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COMPLEXITY REGULARIZATION VIA LOCALIZED
RANDOM PENALTIES

BY GÁBOR LUGOSI1 AND MARTEN WEGKAMP

Pompeu Fabra University and Florida State University

In this article, model selection via penalized empirical loss minimization
in nonparametric classification problems is studied. Data-dependent penalties
are constructed, which are based on estimates of the complexity of a small
subclass of each model class, containing only those functions with small
empirical loss. The penalties are novel since those considered in the literature
are typically based on the entire model class. Oracle inequalities using these
penalties are established, and the advantage of the new penalties over those
based on the complexity of the whole model class is demonstrated.

1. Introduction. In this article, we propose a new complexity-penalized
model selection method based on data-dependent penalties. We consider the binary
classification problem where, given a random observationX ∈ R

d , one has to
predictY ∈ {0,1}. A classifier or classification rule is a functionf :Rd → {0,1},
with loss

L(f )
def= P{f (X) �= Y }.

A sampleDn = (X1, Y1), . . . , (Xn,Yn) of n independent, identically distributed
(i.i.d.) pairs is available. Each pair(Xi, Yi) has the same distribution as(X,Y ) and
Dn is independent of(X,Y ). The statistician’s task is to select a classification rule
fn based on the dataDn such that theprobability of error

L(fn) = P{fn(X) �= Y |Dn}
is small. The Bayes classifier

f ∗(x)
def= I{P[Y = 1|X = x] ≥ P[Y = 0|X = x]}

(whereI denotes the indicator function) is the optimal rule as

L∗ def= inf
f : Rd→{0,1}

L(f ) = L(f ∗),

but both f ∗ and L∗ are unknown to the statistician. In this article, we study
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1680 G. LUGOSI AND M. WEGKAMP

classifiersf :Rd → {0,1} which minimize theempirical loss

L̂(f ) = 1

n

n∑
i=1

I{f (Xi) �= Yi}

over a class of rulesF . For anyf̄ ∈ F minimizing the empirical probability of
error, we have

EL(f̄ ) − L∗ = EL̂(f̄ ) − L∗ + E(L − L̂)(f̄ )

= E inf
f ∈F

L̂(f ) − L∗ + E(L − L̂)(f̄ )

≤ inf
f ∈F

EL̂(f ) − L∗ + E(L − L̂)(f̄ )

= inf
f ∈F

L(f ) − L∗ + E(L − L̂)(f̄ ).

Clearly, theapproximation error

inf
f ∈F

L(f ) − L∗

is decreasing asF becomes richer. However, the more complexF , the more
difficult the statistical problem becomes: theestimation error

E(L − L̂)(f̄ )

increases with the complexity ofF . In many approaches to the problem described
above, one fixes in advance a sequence of model classesF1,F2, . . . , whose union
is F . Denote byf̂k a function in Fk having minimal empirical loss and by
L∗

k = inff ∈Fk
L(f ) the minimal loss in classFk . The problem of penalized model

selection is to find a possibly data-dependent penaltyĈk , assigned to each classFk ,
such that minimizing the penalized empirical loss

L̂(f ) + Ĉk, f ∈ Fk, k = 1,2, . . . ,

leads to a prediction rule

f̂
def= f̂

k̂
, wherek̂

def= argmin
k≥1

(
L̂(f̂k) + Ĉk

)
,

with smallest possible loss.
The main idea is that sincêfk minimizesL̂(f ) over f ∈ Fk , we find, by the

argument described above, that

EL(f̂k) − L∗ ≤ L∗
k − L∗ + E(L − L̂)(f̂k).

Our goal is to find the classFk such thatL(f̂k) is as small as possible. To this
end, a good balance has to be found between the approximation and estimation
errors. The approximation error is unknown to us, but the estimation error may
be estimated. The key to complexity-regularized model selection is that a tight
bound for the estimation error is a good penaltyĈk . More precisely, we show in
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Lemma 2.1 that if, for some constantγ > 0,

P{Ĉk ≤ (L − L̂)(f̂k)} ≤ γ

n2k2 ,

then the oracle inequality

EL(f̂ ) − L∗ ≤ inf
k

(L∗
k − L∗ + EĈk) + 2γ n−2

holds, and also a similar bound,

L(f̂ ) − L∗ ≤ inf
k

(L∗
k − L∗ + 2Ĉk),

holds with probability greater than 1− 4γ n−2. This simple result shows that the
penalty should be, with large probability, an upper bound on the estimation error,
and to guarantee good performance the bound should be as tight as possible.

