q \ times}, 1/(1+k), \dots, k/(1+k), \underbrace{1, \dots, 1}_{q \ times}).$$

Define

$$\Theta_j = \{ \theta \in \mathbb{R}^{m_j} : \theta' \mathbb{1}_{m_j} = 0, \| D^r \log f_{\theta,j} \|_{L_{\infty}[0,1]} \le L, \forall r \in \{0, 1, \dots, q-1\} \},\$$

where $\mathbb{1}_{m_j} = (1, \ldots, 1)' \in \mathbb{R}^{m_j}$, $\log f_{\theta, j} = -\psi(\theta) + \theta' B$, $\psi(\theta) = \log \int_0^1 e^{\theta' B(x)} dx$ is the normalizing constant, and $B = (B_{j,1}, \ldots, B_{j,m_j})$. Define η_j as in (3) with

(7)
$$A_j = 19.28\sqrt{q}(2q+1)9^{q-1}(L+1)e^{L/2} + 0.06$$
 and $C_j = m_j + L_j$

define a_j as in (2). Let π_j be the Lebesgue measure on Θ_j . Let $\tilde{\pi}_j$ be the induced prior of π_j and $\tilde{B}_{d_H}(s_n)$ denote the s_n Hellinger neighborhood of f_o , as defined on page 3 of Schumaker (1981). Then for the prior $\tilde{\pi} = \sum_j a_j \tilde{\pi}_j$, the posterior probability $\tilde{\pi}(\tilde{B}_{d_H}(s_n)^c | X_1, ..., X_n)$ converges to zero in probability for some $s_n \propto n^{-s/(1+2s)}$.

The proof of Lemma 1 is given in Section 4. Note:

- 1. Log-spline models have been used in density estimation and give good convergence rates; see Stone (1990), for example.
- 2. The prior does not depend on *s*, but it adapts to the smoothness parameter *s*.
- 3. Here we take π_j to be the Lebesgue measure on Θ_j , but we may also take π_j to be some measure that has a density q_j with respect to the Lebesgue measure on Θ_j . As long as $\|\log q_j\|_{\infty}$ is uniformly bounded in *j*, the convergence rates should be the same.
- 4. $C_j = m_j + L$ is just one possible choice. In general, if we choose $\{C_j\}$ so that $\sum_j e^{-C_j} < \infty$ and $C_{j_n} \to \infty$ no faster than $m_{j_n} \log A_{j_n}$, where j_n is as in Assumption 2, then it should be a good choice.
- 5. To figure out A_j and m_j , the following lemma, from Lemma 1 by Yang and Barron (1998), is useful.

LEMMA 2. Suppose that $\{S_l : l \in \Lambda\}$ is a countable collection of linear function spaces on [0, 1]. Suppose that for each S_l there is a basis $\{B_{l,1}, \ldots, B_{l,m_l}\}$. Suppose that there exist constants T_1 and T_2 such that for $\theta = (\theta_1, \ldots, \theta_{m_l}) \in \mathbb{R}^{m_l}$,

(8)
$$\left\|\sum_{i=1}^{m_l} \theta_i B_{l,i}\right\|_{\infty} \le T_1 \max_i |\theta_i|$$

and

(9)
$$\left\|\sum_{i=1}^{m_l} \theta_i B_{l,i}\right\|_2 \ge \frac{T_2}{\sqrt{m_l}} \sqrt{\sum_{i=1}^{m_l} \theta_i^2},$$

where $\|\cdot\|_2$ denotes the L_2 norm with respect to the Lebesgue measure on [0, 1]. Let

(10)
$$\log f_{\theta,j} = -\psi(\theta) + \sum_{i=1}^{m_l} \theta_i B_{l,i},$$

where $\psi(\theta) = \log \int_0^1 \exp(\sum_{i=1}^{m_l} \theta_i B_{l,i}(x)) dx$ is the normalizing constant. Suppose that $1 \in S_l$ for all $l \in \Lambda$, $J = \{(l, L) : l \in \Lambda, L \text{ is a positive integer}\}$ and for $j \in J$,

$$\Theta_i \subset \{\theta \in R^{m_l} : \|\log f_{\theta, i}\|_{\infty} \le L\}.$$

Then Assumption 1 holds with

(11)
$$A_j = 19.28 \frac{T_1}{T_2} (L+1) e^{L/2} + 0.06 \quad and \quad m_j = m_l.$$

2.3. *Example: Haar basis.* In this section, we assume that log f_o is a continuous function on [0, 1] with $\|\log f_o\|_{\infty} \leq M_0$, and we approximate $\log f_o$ using the Haar basis $\{\mathbb{1}_{[0,1]}(x), \psi_{j_1,k_1}(x): 0 \leq j_1, 0 \leq k_1 \leq 2^{j_1} - 1\}$, where $\psi_{j_1,k_1}(x) = 2^{j_1/2}\psi^*(2^{j_1}x - k_1)$ and $\psi^*(x) = \mathbb{1}_{[0,0.5]}(x) - \mathbb{1}_{[0.5,1]}(x)$. We also assume that the coefficients of the L_2 expansion of log f_o for the Haar basis, denoted by d_{j_1,k_1} , satisfy the following condition:

(12)
$$\sum_{j_1 \ge 0} (2^{j_1+1}-1)^{2\alpha} \sum_{k_1=0}^{2^{j_1}-1} d_{j_1,k_1}^2 \le H_0^2$$

for some $H_0 > 0$ and $\alpha \in (0, 1)$. According to Barron, Birgé and Massart [(1999), page 330], the above condition on the Haar basis coefficients corresponds to the Besov space $B_{2,2}^{\alpha}[0, 1]$. The Besov space $B_{2,2}^{\alpha}[0, 1]$ is indeed the Sobolev space $W_2^{\alpha}[0, 1]$, so the optimal convergence rate is $n^{-\alpha/(1+2\alpha)}$ in L_2 -distance. We will see that using the sieve prior given below, the posterior distribution converges at the rate $n^{-\alpha/(1+2\alpha)}(\log n)^{1/2}$ in Hellinger distance, which is close to the optimal rate $n^{-\alpha/(1+2\alpha)}$ within a $(\log n)^{1/2}$ factor:

LEMMA 3. Suppose that $\log f_o$ is in the space specified above and μ is the Lebesgue measure on [0, 1]. Let $J = \{(l, L) : l \text{ and } L \text{ are integers. } l \ge 0, L \ge 1\}$. For $j = (l, L) \in J$, let $m_j = 2^{l+1}$. Reindex the Haar basis in the following way:

$$\{\psi_{j_1,k_1}: 0 \le j_1 \le l, 0 \le k_1 \le 2^{j_1} - 1\} \stackrel{def}{=} \{B_{j,i}: 1 \le i \le m_j - 1\}.$$

Then for $\theta \in \mathbb{R}^{m_j-1}$, define $\log f_{\theta,j} = -\psi(\theta) + \theta' B$, where $\psi(\theta) = \log \int_0^1 e^{\theta' B(x)} dx$ is the normalizing constant and $B = (B_{j,1}, \dots, B_{j,m_j})$. Define

$$\Theta_j = \{\theta \in R^{m_j - 1} : \|\theta'B\|_{\infty} \le L\}$$

and let π_j be the Lebesgue measure on Θ_j . Define a_j and η_j according to (2) and (3) with

(13)
$$A_j = 19.28 \cdot 2^{(l+1)/2} (2L+1)e^L + 0.06 \quad and \quad C_j = m_j + L.$$

Let π_j be the Lebesgue measure on Θ_j . Let $\tilde{\pi}_j$ be the induced prior of π_j and $\tilde{B}_{d_{\rm H}}(s_n)$ denote the s_n Hellinger neighborhood of f_o , as defined on page 3 in Schumaker (1981). Then for the prior $\tilde{\pi} = \sum_j a_j \tilde{\pi}_j$, the posterior probability $\tilde{\pi}(\tilde{B}_{d_{\rm H}}(s_n)^c | X_1, \ldots, X_n)$ converges to zero in probability for some $s_n \propto n^{-\alpha/(1+2\alpha)} (\log n)^{1/2}$.

The proof of Lemma 3 is given in Section 4. Note:

- 1. For the choice of a_i and π_i , see the note for Lemma 1.
- 2. To specify A_j and m_j , Lemma 2 is no longer applicable since T_1 in (8) cannot be taken as a constant in this case. We use the following lemma [from Lemma 2 by Yang and Barron (1998)] instead.

LEMMA 4. Suppose that $\{S_l : l \in \Lambda\}$ is a countable collection of linear function spaces on [0, 1] and that for each l there exists a constant $K_l > 0$ such that for all $h \in S_l$,

(14)
$$||h||_{\infty} \leq K_{l} ||h||_{2}.$$

Suppose that each S_l is spanned by a bounded and linearly independent (under L_2 norm) basis 1, $B_{l,1}, \ldots, B_{l,m_l}$. For $\theta \in R^{m_l}$, define $\log f_{\theta,j} = -\psi(\theta) + \sum_{i=1}^{m_l} \theta_i B_{l,i}$, where $\psi(\theta) = \log \int_0^1 \exp(\sum_{i=1}^{m_l} \theta_i B_{l,i}(x)) dx$. Suppose that $J = \{(l, L) : l \in \Lambda, L \text{ is a positive integer}\}$ and for each $j \in J$,

(15)
$$\Theta_{j} \subset \{\theta \in R^{m_{l}} : \|\log f_{\theta,j}\|_{\infty} \le 2L\}.$$

Then Assumption 1 holds with

(16)
$$A_i = 19.28K_l(2L+1)e^L + 0.06 \quad and \quad m_i = m_l + 1.$$

In the spline density estimation result, the convergence rate is optimal and we have full adaption. But the Haar basis result here is quite different. The convergence rate involves an extra log factor, which comes from the K_l in (16). In the spline case there is no K_l and A_j is approximately a constant when $j = j_n$ for large n (j_n is the index for one of the best models at sample size n). In this case A_j is approximately proportional to the model dimension m_j when $j = j_n$ because of the factor K_l .

3. Regression.

3.1. *Theorem.* In this section, a Bayesian convergence rate theorem is given in the context of regression. The setup is as described in Section 1, with $Z_i = (X_i, Y_i)$, where $Y_i = f(X_i) + \varepsilon_i$, X_i and ε_i are independent, X_i is distributed according to some probability measure μ_X and ε_i is normally distributed with mean zero and known variance σ^2 . Thus the density p_f (with respect to $\mu_X \times$ Lebesgue measure on R) is

$$p_f(x, y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(y-f(x))^2/(2\sigma^2)}.$$

The metric d is the $L_2(\mu_X)$ metric. We also assume that $||f_o||_{\infty}$ is bounded by a known constant M.

To bound U_n and V_n , we modify the assumptions in Theorem 1 in the following way. Let

$$B_{L_2(\mu_X),j}(\eta,r) = \left\{ \theta \in \Theta_j : \|f_{\eta,j} - f_{\theta,j}\|_{L_2(\mu_X)} \le r \right\}.$$

Assumption 1 is replaced with the following.

ASSUMPTION 7. For each j, there exist constants A_j and m_j such that $0 < A_j \le 0.0056$, $m_j \ge 1$, and for any r > 0, $\delta \le 0.0056r$, $\theta \in \Theta_j$,

$$N(B_{L_2(\mu_X),j}(\theta,r),\delta,d_{j,\infty}) \leq \left(\frac{A_jr}{\delta}\right)^{m_j},$$

where $d_{j,\infty}(\theta, \eta) = \|f_{\theta,j} - f_{\eta,j}\|_{\infty}$ for all $\theta, \eta \in \Theta_j$.

Also, suppose Assumption 7 holds: we specify the weights a_j in the following way to give an upper bound for U_n :

(17)
$$a_j = \alpha \exp\left(-\left(1 + \frac{1}{2\sigma^2} + \frac{0.0056}{\sigma}\right)\eta_j\right),$$

where α is a normalizing constant so that $\sum_{j} a_{j} = 1$ and

(18)
$$\eta_j = \frac{4m_j}{c_{1,M,\sigma}(1-4\gamma)} \log(1072.5A_j) + C_j \max\left(1, \frac{8}{c_{1,M,\sigma}(1-4\gamma)}\right)$$

for some C_j such that $C_j \ge 0$ and $\sum_j e^{-C_j} \le 1$.

Assumption 2 is replaced with the following assumption.

ASSUMPTION 8. There exist j_n and $\beta_n \in \Theta_{j_n}$ such that

(19)
$$\max(D(p_{f_o} \| p_{f_{\beta_n, j_n}}), V(p_{f_o} \| p_{f_{\beta_n, j_n}})) + \frac{\eta_{j_n}}{n} \le \varepsilon_n^2$$

for some sequence $\{\varepsilon_n\}$, where η_{j_n} is as defined in (18) with A_{j_n} and m_{j_n} in Assumption 7.

Assumption 3 is replaced with the following.

ASSUMPTION 9.

(20)
$$\|f_{\theta,j_n} - f_{\eta,j_n}\|_{L_2(\mu_X)}^2 \le K'_0 d_{j_n}^2(\theta,\eta) \quad \text{for all } \theta,\eta\in\Theta_{j_n}.$$

Assumptions 4–6 remain unchanged except that "Assumptions 1–3" should be changed to "Assumptions 7–9."

Now we have the following theorem.

