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PERIODIC BOXCAR DECONVOLUTION AND DIOPHANTINE
APPROXIMATION

BY IAIN M. JOHNSTONE' AND MARC RAIMONDO?
Sanford University and University of Sydney

We consider the nonparametric estimation of a periodic function that is
observed in additive Gaussian white noise after convolution with a “boxcar,”
the indicator function of an interval. This is an idealized model for the
problem of recovery of noisy signals and images observed with “motion
blur.” If the length of the boxcar is rational, then certain frequencies are
irretreviably lost in the periodic model. We consider the rate of convergence
of estimators when the length of the boxcarifisational, using classical
results on approximation of irrationals by continued fractions. A basic
question of interest is whether the minimax rate of convergence is slower
than for nonperiodic problems witty f-like convolution filters. The answer
turns out to depend on the type and smoothness of functions being estimated
in a manner not seen with “homogeneous” filters.

1. Introduction.

1.1. Satement of problem and motivation. Suppose that we obser¥dr) for
t € [—1, 1], whereY is drawn from an indirect estimation model in Gaussian white
noise:

t
(1) Y(0) = f Kaf(s)ds +eW (@),
-1
where
(2) Kaf(t):% _2f(t—u)du, a>0,

{(W(@),t € [-1,1]} is a standard two-sided Wiener process anid small and
assumed known. It is desired to estimate the unknown signalssumed to be
periodic on[—1, 1]. We refer to this as boxcar deconvolution, becaksg =
f *k, corresponds to convolution with the step functigiir) = (2a)~11{|¢| < a}.

The problem has the peculiar feature that if the boxcar half-widghrational,
then certain frequencies are completely unrecoverable from the data. Indeed,
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1782 I. M. JOHNSTONE AND M. RAIMONDO

because of the periodic and convolution structure, the problem is diagonalized
in the Fourier basis. Thus, let(r) = ¢™¥, for integerk € Z. ThenK e; = ryey,
where the eigenvalues = 1 and

3) o=
Furthermore, setting; = [, ex(1)dY (1), 6 = (f. ex) := [*1 f(D)ex(r)dt, and
%= f_ll ex(t)dW (¢), we find that model (1) is equivalent to

(4) Vi = ik + €2k, k eZ.

For rationala = p/q, the eigenvalues, vanish for all integer multiples = jg
of ¢. In the Fourier expansiol ( f, ex)er, all information about the coefficients
(f,ejq) is lost after convolution. For irrational, however, the inversion formula

. k#0.

1
(5) (f,ex)= a(Kaﬁ €k)
is at least well defined, sineg # 0 for anyk € Z. The object of this paper is to
study the quality of estimation of attainable for irrationa& in the small noise
limit ¢ — 0.

Motivation for studying this special problem arises from several sources:

(i) It may be viewed as an idealization of the problem of recovery from linear
motion blur plus noise in a fixed field of view. If a camera is passing over a scene
f(x,y) along a direction(1, r) at unit speed, then in exposure time the image
acquired at pointx, y) may be modeled as

a

(6) Kf(x,y)=% - fx~+u,y+ru)du.

Our model is a one-dimensional version of horizontal motiog,0. While the
periodicity assumption orf may seem artificial, it does capture the property that
if f is locally periodic with period @ near(x, y) (as in certain textures), then
K f is locally constant nedt, y). Compare the discussion in Section 5.1. A more
detailed discussion of linear motion blur, with photographic examples, may be
found in Bertero and Boccacci [(1998), pages 54-58].

(i) It is related to the problem of periodic density estimation with uniform
errors. Suppos«i, ..., X, are i.i.d. random variables with unknown periodic
density f on the circleT. However, theX; are not observed; instead we see jittered
versions

Yi=X;+ 2z,

where{z;} are i.i.d. uniformly distributed oft-a, a] and circular addition is used.
(iii) As an inverse problem, (5) is nonstandard: the eigenvalyesscillate
inside an envelope decaying likgfiequency, for k £ 0,

ri <c/lk|, c=(ra)~ L.
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We may ask the following: is the quality of estimation—measured by minimax
rate of convergence as— O0—determined by the /1k| decay, or is it affected by
the oscillatory behavior?

(iv) Let |x| denote the distance frome R to the nearest integer. Fbr£ O,

2kall _ _ llkal

7 :
0 7 lkal = ©= [ka
and so the oscillations in (3) are driven by

8) ka| :=inf{lka — 1,1 € Z}.

The study of such “Diophantine approximations” uses the classical theory of
continued fractions, for example, Lang (1966) and Khinchin (1992), and plays
a basic role in this paper.

There is a large literature on statistical inverse problems—for some recent
reviews see Tenorio (2001) and Evans and Stark (2002). In particular, the sequence
space formulation studied here has received substantial attention: a sample of
recent works, in addition to those cited below, include Wahba (1990), Johnstone
and Silverman (1990), Koo (1993), Belitser and Levit (1995), Donoho (1995),
Mair and Ruymgaart (1996), Golubev and Khas'miinski999, 2001) and
Cavalier, Golubev, Picard and Tsybakov (2002). However, much of this literature is
concerned with eigenvalue sequences having (up to constants) monotonic behavior
as k increases. Papers that do specifically address the boxcar deconvolution
problem include Hall, Ruymgaart, van Gaans and van Rooij (2001), Groeneboom
and Jongbloed (2003) and O’Sullivan and Roy Choudhury (2001); see Section 5.1
for some further discussion.