Originally, distribution-freebounds, based on uniform-deviation inequalities,
were proposed as penalties. For example, the structural risk minimization method
of Vapnik and Chervonenkis [27] uses penalties of the form

Ĉk = γ

√
logSk(2n) + logk

n
,

whereγ is a constant andSk(2n) is the 2n-maximal shatter coefficient of the class

Ak = {{x :f (x) = 1}, f ∈ Fk

}
,

that is,

Sk(2n) = max
x1,...,x2n

∣∣{{x1, . . . , x2n} ∩ A, A ∈ Ak

}∣∣
(1.1)

= max
x1,...,x2n

∣∣{(f (x1), . . . , f (x2n)
)
, f ∈ Fk

}∣∣;
see, for example, [9, 26]. The fact that this type of penalty works follows from
the Vapnik–Chervonenkis inequality. Suchdistribution-freebounds are attractive
because of their simplicity, but precisely because of their distribution-free nature
they are necessarily loose in many cases.

Recently, various attempts have been made to define the penalties in a data-
dependent way to achieve this goal; see, for example, [2, 11, 13, 15, 17, 19, 22].

For example, in [2] and [11] random complexity penalties based onRademacher
averages were proposed and investigated. Rademacher averages are defined as

R̂Fk
= E

[
sup
f ∈Fk

1

n

n∑
i=1

σiI{f (Xi) �= Yi}
∣∣∣∣Dn

]
,

whereσ1, . . . , σn are i.i.d. symmetric{−1,1}-valued random variables indepen-
dent ofDn. The reason why this penalty was introduced is based on the fact that

E sup
f ∈Fk

(L − L̂)(f ) � ER̂Fk
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(see, e.g., [25]), and sincêRFk
can be shown to be sharply concentrated around

its mean. In fact, concentration inequalities have been a key tool in the analysis
of data-based penalties (see [19]) and this paper relies heavily on some recent
concentration results.

The model selection method based on Rademacher complexities satisfies an
oracle inequality of the rough form

EL(f̂ ) − L∗ ≤ inf
k

[
L∗

k − L∗ + γ1ER̂Fk
+ γ2

√
logk

n

]
(1.2)

(see [2] and [11]) for values of the constantsγ1, γ2 > 0. The advantage of this
bound over the one obtained by the distribution-free penalties mentioned above
may perhaps be better understood if we further bound

ER̂Fk
≤

√
E log2Sk(X

n
1)

2n
,

where

Sk(X
n
1) = ∣∣{{X1, . . . ,Xn} ∩ A :A = {x :f (x) = 1}, f ∈ Fk

}∣∣
(1.3)

= ∣∣{(f (X1), . . . , f (Xn)
)
, f ∈ Fk

}∣∣,
is therandom shatter coefficient of the classF̂k, which obviously never exceeds
the worst-case shatter coefficientSk(n) and may be significantly smaller for certain
distributions.

However, this improved penalty is still not completely satisfactory. To see this,
recall that by a classical result of Vapnik and Chervonenkis, for any indexk,

EL(f̂k) − L∗
k ≤ c

(√
L∗

k · E logSk(X
n
1)

n
+ E logSk(X

n
1)

n

)
,(1.4)

which is much smaller than the corresponding expected Rademacher average if
L∗

k is small. (For explicit constants we refer to Theorem 1.14 in [16].) Since in
typical classification problems the minimal errorL∗

k in classFk is often very
small for somek, it is important to find penalties which allow derivation of oracle
inequalities with the appropriate dependence onL∗

k . In particular, a desirable goal
would be to develop classifierŝf for which an oracle inequality resembling

EL(f̂ ) − L∗ ≤ inf
k

{
L∗

k − L∗ + γ1

√
L∗

k · E logSk(X
n
1)

n
+ γ2

E logSk(X
n
1)

n

}
holds for all distributions. The main results of this article (Theorems 4.1 and 4.2)
show that estimates of the desired property are indeed possible to construct in a
conceptually simple way.

By the key Lemma 2.1, it suffices to find a data-dependent upper estimate
of (L − L̂)(f̂k) which has the order of magnitude of the above upper bound. The
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difficulty is thatL∗
k andE logSk(X

n
1) both depend on the underlying distribution.