THEOREM 2. Suppose that $||f_{\theta,j}||_{\infty} \leq M$ for all j and $\theta \in \Theta_j$. Suppose that Assumptions 7–9 and Assumptions 4–6 hold with the reference change made as mentioned above. Then with a_j defined in (17), there exists a positive constant K_1 such that $\tilde{\pi}(\tilde{B}_{L_2(\mu_X)}(K_1\varepsilon_n)^c|X_1,\ldots,X_n)$ converges to zero in probability. Here $\tilde{B}_{L_2(\mu_X)}(K_1\varepsilon_n)$ denotes the $K_1\varepsilon_n$ neighborhood of f_o with respect to the $L_2(\mu_X)$ metric, as defined on page 1557.

The proof of Theorem 2 is given in Section 4.

3.2. An example. In this section, we consider $f_o \in W^s_{\infty}[0, 1] = \{g : \|D^s g\|_{L_{\infty}[0,1]} < \infty\}$ and approximate f_o using a spline basis. The minimax rate for this space in L_2 metric, according to Stone (1982), is $n^{-s/(1+2s)}$. We will see that, using the sieve prior given below, the posterior distribution converges at the optimal rate $n^{-s/(1+2s)}$ in L_2 distance.

LEMMA 5. Suppose that $f_o \in W^s_{\infty}[0, 1]$, $||f_o||_{\infty} < M$, where M is a known constant. Suppose that μ_X is the Lebesgue measure on [0, 1]. Let $J = \{(k, q, L) : k, q \text{ and } L \text{ are integers}; k \ge 0, q \ge 1, L \ge 1\}$. For $j = (k, q, L) \in J$, let $m_j = k + q$, and for $i \in \{1, \ldots, m_j\}$, let $B_{j,i}$ be the normalized B-spline associated with the knots y_i, \ldots, y_{i+q} , where

$$(y_1, \dots, y_q, y_{q+1}, \dots, y_{q+k}, y_{q+k+1}, \dots, y_{2q+k}) = (\underbrace{0, \dots, 0}_{q \text{ times}}, 1/(1+k), \dots, k/(1+k), \underbrace{1, \dots, 1}_{q \text{ times}}).$$

Define

 $\Theta_{j} = \{ \theta \in R^{m_{j}} : \|D^{r} f_{\theta, j}\|_{L_{\infty}[0, 1]} \le L, \forall r \in \{0, 1, \dots, q-1\} \text{ and } \|f_{\theta, j}\|_{\infty} \le M \},\$ where for $\theta = (\theta_{1}, \dots, \theta_{m_{j}}) \in R^{m_{j}},$

(21)
$$f_{\theta,j} = \sum_{i=1}^{m_j} \theta_i B_{j,i} \stackrel{def}{=} \theta' B.$$

Define η_i *according to* (18) *with*

(22) $A_j = 9.64\sqrt{q}(2q+1)9^{q-1} + 0.06 \quad and \quad C_j = m_j + L,$

and define a_j according to (17). Let π_j to be the Lebesgue measure on Θ_j . Let $\tilde{\pi}_j$ be the induced prior of π_j and $\tilde{B}_{L_2(\mu)}(s_n)$ denote the $s_n L_2(\mu)$ neighborhood of f_o , as defined on page 1557. Then for the prior $\tilde{\pi} = \sum_j a_j \tilde{\pi}_j$, the posterior probability $\tilde{\pi}(\tilde{B}_{L_2(\mu)}(s_n)^c | X_1, \ldots, X_n)$ converges to zero in probability for some $s_n \propto n^{-s/(1+2s)}$.

The proof for Lemma 5 is given in Section 4.

Here is a lemma that is useful for verifying Assumption 7 to prove Lemma 5.

LEMMA 6. Suppose that $\{S_j : j \in J\}$ is a countable collection of linear function spaces on [0, 1]. Suppose that for each S_j there is a basis $\{B_{j,1}, \ldots, B_{j,m_j}\}$. Suppose that there exist constants T_1 and T_2 such that for $\theta = (\theta_1, \ldots, \theta_{m_j}) \in \mathbb{R}^{m_j}$,

(23)
$$\left\|\sum_{i=1}^{m_j} \theta_i B_{j,i}\right\|_{\infty} \le T_1 \max_i |\theta_i|$$

and

(24)
$$\left\|\sum_{i=1}^{m_j} \theta_i B_{j,i}\right\|_2 \ge \frac{T_2}{\sqrt{m_j}} \sqrt{\sum_{i=1}^{m_j} \theta_i^2},$$

where $\|\cdot\|_2$ denotes the L_2 norm with respect to the Lebesgue measure on [0, 1]. Suppose that for $j \in J$, $\Theta_j \subset R^{m_j}$ and $f_{\theta,j}$ is as defined in (21). Then Assumption 7 holds with

(25)
$$A_j = 9.64 \frac{T_1}{T_2} + 0.06.$$

The proof is a straightforward modification of the proof for Lemma 1 of Yang and Barron (1998).

4. Proofs.

4.1. Proof of Theorem 1. We prove Theorem 1 by giving bounds for U_n and V_n , respectively, and then combining the bounds to show that U_n/V_n converges to zero. For finding an upper bound for U_n , we would like to use the following lemma, which is a modified version of Lemma 0 by Yang and Barron (1998).

LEMMA 7. Suppose that Assumption 1 holds and

$$\frac{\xi_j}{m_j} \ge \frac{4}{1-4\gamma} \log\left(\frac{46.2A_j\sqrt{1-4\gamma}}{\gamma}\right)$$

Then

$$P_o^* \left[\text{for some } \theta \in \Theta_j, \frac{1}{n} \sum_{i=1}^n \log \frac{f_{\theta,j}(X_i)}{f_o(X_i)} \ge -\gamma d_{\mathrm{H}}^2(f_o, f_{\theta,j}) + \frac{\xi_j}{n} \right]$$
$$\le 15.1 \exp\left(-\frac{1-4\gamma}{8}\xi_j\right),$$

where P_o^* is the outer measure for $P_{f_o}^n$.

PROOF. Suppose that Assumption 1 holds. We will show that for any r > 0 and $\delta \le 0.056r$,

(26)
$$N(B_{d_{\mathrm{H},j}}(r),\delta,d_{j,\infty}) \le \left(\frac{3A_{j}r}{\delta}\right)^{m_{j}},$$

where $B_{d_{\rm H},j}(r)$ is as defined on page 1557. Then the result in Lemma 7 follows from Lemma 0 in Yang and Barron (1998).

Below is the proof of (26). Fix $\varepsilon > 0$. Let $\theta_* \in \Theta_i$ be such that

$$d_{\mathrm{H}}(f_o, f_{\theta_*, j}) \leq \varepsilon r + \inf_{\theta \in \Theta_j} d_{\mathrm{H}}(f_o, f_{\theta, j})$$

Then for $\theta \in \Theta_i$,

$$d_{\mathrm{H}}(f_{o}, f_{\theta,j}) \geq \frac{1}{2} \left(d_{\mathrm{H}}(f_{o}, f_{\theta_{*},j}) + d_{\mathrm{H}}(f_{o}, f_{\theta,j}) \right) - \frac{\varepsilon r}{2}$$
$$\geq \frac{1}{2} d_{\mathrm{H}}(f_{\theta,j}, f_{\theta_{*},j}) - \frac{\varepsilon r}{2},$$

so we have

$$\begin{split} B_{d_{\mathrm{H}},j}(r) &= \{\theta \in \Theta_{j} : d_{\mathrm{H}}(f_{\theta}, f_{\theta,j}) \leq r\} \\ &\subset \{\theta \in \Theta_{j} : d_{\mathrm{H}}(f_{\theta,j}, f_{\theta_{*},j}) \leq (2+\varepsilon)r\} \\ &= B_{d_{\mathrm{H}},j}(\theta_{*}, (2+\varepsilon)r), \end{split}$$

where $B_{d_{\rm H},j}(\theta_*, (2 + \varepsilon)r)$ is as defined on page 1558. Take $\varepsilon = 1$; then by Assumption 1, for any r > 0 and $\delta \le 0.056r$, (26) holds, so by Lemma 0 in Yang and Barron (1998) the proof for Lemma 7 is complete. \Box

Suppose Assumption 1 holds. Let a_j and η_j be as specified in (2) and (3) take $\xi_j = \eta_j + \gamma n s_n^2/2$. Then by Lemma 7 and we have

$$U_n \le \left(\sum_j a_j e^{\xi_j}\right) e^{-\gamma n s_n^2}$$
$$= \alpha e^{-\gamma n s_n^2/2} \sum_j \exp\left(-\frac{1-4\gamma}{8}\eta_j\right) \le \alpha e^{-\gamma n s_n^2/2}$$

except on a set of probability no greater than

$$\sum_{j} 15.1 \exp\left(-\frac{1-4\gamma}{8}\xi_{j}\right)$$
$$= 15.1 \exp\left(-\frac{(1-4\gamma)\gamma n s_{n}^{2}}{16}\right) \sum_{j} \exp\left(-\frac{1-4\gamma}{8}\eta_{j}\right)$$
$$\leq 15.1 \exp\left(-\frac{(1-4\gamma)\gamma n s_{n}^{2}}{16}\right).$$

That is, an upper bound for U_n is given by

(27)
$$P_{f_o}^n [U_n > \alpha e^{-\gamma n s_n^2/2}] \le 15.1 \exp\left(-\frac{(1-4\gamma)\gamma n s_n^2}{16}\right).$$

To find a lower bound for V_n , we will use Lemma 1 of Shen and Wasserman (2001). Let

$$\tilde{B}_D(r) = \{g : D(f_o || g) \le r, V'(f_o || g) \le r\},\$$

where $V'(f ||g) = \int f (\log(f/g) - D(f ||g))^2 d\mu$. Here is the lemma.

LEMMA 8. For $t_n > 0$,

$$P_{f_o}^n\left(V_n \leq \frac{1}{2}\tilde{\pi}\left(\tilde{B}_D(t_n)\right)e^{-2nt_n}\right) \leq \frac{2}{nt_n}.$$

Suppose that Assumptions 2–5 hold. Let $B_{d_{j_n},j_n}(\theta,\varepsilon_n)$ denote the d_{j_n} -ball centered at θ with radius ε_n in Θ_{j_n} and define

$$B_{D,j_n}(t_n) = \{ \theta \in \Theta_{j_n} : D(f_o || f_{\theta,j_n}) \le t_n, V(f_o || f_{\theta,j_n}) \le t_n \}.$$

We will first show that

(28)
$$B_{d_{j_n},j_n}(\beta_n,\varepsilon_n) \subset B_{D,j_n}(t_n)$$

for some $t_n \propto \varepsilon_n^2$ and that

(29)
$$\pi_{j_n}\left(B_{d_{j_n},j_n}(\beta_n,\varepsilon_n)\right) \ge \left(\frac{1}{A_{j_n}^{b_1+b_2}K_4K_5}\right)^{m_{j_n}}.$$

Then we will deduce a lower bound for $\tilde{\pi}(\tilde{B}_D(t_n))$ based on (28) and (29) to apply Lemma 8.

To prove (28), note that for $\theta \in B_{d_{i_n}, j_n}(\beta_n, \varepsilon_n)$, by Assumptions 2 and 3 we have

$$V(f_o \| f_{\theta, j_n}) \le 2\varepsilon_n^2 + 2K'_0\varepsilon_n^2$$

and

$$D(f_o || f_{\theta, j_n}) \leq K_0'' V(f_o || f_{\theta, j_n}) \leq 2K_0'' (1 + K_0') \varepsilon_n^2.$$

Therefore, (28) holds for $t_n = 2 \max(1, K_0'')(1 + K_0')\varepsilon_n^2 \stackrel{\text{def}}{=} K'\varepsilon_n^2$. To prove (29), note that by Assumption 4 there exist $\theta_1, \ldots, \theta_{d^*} \in \Theta_{j_n}$ such that

1*

$$d^* \leq (A_{j_n}^{b_1} K_4)^{m_{j_n}}$$
 and $\bigcup_{i=1}^{d^*} B_{d_{j_n}, j_n}(\theta_i, \varepsilon_n) \supset \Theta_{j_n},$

so

$$\pi_{j_n} (B_{d_{j_n}, j_n}(\beta_n, \varepsilon_n)) \geq \frac{\pi_{j_n} (B_{d_{j_n}, j_n}(\beta_n, \varepsilon_n))}{\sum_{i=1}^{d^*} \pi_{j_n} (B_{d_{j_n}, j_n}(\theta_i, \varepsilon_n))}$$
$$\geq \left(\frac{1}{A_{j_n}^{b_1+b_2} K_4 K_5}\right)^{m_{j_n}},$$

where the last inequality follows from Assumption 5.

