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We deal with the maximization of classical Fisher information in a
quantum system depending on an unknown parameter. This problem has been
raised by physicists, who defined [Helstrom (1967)Phys. Lett. A 25 101–102]
a quantum counterpart of classical Fisher information, which has been found
to constitute an upper bound for classicalinformation itself [Braunstein
and Caves (1994)Phys. Rev. Lett. 72 3439–3443]. It has then become of
relevant interest among statisticians, who investigated the relations between
classical and quantum information and derived a condition for equality in the
particular case of two-dimensional pure state systems [Barndorff-Nielsen and
Gill (2000) J. Phys. A 33 4481–4490].

In this paper we show that this condition holds even in the more
general setting of two-dimensional mixed state systems. We also derive the
expression of the maximum Fisher information achievable and its relation
with that attainable in pure states.

1. Introduction. Quantum statistics is ordinary statistical inference applied
to quantum systems. The methodology is based on the mathematical specification
of the state of the quantum system, to be denoted byρ = ρ(θ) as it is supposed to
depend on an unknown parameterθ , and of the measurementM to be carried
out on that system. In finite-dimensional quantum systems, bothρ(θ) and M

are represented by Hermitian matrices. With such mathematical specifications,
we will be able to compute the probability distribution of a random variableX

when a measurementM is carried out on the system in stateρ, that is,PX(·, θ) =
tr{ρ(θ)M(·)}. As ρ(θ) depends on the parameterθ , PX(·, θ) will depend onθ too,
thereby setting the statistical problem of how best to estimate the value ofθ . Since
one often has a choice of what measurement to take, the design problem of how
to best measureρ(θ) arises. In other words, the question is which measurement
provides more statistical information about the unknown parameterθ .

By “statistical information” we mean expected Fisher informationi(θ,M),
a measure of how precise an unbiased estimatort (x) of θ based on the outcome
of an arbitrary measurementM is, as follows by the Cramér–Rao bound on the
varianceV of t (x),

V {t (x)} ≥ i(θ,M)−1.
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Based on an operator called “symmetric logarithmic derivative,” which is a
noncommutative logarithmic derivative for matrices, Helstrom (1967) derived a
quantity, I (θ), that he called “quantum expected information” because of the
relation

V {t (x)} ≥ I (θ)−1,

known as the quantum Cramér–Rao bound. The proof [see also Holevo (1982)]
essentially follows the derivation of the classical Cramér–Rao bound.

Braunstein and Caves (1994) have emphasized the relation between classical
and quantum information, deriving theinformation inequality

i(θ,M) ≤ I (θ)(1)

from which one obtains Helstrom’s bound as a corollary. The proof of the
information inequality for the one-dimensional parameter case is based on the
Cauchy–Schwarz inequality with the Hilbert–Schmidt inner product and gives
as a by-product two equality conditions on the measurementM . So, in some
sense, for a particular value of the parameter, one can say what is the best
measurement in terms of Fisher information. However, the Braunstein and Caves
equality conditions are not very transparent. In particular, it is not clear which
characteristics a measurement has to have in order to allow attainability in the
information inequality. The same problem is considered by Barndorff-Nielsen and
Gill (2000) dealing with quantum information. The contents of the paper are rich
and the solution is elegant; specializing to the most simple possible case, the so-
called pure state, two-dimensional, the authors show that a necessary and sufficient
condition for attainability is that each measurement is proportional to a rank-one
projection matrix.

In this paper, we consider the more general case of mixed states, and we show
that the necessary and sufficient condition for pure states holds as well. The key
argument in our proof is the derivation of the symmetric logarithmic derivative of
a mixed state. We also derive the expression of the maximum achievable Fisher
information.

The paper is organized as follows. In Section 2 we introduce the basic concepts
of quantum statistical inference and review the attainability condition for two-
dimensional pure states. In Section 3 we generalize this result to two-dimensional
mixed states. A discussion is in Section 4 and Section 5 contains the proofs of the
main results.