The improvement is achieved by decreasing the penalties so that the supremum
in the definition of the Rademacher average is not taken over the whole classFk

but rather over a small subclasŝFk containing only functions which “look good”
on the data. More precisely, define the random subclassF̂k ⊂ Fk by

F̂k = {
f ∈ Fk : L̂(f ) ≤ γ1L̂(f̂k) + γ2n

−1 logSk(X
n
1) + γ3n

−1 log(nk)
}

for some nonnegative constantsγ1, γ2 andγ3.
Risk estimates based on localized Rademacher averages have been considered

in several recent papers. The most closely related procedure is proposed by
Koltchinskii and Panchenko [12], who, assuming inff ∈F L(f ) = 0, compute the
Rademacher averages of subclasses ofF with empirical loss less thanr for
different values ofr obtained by a recursive procedure, and obtain bounds for the
loss of the empirical risk minimizer in terms of the localized Rademacher averages
obtained after a certain number of iterations. Our approach of bounding the loss is
conceptually simpler: it suffices to compute the Rademacher complexities at only
one scale which depends on the smallest empirical loss in the class and a term of
a smaller order determined by the shatter coefficients of the whole class. Thus, we
use “global” information to determine the scale of localization. Bartlett, Bousquet
and Mendelson [3] also derive closely related generalization bounds based on
localized Rademacher averages. In their approach the performance bounds also
depend on Rademacher averages computed at different scales of localization,
which are combined by the technique of peeling. For further recent related work,
we also refer to [7, 8, 24].

The rest of the paper is organized as follows. Section 2 presents some basic
inequalities on model selection, which generalizes some of the results in [2].
Section 3 proposes a simple but suboptimal penalty which already has some of the
main features of the penalties presented in Section 4. It shows, in a transparent
way, some of the underlying ideas of the main results. Section 4 introduces a
new penalty based on the Rademacher averageR̂F̂k

and it is shown that the new
estimate yields an improvement of the desired form.

2. Preliminaries. In this section we present two basic auxiliary lemmata
on model selection. The first lemma is general in the sense that it does not
depend on the particular choice of the penaltyĈk . This result was mentioned
in the Introduction and generalizes a result obtained by Bartlett, Boucheron and

Lugosi [2]. We recall that the penalized estimator is defined byf̂
def= f̂

k̂
, with

k̂
def= argmink≥1(L̂(f̂k) + Ĉk).

LEMMA 2.1. Suppose that the random variables Ĉ1, Ĉ2, . . . are such that

P{Ĉk ≤ (L − L̂)(f̂k)} ≤ γ

n2k2
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for some γ > 0 and for all k. Then we have

EL(f̂ ) − L∗ ≤ inf
k

[L∗
k − L∗ + EĈk] + 2γ

n2
.

It is clear that we can always takêCk ≤ 1.

PROOF OFLEMMA 2.1. Observe that

Esup
k

{(L − L̂)(f̂k) − Ĉk} ≤ P

{
sup
k

[(L − L̂)(f̂k) − Ĉk] ≥ 0
}

(since supk[(L − L̂)(f̂k) − Ĉk] ≤ 1)

≤
∞∑

k=1

P{(L − L̂)(f̂k) − Ĉk ≥ 0}

(by the union bound)

≤
∞∑

k=1

γ

n2k2

(by assumption)

≤ 2γ

n2 .

Therefore, we may conclude that

EL(f̂ ) − L∗ = E[L̂(f̂ ) − L∗ + Ĉ
k̂
] + E[(L − L̂)(f̂ ) − Ĉ

k̂
]

(wherek̂ is the selected model index, i.e.,f̂ = f̂
k̂
)

≤ E inf
k

[L̂(f̂k) − L∗ + Ĉk] + E[(L − L̂)(f̂ ) − Ĉ
k̂
]

(by definition off̂ )

≤ E inf
k

[
inf

f ∈Fk

L̂(f ) − L∗ + Ĉk

]
+ Esup

k

[(L − L̂)(f̂k) − Ĉk]

(by definition off̂k)

≤ inf
k

[
inf

f ∈Fk

L(f ) − L∗ + EĈk

]
+ Esup

k

[(L − L̂)(f̂k) − Ĉk]

(interchangeE and inf )

≤ inf
k

[L∗
k − L∗ + EĈk] + 2γ

n2

(by the preceding display)



RANDOM PENALTIES 1685

and the proof is complete.�

The preceding result is not entirely satisfactory for the following reason.
Although it presents a useful bound, it is a bound for theaverage risk behavior
of f̂ . However, the penalty is computed on the data at hand, and therefore the
proposed criterion should have optimal performance for (almost) all possible
sequences of the data. The following result presents a nonasymptotic oracle
inequality which holds with large probability and an asymptotic almost-sure
version.