It is clear that

$$\begin{split} \tilde{\pi} \left(\tilde{B}_D(t_n) \right) &\geq a_{j_n} \pi_{j_n} \left(B_{D, j_n}(t_n) \right) \\ &\stackrel{(28)}{\geq} a_{j_n} B_{d_{j_n}, j_n}(\beta_n, \varepsilon_n) \\ &\stackrel{(29)}{\geq} a_{j_n} \left(\frac{1}{A_{j_n}^{b_1 + b_2} K_4 K_5} \right)^{m_{j_n}}, \end{split}$$

so by Lemma 8, we have that except on a set of probability no greater than $2/(nt_n)$,

$$V_{n} \geq \frac{1}{2}e^{-2nt_{n}}a_{j_{n}}\pi_{j_{n}}(B_{D,j_{n}}(t_{n}))$$

$$\geq \frac{e^{-2nt_{n}}}{2}\alpha\exp\left(-\left(1+\frac{1-4\gamma}{8}\right)\eta_{j_{n}}\right)\left(\frac{1}{A_{j_{n}}^{b_{1}+b_{2}}K_{4}K_{5}}\right)^{m_{j_{n}}}$$

$$(30) \geq \frac{\alpha}{2}\exp\left(-2nt_{n}-\eta_{j_{n}}\left(1+\frac{1-4\gamma}{8}+b_{1}+b_{2}+\left(\log(K_{4}K_{5})\right)_{+}\right)\right)$$

$$\stackrel{(4)}{\geq}\frac{\alpha}{2}\exp\left(-2nt_{n}-n\varepsilon_{n}^{2}\left(1+\frac{1-4\gamma}{8}+b_{1}+b_{2}+\left(\log(K_{4}K_{5})\right)_{+}\right)\right)$$

$$=\frac{\alpha}{2}e^{-Kn\varepsilon_{n}^{2}},$$

where $K = 2K' + 1 + (1 - 4\gamma)/8 + b_1 + b_2 + (\log(K_4K_5))_+$. Here the third inequality follows from the fact that

$$\frac{\eta_j}{m_j} \ge \frac{4}{1-4\gamma} \log\left(\frac{46.2A_j\sqrt{1-4\gamma}}{\gamma}\right)^{A_j \ge 0.0056 = 0.13\gamma/\sqrt{1-4\gamma}} \max(1, \log A_j)$$

for all *j*.

Now we will bound U_n/V_n by combining (27) and (30). In (27) set $s_n^2 = 4K\varepsilon_n^2/\gamma$. Then

$$\tilde{\pi}\left(\tilde{B}_{d_{\mathrm{H}}}(s_n)^c | X_1, \dots, X_n\right) = \frac{U_n}{V_n} \le 2\exp(-Kn\varepsilon_n^2)$$

except on a set of probability no greater than

$$15.1 \exp\left(-\frac{(1-4\gamma)Kn\varepsilon_n^2}{4}\right) + \frac{2}{K'n\varepsilon_n^2},$$

T.-M. HUANG

which converges to zero because $n\varepsilon_n^2 \to \infty$ by Assumption 6.

4.2. *Proof of Lemma* 1. We will verify Assumptions 1–6 for the spline example. To verify Assumption 1, we will apply Lemma 2. From page 143 (4.80) in Schumaker (1981)

$$\left\|\sum_{i=1}^{m_j} \theta_i B_{j,i}\right\|_{\infty} \leq \max_i |\theta_i|.$$

Since m_j and $B_{j,i}$ depend on (k, q) but not on L, we set l = (k, q), $m_l = m_j$ and $B_{l,i} = B_{j,i}$. Then (8) holds with $T_1 = 1$. To check (9), note that from (4.79) and (4.86) in Schumaker (1981), we have that for each $i \in \{1, ..., m_l\}$,

$$|\theta_i| \le (2q+1)9^{q-1}(y_{i+q}-y_i)^{-1/2} \|\theta_i B_{l,i}\|_{L_2[y_i,y_{i+q}]},$$

where y_1, \ldots, y_{2q+k} are as defined in Lemma 1 and $L_2[y_i, y_{i+q}]$ is the L_2 metric with respect to the Lebesgue measure on $[y_i, y_{i+q}]$. Since $y_{i+q} - y_i \ge 1/(1+k)$,

$$\sum_{i=1}^{m_l} \theta_i^2 \le (2q+1)^2 9^{2(q-1)} (k+1) \sum_{i=1}^{m_l} \|\theta_i B_{l,i}\|_{L_2[y_i, y_i+q]}^2$$
$$\le (2q+1)^2 9^{2(q-1)} (k+q) q \left\| \sum_{i=1}^{m_l} \theta_i B_{l,i} \right\|_2^2,$$

which implies that (9) holds with $T_2 = 1/(\sqrt{q}(2q + 1)9^{q-1})$. By Lemma 2, Assumption 1 holds for A_j and m_j in (7). Also note that for the C_j specified in (7), $\sum_j e^{-C_j} = e^{-2}/(1-e^{-1})^3 < 1$ as required.

To verify Assumption 2, we need to find j_n and β_n . Take $j_n = (k_n, q^*, L^*)$, where $\{k_n\}$ is a sequence of positive integers such that

$$c_3 n^{1/(1+2s)} \le k_n \le c_4 n^{1/(1+2s)}$$
 for all n

for some constants c_3 and c_4 , $q^* = s + 1$, and

 $L^* = \min\{L : L \text{ is a positive integer}, L \ge 2^s + \alpha_{q^*} M_0 + M_0\},\$

where $M_0 = \max_{0 \le r \le s} \|D^r \log f_o\|_{L_{\infty}}$. To control the error $\max(D(f_o \|f_{\beta_n, j_n}), V(f_o \|f_{\beta_n, j_n}))$, we use the following fact.

FACT 1. For *j* such that $q \ge s + 1$, there exists $\beta \in \mathbb{R}^{m_j}$ such that

(31)
$$\begin{split} \|D^r (\log f_o - \log f_{\beta,j})\|_{\infty} &\leq \alpha_q \left(\frac{1}{k+1}\right)^{s-r} M_0 \qquad \text{for } 0 \leq r \leq s-1, \\ \|D^s \log f_{\beta,j}\|_{\infty} &\leq \alpha_q M_0. \end{split}$$

This fact follows from (6.50) in Schumaker (1981) and the result that for $\theta = (\theta_1, \dots, \theta_{m_j}) \in \mathbb{R}^{m_j}$,

$$\begin{aligned} |\psi(\theta)| &= \left| \log \int_0^1 \exp\left(-\log f_o(x) + \sum_{i=1}^{m_j} \theta_i B_{j,i}(x) \right) f_o(x) \, dx \right| \\ &\leq \left\| \log f_o - \sum_{i=1}^{m_j} \theta_i B_{j,i} \right\|_\infty. \end{aligned}$$

From the fact, there exists $\beta_n \in R^{m_{j_n}}$ such that

$$\|\log f_o - \log f_{\beta_n, j_n}\|_{\infty} \leq \alpha_q * M_0 \left(\frac{1}{k_n + 1}\right)^s.$$

Since $D(f_o || f_{\beta_n, j_n})$ and $V(f_o || f_{\beta_n, j_n})$ are bounded by $|| \log f_o - \log f_{\beta_n, j_n} ||_{\infty}$, we have

$$\max(D(f_o \| f_{\beta_n, j_n}), V(f_o \| f_{\beta_n, j_n})) + \frac{\eta_{j_n}}{n}$$
$$\leq \alpha_{q^*} M_0 \left(\frac{1}{k_n + 1}\right)^{2s} + \frac{c_2 k_n}{n} \leq c_1 n^{-2s/(1 + 2s)}$$

for some constants c_1 and c_2 . So Assumption (2) holds if $\beta_n \in \Theta_{j_n}$ and

(32)
$$\varepsilon_n^2 = c_1 n^{-2s/(1+2s)}$$
.

To verify that $\beta_n \in \Theta_{j_n}$, we need to make sure $\beta'_n \mathbb{1}_{m_{j_n}} = 0$ and $\max_{0 \le r \le q-1} \|D^r \log f_{\beta_n, j_n}\|_{L_{\infty}} \le L^*$. For the first condition, $\beta'_n \mathbb{1}_{m_{j_n}} = 0$, we can assume it without loss of generality, because $\log f_{\beta_n, j_n}$ does not change when β_n is shifted by a constant. The second condition holds because of the second equation in (31).

Now let us verify Assumptions 3–5 with $d_{j_n} = d_{j_n,\infty}$, where $d_{j_n,\infty}$ is as defined in Assumption 1. For the verification of Assumption 3, we will use the following fact.

FACT 2. Suppose that

(33)
$$\int f_o \left(\log \frac{f_{\eta, j_n}}{f_{\theta, j_n}} \right)^2 \le K_0 d_{j_n}^2(\eta, \theta) \quad \text{for all } \eta, \theta \in \Theta_{j_n}$$

for some constant K_0 and

(34)
$$\sup_{\theta \in \Theta_{j_n}} \|\log f_o - \log f_{\theta, j_n}\|_{\infty} \le \log K_3$$

for some constant K_3 . Then Assumption 3 holds with $K'_0 = K_0$ and $K''_0 = K_3/2$.

The proof of the fact is a straightforward application of an equation in Lemma 1 by Barron and Sheu (1991), which gives

(35)
$$D(f_o || f_{\theta, j_n}) \leq \frac{1}{2} e^{\|\log f_o - \log f_{\theta, j_n}\|_{\infty}} V(f_o || f_{\theta, j_n})$$

for all $\theta \in R^{m_{j_n}}$. It is clear that (33) holds with $K_0 = 1$ and that (34) holds with $K_3 = e^{2L^*}$, so by Fact 2, Assumption 3 holds.

For Assumption 4, by Theorems IV and XIV of Kolmogorov and Tikhomirov (1961), there exists an ε_n -net F_{ε_n} for Θ_{j_n} with respect to d_{j_n} so that

$$\log \operatorname{card}(F_{\varepsilon_n}) \le c_{q^*,L^*} \left(\frac{1}{\varepsilon_n}\right)^{1/(q^*-1)}$$
$$= c_{q^*,L^*} \left(\frac{1}{\varepsilon_n}\right)^{1/s} \le c_{q^*,L^*}(k_n+1) \le c_{q^*,L^*}m_{j_n}.$$

Therefore, Assumption 4 holds with $K_4 = e^{C_{q^*,L^*}}$ and $b_1 = 0$.

We will check Assumption 5. For a positive integer *m*, for $t = (t_1, ..., t_m) \in \mathbb{R}^m$, define

$$||t||_{\infty} = \max_{1 \le i \le m} |t_i|.$$

To bound $\pi_{j_n}(B_{d_{j_n},j_n}(\beta_n,\varepsilon_n))$, we will show that

(36)
$$\left\{\theta \in R^{m_{j_n}}: \theta' \mathbb{1}_{m_{j_n}} = 0, \|\theta - \beta_n\|_{\infty} \le c_6 \left(\frac{1}{k_n + 1}\right)^s\right\} \subset B_{d_{j_n}, j_n}(\beta_n, \varepsilon_n),$$

where $c_6 = \min(1, \sqrt{c_1}/2(\sup_n n^{s/(1+2s)}(k_n+1)^{-s}))$. To prove (36), suppose that $\theta \in R^{m_{j_n}}$ and

$$\theta' \mathbb{1}_{m_{j_n}} = 0 \quad \text{and} \quad \|\theta - \beta_n\|_{\infty} \le c_6 \left(\frac{1}{k_n + 1}\right)^s.$$

We will show that

(37)
$$d_{j_n}(\theta, \beta_n) \le \varepsilon_n$$

and

(38) $\theta \in \Theta_{j_n}.$

Inequality (37) holds since

$$\|\log f_{\theta,j_n} - \log f_{\beta_n,j_n}\|_{\infty} \le 2\|\theta - \beta_n\|_{\infty} \le 2c_6c_5n^{-s/(1+2s)} \le \varepsilon_n,$$

where $c_5 = \sup_n (k_n + 1)^{-s} n^{s/(1+2s)}$. Here the second inequality holds because

$$|\psi(\theta) - \psi(\beta_n)| = \left|\log \int e^{(\theta - \beta_n)'B} e^{\beta'_n B - \psi(\beta_n)}\right| \le \|\theta - \beta_n\|_{\infty}.$$

To prove (38), we need the following inequality:

(39)
$$\|D^r(\theta'B - \beta'B)\|_{L_{\infty}} \le 2^r(k+1)^r \|\theta - \beta\|_{\infty}$$
 for all $0 \le r \le s$,
which is deduced from (4.54) in Schumaker (1981). Now note that for $0 < r < s$

$$\begin{split} \|D^{r} \log f_{\theta, j_{n}}\|_{\infty} &= \|D^{r} \theta' B\|_{\infty} \\ &\leq \|D^{r} (\theta' B - \beta'_{n} B)\|_{\infty} + \|D^{r} (\beta'_{n} B - \log f_{o})\|_{\infty} \\ &+ \|D^{r} \log f_{o}\|_{\infty} \\ \\ \overset{(39), (31)}{\leq} 2^{r} (k_{n} + 1)^{r} \|\theta - \beta_{n}\|_{\infty} + \alpha_{q^{*}} M_{0} \Big(\frac{1}{k_{n} + 1}\Big)^{s - r} + M_{0} \\ &\leq \Big(\frac{1}{k_{n} + 1}\Big)^{s - r} (2^{r} + \alpha_{q^{*}} M_{0}) + M_{0} \leq L^{*}, \end{split}$$

for r = 0,

$$\begin{split} \|\log f_{\theta, j_n}\|_{\infty} &\leq \|\log f_{\theta, j_n} - \log f_{\beta_n, j_n}\|_{\infty} + \|\log f_{\beta_n, j_n} - \log f_o\|_{\infty} + \|\log f_o\|_{\infty} \\ &\leq 2\|\theta - \beta_n\|_{\infty} + \|\log f_{\beta_n, j_n} - \log f_o\|_{\infty} + M_0 \\ &\leq \left(\frac{1}{k_n + 1}\right)^s (2 + \alpha_{q^*} M_0) + M_0 \leq L^*, \end{split}$$

and for r = s,

$$\begin{split} \|D^s \log f_{\theta, j_n}\|_{L_{\infty}} &= \|D^s \theta' B\|_{L_{\infty}} \\ &\leq \|D^s (\theta' B - \beta'_n B)\|_{L_{\infty}} + \|D^s \beta'_n B\|_{L_{\infty}} \\ &\stackrel{(39), (31)}{\leq} 2^s + \alpha_{q^*} M_0 \leq L^*. \end{split}$$