1.2. Effective degree of ill-posedness. Problem (1) is an example of a linear
statistical inverse problem in which one observes a noisy versiaghfofor some
linear operatorK, and wishes to reconstrugt. Such linear inverse problems
are typicallyill-posed in the sense of Hadamard: the inversion does not depend
continuously on the observed data. One manifestation of this is that rates of
convergence of estimators as> 0 are slower than in the direct case in whigh
itself is observed with noise. We shall formulate some well-known existing results
in terms of a notion of “degree of ill-posedness” (DIP) in order more easily to state
the results of the present paper.

Under appropriate condition&, will have a singular value decomposition, and
in terms of coefficients in the singular system expansions, the observations may be
written in a sequence form

) Yk = bk + €24, keZ,
or, equivalently, after dividing through by, as
(10) Yk = Ok + €k ks
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where ji = yi/ri andex = €/ry. Let |0]|3 = Y ez 02 Define the (nonlinear)
minimax risk of estimation with respect to a parameter sgacel, via
(11) Ry(©, €) =infsupE|| — 0|13,
6 6eO
where the infimum is taken over all (measurable) functibnsthe data. We define
the linear minimax risk by
RL(®,¢) =inf SUpE|d — 0|3,
0, 6€O
where attention is restricted to the subclassindar estimatorsd; = (ékL) with
0 = cryx, for some sequendey).
Parameter spaces of primary interest in this paper includey ter0, C > 0,
hyperrectangles

(12) HO(C)=1{0:16c| < Clk|™°~Y?, k #£0, andbp € R}
andellipsoids
(13) 3(C) = {9:21@69,35 cz}.

k

REMARK 1. Within these scales of spaces, the parametemeasures
smoothness: larger corresponds to faster decay of coefficients. Wheri@peare
Fourier coefficients, the ellipsoids correspond exactly to mean-square smoothness
of theo derivatives off = > 6rex. [See, e.g., Kress (1999), Chapter 8.1.] There is
no such simple characterization for hyperrectangles—the definition (12) is chosen
to yield the same rates of convergence as (13) in the homogeneous cases described
next. The parametel measures size: it corresponds to the radius of balls within
these spaces.

REMARK 2. In (5) we used the complex exponentiafé*’. The model has
the same form if instead one uses the real trigonometric ba&is= cosmkt or
sinkt or 1/4/2 according ag > 0,k < 0 or k = 0. Model (9)—(10) applies to
indicesk € Z. For convenience in the rest of the paper, we restrict the idex
to N, ={1,2,...}. Indeed, since spaces such as (12) and (13) are symmetric
with respect tot+k, we haveRy(0,¢€;Z) = 2Ry (0, €; N,) + €2, with the
analogous statement valid also for the linear minimax risks. Consequently, rates
of convergence are certainly unaffected by working\on

REMARK 3. The notatioru(e¢) < b(e) means that there exist constants such
that for sufficiently smalk, c1b(¢) < a(e) < cob(¢). The constants;, co and other
generic constants (denoted bynd not necessarily the same at each appearance)
may depend on parameters of the smoothness €lagsch asr, but they do not
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depend orx, 6 or the size parametar. While the size constant clearly does
not affect the rate of convergence as-> 0, we consider it useful to show the
order of dependence of minimax risks ¢h The notationa; ~ by means that
limy_ +o0(ar/br) = 1. The notationy, = ¢ means that, for ak, a; =c.

Suppose that the eigenvalues satisfy a homogeneous decay conditidh —*
and that® = H?(C) or ©® = ©5(C). Then it is well known [e.g., Korostelev and
Tsybakov (1993), Chapter 9] that

14 Ry = Ry, = C21=9)¢2s, S S—
(14) N L s oc+1/2+«
For direct data we have = 1 in (9) and it is known that

Ry = Ry, = C2(1=s0) 250 -7
N L SD o +1/2

This motivates the following definition of effective DIP:

(15) oz(K,@)::a(E—i).
N SD

For indirect problems (K, ®) gives a measure of the effect (on the convergence
rate) due to the inversion process. For examplg, if ana-fractional integration
operator an® = 09 (C), thenr, ~ |k|~* and so, in this case,(K, ®) =a. Asa
gets larger it becomes more and more difficult to recgter

Returning to boxcar deconvolution, we note that~ |k|~1 corresponds to
an effective DIP ofe = 1. The question studied in this paper is whether the
oscillations inr; of (3) increase the DIP. Compare Figure 1.

The answer turns out to depend on the function class. The main results,
Theorems 1 and 2, can be expressed as saying, so long as logarithmic terms are
ignored, that for ellipsoids and almost all irratiomal

a(K,,03)=3  forallo >0,

while for hyperrectangles,

1, if0<0§g,
(16) a(Kq, H) = oo 3
20 +1° 2=

Thus, the DIP of boxcar deconvolution lies between 1 éndnd is better (i.e.,
smaller) for more uniform smoothness (hyperrectangles) and for smaller

REMARK 4. We caution that the literature contains other definitions of DIP
of an inverse problem: for example, in Mathé and Pereverzev (2001), it refers to
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Fic. 1. An illustration of the degree of the DIP for the boxcar deconvolution operator with
a =2/(~/5+ 1). Using a log-scale along the vertical axis, the function k — rk_2 is depicted for
k=0,1,2,...,500 (oscillating solid line). For comparison purpose we also depict k — rk_2 for a
homogeneous operator with DIP= 1, 1.5, 2 taking eigenvalues ry = ck~%, where« =1, 1.5, 2 and
¢ = 0.58 (smooth dashed curves).