2. Quantum statistics and the information inequality. In quantum statistics
[Holevo (1982) and Helstrom (1976)], the probability distribution of a random
variableX : (�,F ,P ) → (G,G,PX) is given by thetrace rule for probability

PX(G; θ) = tr{ρ(θ)M(G)} ∀G ∈ G,
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where ρ(θ) is a density matrix, that is, a nonnegative, self-adjoint and trace-
one linear operator acting on an-dimensional complex Hilbert spaceHn and
depending on an unknown parameterθ ∈ � ⊆ Rk , while M is anoperator-valued
probability measure, that is, a set of nonnegative and self-adjoint linear operators
defined on the measure space(G,G) and taking values inHn, such thatM(G) = I,
the identity operator,M(∅) = O, the null operator, and

M

( ∞⋃
h=1

Gh

)
=

∞∑
h=1

M(Gh), if G =
∞⋃

h=1

Gh,Gh ∩ Gk = ∅,

∀h, k = 1, . . . ,∞, h 	= k. If the measurementM is absolutely continuous with
respect to aσ -finite measureµ on (G,G) such thatM(G) = ∫

G m(x)µ(dx)

∀G, wherem(x) is nonnegative and Hermitian, then{m(x)}x∈G is a generalized
measurement and the probability density ofX is

p(x; θ) = tr{ρ(θ)m(x)}.
If n < ∞, thenHn can be identified with then-dimensional Euclidean complex
spaceC

n and it is equivalent to talk about self-adjoint operators or Hermitian
matrices.

Once aparametric quantum model {ρ(θ),M; θ ∈ � ⊆ Rk} has been chosen to
describe the set of probabilistic outcomes of a random experiment, theexpected
Fisher information can be obtained as

i(θ,M) = E{l2/θ} =
∫

G+
p(x; θ)−1 tr2{ρ/θ(θ)m(x)}µ(dx),

wherel/θ is the score function ofθ , G+ = {x ∈ G :p(x; θ) > 0}, andρ/θ is the
matrix whoseij th generic element is[ρ/θ ]ij = ∂

∂θ
[ρ(θ)]ij .

Braunstein and Caves (1994) showed that at a fixed value of the parameterθ , an
upper bound for Fisher information is thequantum information

I (θ) = E{ρ2
//θ} = tr{ρ(θ)ρ2

//θ }(2)

introduced by Helstrom (1967) based on thesymmetric logarithmic derivative
(SLD) or symmetric quantum score ρ//θ , implicitly defined by the relation

ρ/θ = 1
2[ρ(θ)ρ//θ + ρ//θρ(θ)].(3)

Barndorff-Nielsen and Gill (2000) showed that equality holds in (1) if

k(x, θ)1/2m(x)1/2ρ(θ)1/2 = m(x)1/2ρ//θρ(θ)1/2(4)

for µ almost allx in G+, wherek(x, θ) = p(x; θ)−1 tr{ρ(θ)ρ//θm(x)ρ//θ } is real,
sincek(x, θ) = p(x; θ)−1 tr{CH C} with C = ρ1/2(θ)ρ//θm

1/2(x) andk(x, θ) = 0
overG0 = {x ∈ G :p(x; θ) = 0}.

We will refer to (4) as theequality condition between classical and quantum
information and we call a measurement that satisfies it anattaining measurement.
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With some abuse of notation the single matrices that constitute the family of the
attaining measurements will be called attaining measurements as well.

A characterization of an attaining measurement is given by Barndorff-Nielsen
and Gill (2000) for the special case of one-parameter pure states,

ρ(θ) = |ψ(θ)〉〈ψ(θ)|,
whereψ(θ) is a unit vector andθ ∈ � ⊆ R; in the Diracbra-ket notation|ψ(θ)〉
denotes a column vector (ket) and 〈ψ(θ)| its Hermitian transpose (row,bra).
According to quantum theory, pure states represent the best knowledge one can
have about some specific properties of the system under observation. The authors
show that, in two-dimensional pure states, a necessary and sufficient condition
for attainability is that the attaining measurement be proportional to a rank-
one projection matrix. The proof is based on the following properties of pure
state density matrices; in particular, expression (i) for the symmetric logarithmic
derivative of a pure state plays a crucial role:

(i) ρ//θ = 2ρ/θ ;
(ii) ρ(θ)ρ/θρ(θ) = O;
(iii) tr {ρ//θρ(θ)} = 0;
(iv) I (θ) = 2 tr{ρ2

/θ }.
These properties are no more than algebraic consequences of the definitions of

pure state and symmetric logarithmic derivative. An interesting way of proving
them is in Fujiwara and Nagaoka (1995) where they are derived as properties of
two preinner products defined on the set of all the linear and bounded operators
onH , in the context of estimation in pure state models.