Therefore, $\theta \in \Theta_{k_n,q^*,L^*}$, so (38) and (36) hold. To bound $\pi_{j_n}(B_{d_{j_n},j_n}(\theta_1,\varepsilon_n))$ in Assumption 5, note that for all $\varepsilon > 0$ and for all j,

(40)
$$\{\theta \in \Theta_j : \|\log f_{\theta,j} - \log f_{\theta_1,j}\|_{\infty} \le \varepsilon\} \subset \{\theta \in \Theta_j : \|\theta - \theta_1\|_{\infty} \le 2\beta_{q^*}^*\varepsilon\},\$$

where $\beta_{q^*}^*$ is some positive constant. This result follows from Lemma 4.3 of Ghosal, Ghosh and van der Vaart (2000), which implies that for all $\theta, \theta_1 \in \mathbb{R}^{m_{j_n}}$,

 $\|\theta - \theta_1\|_{\infty} \le \|\log f_{(\theta - \theta_1), j_n}\|_{\infty}$ times some constant depending on q^* , and from the fact that

$$\begin{split} \|\log f_{(\theta-\theta_1),j_n} - (\log f_{\theta_1,j_n} - \log f_{\theta,j_n})\|_{\infty} \\ &= |\psi(\theta-\theta_1) - (\psi(\theta) - \psi(\theta_1))| \\ &= \left|\log \int \exp(\theta' B - \psi(\theta) - (\theta'_1 B - \psi(\theta_1)))\right| \\ &\leq \|\log f_{\theta_1,j_n} - \log f_{\theta,j_n}\|_{\infty}. \end{split}$$

s,

Then by (40) and by (36) we have

$$\frac{\pi_{j_n}(B_{d_{j_n},j_n}(\beta_n,\varepsilon_n))}{\pi_{j_n}(B_{d_{j_n},j_n}(\theta_1,\varepsilon_n))} \ge \frac{(c_6(1/(k_n+1))^s)^{k_n+q^*-1}}{(\beta_{q^*}^*\varepsilon_n)^{k_n+q^*-1}} \\\ge \left(\frac{c_6}{\beta_{q^*}^*\varepsilon_n(1+(c_4\sqrt{c_1}/\varepsilon_n)^{1/s})^s}\right)^{k_n+q^*-1}.$$

For *n* such that $0 < \varepsilon_n \le 1$,

$$\begin{aligned} \frac{\pi_{j_n}(B_{d_{j_n},j_n}(\beta_n,\varepsilon_n))}{\pi_{j_n}(B_{d_{j_n},j_n}(\theta_1,\varepsilon_n))} &\geq \left(\frac{c_6}{\beta_q^{**}\varepsilon_n((1/\varepsilon_n)^{1/s} + (c_4\sqrt{c_1}/\varepsilon_n)^{1/s})^s}\right)^{k_n+q^*-1} \\ &= \left(\frac{c_6}{\beta_q^{**}(1 + (c_4\sqrt{c_1})^{1/s})^s}\right)^{k_n+q^*-1}.\end{aligned}$$

Without loss of generality, we can assume that $\beta_{q^*} > 1$, so it is clear that Assumption 5 holds with $K_5 = \beta_{q^*}^* (1 + (c_4 \sqrt{c_1})^{1/s})^s / c_6$ and $b_2 = 0$.

For Assumption 6, it should be clear that it holds with the ε_n specified in (32). Now by Theorem 1, the result in Lemma 1 holds.

4.3. Proof of Lemma 3. We will verify Assumptions 1–6 for the Haar basis example. To verify Assumption 1, we will apply Lemma 4. First, by (3.7) in Barron, Birgé and Massart (1999), (14) holds for $K_l = 2^{(l+1)/2}$. Second, for all j and $\theta \in \Theta_j$, $|\phi(\theta)| = |\log \int e^{\theta' B}| \le ||\theta' B||_{\infty}$, so (15) holds. Therefore, by Lemma 4, Assumption 1 holds for A_j and m_j in (13). Note that for the C_j specified in (13), $\sum_j e^{-C_j} < 1$ as required.

To verify Assumption 2, we will first choose j_n and β_n , and then show that

(41)
$$\|\log f_o - \log f_{\beta_n, j_n}\|_2 \le c_{1,\alpha, f_o, H_0} \left(\frac{1}{m_{j_n}}\right)^{\alpha}, \\\|\log f_o - \log f_{\beta_n, j_n}\|_{\infty} \le 2c_{2, f_o}$$

for some constants c_{1,α,f_o,H_0} and c_{2,f_o} and that $\beta_n \in \Theta_{j_n}$. Then we will take ε_n according to an upper bound for the left-hand side of (31) so that Assumption 2 holds. We will see that ε_n converges to zero at the rate $(\log n)^{1/2} n^{-\alpha/(1+2\alpha)}$ as required.

 j_n and β_n are defined as follows. Let $\{l_n\}$ be a sequence of integers such that

$$k_3 n^{1/(1+2\alpha)} \le 2^{l_n+1} \le k_4 n^{1/(1+2\alpha)},$$

where k_3 and k_4 are positive constants. Let

$$\beta_0 + \sum_{i=1}^{m_{j_n}-1} \beta_{l_n,i} B_{l_n,i} \stackrel{\text{def}}{=} \beta_0 + \beta'_n B$$

be the L_2 projection of log f_o to the space spanned by 1 and $B_{l_n,i}: i = 1, ..., m_{j_n} - 1$. Let $M_0 = \|\log f_o\|_{\infty}$ and $c_{2,f_o} = \sup_n \|\log f_o - \beta_0 - \beta'_n B\|_{\infty}$. $(c_{2,f_o}$ is finite since $\beta_0 + \beta'_n B$ converges to log f_o uniformly.) Define

 $L^* = \min\{L: L \text{ is a positive integer and } L \ge 2c_{2, f_0} + 3M_0\}.$

Set $j_n = (l_n, L^*)$.

To prove (41), we will bound log $f_o - \beta_0 - \beta'_n B$ and $\beta_0 + \psi(\beta_n)$, respectively. By (12) we have

$$\|\log f_o - \beta_0 - \beta'_n B\|_2 \le \frac{H_0 2^{-\alpha(l_n+1)}}{\sqrt{1 - 2^{-2\alpha}}} \le \frac{H_0}{\sqrt{1 - 2^{-2\alpha}}} \left(\frac{1}{m_{j_n}}\right)^{\alpha}$$

To bound $\beta_0 + \psi(\beta_n)$, let $\Delta = \int (e^{\beta_0 + \beta'_n B - \log f_o} - 1) f_o$ and $b = \|\log f_o - \beta_0 - \beta'_n B\|_{\infty}$. Then

$$\begin{aligned} |\beta_0 + \psi(\beta_n)| &= \left| \log \int e^{\beta_0 + \beta'_n B - \log f_o} f_o \right| \\ &= |\log(1 + \Delta)| \\ &\leq \max\left(\Delta, \frac{-\Delta}{1 + \Delta}\right) \\ &\leq |\Delta| e^{b + M_0} (\text{since } e^{-b - M_0} \leq 1 + \Delta \leq e^{b + M_0}) \\ &\leq e^{b + 2M_0} \left(1 + \frac{1}{2} e^b \|\log f_o - \beta_0 - \beta'_n B\|_2\right) \|\log f_o - \beta_0 - \beta'_n B\|_2, \end{aligned}$$

where the last inequality follows from the Cauchy–Schwarz inequality and (3.3) in Barron and Sheu (1991), which says that

$$\frac{z^2}{2}e^{-\max(-z,0)} \le e^z - 1 - z \le \frac{z^2}{2}e^{\max(z,0)} \qquad \text{for all } z.$$

Therefore, the first inequality in (41) holds. The second inequality in (41) also holds since

$$\|\log f_o - \beta_0 - \beta'_n B\|_{\infty} \le \|\log f_o - \beta_0 - \beta'_n B\|_{\infty} + |\beta_0 + \psi(\beta_n)|$$

= $c_{2,f_o} + \left|\log \int e^{\beta_0 + \beta'_n B - \log f_o} f_o\right| \le 2c_{2,f_o}$

Now we have proved (41), which implies that $\|\log f_{\beta_n, j_n}\|_{\infty} \leq L^*$, so $\beta_n \in \Theta_{j_n}$.

The L_2 bound in (41) gives a bound for the error $\max(D(f_o || f_{\beta_n, j_n}), V(f_o || f_{\beta_n, j_n}))$ since

(42)
$$V(f_o || f_{\beta_n, j_n}) = \int f_o \left(\log \frac{f_o}{f_{\beta_n, j_n}} \right)^2 \le e^{|| \log f_o ||_{\infty}} || \log f_o - \log f_{\beta_n, j_n} ||_2^2$$

and by (35) and (41),

(43)
$$D(f_o || f_{\beta_n, j_n}) \leq \frac{1}{2} e^{2c_{2, f_o}} V(f_o || f_{\beta_n, j_n}).$$

By (41)–(43) and the definition of η_{j_n} , we can find two constants k_1 and k_2 which depend only on α , f_o and H_0 such that

$$\max(D(f_o || f_{\beta_n, j_n}), V(f_o || f_{\beta_n, j_n})) + \frac{\eta_{j_n}}{n} \le k_1 \left(\frac{1}{m_{j_n}}\right)^{2\alpha} + k_2 \frac{m_{j_n} \log m_{j_n}}{n}.$$

Since l_n is chosen such that $k_3 n^{1/(1+2\alpha)} \le m_{j_n} \le k_4 n^{1/(1+2\alpha)}$, we have

$$\max(D(f_o || f_{\beta_n, j_n}), V(f_o || f_{\beta_n, j_n})) + \frac{\eta_{J_n}}{n} \\ \leq \left(\frac{k_1}{k_3^{2\alpha}} + k_2 k_4 \log k_4 + \frac{k_2 k_4}{1 + 2\alpha}\right) n^{-2\alpha/(1 + 2\alpha)} \log n \\ \stackrel{\text{def}}{=} k_5 n^{-2\alpha/(1 + 2\alpha)} \log n.$$

Hence, Assumption 2 holds with $\varepsilon_n^2 = k_5 n^{-2\alpha/(1+2\alpha)} \log n$.

To verify Assumption 3, for all positive integers *m* and for all $t = (t_1, ..., t_m) \in R^m$ define

$$\|t\| = \sqrt{\sum_{i=1}^m t_i^2}.$$

Let $d_{j_n} = \| \cdot \|$ on $R^{m_{j_n}-1}$. We will verify Assumption 3 using Fact 2. For $\eta, \theta \in \Theta_{j_n}$, since

$$\begin{split} \psi(\eta) - \psi(\theta) &= \log \int e^{(\theta - \eta)'B} f_{\eta, j_n} \\ &\leq \log \int (1 + (\theta - \eta)' B e^{(\theta - \eta)'B}) f_{\eta, j_n} \\ &\leq \log \left(1 + \sqrt{\int ((\theta - \eta)'B)^2} \sqrt{\int e^{2(\theta - \eta)'B} f_{\eta, j_n}^2} \right) \\ &\leq \log (1 + \|\theta - \eta\| e^{4L^*}) \\ &\leq e^{4L^*} \|\theta - \eta\|, \\ \|\log f_{\eta, j_n} - \log f_{\theta, j_n}\|_2^2 &= (\psi(\eta) - \psi(\theta))^2 + \|\eta - \theta\|^2 \end{split}$$

and

$$\int f_o \left(\log \frac{f_{\eta, j_n}}{f_{\theta, j_n}} \right)^2 \leq e^{\|\log f_o\|_{\infty}} \|\log f_{\eta, j_n} - \log f_{\theta, j_n}\|_2^2$$
$$= e^{M_0} \|\log f_{\eta, j_n} - \log f_{\theta, j_n}\|_2^2,$$

(33) holds with $K_0 = e^{M_0}(1 + e^{8L^*})$ and clearly, (34) holds with $K_3 = e^{M_0 + 2L^*}$. Therefore, by Fact 2, Assumption 3 holds.