a numerical index of distance from invertibility. While these notions are certainly
related, the definition used here is simply a convenience for interpreting results
stated formally in Sections 3 and 4: it refers to the drop in rate of convergence due
to presence of the decaying eigenvalyes

REMARK 5. There is an elbow in rates at = % for hyperrectangles but
not ellipsoids. This contrasts with results obtained for homogeneous opera-
tors (14). Observe that the rates of convergence are worse for ellipsoids than
for corresponding hyperrectangles: this occurs because the uniform hyperrectan-
gle constraint (12) operates @ach coordinate and so provides less scope for
maximizing risk by concentrating signal energy in coordinates whétd| is
small than does the ellipsoid case where only a total energy constraint (13) ap-
plies.
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2. Preliminaries.

2.1. Diophantine approximations. We recall some pertinent parts of the clas-
sical theory, referring to Lang (1966) and Khinchin (1992) for further details. The
study of approximations such as (8) is connected to the approximation of irra-
tionals by rationals known as Diophantine approximations. For a given irrational
numbera, we distinguish the systematic approximatidig||, k=1, 2, ... of (8)
from thebest rational approximationg/q: by best-approximation we mean that

a7 lga — p| < min |kal.
1<k<gq

Given the sequence of solutiorig,, g,) to (17), the rate of approximation is
defined in terms of the decay of
g P
dn
Apart from the two basic groups of real numbers, rationals and irrationals, there
exists a much finer division of irrational numbers based upon the degree to which
they can be approximated by rational fractions. This may range iﬁ:(m/qf)
to arbitrarily much faster, as explained below. These rates depend crucially on
the best-possible rational approximation (17). The solution of (17) is given by
the continued fractions algorithm which, unlike systematic fractidys:|(/k,
k=12, ...), captures the arithmetic properties of the number to be approximated.

(18) D(a,gn) =

2.2. Continued fractions and convergents. Any real numbem that is not an
integer may be uniquely determined by its continued fraction expansion

1
(19) a=ag+———— =lao; a1, az, .. ],
ay+ 1
agt-

az+

whereag is an integer ands, as, ... is an infinite sequence of strictly positive
integers. In the algorithm (19) the numbessare called theslements or partial
denominators. To each infinite sequenc@y) corresponds a unique irrational
numbera and vice versa. At stagethe algorithm uses only the firgtelements:
[ao; a1, ao, ..., a,]. For such a terminating continued fraction only a finite number
of operations are involved and the result is clearly a rational number:

1 Pn

(20) ao+ ————=lao; a1, az,...,a,] = —.
ay+ dn

L1
A+

The rational numbersp,/q,), n = 0,1,... are called theconvergents of a.
Returning to the problem of approximating an irrational numbday rationals,
we have that, fon > 1,

(21) inf |lkall = Igna — pnl = lignall.
1<k=qn
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In words, theconvergents satisfy the best-approximation property (17). Indeed,
any best-approximation is a convergent sinceyfor 1, g, is the smallest integer

q > gn—1 such thatl|gall < |lgn—1a]l [see, e.g., Lang (1966), page 9]. The quality
of best-approximation is given by

(22)

5 < llgnall <
dn+1 qn+1

[Lang (1966), page 8]. While for systematic approximation, with 4 < ¢,, Lang
[(1966), page 10] shows that

1
23 kal| > =—.
(23) kall > >

n

It is informative to note that, for > 2, the algorithm (20) can be written as

(24) Gn = Angn—-1+ gn-2, Pn =anPn—1+ Pn—2.

from which follow some basic properties of the convergents of all irrational
numbersz:

() The denominators,, grow at least geometrically:

(25) Gnyi = 207072, i>1.
(i) Foralln >0,
a, < Gn <a, +1.
qn-1

The qualitative nature of rational approximations can, therefore, be measured by
the size of the elements in the continued fraction algorithm, from (22),

1 1
<D(a,qn) < 5—

26 _— .
(26) ZqI%(an—i-l +1) 45, 9n+1

Faster approximation will occur for those irrationals with larger elementsnd
vice versa. Families of irrational numbers can be defined according to the size of
their elements.

DEFINITION 1. We say that an irrational numberis badly approximable
(BA) if

supay, (a) < oo.

From (26), we see that arbitrarily fast rates of approximation are possible.

A natural question arises—are there general laws which govern the approxi-
mations of classical irrational numbers?—Again, some answers follow from the
continued fraction algathm [Khinchin (1992) Chapter Il]. One class of results
concerns algebraic numbers—roots of polynomials with integer coefficients. For
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example, it can be shown that quadratic irrationals (sucl{&shave periodic el-
ements and so are BA. And cubic irrationals (e.g/3bcannot be approximated
with a rate faster than/%3.

Another class of results constitutes the “measure theory” of continued fractions.
For examplealmost all numbers (i.e., except a set of Lebesgue measure zero)
have unbounded, [Khinchin (1992), Theorem 30]. On the other hand, for almost
all numbers, it is also true that the rate of approximation can be no faster than
O(l/qs(logqn)“‘s), 8 > 0. For us, an important consequence (see the Appendix)
is the following. For eacld > 0, there is a sed s of full measure such that

(27) qn+1 > qn10Q9q, infinitely often,
and yet
(28) gni1 < gn(logg)**®  forall largen > n(a).

Henceforth, the usage “almost all means “for alla in As.”