In the following, we generalize Barndorff-Nielsen and Gill’s condition to the
more general setting of mixed states. We derive some properties analogous to
(i)–(iv) as well as the symmetric logarithmic derivative of a mixed state. This
latter is the key result of the paper, since, based upon it, we obtain maximum
Fisher information and the necessary and sufficient condition for a measurement
to attain it.

3. Attainability conditions in mixed states. A quantum system is said to be
a mixed state if its density matrix is of the form

ρ(θ) = w1(θ)ρ1(θ) + w2(θ)ρ2(θ) + · · · + wm(θ)ρm(θ),

where ρi(θ) = |ψi(θ)〉〈ψi(θ)|, i = 1, . . . ,m and |ψ1(θ)〉, |ψ2(θ)〉, . . . , |ψm(θ)〉
are unit vectors; thewi(θ)’s are real weights satisfyingwi(θ) ≥ 0 ∀ i = 1, . . . ,m

and
∑m

i=1 wi(θ) = 1.
Mixed states, obtained as convex combinations of pure states, indicate a

situation of partial knowledge of the system. They represent probabilistic mixtures,
in the sense that the system under observation is in the stateρi(θ) with probability
wi(θ) ∀ i = 1, . . . ,m.
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In considering mixed states, the problem of characterizing attaining measure-
ments becomes much more complicated than in pure states. However, restricting
to mixtures of two-dimensional orthogonal pure states, analogous conclusions to
those for pure states can be obtained. The dimensionality constraint is not restric-
tive, since two-dimensional systems are the most frequently encountered in quan-
tum mechanics, both because they are simple to deal with and for their objective
importance. For instance, electrons, qubits and spin-1

2 particles are just some ex-
amples of two-dimensional systems playing a crucial role in quantum mechanics.
The orthogonality constraint is one among an infinity of choices of how a mixed
state can be decomposed into pure states. There is an illuminating geometrical il-
lustration for the decomposability of mixed states which is based on the Bloch or
Poincaré or Riemann sphere representation of the set of states in two-dimensional
complex Hilbert spaces by means of unit vectors in real three-dimensional Euclid-
ean spaces [see Luati (2003) and references therein]. In particular, there exists a
one-to-one correspondence between states inC

2 and the unit ball inR3. So, if
H = C2, then the set of pure states is the surface of the unit sphere and the set
of mixed states is the interior of the corresponding unit ball. Mixtures of two pure
states can be represented as points in the interior of the sphere, on the straight line
joining the two points on the surface. If the generating pure states are orthogonal
(opposite on the sphere), then the corresponding mixed states lie on the diameters
of the great circles. Therefore, the set of such states with given weights can be
represented by the spheres embedded in the unit sphere with the same center, but
radius smaller than one and dependent on the weights of the mixtures. As we will
see, this characteristic plays a relevant role in the geometric interpretation of the
results that follow.

A one-parameter two-dimensional mixed state can be represented as

ρ(θ) = w(θ)ρ1(θ) + (
1− w(θ)

)
ρ2(θ),(5)

where ρ1(θ) = |ψ1(θ)〉〈ψ1(θ)| and ρ2(θ) = |ψ2(θ)〉〈ψ2(θ)| such that〈ψ1(θ)|
|ψ1(θ)〉 = 1 and|ψ2(θ)〉 = I

−1/2
1 (θ)ρ1//θ |ψ1(θ)〉 is a unit vector withI−1/2

1 (θ)

normalizing constant;Ih(θ) indicates quantum information provided byρh(θ), and
ρh/θ andρh//θ , respectively, stand for the term-by-term first derivative and for the
symmetric logarithmic derivative ofρh(θ), h = 1,2, with respect toθ ∈ � ⊆ R.
We assume that the coefficientw(θ) is a smooth function ofθ taking values in
the real interval(0,1); we also considerw(θ) 	= 1

2 because otherwiseρ(θ) = 1
2I

does not depend on any unknown parameter. This case (the center of the unit
sphere) represents the maximum entropy situation, that is, complete ignorance
about the quantum system under observation. The vectors|ψ1(θ)〉 and|ψ2(θ)〉 are
orthonormal by (iii) and by definition ofI1(θ). It therefore follows (the arguments
are sometimes omitted) that

(v) ρ2(θ) = I − ρ1(θ);
(vi) ρ2/θ = −ρ1/θ ;
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(vii) ρ2//θ = −ρ1//θ ;
(viii) ρh(θ)ρk/θρh(θ) = O, for h, k = 1,2;
(ix) I2(θ) = I1(θ).