For checking Assumption 4, note that

$$\Theta_{j_n} \subset \{\theta \in R^{m_{j_n}-1} : \|\theta\|_{\infty} \le L^*\},\$$

which implies that for every $\varepsilon > 0$, there exists an ε -net F_{ε} for Θ_{j_n} with respect to $\|\cdot\|_{\infty}$ so that

$$\operatorname{card}(F_{\varepsilon_n}) \leq \left(1 + \frac{2L^*}{\varepsilon}\right)^{m_{j_n}-1}$$

By the fact that $\|\theta\| \leq \sqrt{m_{j_n} - 1} \|\theta\|_{\infty}$ for all $\theta \in \Theta_{j_n}$, there exists an ε_n -net F_{ε_n} for Θ_{j_n} with respect to d_{j_n} such that

$$\operatorname{card}(F_{\varepsilon_n}) \leq \left(1 + \frac{2L^*\sqrt{m_{j_n}-1}}{\varepsilon_n}\right)^{m_{j_n}-1}.$$

Since

$$\frac{1 + (2L^*\sqrt{m_{j_n} - 1})/\varepsilon_n}{A_{j_n}^{3\alpha}} \le \frac{(1 + 2L^*\sqrt{k_4}/k_5)n^{1.5\alpha/(1+2\alpha)}}{k_3^{1.5\alpha}n^{1.5\alpha/(1+2\alpha)}},$$

Assumption 4 holds with $K_4 = (1 + 2L^*\sqrt{k_4}/k_5)/(k_3^{1.5\alpha})$ and $b_1 = 3\alpha$. For Assumption 5, to bound $\pi_{j_n}(B_{d_{j_n},j_n}(\beta_n, \varepsilon_n))$, we will show that

(44)
$$\left\{\theta \in R^{m_{j_n}-1} : \|\theta - \beta_n\|_{\infty} \le \frac{\varepsilon_n}{m_{j_n}\sqrt{m_{j_n}-1}}\right\} \subset B_{d_{j_n},j_n}(\beta_n,\varepsilon_n)$$

for *n* such that $\varepsilon_n \leq M_0$. For $\theta \in R^{m_{j_n}-1}$ such that $\|\theta - \beta_n\|_{\infty} \leq \varepsilon_n/(m_{j_n}\sqrt{m_{j_n}-1})$,

$$\|\theta - \beta_n\| \leq \sqrt{m_{j_n} - 1} \|\theta - \beta_n\|_{\infty} \leq \frac{\varepsilon_n}{m_{j_n}} \leq \varepsilon_n,$$

so it suffices to show that $\theta \in \Theta_{j_n}$. For *n* such that $\varepsilon_n \leq M_0$,

$$\begin{split} \|\theta'B\|_{\infty} &\leq \|\theta'B - \beta'_{n}B\|_{\infty} + \|\beta_{0} + \beta'_{n}B - \log f_{o}\|_{\infty} + |\beta_{0}| + \|\log f_{o}\|_{\infty} \\ &\leq m_{j_{n}}\|\theta - \beta_{n}\| + 2c_{2,f_{o}}M_{0} + 2M_{0} \\ &\leq \varepsilon_{n} + 2c_{2,f_{o}}M_{0} + 2M_{0} \\ &\leq 2c_{2,f_{o}}M_{0} + 3M_{0} \leq L^{*}, \end{split}$$

so $\theta \in \Theta_{j_n}$ and (44) holds. To bound $\pi_{j_n}(B_{d_{j_n},j_n}(\theta_1,\varepsilon_n))$ in Assumption 5, note that for all $\varepsilon > 0$ and for all j,

(45)
$$\{\theta \in \Theta_j : \|\theta - \theta_1\| \le \varepsilon\} \subset \{\theta \in \Theta_j : \|\theta - \theta_1\|_{\infty} \le \varepsilon\}.$$

By (44) and (45) we have

$$\frac{\pi_{j_n}(B_{d_{j_n},j_n}(\theta_1,\varepsilon_n))}{\pi_{j_n}(B_{d_{j_n},j_n}(\beta_n,\varepsilon_n))} \leq \left(\frac{\varepsilon_n}{\varepsilon_n/(m_{j_n}\sqrt{m_{j_n}-1})}\right)^{m_{j_n}-1} \leq (m_{j_n}\sqrt{m_{j_n}-1})^{m_{j_n}}.$$

Since

$$\left(\frac{m_{j_n}\sqrt{m_{j_n}-1}}{A_{j_n}^3}\right)^{m_{j_n}} \le \left(\frac{m_{j_n}^{1.5}}{(\sqrt{m_{j_n}})^3}\right)^{m_{j_n}} = 1,$$

Assumption 5 holds with $b_2 = 3$ and $K_5 = 1$.

It is clear that Assumption 6 holds with the above ε_n , which tends to zero at the rate $(\log n)^{1/2} n^{-\alpha/(1+2\alpha)}$. By Theorem 1, the result in Lemma 3 holds.

4.4. *Proof of Theorem* 2. We prove Theorem 2 by giving bounds for U_n and V_n , and then combining the bounds to show that U_n/V_n converges to zero.

To bound U_n , we will use Lemma 9, which is the regression version of Lemma 7.

LEMMA 9. Suppose that Assumption 7 holds and $\gamma \in (0, 0.25)$ is defined so that

$$0.0056 = \frac{0.13}{c_{2,c_0,M}\sqrt{c_{1,M,\sigma}}} \frac{\gamma}{\sqrt{1-4\gamma}}.$$

Then for all j and for all ξ_i such that

$$\frac{\xi_j}{m_j} \ge \frac{4}{c_{1,M,\sigma}(1-4\gamma)} \log(1072.5A_j),$$

$$P_{f_o}^* \left[\frac{1}{n} \sum_{i=1}^n (Y_i - f_o(X_i))^2 - \frac{1}{n} \sum_{i=1}^n (Y_i - f_{\theta,j}(X_i))^2 \right]$$

$$\geq -\gamma \| f_o - f_{\theta,j} \|_{L_2(\mu_X)}^2 + \frac{\xi_j}{n} + 0.0224 \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \right| \sqrt{\frac{\xi_j}{n}}$$

for some $\theta \in \Theta_j$ and $\frac{1}{n} \sum_{i=1}^n |\varepsilon_i| \le c_0, \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 \le c_0^2 \right]$

$$\leq 15.1 \exp\left(-\frac{c_{1,M,\sigma}(1 - 4\gamma)\xi_j}{8}\right),$$

where

$$c_{1,M,\sigma} = \min\left(\frac{1 - \exp(-M^2/(2\sigma^2))}{2M^2}, \frac{1}{2\sigma^2}\right)$$
 and $c_{2,c_0,M} = 2(c_0 + 2M).$

The proof of Lemma 9 is long and is deferred to Section 4.4.1.

Now suppose that Assumption 7 holds. Take $c_0 = 2\sigma$ and define γ as in Lemma 9. Let $C_j \ge 0$ be such that $\sum_j e^{-C_j} \le 1$ and define η_j and a_j as

(18) and (17), respectively. We will apply Lemma 9 to prove (46), which gives an upper bound for U_n ,

(46)
$$P_{f_o}\left[U_n \le \alpha \exp\left(\frac{0.0056Z_n^2}{\sigma} - \frac{\gamma n s_n^2}{4\sigma^2}\right)\right] \ge 1 - (p_1 + p_2 + p_3).$$

where

$$Z_n = \frac{1}{\sqrt{n\sigma}} \sum_{i=1}^n \varepsilon_i \sim N(0, 1),$$

$$p_1 = P\left[\frac{1}{n} \sum_{i=1}^n |\varepsilon_i| > c_0\right], \qquad p_2 = P\left[\frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 > c_0^2\right]$$

and

$$p_3 = 15.1 \exp\left(-\frac{c_{1,M,\sigma}(1-4\gamma)\gamma n s_n^2}{32(0.5+0.0056\sigma)}\right).$$

To prove (46), take

$$\xi_j = \eta_j + \frac{\gamma n s_n^2}{4(0.5 + 0.0056\sigma)}.$$

Since U_n is

$$\sum_{j} a_{j} \int_{(B_{L_{2}(\mu_{X}),\Theta_{j}}(s_{n}))^{c}} \frac{\exp(1/(2\sigma^{2})\sum_{i=1}^{n}(Y_{i}-f_{o}(X_{i}))^{2})}{\exp(1/(2\sigma^{2})\sum_{i=1}^{n}(Y_{i}-f_{\theta,j}(X_{i}))^{2})} d\pi_{j}(\theta),$$

Lemma 9 gives

$$\begin{split} U_n &\leq \sum_j a_j \exp\left(\frac{1}{2\sigma^2} \left(-\gamma n s_n^2 + \xi_j + 0.0224 \left|\frac{1}{\sqrt{n}} \sum_{i=1}^n \varepsilon_i \right| \sqrt{\xi_j}\right)\right) \\ &= \sum_j a_j \exp\left(-\frac{\gamma n s_n^2}{2\sigma^2} + \frac{\xi_j}{2\sigma^2} + \frac{0.0112}{\sigma} |Z_n| \sqrt{\xi_j}\right) \\ &\leq \sum_j a_j \exp\left(-\frac{\gamma n s_n^2}{2\sigma^2} + \frac{\xi_j}{2\sigma^2} + \frac{0.0056}{\sigma} (Z_n^2 + \xi_j)\right) \\ &= \exp\left(\frac{0.0056Z_n^2}{\sigma} - \frac{\gamma n s_n^2}{4\sigma^2}\right) \sum_j a_j \exp\left(\frac{0.5 + 0.0056\sigma}{\sigma^2} \eta_j\right) \\ &= \alpha \exp\left(\frac{0.0056Z_n^2}{\sigma} - \frac{\gamma n s_n^2}{4\sigma^2}\right) \sum_j e^{-\eta_j} \\ &\leq \alpha \exp\left(\frac{0.0056Z_n^2}{\sigma} - \frac{\gamma n s_n^2}{4\sigma^2}\right) \end{split}$$

except on a set of probability no greater than

$$P\left[\frac{1}{n}\sum_{i=1}^{n}|\varepsilon_{i}| > c_{0}\right] + P\left[\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}^{2} > c_{0}^{2}\right] + 15.1\sum_{j}\exp\left(-\frac{c_{1,M,\sigma}(1-4\gamma)\xi_{j}}{8}\right).$$

Note that

$$\sum_{j} \exp\left(-\frac{c_{1,M,\sigma}(1-4\gamma)\xi_{j}}{8}\right)$$

= $\exp\left(-\frac{c_{1,M,\sigma}(1-4\gamma)\gamma ns_{n}^{2}}{32(0.5+0.0056\sigma)}\right)\sum_{j} \exp\left(-\frac{c_{1,M,\sigma}(1-4\gamma)\eta_{j}}{8}\right)$
 $\leq \exp\left(-\frac{c_{1,M,\sigma}(1-4\gamma)\gamma ns_{n}^{2}}{32(0.5+0.0056\sigma)}\right),$

so now we have the following bound for U_n :

$$P_{f_o}\left[U_n \le \alpha \exp\left(\frac{0.0056Z_n^2}{\sigma} - \frac{\gamma n s_n^2}{4\sigma^2}\right)\right] \ge 1 - (p_1 + p_2 + p_3).$$

The process of deriving a bound for V_n is the same as in Section 4.1 except for the following changes:

- 1. Replace f_o by p_{f_o} , f_{θ, j_n} by $p_{f_{\theta, j_n}}$ and Assumptions 2 and 3 by Assumptions 8 and 9.
- 2. The proof of (28) is modified as follows. First, note that in our regression setting, for all $\theta \in \Theta_j$ and for all j,

(47)
$$D(p_{f_o} \| p_{f_{\theta,j}}) = \frac{\| f_o - f_{\theta,j} \|_{L_2(\mu_X)}^2}{2\sigma^2}$$

and

(48)
$$V(p_{f_o} \| p_{f_{\theta,j}}) = \frac{\| f_o - f_{\theta,j} \|_{L_2(\mu_X)}^2}{\sigma^2} + \frac{1}{4\sigma^4} \int (f_o - f_{\theta,j})^4 \\ \leq \left(\frac{1}{\sigma^2} + \frac{M^2}{\sigma^4} \right) \| f_o - f_{\theta,j} \|_{L_2(\mu_X)}^2.$$

By (47), (48) and (20), for $\theta \in B_{d_{j_n}, j_n}(\beta_n, \varepsilon_n)$, we have

$$D(p_{f_o} \| p_{f_{\theta, j_n}}) \le D(p_{f_o} \| p_{f_{\beta_n, j_n}}) + \frac{\| f_{\beta, j_n} - f_{\theta, j_n} \|_{L_2(\mu_X)}^2}{2\sigma^2}$$
$$\le \varepsilon_n^2 + \frac{K'_0 \varepsilon_n^2}{2\sigma^2}$$

and

$$V(p_{f_o} \| p_{f_{\theta,j_n}}) \leq \left(2 + \frac{2M^2}{\sigma^2}\right) D(p_{f_o} \| p_{f_{\theta,j_n}}).$$

Therefore, (28) holds for

$$t_n^2 = \left(2 + \frac{2M^2}{\sigma^2}\right) \left(1 + \frac{K_0'}{2\sigma^2}\right) \varepsilon_n^2 \stackrel{\text{def}}{=} K' \varepsilon_n^2.$$

3. The process of deriving a lower bound for V_n in (30) is modified as follows:

$$V_{n} \geq \frac{1}{2}e^{-2nt_{n}^{2}}a_{j_{n}}\pi_{j_{n}}(B_{D,j_{n}}(t_{n}))$$

$$\geq \frac{\alpha e^{-2nt_{n}^{2}}}{2}\exp\left(-\left(1+\frac{1}{2\sigma^{2}}+\frac{0.0056}{\sigma}\right)\eta_{j_{n}}\right)\left(\frac{1}{A_{j_{n}}^{b_{1}+b_{2}}K_{4}K_{5}}\right)^{m_{j_{n}}}$$

$$\geq \frac{\alpha}{2}\exp\left(-2nt_{n}^{2}-\eta_{j_{n}}\left(1+\frac{1}{2\sigma^{2}}+\frac{0.0056}{\sigma}\right)+c_{1}(b_{1}+b_{2}+(\log(K_{4}K_{5}))_{+})\right)$$

$$\stackrel{(19)}{\geq}\frac{\alpha}{2}\exp\left(-2nt_{n}^{2}-n\varepsilon_{n}^{2}\left(1+\frac{1}{2\sigma^{2}}+\frac{0.0056}{\sigma}\right)+c_{1}(b_{1}+b_{2}+(\log(K_{4}K_{5}))_{+})\right)$$

$$\geq \frac{\alpha}{2}e^{-Kn\varepsilon_{n}^{2}},$$

where $c_1 = c_{1,M,\sigma}$ and

$$K = 2K' + 1 + \frac{1}{2\sigma^2} + \frac{0.0056}{\sigma} + c_1(b_1 + b_2 + (\log(K_4K_5))_+).$$

Here we have used the fact that

$$\frac{c_1\eta_j}{m_j} \ge \frac{4}{1-4\gamma} \log\left(\frac{1072.5A_j\sqrt{1-4\gamma}}{\gamma}\right) \ge \max(1,\log A_j)$$

for all j.