LEMMA 2.2. Assume that, for all k,n ≥ 1,

P{Ĉk ≤ (L − L̂)(f̂k)} ≤ γ

n2k2

and

P{Ĉk ≤ (L̂ − L)(f ∗
k )} ≤ γ

n2k2
.

Then, for all n ≥ 1 we have

P

[
L(f̂ ) − L∗ ≥ inf

k
(L∗

k − L∗ + 2Ĉk)

]
≤ 4γ

n2

and the asymptotic almost-sure bound

P

[
lim inf
n→∞

{
L(f̂ ) − L∗ ≤ inf

k
(L∗

k − L∗ + 2Ĉk)

}]
= 1.

PROOF. Let k̂ be the selected model index. Notice that

L(f̂ ) = L̂(f̂ ) + Ĉ
k̂
+ (L − L̂)(f̂ ) − Ĉ

k̂

≤ inf
k

[L̂(f̂k) + Ĉk] + sup
k

[(L − L̂)(f̂k) − Ĉk]

≤ inf
k

[L̂(f ∗
k ) + Ĉk] + sup

k

[(L − L̂)(f̂k) − Ĉk]

≤ inf
k

[L∗
k + 2Ĉk] + sup

k

[(L̂ − L)(f ∗
k ) − Ĉk] + sup

k

[(L − L̂)(f̂k) − Ĉk].

By assumption, the last two terms on the right-hand side satisfy

P

[
sup
k

[(L̂ − L)(f ∗
k ) − Ĉk] + sup

k

[(L − L̂)(f̂k) − Ĉk] ≥ 0
]

≤
∞∑

k=1

2γ

n2k2 <
4γ

n2 ,

proving the first inequality. The almost-sure statement is a direct consequence of
the Borel–Cantelli lemma.�
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3. A simple version. The purpose of this short section is to offer a simplified
yet suggestive illustration of the ideas. As discussed in the Introduction, an ideal
penalty would be a tight upper bound for the expression on the right-hand side
of (1.4). Motivated by this bound, we propose the simple penalty

Ĉk = 2

√
2L̂(f̂k) + 8

logSk(2n) + 2 log(nk)

n
·
√

logSk(2n)

n
+ 2

log(nk)

n
,

where Sk(2n) is the (worst-case) 2n-shatter coefficient defined in (1.1). Thus,
the minimal lossL∗

k in classFk is estimated by its natural empirical coun-
terpart L̂(f̂k) = inff ∈Fk

L̂(f ) and the expected logarithmic shatter coefficient
E logSk(X

n
1) is estimated by the distribution-freeupper bound logSk(2n). [This

term may be bounded further byVk log(2n + 1), whereVk is the VC-dimension
of the setAk .] The auxiliary termsn−1 log(nk) are necessary to derive the de-
sired oracle inequalities. The next theorem shows that the proposed penalty indeed
works.

THEOREM 3.1. Consider the penalized empirical loss minimizer f̂ with the
data-based penalty Ĉk defined above. Then, for every n and for all distributions
of (X,Y ),

EL(f̂ ) − L∗ ≤ inf
k

(L∗
k − L∗ + EĈk) + 16

n2
.

In particular,

EL(f̂ ) − L∗ ≤ inf
k

[
L∗

k − L∗ + 4

√
L∗

k + 2

n
{logSk(2n) + 2 log(nk)}

×
√

logSk(2n)

n
+ 2

log(nk)

n

]
+ 16

n2
.

The proof uses Lemma 2.1 and the following uniform deviation bound due to
Vapnik and Chervonenkis [27]. (The slightly improved form used here is proved
by Anthony and Shawe-Taylor [1].)

PROPOSITION3.2. Let Sk(X
2n
1 ) be the random shatter coefficient of Ak based

on i.i.d. observations X1, . . . ,X2n defined in (1.3).For all ε > 0 and n ≥ 1,

P

{
sup
f ∈F

L(f ) − 2L̂(f ) ≥ 2ε

}
≤ 4ESk(X

2n
1 )exp(−nε/4)(3.1)

and

P

{
sup
f ∈F

L̂(f ) − 2L(f ) ≥ 2ε

}
≤ 4ESk(X

2n
1 )exp(−nε/4).(3.2)
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PROOF. Observe that, for allε > 0 andn ≥ 1,{
sup
f ∈F

L(f ) − 2L̂(f ) ≥ 2ε

}
⊆

{
sup
f ∈F

L(f ) − L̂(f )√
L(f )

≥ √
ε

}
,

and similarly,{
sup
f ∈F

L̂(f ) − 2L(f ) ≥ 2ε

}
⊆

{
sup
f ∈F

L̂(f ) − L(f )√
L̂(f )

≥ √
ε

}
.