In fact, (v) is a consequence of the spectral theorem inC2; (vi) is obtained by
differentiating term-by-term the elements of (v) with respect toθ ; (vii) follows
by (i) for pure states and by (vi); (viii) follows by (ii) for pure states and by (vi).
Finally, (ix) follows by (iv) and (vi).

As in the pure state case, to draw some conclusion on attaining measurements
starting from equality condition (4) it is necessary to know the exact form ofρ//θ .

LEMMA 1. The symmetric logarithmic derivative of the mixed state (5) is

ρ//θ = w/θ

w(θ)
ρ1(θ) + (

2w(θ) − 1
)
ρ1//θ − w/θ

1− w(θ)
ρ2(θ),(6)

where w/θ stands for the first derivative (scalar) of w(θ) with respect to θ .

Based on Lemma 1, we obtain quantum or Helstrom information, that is, an
upper bound for Fisher information in the mixed state (5).

LEMMA 2. Quantum information given by the mixed state (5) is

I (θ) = (w/θ)
2

w(θ)(1− w(θ))
+ (

2w(θ) − 1
)2

I1(θ).(7)

Observe that ifw does not depend onθ , then

I (θ) = (2w − 1)2I1(θ)(8)

and, sincew ∈ (0,1), quantum information provided by a mixed state is less than
quantum information provided by a pure state. This is a quantum information
based way to state that pure states represent the best knowledge that one can
have about a quantum system. On the other hand, ifw(θ) depends onθ , then
no conclusions about quantum information can be drawn without knowing the

function w(θ), except thatI (θ) < I1(θ) if (w/θ )2

4w(θ)2(1−w(θ))2 < I1(θ). However, in

both cases, we can specify the measurements such that Fisher information is
maximum.

THEOREM 1. In mixed states of the form (5), i(θ,M) = I (θ) if and only if,
for µ-almost all x in G+,

{m(x)}x∈G+ ∝R {|γ (x)〉〈γ (x)|}x∈G+
with

〈γ (x)| |ψ1(θ)〉 ∝R 〈γ (x)| |ψ2(θ)〉,(9)

where 〈γ (x)| |γ (x)〉 = 1 and ∝R stands for “proportional by means of a real
constant.”
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What is remarkable in this result is that in two-dimensional systems, pure or
mixed, attaining measurements are of the same form. Furthermore, whenw does
not depend onθ , the maximum Fisher information achievable cannot be greater
than that achievable in pure states. In this case, even the geometric aspects pointed
out by Barndorff-Nielsen and Gill (2000), based on the sphere representation of
pure states, can be interpreted in terms of mixed states as well.

In fact, these authors show that in pure states likeρ1(θ), condition (9)
geometrically implies that the attaining measurements are proportional to rank-
one orthogonal projection matrices onto state vectors that correspond to points on
the intersection of the unit sphere with a plane spanned by two orthogonal vectors
of R3. These are the unit vectoru such thatρ1(θ) = 1

2(I + 〈u(θ),σ 〉) and the
orthogonal vectoru/θ such thatI1(θ) = ‖u/θ‖2 > 0, whereσ T = (σx, σy, σz) is
the vector of Pauli matrices

σx =
[

0 1
1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0
0 −1

]

that together with the identity matrixI constitute an orthogonal basis for the
set of Hermitian matrices acting onC2. Moreover, if quantum information is
positive, then there exist uniformly attaining measurements, that is, such that
i(θ;M) = I (θ) ∀ θ ∈ �, if and only if the set of the states of the given model
is a great circle in the unit sphere. Otherwise, no measurement exists such that
equality holds for all the values of the parameterθ .

Consider now mixed states like (5). Givenρ1(θ) = 1
2(I + 〈u(θ),σ 〉),

thenρ2(θ) = 1
2(I+〈−u(θ),σ 〉) and thereforeρ(θ) = 1

2(I+〈(2w(θ)−1)u(θ),σ 〉).
This means that the set of mixed states with givenw(θ) is a sphere of radius
|2w(θ) − 1| < 1 embedded in the unit ball, with the same center. Hence, when
w does not depend onθ , up to the factor 2w − 1 results for mixed states can
be read as results for pure states. Particularly, since span{(2w − 1)u(θ), u/θ } ≡
span{u(θ), u/θ }, condition (9) implies that attaining measurements are propor-
tional to rank-one projectors onto state vectors that correspond to points on the
intersection of the sphere of radius|2w − 1| with the plane spanned by the vectors
u(θ) andu/θ . Furthermore,I (θ) = (2w−1)2‖u/θ‖2 > 0 and we can conclude that
uniformly attaining measurements in mixed states are admitted if and only if the
model is a great circle in the sphere of radius|2w − 1|.