Now we will bound U_n/V_n by combining (46) and (50). In (46), set

$$s_n^2 = \frac{8\sigma^2 K \varepsilon_n^2}{\gamma}.$$

Then

$$\tilde{\pi} \left(\tilde{B}_{L_2(\mu_X)}(s_n)^c | X_1, \dots, X_n \right) = \frac{U_n}{V_n}$$
$$\leq 2 \exp\left(\frac{0.0056Z_n^2}{\sigma}\right) \exp(-Kn\varepsilon_n^2)$$

except on a set of probability no greater than

$$p_1 + p_2 + 15.1 \exp\left(-\frac{c_{1,M,\sigma}(1-4\gamma)8\sigma^2 K n \varepsilon_n^2}{32(0.5+0.0056\sigma)}\right) + \frac{2}{K' n \varepsilon_n^2},$$

where

$$Z_n = \frac{1}{\sqrt{n\sigma}} \sum_{i=1}^n \varepsilon_i \sim N(0, 1),$$
$$p_1 = P\left[\frac{1}{n} \sum_{i=1}^n |\varepsilon_i| > c_0\right]$$

and

$$p_2 = P\left[\frac{1}{n}\sum_{i=1}^n \varepsilon_i^2 > c_0^2\right].$$

Note that $c_0 = 2\sigma > \max(E|\varepsilon_i|, E\varepsilon_i^2)$, so $p_1 + p_2 \to 0$ as $n \to \infty$. Since $2e^{0.0056Z_n^2/\sigma}$ converges in distribution and $e^{-Kn\varepsilon_n^2}$ converges to zero by Assumption 6, we have that $2e^{0.0056Z_n^2/\sigma}e^{-Kn\varepsilon_n^2}$ converges to zero in probability. Therefore, $\tilde{\pi}(\tilde{B}_{L_2(\mu_X)}(s_n)^c|X_1, \ldots, X_n)$ converges to zero in probability as stated in Theorem 2.

4.4.1. An exponentional inequality. We claim that to prove Lemma 9, it suffices to prove Lemma 10, which has a slightly different assumption.

ASSUMPTION 10. For some $j \in J$, for $\theta \in \Theta_j$, $||f_{\theta,j}||_{\infty} \leq M$, and there exist constants A > 0, $m \geq 1$ and $0 < \rho \leq A$ such that for any r > 0, $\delta \leq \rho r$, $\theta \in \Theta_j$, the δ -covering number

$$N(B_{L_2(\mu_X),\Theta_j}(r),\delta,d_{j,\infty}) \leq \left(\frac{Ar}{\delta}\right)^m,$$

where $B_{L_2(\mu_X),\Theta_j}(r) = \{\theta \in \Theta_j : \|f_o - f_{\theta,j}\|_{L_2(\mu_X)} \le r\}$ and for $\eta, \theta \in \Theta_j$, $d_{j,\infty}(\eta, \theta) = \|f_{\eta,j} - f_{\theta,j}\|_{\infty}$.

LEMMA 10. Suppose that Assumption 10 holds with

$$\rho \ge \frac{0.13}{c_{2,c_0,M}\sqrt{c_{1,M,\sigma}}}\frac{\gamma}{\sqrt{1-4\gamma}}$$

Then for ξ *such that*

$$\frac{\xi}{m} \ge \frac{4}{c_{1,M,\sigma}(1-4\gamma)} \log \left(15.4c_{2,c_0,M} \sqrt{c_{1,M,\sigma}} A \frac{\sqrt{1-4\gamma}}{\gamma} \right),$$

$$P^* \left[\frac{1}{n} \sum_{i=1}^n (Y_i - f_o(X_i))^2 - \frac{1}{n} \sum_{i=1}^n (Y_i - f_{\theta,j}(X_i))^2 \right]$$

$$\geq -\gamma \| f_o - f_{\theta,j} \|_{L_2(\mu_X)}^2 + \frac{\xi}{n} + 4 \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \right| \delta$$

for some $\theta \in \Theta_j$ and $\frac{1}{n} \sum_{i=1}^n |\varepsilon_i| \le c_0, \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 \le c_0^2 \right]$

$$\leq 15.1 \exp\left(-\frac{c_{1,M,\sigma}(1 - 4\gamma)\xi}{8}\right),$$

where

$$\delta = \frac{2\gamma}{15.4c_{2,c_0,M}\sqrt{c_{1,M,\sigma}(1-4\gamma)}}\sqrt{\frac{\xi}{n}},$$

$$c_{1,M,\sigma} = \min\left(\frac{1 - \exp(-M^2/(2\sigma^2))}{2M^2}, \frac{1}{2\sigma^2}\right)$$
 and $c_{2,c_0,M} = 2(c_0 + 2M)$.

To see that the claim is true, note that in the proof for (26), $d_{\rm H}$ can be replaced by $L_2(\mu_X)$. Therefore, if Assumption 7 holds, then for all $j \in J$, Assumption 10 holds with $A = 3A_j$ and $\rho = 0.0056$. Suppose that Lemma 10 is true. Then Lemma 9 follows by setting $\rho = 0.0056$ and choosing γ such that

$$\rho = \frac{0.13}{c_{2,c_0,M}\sqrt{c_{1,M,\sigma}}} \frac{\gamma}{\sqrt{1-4\gamma}}.$$

PROOF OF LEMMA 10. We follow the proof of Lemma 0 in Yang and Barron (1998). First, divide the space Θ_j into rings

$$\Theta_{j,i} = \{ \theta \in \Theta_j : r_{i-1} \le \| f_o - f_{\theta,j} \|_{L_2(\mu_X)} \le r_i \}, \qquad i = 0, 1, \dots,$$

where $r_i = 2^{i/2} \sqrt{\xi/n}$ for $i \ge 0$ and $r_{-1} = 0$. For each ring $\Theta_{j,i}$, we will use a chaining argument to bound

$$q_{i} \stackrel{\text{def}}{=} P^{*} \left[\frac{1}{n} \sum_{i'=1}^{n} (Y_{i'} - f_{o}(X_{i'}))^{2} - \frac{1}{n} \sum_{i'=1}^{n} (Y_{i'} - f_{\theta,j}(X_{i'}))^{2} \right]$$

$$\geq -\gamma \| f_{o} - f_{\theta,j} \|_{L_{2}(\mu_{X})}^{2} + \frac{\xi}{n} + 4 \left| \frac{1}{n} \sum_{i'=1}^{n} \varepsilon_{i'} \right| \delta$$

for some $\theta \in \Theta_{j,i}$ and $\frac{1}{n} \sum_{i'=1}^{n} |\varepsilon_{i'}| \leq c_{0}, \frac{1}{n} \sum_{i'=1}^{n} \varepsilon_{i'}^{2} \leq c_{0}^{2} \right].$

T.-M. HUANG

Then we will put all the bounds for q_i together to complete the proof. So let us focus on one $\Theta_{j,i}$ first. Let $\{\delta_k\}_{k=0}^{\infty}$ be a sequence decreasing to zero with $\delta_0 \leq \min(\rho r_0, \delta)$ and define $\tilde{\delta}_k = \delta_k$ for $k \geq 1$ and $\tilde{\delta}_0 = \delta_0/2$. Then by assumption we can find a sequence of nets $\tilde{F}_0, \tilde{F}_1, \ldots$, where each \tilde{F}_k is a $\tilde{\delta}_k$ net in $\Theta_{j,i}$ satisfying the cardinal number constraint in Assumption 10. In other words, for each k, there exists a mapping $\tilde{\tau}_k : \Theta_{j,i} \to \tilde{F}_k$ such that $\|f_{\tilde{\tau}_k(\theta),j} - f_{\theta,j}\|_{\infty} \leq \tilde{\delta}_k$ for all $\theta \in \Theta_{j,i}$, and

$$\operatorname{card}(\tilde{F}_k) \leq \left(\frac{Ar_k}{\tilde{\delta}_k}\right)^m$$

Instead of applying the chaining argument using the nets \tilde{F}_k , we will modify the net \tilde{F}_0 first and then apply the chaining argument using the nets F_k , where $F_k = \tilde{F}_k$ for $k \ge 1$ and F_0 is the modified \tilde{F}_0 . Now modify the net \tilde{F}_0 in the following way: Consider a positive number ε . For each $\tilde{\theta}_0$ in \tilde{F}_0 , find θ_0 in

$$\tilde{\tau}_0^{-1}(\hat{\theta}_0) = \{\theta \in \Theta_{j,i} : \tilde{\tau}_0(\theta) = \hat{\theta}_0\}$$

such that

$$\|f_{o} - f_{\theta_{0},j}\|_{L_{2}(\mu_{X})}^{2} \leq \inf_{\theta \in \tilde{\tau}_{0}^{-1}(\tilde{\theta}_{0})} \|f_{o} - f_{\theta,j}\|_{L_{2}(\mu_{X})}^{2} + \varepsilon.$$

Define $\tau(\tilde{\theta}_0) = \theta_0$, and $F_0 = \{\tau(\tilde{\theta}_0) : \tilde{\theta}_0 \in \tilde{F}_0\}$. Define $\tau_0 = \tau(\tilde{\tau}_0)$ and $\tau_k = \tilde{\tau}_k$ for $k \ge 1$. Then by the triangle inequality, $\|f_{\tau_0(\theta),j} - f_{\theta,j}\|_{\infty} \le \delta_0$, so F_0 is a δ_0 net and for each k, F_k is a δ_k net. Now we can start the chaining argument. For each $\theta \in \Theta_{j,i}$, define

$$l_0 = \frac{1}{n} \sum_{i=1}^n (Y_i - f_o(X_i))^2 - \frac{1}{n} \sum_{i=1}^n (Y_i - f_{\tau_0(\theta), j}(X_i))^2$$

and

$$l_{k} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - f_{\tau_{k-1}(\theta), j}(X_{i}))^{2} - \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - f_{\tau_{k}(\theta), j}(X_{i}))^{2}$$

for $k \ge 1$. Then

$$\frac{1}{n}\sum_{i=1}^{n} (Y_i - f_o(X_i))^2 - \frac{1}{n}\sum_{i=1}^{n} (Y_i - f_{\theta,j}(X_i))^2 = l_0 + \sum_{k=1}^{\infty} l_k.$$

Now, instead of giving bounds for $l_k - E l_k$ as in Yang and Barron (1998), we will give bounds for $l_k - E_{\varepsilon} l_k$, where

$$E_{\varepsilon}l_{k} = \frac{2}{n} \sum_{i=1}^{n} \varepsilon_{i} \int (f_{\tau_{k}(\theta),j} - f_{\tau_{k-1}(\theta),j}) d\mu_{X} + \|f_{o} - f_{\tau_{k-1}(\theta,j)}\|_{L_{2}(\mu_{X})}^{2} - \|f_{o} - f_{\tau_{k}(\theta,j)}\|_{L_{2}(\mu_{X})}^{2}$$

is the conditional expectation of l_k given $\varepsilon_1, \ldots, \varepsilon_n$ for $k \ge 1$. Note that

$$\sum_{k=1}^{\infty} E_{\varepsilon} l_{k} = 2 \left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \right) \int (f_{\theta,j} - f_{\tau_{0}(\theta),j}) \mu_{X} \\ + \| f_{o} - f_{\tau_{0}(\theta,j)} \|_{L_{2}(\mu_{X})}^{2} - \| f_{o} - f_{\theta,j} \|_{L_{2}(\mu_{X})}^{2} \\ \leq 2 \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \right| \int (f_{\theta,j} - f_{\tau_{0}(\theta),j}) \mu_{X} + \varepsilon \\ \leq 4 \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \right| \delta_{0} + \varepsilon \leq 4 \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \right| \delta + \varepsilon,$$

so

$$q_{i} \leq P^{*}(B_{0} \cap B)$$

$$\leq P^{*}\left(\left\{l_{0} \geq -2\gamma r_{i}^{2} + \frac{\xi}{n} - \varepsilon \text{ for some } \theta \in \Theta_{j,i}\right\} \cap B\right)$$

$$+ \sum_{k=1}^{\infty} P^{*}\left(\left\{l_{k} - E_{\varepsilon}l_{k} \geq \eta_{k} \text{ for some } \theta \in \Theta_{j,i}\right\} \cap B\right)$$

$$\stackrel{\text{def}}{=} q_{i}^{(1)} + \sum_{k=1}^{\infty} q_{i,k}^{(2)}$$

if
$$\sum_{k=1}^{\infty} \eta_k \leq \gamma r_i^2$$
, where

$$B_0 = \left\{ l_0 + \sum_{k=1}^{\infty} (l_k - E_{\varepsilon} l_k) \geq -\varepsilon - \gamma \| f_o - f_{\theta,j} \|_{L_2(\mu_X)}^2 + \frac{\xi}{n} \text{ for some } \theta \in \Theta_{j,i} \right\}$$
and

and

$$B = \left\{ \frac{1}{n} \sum_{i=1}^{n} |\varepsilon_i| \le c_0, \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i^2 \le c_0^2 \right\}.$$