2.3. Minimax risk. We recall some basic results, established for the direct
data settingry = 1 (or ¢, = ¢) in Donoho, Liu and MacGibbon (1990), and
easily extended to the indirect setting (10) (see the AppendixX. i§ compact,
orthosymmetric and quadratically convex, then

(29) RN(®,€) <RL(O,€) <u"Rn(0,6),

where u* < 1.25 is the Ibragimov—Khasminskii constant; see Donoho, Liu and
MacGibbon (1990). For such sets, we also have

$Rp(®,6) <RL(O,€) < Rp(O, ),
where we define

(30) Rp(©,€) =supd 02 A €.

0e® k
In the light of bounds (7) and Remark 2, our task is, then, to evaRat®, ¢) for
selectedd, smalle andk € N, for the boxcar operator, which has

ek T €k

g
2 ||kall

1 lkall —

for all k > O.

2.4. An equidistribution lemma. While precise bounds (22) are available for
best-possible rational approximations to an irrational numhethe quality of
systematic rational approximatiofijsal|, k = 1, 2, ..., changes considerably as
k varies. As a resulty; and rk_2 oscillate widely ask changes; see Figure 1.
However, theaverage behavior is much less susceptible to fluctuations. Indeed,
ask runs over a block of length, the values of|ka| have a distribution that is in
certain respects close to discrete unifornyort, 2¢ 1, ..., 1.
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LEMMA 1. Let p/q and p’/q’ be successive principal convergents in the
continued fraction expansion of a real number a. Let N be a positive integer with
N + g < q’'. Let h be a nonincreasing function. Then we have upper and lower
bounds

q N+q q—3
(B2) Y h(w/e)< Y h(lkal) <2 h(n/q)+6h(1/(29)).
n=4 k=N+1 n=1

PrROOF The argument is a modification of that used by [Lang (1966),
page 37]. Sincep/q is a principal convergent, we may write in the form
a=p/q+8/q%with |§| < 1. Writngk =N +vwithv=1,...,4, one gets

ka=Na+vp/q +e,, lev] < 1/q.

Sincep andgq are relatively prime, the seftsp/q, v=1,...,q} and{u/q, u =
0,...,qg — 1} are equal modul@. To eachk there is associated a uniqueand,
henceyu, and settinge,, = Na + /q, we have

ka = x,k) + €. (modZ).

The points{x,, n =1,..., ¢} form an equispaced set with exactly one point in
eachinterval,_1 =[(u —1)/q, n/q).

Let R(§) =& — [£] denote theemainder of a real numbeé. Consider first the
set.X1 of indicesk for which the corresponding points, lie in IoU Iy U I, _:
clearly, |K1| = 3. Sincek < ¢’, we have from the remark following (22) that
R(ka) > |ka| > 1/(2q"). Hence, the sum ok(R(ka)), for k € K1, is bounded
by 3n(1/(2q")).

Let K> be the set of remaining indicésin {N + 1,..., N + ¢}, so that the
corresponding points, liein I;U---Ul,_». Since alle, | < 1/g, each of the left
endpoints offy, ..., I,_3 is a lower bound for exactly ong(ka), k € K> and the
right endoints of/3, ..., I,_1 each are upper bounds for exactly dtiga).

Combining this with the upper bound f&€1, we obtain

q N+q q—3
(B3) D hw/p < Y. h(Rka) <Y h(n/q)+3h(1/(29").
n=4 k=N+1 n=1

This inequality remains valid if we replaé¢g&R (ka)) by k(1 — R(ka))—indeed,
the proofis simply “reflected abo%t" and we note that fok in the (reflectedx;,
we have - R(ka) > ||ka| > 1/(2q’). Since|x| = min{R(x), 1— R(x)}, we have

h(llx]) = max{a(R(x)), h(1— R(x))},

and usingla + b)/2 < maxXa, b} < a + b, the lemma follows from (33) applied to
R(ka) and 1— R(ka). O
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REMARK 6. The proof shows that the upper bound continues to hold if the
middle sum is taken ove¥ 4+ 1 <k < N + ko, wherekg < g and we assume only
N +ko<q'.

REMARK 7. The bounds provided by this lemma are often sharp up to
constants. For example,dfis BA andh(x) = 1/x,

N+q

> lkall™t =< qlogg.
k=N+1

3. Hyperrectangles.
3.1. Statement and outline. To state the main results, introduce two rate
constants
r=(+3)/(c+3). F=o/(c+3)
and note that < r if and only if o > 3/2. More precise results are possible

in the BA case, while for generic irrationals, the consequences (27) and (28) of
Khinchin’s theorem lead to only slightly weaker statements.

THEOREM 1. For BAa wehave

CZ(l—r)GZr’ ifo > %’
(34) Ry(H(C),€) < { Celog(C/e),  ifo=3,
C2A-1Ne2r if0<o <3

?-
For almost all a, the previous boundsremain valid for 0 < o < 3, whilefor o > 3,
for each§ > 0,

< ca(logC/e)>tc2A-ne2r for all small e,

35) Ry(H?(C),e¢
(38) Ry (H7(C).€) > c1(logC /€)% c2A-—ne2 for infinitely many e.

There is thus an “elbow” in the rates of convergence &t% Comparison with
(14) shows that for < % the DIP isa¢ = 1 (as if the sinusoidal term were not
presentiny). However, foro > % the DIP given by (16) increases gradually from
1 to a limiting value of% for largeo .

This result does not cover irrationals with fast rates of approximation (¢4, 1
or higher, as discussed in Section 2.2), but, of course, such numbers form a set of
Lebesgue measure zero.