4. Discussion. We characterized the measurements that maximize Fisher
information in two-dimensional mixed states. This result generalizes that of
Barndorff-Nielsen and Gill (2000) for pure states. We also derived the maximum
Fisher information achievable in mixed states and the conditions such that it is not
(or cannot be) greater than that attainable in pure states.

A particular decomposition of a two-dimensional mixed state into orthogonal
pure states allowed a geometric interpretation of the results that gave special



FISHER INFORMATION IN QUANTUM SYSTEMS 1777

emphasis to measurements that do not depend on the unknown parameter. The
interest in uniformly attaining measurements traces its origins to the same paper in
which the information inequality is derived. In analogy with the metric properties
of Fisher information, Braunstein and Caves proposed to use quantum information
as a metric on the set of all the possible states of a given quantum system. However,
this is sensible only when uniform attainability holds. It is straightforward to show
that in mixed states represented through vectors parametrized by colatitudeη

(known) and longitudeφ in a sphere of radius|2w − 1|, where 〈ψ1(η,φ)| =
[cos(η

2)eiφ/2 sin(η
2)e−iφ/2] and w does not depend onφ, a uniformly attaining

measurement exists if and only if the model is a great circle on the sphere and
the equator defines the planes of the uniformly attaining measurements. In the
same way, ifφ is known andη is the unknown parameter of interest, then uniform
attainability can be achieved if and only if the model is of constant longitude,
through the north and south poles. Under certain regularity conditions, models
that admit uniformly attaining measurements belong to the class of quantum
exponential transformation models [see Amari and Nagaoka (2000)].

5. Proofs.

PROOF OFLEMMA 1 (The SLD of a mixed state). Replacing the expressions
for ρ(θ) andρ/θ in (3) gives (all arguments omitted)

w/θ (ρ1 − ρ2) + wρ1/θ + (1− w)ρ2/θ

= 1
2

{[wρ1 + (1− w)ρ2]ρ//θ + ρ//θ [wρ1 + (1− w)ρ2]}.(10)

Pre- and postmultiplying both the members of (10) by〈ψh(θ)| and |ψk(θ)〉,
h, k = 1,2, respectively, gives, by (viii),[ρ�

//θ ]11 = w/θw
−1, [ρ�

//θ ]22 = −w/θ(1−
w)−1 and[ρ�

//θ ]12 = (2w − 1)I
1/2
1 = [ρ�

//θ ]21, where[ρ�
//θ ]hk = 〈ψh|ρk/θ |ψh(θ)〉

indicates thehkth element of the matrixρ//θ with respect to the ordered basis
� = {|ψ1〉, |ψ2〉}. Hence, in the original coordinate system,ρ//θ = (w/θw

−1)ρ1 +
(2w − 1)I

1/2
1 (ρ12 + ρ21) − w/θ(1 − w)−1ρ2 whereρ12 = |ψ1(θ)〉〈ψ2(θ)| and

ρ21 = |ψ2(θ)〉〈ψ1(θ)|. To complete the proof, note that

I
1/2
1 (ρ12 + ρ21) = I

1/2
1

(|ψ1(θ)〉〈ψ1(θ)ρ1//θ |I−1/2
1 + I

−1/2
1 |ρ1//θψ1(θ)〉〈ψ1(θ)|)

= 2ρ1/θ = ρ1//θ .

Conversely, if (6) holds, then (10) is an identity, by the uniqueness ofρ//θ . �

PROOF OF LEMMA 2 (Quantum information in a mixed state). Replacing,
in (2), ρ(θ) by (5) andρ2

//θ by (6), ρ1 and ρ2 being pure and orthogonal, by
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linearity of the trace operator and by (ii), (iii) and (vi)–(ix),

I (θ) = (w/θ )
2

w
+ w(2w − 1)2I1 + (1− w)(2w − 1)2I1 + (w/θ )