The proposition follows by [1]. �

PROOF OFTHEOREM 3.1. We start with the proof of the first inequality of
Theorem 3.1. In view of Lemma 2.1, it suffices to show that

P{L(f̂k) − L̂(f̂k) ≥ Ĉk} ≤ 8/(nk)2.

Consequently, by (3.2),

P

{
2L̂(f̂k) + 8

logSk(2n)

n
+ 16

log(nk)

n
≤ L(f̂k)

}
= P

{
L(f̂k) − 2L̂(f̂k) ≥ 8

logSk(2n)

n
+ 16

log(nk)

n

}
≤ 4Sk(2n)exp

{
−n

8

(
8

logSk(2n)

n
+ 16

log(nk)

n

)}
= 4

n2k2
,

so that

P{Ĉk ≥ C̃k} ≥ 1− 4/(nk)2,

where

C̃k = 2
√

L(f̂k) ·
√

logSk(2n)

n
+ 2

log(nk)

n
.

Another application of inequality (3.2) yields

P{L(f̂k) − L̂(f̂k) ≥ Ĉk}
≤ P{L(f̂k) − L̂(f̂k) ≥ C̃k} + 4

(nk)2

≤ 4Sk(2n)exp
{
−n

4
· 4

(
logSk(2n)

n
+ 2

log(nk)

n

)}
+ 4

(nk)2

= 8

(nk)2
.
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Conclude via Lemma 2.1 that

EL(f̂ ) ≤ min
k

(Lk + EĈk) + 16

n2
.

For the second inequality, deduce that for allδ > 0,

E

√
L̂(f̂k) + δ ≤

√
EL̂(f̂k) + δ ≤

√
E inf

f ∈Fk

L̂(f ) + δ ≤
√

L∗
k + δ,

by Jensen’s inequality and the definition off̂k. �

The bound of Theorem 3.1 has the right dependence onL∗
k as suggested by

inequality (1.4) mentioned in the Introduction. In particular, ifL∗
k happens to

equal zero for some classFk , then the upper bound has an improved rate of
convergence. The disadvantage of the simple penalty defined above is that instead
of the expected shatter coefficients, a distribution-free (and therefore suboptimal)
upper bound appears for each classFk .

Recently, Boucheron, Lugosi and Massart [4] proved that logSk(X
n
1) concen-

trates sharply around its mean. For example, we have the following inequalities.

PROPOSITION3.3. For all ε > 0, n ≥ 1,

P[E logSk(X
n
1) > 2 logSk(X

n
1) + 2ε] ≤ e−ε,

P[logSk(X
n
1) > 2E logSk(X

n
1) + 2ε] ≤ e−ε.

Moreover, for each n ≥ 1,

E logSk(X
n
1) ≤ logESk(X

n
1) ≤ 1

ln2
E logSk(X

n
1) ≤ 2E logSk(X

n
1).

This proposition implies that the expected random log shatter coefficients
E logSk(X

n
1) of Fk may be replaced by a constant times logSk(X

n
1) and vice

versa. Hence we may replace the distribution-freebounds logSk(2n) by empirical
estimates logSk(X

n
1), at the price of slightly worse constants. The main oracle

inequalities in Section 4 are accompanied by asymptotic almost-sure versions of
bounds for the expected value. Such bounds are easy to obtain as well, simply by
invoking Lemma 2.2 instead of Lemma 2.1. The details are omitted here.

4. Rademacher penalties. The main results of the paper are presented in this
section. Assign to each model classFk ,

ûk = 16
4 logSk(X

n
1) + 9 log(nk)

n
,(4.1)

with Sk(X
n
1) defined in (1.3), and the class

F̂k = {f ∈ Fk : L̂(f ) ≤ 16L̂(f̂k) + 15ûk}.(4.2)
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Observe that the clasŝFk contains only those classifiers whose empirical loss is
not much larger than that of the empirical minimizer. Note that the constant 16
has no special role; it has been chosen by convenience. Any constant larger than 1
would lead to similar results, at the price of modifying other constants. The termûk

depends on the shatter coefficient of the whole classFk but it is typically small
compared tôL(f̂k).

The penalty is calculated in terms of the Rademacher average of this smaller
class. More precisely, define the complexity estimate by

Ĉk = (
8R̂F̂k

+ 20n−1 log(nk) + 2
√

n−1 log(nk) ·
√

8L̂(f̂k) + 7ûk

) ∧ 1.(4.3)

Again, not too much attention should be paid to the values of the constants
involved. We favored simple readable proofs over optimal constants. Note that,
throughSk(X

n
1), the penalty also depends on the random shatter coefficient of the

whole classFk . However, the term involving the shatter coefficient of the entire
classFk ,

n−1
√

log(nk) · logSk(X
n
1),

is typically much smaller (by a factorn−1/2) than the Rademacher average of the
whole classFk . [For instance, see (4.8) and Proposition 4.6.]