We outline the main steps of the proof, with details to follow in Section 3.3.
First, as notational convention, we introduce a parametero + % SO that

®©=H"Y2(C)=1{6:16¢] < Ck—T }. With these conventions, (30) becomes

(36) Rp(©,6) =) C%k 2 nel:= my(e).
k>0 k>0
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First, we use the continued fraction approximatiorutop,, /g,, n =0,1,2, ...,
and for frequencies neay,, split the sum into blocks of lengt),. Thus,

37) > omp(e)= ) > mi(e),
k>0 blocks keblock

where) yos IS the sum over all blocks asvaries, the blocks being of length
betweeny, andg,+1. We then apply the equidistribution lemma to the sum within
blocks. The block sums are then collected into one of three zones:

(38) Rp(©.,€) =) mi(e) =V (€) + M(e) + B(e).
k

These zones (variance, mixed and bias) are illustrated in Figure 2, and defined
formally at (45).

1 T T T T T T T T

x \ :
10° |, Smoothness-class : 7

10° VARIANCE MIXED-ZONE BIAS .

-16 ! ! ! ! I ! ! !

|
0 50 100 150 200 250 300 350 400 450 500
k

Fic. 2. An illustration of the variance-mixed-bias zones. Using a log-scale along the vertical
axis, the plot shows both functions k — €2 (oscillating dotted curve) and k — C2k~2% (smooth
dashed curve), with a = 2/(v/5+ 1), e =108, ¢ =1 and r = 2, which corresponds to
o = 3/2. Solid vertical lines indicate the borders of the key zones. The thick solid line plots
k— my(e) = C2%k=2" A€,
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3.2. Frequency partitions determined by an irrational. Any irrational num-
bera defines a unique sequence of convergemsy,; 1=go<q1 <--- < gy <
qn+1 < ---. Definel,, > 1 as the largest integer strictly less thgni/¢,, thus,

Ingn < qny1 < (In + Dgp.
Consider a nonuniform grid

s qn, quh ey lnqu’ qn+1, ZQn—i—l, ey ln—&—lQn—l—l’ qn+2, .-
Introduce indicesv = (n,1),l =1,...,1,; n =1,2,.... The bivariate indices
v = (n,[l) are totally ordered by lexicographic ordering and we refer to their
components by the functions(v), /(v). Furthermore, each index has an
immediate successor, which in slight abuse of notation we denote4byt. So
our grid is
(39) N, = l(”)‘]n(vﬁ
this grid defines a partition dN by blocks which betweep, andg,.1 have
length< g,:

(40) N+=UBva Bv=[Nvan+l)-
v

Clearly,

Gn(v)> unlesg (v) = Iy,

€1, gnw)), if 1(v) = Lu().

To simplify certain calculations we use blocks of lengtly,y only, introducing
(41) Cy =[Ny, Ny + gn)]l D By.

By construction, for a given integet, there are at most twa, such that
k € C,. Hence, summing over all', in place of B, will only affect the rate by
a multiplicative constant of at most 2.

|BU| :NU+1_ Nv =

3.3. Proof of Theorem 1.

3.3.1. Key zonesand bounds. First, recall thain (¢) is defined at (36) and use
bounds (31); by constructiap,, < N, so that fork in a block[N,, N, 4+ g,»],
N, <k <2N,, hence,

(42)  my(e) < C%k~%° A ezk—z = C’N~% A eZN—Z .= hy(lkal)
llka| lka]|?
We suppress the indexwhen not necessary. From the equidistribution lemma,

(43) éfw(g) = Y hw(lkal) < céhN<g) +chN(2iq/).

keC,
To estimate these sums, we use an easily verified bound.
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LEMMA 2. Ifg > 2r andx > 0, then

q €\ 2
do1n <—) = min{«?, x, g},
u=r K

where the constants needed for =< depend only on r.

Now apply this tohy (x) = C?N~2" A €2N?%x~2, Writing alsoe = €/C, we
obtain
q
(44) Z hy(/q) < C2N~2" min {82N2(1+T)q2, eNTq, q).
n=r
We can now formally define the zone to which a blagk (or C,) belongs in
terms of the value oéNv”’qn(v). Again suppressing the subscriptwe say

Variance zone < eNt7g <1,
(45) B, €| Mixedzone & 1<eN%ig<gq,

Bias zone & eNt7g>gq.
Thus, the zone describes which term appears in the minimizer in (44)g et
be the last indices for whichV 7 g, ) < 1 ande N1** < 1, respectively, and set
(46) ko(e) = Nygr1 and ki(e) = Nyj41.

Frequencieg < kg lie in the variance zone, those witly < k < k4 in the mixed
zone, and those with > k1 in the bias zone.
Consider now the second term in the upper bound of (43):

hn(1/(24)) = CPN7% (LA 2sN*T7g1)?).

If eN*7¢ > 1, then, of course, so isNt7¢’ and sohy(1/(2q") =
C2N~2%" < C%¢N1~7¢ can be ignored in comparison with (44). On the other
hand, ifeN1t7g < 1, thenky (1/(2¢")) < 4€2N?(¢’)? and this bound dominates
€2N?42. In summary, we have derived the following key bounds:

<ce?N?(g)%, v e (variance zone),
(47) > mi(e){ < CeNY g, v € (mixed zone),
keCy = C2N—%g, v € (bias zone).