2

1− w

= w2
/θ

(
1

w
+ 1

1− w

)
+ (2w − 1)2I1. �

PROOF OF THEOREM 1 (Attainability in a mixed state). If equality holds,
then replacing in (4)ρ(θ)1/2 andρ//θ by their expressions derived from (5) and (6)
and postmultiplying both the members by|ψ1(θ)〉, we get

m(x)1/2
{[

k(x, θ)1/2 − w/θ

w

]
|ψ1(θ)〉 − (2w − 1)I

1/2
1 |ψ2(θ)〉

}
= 0.(11)

Since |ψ1(θ)〉 and |ψ2(θ)〉 are orthogonal, forw 	= 1
2, the above system makes

sense if and only if the matrixm1/2(x) [and consequentlym(x)] is singular.
A 2 × 2 Hermitian, singular and nonnegative matrix is necessarily of the form

m(x)1/2 = c(x)|γ (x)〉〈γ (x)|,(12)

where |γ (x)〉 = 〈γ ∗(x)| |γ ∗(x)〉−1/2|γ ∗(x)〉, 〈γ ∗(x)| = [1 αx ], c(x) =
a2(x)〈γ ∗(x)| |γ ∗(x)〉 with a(x) ∈ R andαx ∈ C. Replacing expression (12) for
m(x)1/2 in the equality condition (11) and premultiplying both the members by
c−1(x)〈γ (x)|, we obtain

〈γ (x)| |ψ1(θ)〉 = r(x, θ)〈γ (x)| |ψ2(θ)〉(13)

with r(x, θ) = [(2w − 1)I
1/2
1 ][k(x, θ)1/2 − w/θ

w
]−1 ∈ R.

Postmultiplying both the members of(4) by |ψ2(θ)〉 instead of|ψ1(θ)〉, one
gets

〈γ (x)| |ψ1(θ)〉 = r ′(x, θ)〈γ (x)| |ψ2(θ)〉,(14)

where nowr ′(x, θ) = [k(x, θ)1/2 + w/θ

1−w
][(2w − 1)I

1/2

2 ]−1.
Combining (13) and (14) givesr(x, θ) = r ′(x, θ), that is,

k(x, θ) + k(x, θ)1/2
[
w/θ(2w − 1)

w(1− w)

]
− I (θ) = 0.

Solving the equation fork(x, θ)1/2, one obtains

k(θ) = (w/θ )
2(2w − 1)2

2w2(1− w)2 + I (θ) ∓ w/θ(2w − 1)

w(1− w)

[
1

4

(w/θ)
2(2w − 1)2

w2(1− w)2 + I (θ)

]1/2

which, replaced inr(x, θ) or r ′(x, θ), gives the proportionality constant between
〈γ (x)| |ψ1(θ)〉 and〈γ (x)| |ψ2(θ)〉.

On the other hand, ifm(x) = c(x)2|γ (x)〉〈γ (x)|, c(x) ∈ R and (13) holds,
then premultiplying both its members byc(x)|γ (x)〉, replacing|ψ2(θ)〉 by its



FISHER INFORMATION IN QUANTUM SYSTEMS 1779

expression as a function ofρ1//θ , writing the latter as derived by (6) and
multiplying byw1/2(θ) gives

k(θ)1/2m(x)1/2ρ(θ)1/2|ψ1(θ)〉 = m(x)1/2ρ//θρ(θ)1/2|ψ1(θ)〉,(15)

sincek(x, θ)1/2 = r(x, θ)−1I
1/2
1 (θ)(2w − 1) + w/θ

w
.

Replacing|ψ1(θ)〉, instead of|ψ2(θ)〉, with its expression as a function ofρ2//θ

gives

m(x)1/2ρ//θρ(θ)1/2|ψ2(θ)〉 = k1/2(θ)m(x)1/2ρ(θ)1/2|ψ2(θ)〉,(16)

wherek1/2(x, θ) = r ′(x, θ)(2w − 1)I
1/2
2 (θ) − w/θ

1−w
.

To complete the proof, it has to be shown that the vector equalities (15) and (16)
imply the (matrix) equality condition (4). It follows from (15) and (16) that both
|ψ1(θ)〉 and |ψ2(θ)〉 belong to the null space of the matrixk(x, θ)1/2m(x)1/2 ×
ρ(θ)1/2 − m(x)1/2ρ//θρ(θ)1/2. However, |ψ1(θ)〉 and |ψ2(θ)〉 constitute an
orthogonal basis ofC2, and therefore such a matrix must necessarily be the null
matrix; that is to say,k(x, θ)1/2m(x)1/2ρ(θ)1/2 = m(x)1/2ρ//θρ(θ)1/2. �
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