We have the following performance bound for the expected loss of the
minimizer f̂ of the penalized empirical losŝL(f̂k) + Ĉk .

THEOREM 4.1. For every n,

EL(f̂ ) − L∗ ≤ inf
k

(L∗
k − L∗ + EĈk) + 22

n2 .

In addition, with probability greater than 1− 44/n2,

L(f̂ ) − L∗ ≤ inf
k

(L∗
k − L∗ + 2Ĉk),

and also

P

[
lim inf
n→∞

{
L(f̂ ) − L∗ ≤ inf

k
(L∗

k − L∗ + 2Ĉk)

}]
= 1.

The next theorem is here to point out that the bound above is indeed a significant
improvement over bounds of the type (1.2), and that the dependence on the
minimal lossL∗

k and the random shatter coefficient has the form suggested by (1.4).
For this purpose, we introduce

ūk = 16
8E logSk(X

n
1) + 17 log(nk)

n
(4.4)

and the class

F k = {f ∈ Fk : L(f ) ≤ 64L∗
k + 63ūk}.
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We also set

εk = 2n−1 log(nk).

THEOREM 4.2. The following oracle inequality holds:

EL(f̂ ) − L∗ ≤ min
k≥1

[
L∗

k − L∗ + 8ER̂F k
+ 15εk + 16

√
L∗

k + ūk · √
2εk

] + 22n−2.

In particular, there exist universal constants γ1 and γ2 such that

EL(f̂ ) − L∗ ≤ inf
k

{
L∗

k − L∗ + γ1

√
L∗

k · (E logSk(X
n
1) ∨ log(nk))

n

+ γ2
E logSk(X

n
1) ∨ log(nk)

n

}
.

This oracle inequality has the desired form outlined in the Introduction and
improves upon the results of [2] and [13]. For example, in the special case when
L∗

k = 0 for k ≥ k0, we obtain, for some numerical constantsc1 andc2,

EL(f̂ ) ≤ min
k≥k0

c1
E logSk(X

n
1) ∨ log(nk)

n
+ c2

n2 ,

which is of a different order of magnitude from the penalties considered by
[2] and [13]. Theorem 4.2 is only stated for the expected loss but an inequality
which holds with “large” probability may be obtained just as in Theorem 4.1.

Proofs of Theorems 4.1 and 4.2. First, recall the definitions of̂uk and ūk in
(4.1) and (4.4), respectively, and in addition define

uk = 8
2 logESk(X

n
1) + 2 log(nk)

n

and the event

Bk
def= {uk ≤ ûk ≤ ūk}.

Observe Proposition 3.3 yields that, with probability at least 1− 1/(nk)2,

uk = 16

n
{logESk(X

n
1) + log(nk)}

≤ 16

n
{2E logSk(X

n
1) + log(nk)}

≤ 16

n
{2[2 logSk(X

n
1) + 4 log(nk)] + log(nk)}

= ûk
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≤ 16

n
{4[2E logSk(X

n
1) + 4 log(nk)] + 9 log(nk)}

= 16

n
{8E logSk(X

n
1) + 17 log(nk)}

= ūk

and therefore

PBc
k ≤ (nk)−2.(4.5)

Finally, we introduce the event

Ak =
{

sup
f ∈Fk

L(f ) − 2L̂(f ) ≤ uk

}
∩

{
sup
f ∈Fk

L̂(f ) − 2L(f ) ≤ uk

}
and the class

F ∗
k = {f ∈ Fk : L(f ) ≤ 4L∗

k + 3uk}.
The following intermediate result will be useful in the proofs of both theorems.

LEMMA 4.3. We have

P{Ak ∩ Bk} ≥ 1− 9

(nk)2
,(4.6)

and on the set Ak ∩ Bk the following hold:

(i) f̂k ∈ F ∗
k .

(ii) F ∗
k ⊆ F̂k , and in particular, R̂F ∗

k
≤ R̂F̂k

.

(iii) L∗
k ≤ 2L̂(f̂k) + uk.