To bound $q_i^{(1)}$, we will use the following inequality of Chernoff (1952):

FACT 3. Suppose that X_i are i.i.d. from a distribution with density g_2 with respect to measure μ and g_1 is a density with respect to the same measure. Then

$$P\left[\frac{1}{n}\sum_{i=1}^{n}\log\frac{g_{1}(X_{i})}{g_{2}(X_{i})} \ge t\right] \le \exp\left(-\frac{n}{2}\left(d_{\mathrm{H}}^{2}(g_{1},g_{2})+t\right)\right).$$

Since

$$l_0 = \frac{2\sigma^2}{n} \sum_{i=1}^n \log \frac{p_{f_{\tau_0(\theta),j}}(X_i)}{p_{f_o}(X_i)},$$

Fact 3 implies that for a $\tau_0(\theta)$,

(50)
$$P[l_0 \ge t] \le \exp\left(-\frac{n}{2} \left(d_{\mathrm{H}}^2(p_{f_{\tau_0(\theta),j}}, p_{f_o}) + t/(2\sigma^2)\right)\right).$$

To replace the Hellinger distance $d_{\rm H}^2(p_{f_{\tau_0(\theta),j}}, p_{f_o})$ with the L^2 distance $||f_{\tau_0(\theta),j} - f_o||_{L_2(\mu_X)}$ in (50), note that

$$d_{\mathrm{H}}^{2}(p_{f_{\tau_{0}(\theta),j}}, p_{f_{o}}) = 2 \int \left(1 - \exp\left(-\frac{(f_{\tau_{0}(\theta),j}(x) - f_{o}(x))^{2}}{8\sigma^{2}}\right)\right) d\mu(x)$$

$$(51) \qquad \geq \frac{1 - \exp(-M^{2}/(2\sigma^{2}))}{2M^{2}} \int (f_{\tau_{0}(\theta),j}(x) - f_{o}(x))^{2} d\mu(x)$$

$$\stackrel{\mathrm{def}}{=} c_{0,M,\sigma} \|f_{\tau_{0}(\theta),j} - f_{o}\|_{L_{2}(\mu_{X})}^{2}.$$

Here the equality follows from direct calculation and the inequality follows from the fact that $(1 - e^{-x})/x$ is decreasing with x on $(0, \infty)$ and that $\|f_{\tau_0(\theta),j}\|_{\infty}, \|f_o\|_{\infty} \leq M$. Now by (50) and (51), we have

$$P[l_0 \ge t] \le \exp\left(-\frac{n}{2}(c_{0,M,\sigma} \| f_{\tau_0(\theta),j} - f_o \|_{L_2(\mu_X)}^2 + t/(2\sigma^2))\right)$$

$$\le \exp\left(-\frac{c_{1,M,\sigma}n}{2}(\| f_{\tau_0(\theta),j} - f_o \|_{L_2(\mu_X)}^2 + t)\right),$$

where $c_{1,M,\sigma} = \min(c_{0,M,\sigma}, 1/(2\sigma^2))$. Set $t = -2\gamma r_i^2 + \frac{\xi}{n} - \varepsilon$. Then for a $\tau_0(\theta)$,

$$P\left[l_0 \ge -2\gamma r_i^2 + \frac{\xi}{n} - \varepsilon\right] \le \exp\left(-\frac{c_{1,M,\sigma}n}{2}\left(r_{i-1}^2 - 2\gamma r_i^2 + \frac{\xi}{n} - \varepsilon\right)\right).$$

Therefore,

(52)
$$q_{i}^{(1)} \leq \operatorname{card}(F_{0}) \exp\left(-\frac{c_{1,M,\sigma}n}{2}\left(r_{i-1}^{2}-2\gamma r_{i}^{2}+\frac{\xi}{n}-\varepsilon\right)\right)$$
$$\leq \operatorname{card}(F_{0}) \exp\left(-\frac{c_{1,M,\sigma}n}{2}\left((i+1)(1-4\gamma)\frac{\xi}{n}-\varepsilon\right)\right),$$

where the last inequality was verified in Yang and Barron (1998), from the end of page 111 to the beginning of page 112.

To bound $q_{i,k}^{(2)}$, we will use Hoeffding's inequality.

FACT 4. Suppose that $\{Y_i\}_{i=1}^n$ are independent with mean zero and that $a_i \leq Y_i \leq b_i$ for all *i*. Then for $\eta > 0$,

$$P\left[\sum_{i=1}^{n} Y_i \ge \eta\right] \le \exp\left(\frac{-2\eta^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right).$$

For a pair $(\tau_{k-1}(\theta), \tau_k(\theta))$,

$$\begin{split} \left| \left(Y_i - f_{\tau_{k-1}(\theta),j}(X_i) \right)^2 - \left(Y_i - f_{\tau_k(\theta),j}(X_i) \right)^2 \right| \\ &\leq 2 \left| f_{\tau_{k-1}(\theta),j}(X_i) - f_{\tau_k(\theta),j}(X_i) \right| \\ &\times \left| \varepsilon_i + f_o(X_i) - \frac{f_{\tau_{k-1}(\theta),j}(X_i) + f_{\tau_k(\theta),j}(X_i)}{2} \right| \\ &\leq 2 (\delta_{k-1} + \delta_k) (|\varepsilon_i| + 2M) \leq 4 (|\varepsilon_i| + 2M) \delta_{k-1}. \end{split}$$

By Hoeffding's inequality, the conditional probability

$$P[l_k - E_{\varepsilon}l_k \ge \eta|\varepsilon_1, \dots, \varepsilon_n] \le \exp\left(\frac{-2n^2\eta^2}{\sum_{i=1}^n 64(|\varepsilon_i| + 2M)^2\delta_{k-1}^2}\right)$$
$$\le \exp\left(\frac{-2n\eta^2}{64(c_0 + 2M)^2\delta_{k-1}^2}\right)$$

if $\sum_{i=1}^{n} |\varepsilon_i|/n \le c_0$ and $\sum_{i=1}^{n} \varepsilon_i^2/n \le c_0^2$. Integrating the conditional probability over set *B*, we have

$$P(\{l_k - E_{\varepsilon}l_k \ge \eta\} \cap B) \le \exp\left(\frac{-2n\eta^2}{64(c_0 + 2M)^2\delta_{k-1}^2}\right).$$

Therefore,

(53)
$$q_{i,k}^{(2)} \le \operatorname{card}(F_{k-1})\operatorname{card}(F_k)\exp\left(\frac{-2n\eta_k^2}{64(c_0+2M)^2\delta_{k-1}^2}\right).$$

Now combine (52) and (53) and let $\varepsilon \to 0$. Then we have

$$q_{i} \leq \operatorname{card}(F_{0}) \exp\left(-\frac{nc_{1,M,\sigma}}{2}(i+1)(1-4\gamma)\frac{\xi}{n}\right)$$
$$+ \sum_{k=1}^{\infty} \operatorname{card}(F_{k-1}) \operatorname{card}(F_{k}) \exp\left(\frac{-2n\eta_{k}^{2}}{64(c_{0}+2M)^{2}\delta_{k-1}^{2}}\right)$$
$$\leq \left(\frac{Ar_{i}}{\tilde{\delta}_{0}}\right)^{m} \exp\left(-\frac{c_{1,M,\sigma}}{2}(i+1)(1-4\gamma)\xi\right)$$
$$+ \sum_{k=1}^{\infty} \left(\frac{Ar_{i}}{\tilde{\delta}_{k-1}}\right)^{m} \left(\frac{Ar_{i}}{\tilde{\delta}_{k}}\right)^{m} \exp\left(\frac{-2n\eta_{k}^{2}}{64(c_{0}+2M)^{2}\delta_{k-1}^{2}}\right).$$

Now choose δ_0 , δ_k so that

$$\log\left(\frac{Ar_0}{\tilde{\delta}_k}\right)^m = \frac{c_{1,M,\sigma}(k+1)(1-4\gamma)\xi}{4}$$

and η_k such that

$$\frac{2n\eta_k^2}{64(c_0+2M)^2\delta_{k-1}^2} = im\log 2 + \frac{(2k+1)c_{1,M,\sigma}(1-4\gamma)\xi}{4} + \frac{(i+1)kc_{1,M,\sigma}(1-4\gamma)\xi}{8}.$$

Now the bound for q_i becomes

$$\begin{split} q_{i} &\leq 2^{im/2} \exp\left(\frac{c_{1,M,\sigma}(1-4\gamma)\xi}{4}\right) \exp\left(-\frac{c_{1,M,\sigma}}{2}(i+1)(1-4\gamma)\xi\right) \\ &+ \sum_{k=1}^{\infty} \exp\left(-\frac{(i+1)c_{1,M,\sigma}k(1-4\gamma)\xi}{8}\right) \\ &\leq \exp\left(\frac{im}{2}\log 2 - \frac{(i+1)c_{1,M,\sigma}(1-4\gamma)\xi}{4}\right) \\ &+ \exp\left(-\frac{(i+1)c_{1,M,\sigma}(1-4\gamma)\xi}{8}\right) \\ &\times \left(1 - \exp\left(-\frac{(i+1)c_{1,M,\sigma}(1-4\gamma)\xi}{8}\right)\right)^{-1}. \end{split}$$

Note that by assumption,

$$\frac{m}{2}\log\frac{2A}{\rho_0} \le \frac{c_{1,M,\sigma}(1-4\gamma)\xi}{8},$$

where

$$\rho_0 = \frac{2\gamma}{15.4c_{2,c_0,M}\sqrt{c_{1,M,\sigma}(1-4\gamma)}}.$$

Since $\rho_0 \le \rho \le A$, we have

(54)
$$\frac{\log 2}{2} \le \frac{m}{2} \log 2 \le \frac{m}{2} \log \frac{2A}{\rho_0} \le \frac{c_{1,M,\sigma}(1-4\gamma)\xi}{8},$$

so

$$\begin{split} q_i &\leq \exp\left(-\frac{(i+1)c_{1,M,\sigma}(1-4\gamma)\xi}{8}\right) \\ &\times \left(1 + \left(1 - \exp\left(-\frac{c_{1,M,\sigma}(1-4\gamma)\xi}{8}\right)\right)^{-1}\right) \\ &\leq \left(1 + \frac{\sqrt{2}}{\sqrt{2}-1}\right) \exp\left(-\frac{(i+1)c_{1,M,\sigma}(1-4\gamma)\xi}{8}\right) \end{split}$$

and

$$P^* \left[\frac{1}{n} \sum_{i=1}^n (Y_i - f_o(X_i))^2 - \frac{1}{n} \sum_{i=1}^n (Y_i - f_{\theta,j}(X_i))^2 \right]$$

$$\geq -\gamma \| f_o - f_{\theta,j} \|_{L_2(\mu_X)}^2 + \frac{\xi}{n} + 4 \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \right| \delta$$
for some $\theta \in \Theta_j$ and $\frac{1}{n} \sum_{i=1}^n |\varepsilon_i| \le c_0, \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 \le c_0^2$

$$\leq \sum_{i=0}^\infty q_i$$

$$\leq \left(1 + \frac{\sqrt{2}}{\sqrt{2} - 1} \right) \exp\left(-\frac{c_{1,M,\sigma}(1 - 4\gamma)\xi}{8} \right)$$

$$\times \left(1 - \exp\left(-\frac{c_{1,M,\sigma}(1 - 4\gamma)\xi}{8} \right) \right)^{-1}$$

$$\stackrel{(54)}{\le} 15.1 \exp\left(-\frac{c_{1,M,\sigma}(1 - 4\gamma)\xi}{8} \right).$$