Thevariancezone. Consider first valuek < kg(¢) such that the contribution to
the minimax risk is due to oscillations occasioned by Diophantine approximation
only. Here the first bound of (47) applies and the hyperrectangle constraint
C2%k=2" has not yet any smoothing effect.

We first derive an expression fép in terms ofe. If v =vg + 1, we have by
definition,

e < N¥g,0) < NPT =k3™™  and sdg > e V),
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On the other hand, again by definitiom,! > N2 g, (0 > qf?;;). Writing L,, for
gn+1/9n, We obtain

ko= Nvo+l Sqnve)+l = Ln(vo)Qn(vo) = Ln(vo)g_l/(2+r)-

For BA a, L, < ¢, while for almost alla and all largen, (28) shows that
L, < (logg,)**®. To summarize,

ko = (C/e)Y@+D  for BA a,

ko < c(C/e)Y @D ((logC/e))*®  for almost alla.

First, sum over blocks using partition (40) and apply bound (47) in the variance
zone:

ko—1
(48) Vi)=Y me)= Y Y mple) <ce® Y N2qZy)i1-
k=1

v=vokeB, v=<vg
Using grid (39), and settingy = (no, 1), [ <l,,, we obtain
ng Iy no _ no
(49) V() <ce®y > 1%q2q 1 <ce® )y 3qiql  <ce’Ly > an,
n=1[=1 n=1 n=1
where we have sét,, = maxL,, n < no}.

The denominatorg, grow at least exponentially [cf. (25)] and so usipg <
e~ 1/(@+0) e find

no
62 Z q:: < CGZQ:O < CGZ(C/€)4/(2+T) — ch(l—r)GZr.
n=1

In the BA caseL,, < c, while for almost alla we haveL,, < (logg,,)**/° <
c(loge) /5, In summary,
cC2A-r)e2r for BA a,

50 V(e) <
(50) €= c(log(C/e))>*c2d=neZ  for almost alla.

The mixed zone. We are now interested in indicése [kg, k1) where both
oscillations and the hyperrectangle constraift —2* contribute to the minimax
risk; it ends where the oscillations stop. By definitién= N,, 1 satisfiesv,, <
e~YA+D) < N, 1. Since alwaysV, .1 < 2N,, it follows that

ki = g~/ (A+7) — (C/G)l/(l—i-.[).

Using bound (47) in the mixed zone, together wWith | = g,,(,), andN <k <
2N yields

> mi(e) < Ce Ny "guay < Ce Y Ny "< Ce Y k7,
keCy keCy keC,
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which shows that for sums over blocks of length, in the mixed zone, we
may replacen; (¢) by €k1~7. Since the blocks”, form a cover of the integers
ko, ..., k1 — 1 of redundancy at most two,

ky—1 ky—1
M(e)=Y mp(e) < Ce Y k.
k=ko k=ko
Thus, in the mixed zone,
Ceké" = C2A-n)e2r if > 2,
(51) M (e) < | Celog(ki/ ko) < Celog(C/e), if t =2,
Cek%_r = C2A-Ne2r if % <1<?2.

The bias zone. Note that fork > ki1, since always|ka| < 1, we have
€2k?/||ka||? > €%k2 > C% 2 and so there is no longer any effect of oscillation,
andmy () = C%~2% in (36). Hence,

(52)  Be)= Y mp(e)=C?) k¥ =<l =< 2N,
k>kq k>kq
We emphasize that bounds (51) and (52) apply to all irratiomals

3.3.2. Summary. We return to (38). In the BA case (and also the a.a. case when
% < 1 < 2), itis apparent from (50), (51) and (52) thHat+ B + M =< M, which
establishes (34).

It remains to consider the a.a. case with= 2. The upper bound in (35) is
apparent from (50). For the lower bound, letbe an arbitrary irrational with
convergentyy /qx, k =0,1,2,.... Simply by choosing to be zero except in
thekth coordinate—in whicl#, = Ck—*—we obtain the elementary lower bound

(53) Rp(©,¢€) > sup C2U=2 A€l

Sincee; > ek/|lka||, we find using (22) that fok = g,,,
C*k 2" nef = C2q,% AePqliql,a.

Using (27) in (53), we deduce that for almost althere exists a sequengge
such that

(54) Rp(®,€) > S;JpCzqn_,Z’ ne%qn (loggn).
Construct a sequence(l]),l =1, 2, ..., with

(55) C%q,, " = e[l]zqﬁ'[(logqnl)z, which givesg,,, < (e[l]loge[l]~1) =YD,

and using such as[l]-sequence in (54), together with (55), yields the required
bound

Rp(®, e[l]) = C%q, %" = (log(C /e[1])) C2A el

n
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4. Ellipsoids. For an ellipsoid® = ©? (C) defined asin (13), let=0/(c +
2). The goal of this section is to establish the following:

THEOREM2. For o > 0and BA a, we have
Ry(©%(C), €) < CHANZ
For almost all a, bounds (35) hold for Ry (©° (C), €) with r replaced by 7, for all

o>0.

Sincer = o/(0 + 2), the DIPa(K,, ®7(C)) = 3 3 for all ellipsoids, regardless
of the value of the smoothness index

Upper bound. As with hyperrectangles, the aim is to use sums over blocks of
length~ ¢. To do so, we define slightly larger ellipsoids based on the partiigh
of (40):

(56) @a:(ag(C):{e:ZNE“ Zekzgcz},

v keB,

where the index indicates that the grid depends on number theoretical properties
of a. By definition (40) of the partitiork € B, implies thatt > N, so that® C ©,
and, henceR(0, ¢) < R(O,, €).