PROOF. To begin with, notice that

ESk(X
2n
1 ) ≤ ESk(X

n
1)Sk(X

2n
n+1) = E

2
Sk(X

n
1)

by the definition of the shatter coefficient and by the independence of theXi . Thus,
by Proposition 3.2,

PAc
k ≤ 8ESk(X

2n
1 )exp

(
−nuk

8

)
≤ 8

n2k2
.

This bound and (4.5) imply assertion (4.6). To prove claim (i), observe that onAk ,

L(f̂k) ≤ 2L̂(f̂k) + uk (by definition ofAk)

≤ 2L̂(f ∗
k ) + uk (by definition off̂k)

≤ 2(2L∗
k + uk) + uk (by definition ofAk)

= 4L∗
k + 3uk.
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For claim (ii), notice that, for anyf ∈ F ∗
k ,

L̂(f ) ≤ 2L(f ) + uk (by definition ofAk)

≤ 2[4L∗
k + 3uk] + uk (by definition ofF ∗

k )

= 8L∗
k + 7uk

≤ 8L(f̂k) + 7uk (by definition ofL∗
k)

≤ 16L̂(f̂k) + 15uk (by definition ofAk)

≤ 16L̂(f̂k) + 15ûk (by definition ofBk).

Claim (ii) now follows. Claim (iii) is immediate from the definition ofAk since
both f̂k andf ∗

k belong toFk . �

Next we link the Rademacher averageR̂F ∗
k

to Esupf ∈F ∗
k

|L(f ) − L̂(f )|. By a
classical symmetrization device (cf. [10] or [25]),

E sup
f ∈F ∗

k

|L̂(f ) − L(f )| ≤ 2ER̂F ∗
k
.(4.7)

Also, R̂F ∗
k

is known to concentrate sharply around its mean. For example, we have,
by results of [4, 5], the following bounds.

PROPOSITION4.4. For all ε > 0, n ≥ 1,

P
[
R̂Fk

≥ 2ER̂Fk
+ ε

] ≤ e−6nε/5 and P
[
R̂Fk

≤ 1
2ER̂Fk

− ε
] ≤ e−nε.

PROOF. DefineZ
def= nR̂Fk

. Then it follows from [4] that

logEexp
(
λ(Z − EZ)

) ≤ EZ(eλ − 1− λ),

which implies further that, for 0≤ λ < 3,

logEexp
(
λ(Z − EZ)

) ≤ λEZ

2(1− λ/3)
.

After an application of Markov’s inequality, we find

P
[
Z ≥ EZ + √

2EZx + x/3
] ≤ e−x.

We obtain the desired upper-tail bound by insertingZ = nR̂Fk
in the preceding

display and invoking the inequality 2
√

xy ≤ x + y. The bound for the lower tail
follows from the inequality

P
[
Z ≤ EZ − √

2xEZ
] ≤ e−x

(see [4]) and sincex + 1
2y ≥ √

2xy. �
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Finally, we make key use of the following concentration inequality for the
supremum of an empirical process, recently established by Talagrand [23]; see
also [14, 19, 21]. The best-known constants reported here have been obtained by
Bousquet [6].

PROPOSITION 4.5. Set �F ∗
k

= supf ∈F ∗
k

L(f )(1 − L(f )). For all ε > 0,
n ≥ 1,

P

[
sup

f ∈F ∗
k

|L̂(f ) − L(f )| ≥ 2E sup
f∈F ∗

k

|L̂(f ) − L(f )| + �F ∗
k

√
2ε + 4ε

3

]
≤ e−nε.

We are now ready to prove Theorems 4.1 and 4.2.

PROOF OFTHEOREM 4.1. Deduce, using (i), (ii) and (iii) of Lemma 4.3, the
following string of inequalities:

P[{L(f̂k) ≥ L̂(f̂k) + Ĉk} ∩ Ak ∩ Bk]
= P

[{
L(f̂k) ≥ L̂(f̂k) + 8R̂F̂k

+ 10εk +
√

8L̂(f̂k) + 7ûk

√
2εk

} ∩ Ak ∩ Bk

]
≤ P

[{∃f ∈ F ∗
k :L(f ) ≥ L̂(f ) + 8R̂F̂k

+ 10εk +
√

8L̂(f̂k) + 7̂uk

√
2εk

} ∩ Ak ∩ Bk

]
[by property (i)]

≤ P
[{∃f ∈ F ∗

k :L(f ) ≥ L̂(f ) + 8R̂F ∗
k

+ 10εk +
√

8L̂(f̂k) + 7uk

√
2εk

} ∩ Ak ∩ Bk

]
[by property (ii) and definition ofBk]