It remains to check that $\{\delta_k\}_{k=0}^{\infty}$ is a decreasing sequence

(55)
$$\sum_{k=1}^{\infty} \eta_k \le \gamma r_i^2,$$

and

(56)
$$\delta_0 \le \min(r_0 \rho, \delta),$$

as claimed in the beginning of the proof. By (54), $\delta_0/\delta_1 \ge 1$, so $\{\delta_k\}_{k=0}^{\infty}$ is decreasing by construction. To verify (55), let $c_2 = 2(c_0 + 2M)$ and $c_1 = c_{1,M,\sigma}$. Then

$$\eta_{1} = 2c_{2}A\sqrt{\frac{\xi}{n}}\exp\left(-\frac{c_{1}(1-4\gamma)\xi}{4m}\right)\sqrt{\frac{im8\log 2}{n}} + \frac{(i+7)c_{1}(1-4\gamma)\xi}{n}$$

$$\stackrel{(54)}{\leq} 2c_{2}A\frac{\xi}{n}\sqrt{c_{1}(1-4\gamma)}\exp\left(-\frac{c_{1}(1-4\gamma)\xi}{4m}\right)\sqrt{3i+9},$$

and for $k \ge 2$,

$$\eta_{k} = c_{2}A\sqrt{\frac{\xi}{n}}\exp\left(-\frac{c_{1}k(1-4\gamma)\xi}{4m}\right)$$
$$\times \sqrt{\frac{im8\log 2}{n} + \frac{2(2k+1)c_{1}(1-4\gamma)\xi}{n} + \frac{(i+1)kc_{1}(1-4\gamma)\xi}{n}}$$

$$\stackrel{(54)}{\leq} c_2 A \frac{\xi}{n} \sqrt{c_1(1-4\gamma)} \exp\left(-\frac{c_1 k (1-4\gamma) \xi}{4m}\right) \\ \times \sqrt{2(2k+1) + (i+1)(k+2)} \\ \leq c_2 A \frac{\xi}{n} \sqrt{c_1(1-4\gamma)} \exp\left(-\frac{c_1 k (1-4\gamma) \xi}{4m}\right) \sqrt{(i+5)(k+2)} \\ \leq c_2 A \frac{\xi}{n} \sqrt{c_1(1-4\gamma)} \exp\left(-\frac{c_1 k (1-4\gamma) \xi}{8m}\right) \sqrt{i+5}.$$

Therefore,

$$\begin{split} \sum_{k=1}^{\infty} \eta_k &\leq c_2 A \frac{\xi}{n} \sqrt{c_1 (1 - 4\gamma)} \exp\left(-\frac{c_1 (1 - 4\gamma) \xi}{4m}\right) \sqrt{i + 5} \\ &\times \left(2\sqrt{3} + \frac{1}{1 - \exp(-c_1 (1 - 4\gamma) \xi/(8m))}\right) \\ &\leq c_2 A \frac{\xi}{n} \sqrt{c_1 (1 - 4\gamma)} \exp\left(-\frac{c_1 (1 - 4\gamma) \xi}{4m}\right) \sqrt{5} 2^i \\ &\times \left(2\sqrt{3} + \frac{1}{1 - \exp(-c_1 (1 - 4\gamma) \xi/(8m))}\right) \\ &\stackrel{(54)}{\leq} c_2 A \frac{\xi}{n} \sqrt{c_1 (1 - 4\gamma)} \exp\left(-\frac{c_1 (1 - 4\gamma) \xi}{4m}\right) \sqrt{5} 2^i \left(2\sqrt{3} + \frac{\sqrt{2}}{\sqrt{2} - 1}\right) \\ &\leq 15.4 c_2 \sqrt{c_1} A \frac{\sqrt{1 - 4\gamma}}{\gamma} \exp\left(-\frac{c_1 (1 - 4\gamma) \xi}{4m}\right) \gamma 2^i \frac{\xi}{n} \\ &= 15.4 c_2 \sqrt{c_1} A \frac{\sqrt{1 - 4\gamma}}{\gamma} \exp\left(-\frac{c_1 (1 - 4\gamma) \xi}{4m}\right) \gamma r_i^2. \end{split}$$

To make (55) hold, it is sufficient to require that

$$\frac{\xi}{m} \ge \frac{4}{c_1(1-4\gamma)} \log\left(15.4c_2\sqrt{c_1}A\frac{\sqrt{1-4\gamma}}{\gamma}\right)$$

as in the assumption. Now it remains to verify (56). (56) follows from the fact that

$$\delta_0 = 2A\sqrt{\frac{\xi}{n}} \exp\left(-\frac{c_1(1-4\gamma)\xi}{4m}\right) \stackrel{(54)}{\leq} \rho_0 \sqrt{\frac{\xi}{n}} = \delta$$

and that

$$\frac{\delta_0}{r_0} = 2A \exp\left(-\frac{c_1(1-4\gamma)\xi}{4m}\right) \stackrel{(54)}{\leq} 2A \frac{\rho_0}{2A} \leq \rho.$$

The proof for Lemma 10 is complete. \Box

4.5. Proof of Lemma 5. We will prove Lemma 5 by verifying the assumptions in Theorem 2. To verify Assumption 7, we will apply Lemma 6. Following the same arguments in the verification of Assumption 1 of Lemma 1 in Section 4.2, we have that (8) and (9) hold with $T_1 = 1$ and $T_2 = 1/(\sqrt{q}(2q + 1)9^{q-1})$. By Lemma 6, Assumption 7 holds for A_j and m_j in (22). Note that for the C_j specified in (22), $\sum_j e^{-C_j} = e^{-2}/(1 - e^{-1})^3 < 1$ as required.

To verify Assumption 8, we choose j_n and β_n as in the verification for Assumption 2 in the proof of Lemma 1 except for the following changes:

1. Fact 1 is replaced by Fact 5.

FACT 5. For *j* such that $q \ge s + 1$, there exists $\beta \in \mathbb{R}^{m_j}$ such that

(57)
$$\|D^{r}(f_{o} - f_{\beta,j})\|_{\infty} \leq \alpha_{q} \left(\frac{1}{k+1}\right)^{s-r} M_{0} \quad \text{for } 0 \leq r \leq s-1,$$
$$\|D^{s}f_{\beta,j}\|_{\infty} \leq \alpha_{q} M_{0},$$

where $M_0 = \max_{0 \le r \le s} \|D^r f_o\|_{L_{\infty}}$.

The above fact follows from (6.50) in Schumaker (1981). 2. $\beta_n \in R^{m_{j_n}}$ is chosen so that

(58)
$$||f_o - f_{\beta_n, j_n}||_{\infty} \le \alpha_{q^*} M_0 \left(\frac{1}{k_n + 1}\right)^s.$$

By (47), (48) and (58), for the above j_n and β_n ,

$$\max(D(f_o || f_{\beta_n, j_n}), V(f_o || f_{\beta_n, j_n})) + \frac{\eta_{j_n}}{n} \le c_1 n^{-2s/(1+2s)},$$

so Assumption (2) holds if $\beta_n \in \Theta_{j_n}$ and

(59)
$$\varepsilon_n^2 = c_1 n^{-2s/(1+2s)}$$

To verify that $\beta_n \in \Theta_{j_n}$, we need to make sure $\max_{0 \le r \le q-1} \|D^r f_{\beta_n, j_n}\|_{L_{\infty}} \le L^*$ and $\|f_{\beta_n, j_n}\|_{\infty} \le M$. The first condition follows from the second equation in (57). The second condition holds for large *n* because of (58) and the fact that $\|f_o\| < M$. Therefore, Assumption 8 holds for large *n* for the ε_n in (59).

Assumption 9 holds with $d_{j_n}(\eta, \theta) = ||f_{\eta, j_n} - f_{\theta, j_n}||_{\infty}$ for all $\eta, \theta \in \Theta_{j_n}$ since (20) holds with $K'_0 = 1$.

For Assumption 4, the verification is the same as the one for Assumption 4 in the proof of Lemma 1.

To verify Assumption 5, we need to bound $\pi_{j_n}(B_{d_{j_n},j_n}(\beta_n,\varepsilon_n))$ by showing that

(60)
$$\left\{\theta \in R^{m_{j_n}} : \|\theta - \beta_n\|_{\infty} \le c_6 \left(\frac{1}{k_n + 1}\right)^s\right\} \subset B_{d_{j_n}, j_n}(\beta_n, \varepsilon_n),$$

where $c_6 = \min(1, \sqrt{c_1}/(\sup_n n^{s/(1+2s)}(k_n + 1)^{-s}))$. For $\theta \in R^{m_{j_n}}$ such that $\|\theta - \beta_n\|_{\infty} \le c_6(1/(k_n + 1))^s$, we will prove (37) and (38). The inequality (37) follows from the same arguments as in the verification for (37) in the proof of Lemma 1, except that $\|\log f_{\theta,j_n} - \log f_{\beta_n,j_n}\|_{\infty}$ is replaced by $\|f_{\theta,j_n} - f_{\beta_n,j_n}\|_{\infty}$ and the factor 2 is dropped. To prove (38), note that for $0 \le r \le s$,

$$\|D^r f_{\theta, j_n}\|_{\infty} \le L^*$$
 and $\|D^s f_{\theta, j_n}\|_{L_{\infty}} \le L^*$,

where the results follow from the same arguments for the verification of (38) in the proof of Lemma 1 except that $\log f_{\theta, j_n}$ is replaced by f_{θ, j_n} , $\log f_o$ is replaced by f_o and the case r = 0 is combined with the case 0 < r < s here. Also,

$$\begin{split} \|f_{\theta,j_n}\|_{\infty} &= \|\theta'B\|_{\infty} \\ &\leq \|\theta'B - \beta'_nB\|_{\infty} + \|\beta'_nB - f_o\|_{\infty} + \|f_o\|_{\infty} \\ &\stackrel{(39),(57)}{\leq} \|\theta - \beta_n\|_{\infty} + \alpha_{q^*} \Big(\frac{1}{k_n + 1}\Big)^s M_0 + \|f_o\|_{\infty} \\ &\leq \Big(\frac{1}{k_n + 1}\Big)^s (1 + \alpha_{q^*}M_0) + \|f_o\|_{\infty} < M \end{split}$$

for large *n* since $||f_o||_{\infty} < M$. Therefore, $\theta \in \Theta_{k_n,q^*,L^*}$ and (60) holds.

To bound $\pi_{j_n}(B_{d_{j_n},j_n}(\theta_1,\varepsilon_n))$ in Assumption 5, note that by Lemma 4.3 of Ghosal, Ghosh and van der Vaart (2000), there exists $\beta_{q^*}^* > 1$ such that for all $\varepsilon > 0$ and for all j,

(61)
$$\{\theta \in \Theta_j : \|f_{\theta,j} - f_{\theta_1,j}\|_{\infty} \le \varepsilon \} \subset \{\theta \in \Theta_j : \|\theta - \theta_1\|_{\infty} \le \beta_q^* \varepsilon \}.$$

Then by (61) and (60), following the arguments after the verification of (40) in the proof of Lemma 1, Assumption 5 holds with $K_5 = \beta_{q^*}^* (1 + (c_4 \sqrt{c_1})^{1/s})^s / c_6$ and $b_2 = 0$.

For Assumption 6, it should be clear that it holds with the ε_n specified in (59). Apply Theorem 2 and we have the result in Lemma 5.

Acknowledgments. The author thanks Professor L. Wasserman for supervising the author's thesis work, from which this paper is taken. The author also thanks the referees and an Associate Editor for constructive suggestions to improve the readibility and accuracy of this paper.

REFERENCES

- BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization. *Probab. Theory Related Fields* 113 301–413.
- BARRON, A., SCHERVISH, M. and WASSERMAN, L. (1999). The consistency of posterior distributions in nonparametric problems. *Ann. Statist.* 27 536–561.
- BARRON, A. and SHEU, C. (1991). Approximation of density functions by sequences of exponentional families. Ann. Statist. 19 1347–1369.

- BELITSER, E. and GHOSAL, S. (2003). Adaptive Bayesian inference on the mean of an infinitedimensional normal distribution. *Ann. Statist.* **31** 536–559.
- CHERNOFF, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. *Ann. Math. Statist.* **23** 493–507.
- DIACONIS, P. and FREEDMAN, D. (1986). On the consistency of Bayes estimates (with discussion). Ann. Statist. 14 1–67.
- DOOB, J. L. (1949). Application of the theory of martingales. Coll. Int. du CNRS Paris no. 13 23-27.
- GHOSAL, S., GHOSH, J. K. and RAMAMOORTHI, R. V. (1999). Posterior consistency of Dirichlet mixtures in density estimation. *Ann. Statist.* **27** 143–158.
- GHOSAL, S., GHOSH, J. K. and VAN DER VAART, A. W. (2000). Convergence rates of posterior distributions. *Ann. Statist.* **28** 500–531.
- KOLMOGOROV, A. N. and TIKHOMIROV, V. M. (1961). ε-entropy and ε-capacity of sets in functional space. *Amer. Math. Soc. Transl. Ser.* 2 **17** 277–364.
- SCHUMAKER, L. L. (1981). Spline Functions: Basic Theory. Wiley, New York.
- SCHWARTZ, L. (1965). On Bayes procedures. Z. Wahrsch. Verw. Gebiete 4 10-26.
- SHEN, X. and WASSERMAN, L. (2001). Rates of convergence of posterior distributions. *Ann. Statist.* **29** 687–714.
- STONE, C. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 1040–1053.
- STONE, C. (1990). Large-sample inference for log-spline models. Ann. Statist. 18 717-741.
- YANG, Y. and BARRON, A. (1998). An asymptotic property of model selection criteria. *IEEE Trans. Inform. Theory* **44** 95–116.

DEPARTMENT OF STATISTICS IOWA STATE UNIVERSITY 314 SNEDECOR HALL AMES, IOWA 50011-1210 USA E-MAIL: tmhuang@iastate.edu