We may now split the optimization across and within blocks:

Rp(@a,e)=sup{z > e,fAe,f:ee@)a}

vV keB,
(57)

- sup[ Y bty €)Y NF12 < CZ},
v v

where the optimization within blocB, is subject to the quoté:

(58)  by(1y.¢€) :sup{ AT szgtf} :min{tvz, 3 e,f}

keB, keB, keB,

The equidistribution lemma can be applied to this last spie? =< 23" k?/
llka||2. On dropping the subscript we obtain

Z k2 N2 Z iCI_Z_i_B(Z /)2 < N2( /)2
ka2 =% ||ka||2 p2 TR =t

keB, keB, n=1
Hence, from (57) and (58),

(59) Rp(Og.€) < csup{ Y min{r?, Nigh 1) 1Y NP2 < CZ}

v
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Observe that for any positive sequen¢eys), (c¢,) and(d,), with d, nondecreas-

ing,

(60) sup(Zmin(uv, )iy dyuy < 1) <> e
u v v v<vg

for any valuevg for which

(61) 3 cvdy > 1.

V=10

Applying this to (59) withu, = 12, ¢, = €2N2¢2,,, andd, = N2’ /C?, we
obtain

(62) Rp(Oq, €) <ce? 3 N2gZ, 1.

V=vo
Herec,d, = e2N2°%2(q")? = e2(1g) % +2¢2, | if v= (n,1). Let N, = {v:g, <
N, < gn+1} and note, sinc€, + 1)q,, > g,+1, that
CDn = Z Cvd _82 20’+2q3+ ZZZU+2
veN,

> ce (l +1)2(T+3 20+2q3+ > ce lnqsi—]’__4
Let ng be the first index for whichCD, > 1: sinceCD,,,_1 <1, we have
(63) 82q3g+4 < 1/(clpy-1) and sog,,, < ce~L/(0+2)

Since (62), together with (63), is exactly the situation reached at (48) in the
hyperrrectangle case (with replaced bys) we conclude that the bounds (50)
apply (withr replaced by).

Lower bound. Arguing exactly as at (53), but with replaced by,

(64) Rp(®,€) > sup C2q,% ne%q2q2, ..

In the BA case, letig be the last index for which €2¢# < C?%¢.?°, so that
g2t < e72andq, 2 > ¢/ 2 From (64) ath = no + 1 we find

Rp(©,€) > C%q, %) > cC?q, » > cC* e

For the almost all case, the argument is the same as before at (54) and below.
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5. Discussion.

5.1. Periodic vs. nonperiodic. Recent papers by Hall, Ruymgaart, van Gaans
and van Rooij (2001) and Groeneboom and Jongbloed (2003) consider in part a
density estimation version of the deconvolution problem in which the data consist
of an i.i.d. sampleY; = X; + z; in which X; are i.i.d. with unknown density
f andz; are i.i.d. uniform on[—a, a] and independent of th&;. Groeneboom
and Jongbloed (2003) derive pointwise limiting distributions of estimatorg of
based on kernel smooths of nonparametric MLEs of the distribution function
of f. The work of Hall, Ruymgaart, van Gaans and van Rooij (2001) looks
at maximum global estimation errors, and so is perhaps closer in spirit to the
present investigation. Instead of any periodicity assumptions, it is assumed there
that the densityf has compact support oR. The compact support permits
an explicit inversion formula: ifg = K, f and I is chosen large enough that
x — Ila <infsuppf, then

I

f(x)=2a Zg/(x —ia).

i=1

In this case Hall, Ruymgaart, van Gaans and van Rooij (2001) show that the DIP
a(K,, F9) =1 for F° of both hyperrectangle and ellipsoid type, in contrast to
the results found for the periodic model considered here. The difference in results
may perhaps be understood by observing that sinusoids, which are basic to the
periodic model, do not have compact support. Thus, the models capture genuinely
different phenomena.

5.2. Effect of rational approximationsto a. In practice, computer code works
with rational numbers—what effect will this have on our conclusions? A few
remarks can be made even without getting into specifics of particular models of
computation or attempting a full analysis.

A basic issue is whether the boxcar widths under the investigator’s control.

If it is—our first scenario—then we might imagine replaci®y o, = py./qm,
say, so that model (4) becomes

sinka,,

(65) Vi =1k (o) Ok + €2k, rie(og,) =
ko,

Here p,,/q» might be one of the sequence of best rational approximations to
The approximation results of Section 2.2 show that our analysis of estimation in
model (65) is unchanged from that of irratioralat least for frequencids< g,,,,
sincea anda,, will have the same convergents/qg, for r <m. Thus, one could
simply choosey,, large enough that the tail bias accruing to frequencies apgve

is negligible. To be more specific, assume tBait a hyperrectanglé’® (C), and
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thate is known. Lety > 0 be small [we could lef(¢) — 0 with € to preserve rates
of convergence]. We can choose> k1(¢) [defined at (46)] so that the tail bias

C2 Z k_20+1§ nR(HG(C),E),
k>ko

and then choose: large enough thag,, > k2. A minimax estimator forH? (C)
under model (65) will be essentially identical in structure with one for the original
irrational a, since in either case, the zero estimator is used at all frequencies
k> qm.