≤ P
[{∃f ∈ F ∗

k :L(f ) ≥ L̂(f ) + 8R̂F ∗
k

+ 10εk +
√

4L∗
k + 3uk

√
2εk

} ∩ Ak ∩ Bk

]
[by property (iii)]

≤ P

{
sup

f ∈F ∗
k

|L(f ) − L̂(f )| ≥ 8R̂F ∗
k

+ 10εk + �F ∗
k

√
2εk

}
,

where the last inequality follows from

�2
F ∗

k
= sup

f ∈F ∗
k

Var
(
I{f (X) �= Y }) ≤ sup

f ∈F ∗
k

L(f ) ≤ 4L∗
k + 3uk.
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Invoke (4.7), (4.6) and Propositions 4.4 and 4.5 to conclude that

P{L(f̂k) ≥ L̂(f̂k) + Ĉk}
≤ P

{
sup

f ∈F ∗
k

|L(f ) − L̂(f )| ≥ 8R̂F ∗
k

+ 10εk + �F ∗
k

√
2εk

}
+ 9

n2k2

[sinceP(Ak ∩ Bk)
c ≤ 9/(n2k2) by (4.6) in Lemma 4.3]

≤ P

{
sup

f ∈F ∗
k

|L(f ) − L̂(f )| ≥ 4ER̂F ∗
k

+ 2εk + �F ∗
k

√
2εk

}
+ 10

n2k2

(by Proposition 4.4)

≤ P

{
sup

f ∈F ∗
k

|L(f ) − L̂(f )| ≥ 2E sup
f∈F ∗

k

|L̂(f ) − L(f )| + 4εk

3
+ �F ∗

k

√
2εk

}

+ 10

n2k2 [by (4.7)]

≤ 11

n2k2 (by Proposition 4.5).

This inequality and Lemma 2.1 imply the first assertion of the theorem. The
other statements–the probability bound and the almost-sure statement–follow by
invoking Lemma 2.2 and the preceding argument, which also shows that

P{Ĉk ≤ (L − L̂)(f ∗
k )} ≤ 11

n2k2 ,

although the last assertion could be shown in a much easier way as it only involves
a single functionf ∗

k . The proof of Theorem 4.1 is complete.�

In the proof of Theorem 4.2 we need the symmetrization device

ER̂Fk
≤ 2E sup

f∈Fk

|L̂(f ) − L(f )| + supf ∈Fk
L(f )√

n
(4.8)

(see, e.g., [20], page 18), and also the following result due to Massart [18]. (The
version stated here is taken from [16].)

PROPOSITION4.6. Set �k = supf ∈Fk

√
L(f )(1− L(f )). Then, for all n ≥ 1,

E sup
f∈Fk

|L̂(f ) − L(f )| ≤ 8E log2Sk(X
2n
1 )

n
+ 4

√
2�2

k E log2Sk(X
2n
1 )

n
.

PROOF. The statement follows almost immediately from Theorem 1.10 in [16]
by noting that the worst-case shatter coefficients may be replaced with impunity
by the random shatter coefficients.�
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PROOF OF THEOREM 4.2. Observe that on the eventAk ∩ Bk , F̂k ⊆ F k ,
whereF k is as defined in Theorem 4.2. Indeed, for anyf ∈ F̂k ,

L(f ) ≤ 2L̂(f ) + uk (by definition ofAk)

≤ 2[16L̂(f̂k) + 15ûk] + uk (by definition ofF̂k)

≤ 32L̂(f̂k) + 31ūk (by definition ofBk)

≤ 32L̂(f ∗
k ) + 31ūk (by definition off̂k)

≤ 32[2L∗
k + uk] + 31ūk (by definition ofAk)

= 64L∗
k + 63ūk.

Also, we notice that on the eventAk,

L̂(f̂k) ≤ L̂(f ∗
k ) ≤ 2L∗

k + uk.

These observations imply that

ĈkIAk∩Bk
≤ 8R̂F k

+ 10εk + 2
√

64L∗
k + 63ūk

√
2εk

≤ 8R̂F k
+ 10εk + 16

√
L∗

k + ūk

√
2εk.

Consequently, it follows from Lemma 4.3 that

EĈk ≤ EĈkIAk
+ P(Ak ∩ Bk)

c

≤ 8ER̂F k
+ 10εk + 16

√
L∗

k + ūk

√
2εk + 9(nk)−2

≤ 8ER̂F k
+ 15εk + 16

√
L∗

k + ūk

√
2εk.

This bound and Theorem 4.1 yield the first inequality of Theorem 4.2. The second
inequality follows from the symmetrization (4.8) and Proposition 4.6.�
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