In the second scenario, the boxcar widths determined by nature and the
investigator must work with the datafrom model (4). We still assume that the
value ofa is known, but must use rational approximations:tm our estimators
based ony. For definiteness, consider again the c@se- H° (C) and setr; =
Ck~". Consider the risk of linear ruleé (y) = cyyx if ex < 7 andéi(y) =0
otherwise. If§ = {k: ¢, < i}, then the risk of such a rule is

r(c,0) =Y [cEe® + (L— cr)®0F1+ Y 672
kes k¢s

Suppose that is irrational: with infinite precision, we could use an estimator
cx = 1/ri that makes (c, 0) = 362 A 2. Now consider the difference in risk that
results from an approximatiofy = 1/7, where#, = (sinwka)/(wka) for some
rational approximatiod = p,, /g, t0 a,

r(,0)—r(c,0)= Z H:(r—k)z - 1]62 + (1— r—k)ZQZ}‘
) ) 7 ]”:k k ]”:k k (°
if we write r /7, = 1+ 8¢, and assume thdt= SUPR.cg 0k <1,

(66) suplr(é,0) —r(c,0)] <35Rp(©,€) + 52 12.
®

Using a derivative bound an— sinzka and then (7),
a
18k| < —
a
If a = pn/qm andk < g,, then from (26), (23) and (25),
2
oul =5 (L) < 2o,

a \dm a

sinka
L
sinka

_1’<|a—a|{ wk 1}<2|a—a| k

a -~ a sinmka a |kal’

Consequently, the risk difference due to using a rational approximatian be
made as small as desired by first selectirsg that sufk 1k € $(¢)} < ¢, and then
m so that the bound o6}, and, hencej is as small as needed.
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5.3. Generalizations. 1. It seems likely that estimators which are adaptive
with respect tooc and C could be constructed (for a fixed irrationa) by
grouping frequenciels within a given blocg,,, g,+1) into a number of subblocks
according to the value dfika || and then using some form of James—Stein shrinkage
within each subblock. This methodology is now quite well established on other
inverse problems with monotone eigenvalues; see, for example, Cavalier and
Tsybakov (2002). Alternatively, adaptivity (up to logarithmic terms) is established
via a wavelet deconvolution approach in Johnstone, Kerkyacharian, Picard and
Raimondo (2004) for a class of Besov spaces including ellipsoids (13).

2. The ellipsoid results might also have been derived using the explicit
evaluation of minimax risk given by Pinsker (1980). However, the method used
here allows extension of the rate results to weightgdbodies of the form
® = {0:3 k%792 < C%} for r > 1 using essentially the same argument as for
ellipsoids. For example, the analog of (58) states that if the ordered incregsing
corresponding to indices within a blogk satisfy some bouné1)/ex) <y (as
happens for the boxcd¢,), then

lo

2 2. 2 _ .2 2

by(ty,€) =SUPY D BE Aeg: D O <ty =D €l
keB, keB, 1

where [ = suﬂl:Z’,zle(Z;) < 1%}, and such sums can be estimated by the
methods of this paper.

3. It is straightforward to extend the results of this paper to iterated kernels
K, = ((Za)_ll[_a’a])*m with eigenvalues;, = (sinwka)™/(mwka)™. However,
kernels of the formk, , = (2a) " 1[_4.41 * (2b)~11;_ 5 have eigenvalues

sinka sintkb  |kal|||kb||
Ty = = ,
T tka kb k2ab
while the linear motion kernel (6) has

sinm (kya + kora)
1 (kia + kora)

Considerable work exists on simultaneous Diophantine approximation problems
[Schmidt (1980), Chapter 2], but whether this enables rate of convergence
calculations is an open question.

Tkykp =

APPENDIX

PROOF OF (27) AND (28). We recall the convergence/divergence theorem
of Khinchin [(1992), Theorem 32]. Lef (x) be a positive continuous function of
x > 0, suchthaty (x) is nonincreasing. Then the inequaliya|| < v (¢) has, for
almost alla, a finite or infinite number of solutions in positive integgraccording
as/>° ¢ (x) dx converges or diverges.
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For (27), considery(x) = (2x logx)~1. Since the integral diverges, lgtbe
one of the infinitely many solutions tfya| < ¥ (¢) and choose: so thatg, <
q < gn+1- It then follows from (22) and the property stated after (21) that

1
all = llgall < < ;
2911 I 2qlogq ~ 2q,1094,
from which (27) is immediate.

For (28), considets (x) = x ~1(logx)~17?. Since the integral converges, for all
q > ¢(a,8), we havelgall = ¥ (g). In particular, from (22), for large,

=< Ilgn

> llgnall =2 ———=+>
qn+1 " ‘In(IOQC]n)l_Hs

from which we obtain (28). O

PROOF OF(29). The method used to establish (29) for direct data may be
extended in a straightforward manner to model (9), for example, by stepping
through the arguments in Johnstone [(2003), Hyperrectangles chapter]. The key
step in this approach, as in Donoho, Liu and MacGibbon (1990), is to establish
that

(67) RL(©,€) =SUPRL(O(1),¢€),

T€O
where® (1) is the hyperrectanglH[—1;, 7;]. This can be reduced to the Kneser—
Kuhn minimax theorem [Johnstone (2003), Corollary A.4] applied to payoff
function

(68) fle,s) =D [t + (1 — cp)?si],
k

defined for(c, s) € £2(N) x £1(N). But result (67) extends immediately to model
(9) by replacing:? with €2 in (68) and changing the domain oto the weighted
Hilbert spacel2(N, (e2)) = {c: Y c2e2 < oo}, and applying the minimax theorem
in the same way. [J
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