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PERIODIC BOXCAR DECONVOLUTION AND DIOPHANTINE
APPROXIMATION

BY IAIN M. JOHNSTONE1 AND MARC RAIMONDO2

Stanford University and University of Sydney

We consider the nonparametric estimation of a periodic function that is
observed in additive Gaussian white noise after convolution with a “boxcar,”
the indicator function of an interval. This is an idealized model for the
problem of recovery of noisy signals and images observed with “motion
blur.” If the length of the boxcar is rational, then certain frequencies are
irretreviably lost in the periodic model. We consider the rate of convergence
of estimators when the length of the boxcar isirrational, using classical
results on approximation of irrationals by continued fractions. A basic
question of interest is whether the minimax rate of convergence is slower
than for nonperiodic problems with 1/f -like convolution filters. The answer
turns out to depend on the type and smoothness of functions being estimated
in a manner not seen with “homogeneous” filters.

1. Introduction.

1.1. Statement of problem and motivation. Suppose that we observeY (t) for
t ∈ [−1,1], whereY is drawn from an indirect estimation model in Gaussian white
noise:

Y (t) =
∫ t

−1
Kaf (s) ds + εW(t),(1)

where

Kaf (t) = 1

2a

∫ a

−a
f (t − u)du, a > 0,(2)

{W(t), t ∈ [−1,1]} is a standard two-sided Wiener process andε is small and
assumed known. It is desired to estimate the unknown signalf , assumed to be
periodic on[−1,1]. We refer to this as boxcar deconvolution, becauseKaf =
f � ka corresponds to convolution with the step functionka(t) = (2a)−1I {|t| ≤ a}.

The problem has the peculiar feature that if the boxcar half-widtha is rational,
then certain frequencies are completely unrecoverable from the data. Indeed,
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because of the periodic and convolution structure, the problem is diagonalized
in the Fourier basis. Thus, letek(t) = eπikt , for integerk ∈ Z. ThenKaek = rkek,

where the eigenvaluesr0 = 1 and

rk = sinπka

πka
, k �= 0.(3)

Furthermore, settingyk = ∫ 1
−1 ek(t) dY (t), θk = 〈f, ek〉 := ∫ 1

−1 f (t)ek(t) dt , and

zk = ∫ 1
−1 ek(t) dW(t), we find that model (1) is equivalent to

yk = rkθk + εzk, k ∈ Z.(4)

For rationala = p/q, the eigenvaluesrk vanish for all integer multiplesk = jq

of q. In the Fourier expansion
∑〈f, ek〉ek, all information about the coefficients

〈f, ejq〉 is lost after convolution. For irrationala, however, the inversion formula

〈f, ek〉 = 1

rk
〈Kaf, ek〉(5)

is at least well defined, sincerk �= 0 for anyk ∈ Z. The object of this paper is to
study the quality of estimation off attainable for irrationala in the small noise
limit ε → 0.

Motivation for studying this special problem arises from several sources:

(i) It may be viewed as an idealization of the problem of recovery from linear
motion blur plus noise in a fixed field of view. If a camera is passing over a scene
f (x, y) along a direction(1, r) at unit speed, then in exposure time 2a the image
acquired at point(x, y) may be modeled as

Kf (x, y) = 1

2a

∫ a

−a
f (x + u,y + ru) du.(6)

Our model is a one-dimensional version of horizontal motion,r = 0. While the
periodicity assumption onf may seem artificial, it does capture the property that
if f is locally periodic with period 2a near(x, y) (as in certain textures), then
Kf is locally constant near(x, y). Compare the discussion in Section 5.1. A more
detailed discussion of linear motion blur, with photographic examples, may be
found in Bertero and Boccacci [(1998), pages 54–58].

(ii) It is related to the problem of periodic density estimation with uniform
errors. SupposeX1, . . . ,Xn are i.i.d. random variables with unknown periodic
densityf on the circleT. However, theXi are not observed; instead we see jittered
versions

Yi = Xi + zi,

where{zi} are i.i.d. uniformly distributed on[−a, a] and circular addition is used.
(iii) As an inverse problem, (5) is nonstandard: the eigenvaluesrk oscillate

inside an envelope decaying like 1/frequency, for k �= 0,

rk ≤ c/|k|, c = (πa)−1.
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We may ask the following: is the quality of estimation—measured by minimax
rate of convergence asε → 0—determined by the 1/|k| decay, or is it affected by
the oscillatory behavior?

(iv) Let ‖x‖ denote the distance fromx ∈ R to the nearest integer. Fork �= 0,

2

π

‖ka‖
|ka| ≤ rk ≤ ‖ka‖

|ka| ,(7)

and so the oscillations in (3) are driven by

‖ka‖ := inf{|ka − l|, l ∈ Z}.(8)

The study of such “Diophantine approximations” uses the classical theory of
continued fractions, for example, Lang (1966) and Khinchin (1992), and plays
a basic role in this paper.

There is a large literature on statistical inverse problems—for some recent
reviews see Tenorio (2001) and Evans and Stark (2002). In particular, the sequence
space formulation studied here has received substantial attention: a sample of
recent works, in addition to those cited below, include Wahba (1990), Johnstone
and Silverman (1990), Koo (1993), Belitser and Levit (1995), Donoho (1995),
Mair and Ruymgaart (1996), Golubev and Khas’minskiı̆ (1999, 2001) and
Cavalier, Golubev, Picard and Tsybakov (2002). However, much of this literature is
concerned with eigenvalue sequences having (up to constants) monotonic behavior
as k increases. Papers that do specifically address the boxcar deconvolution
problem include Hall, Ruymgaart, van Gaans and van Rooij (2001), Groeneboom
and Jongbloed (2003) and O’Sullivan and Roy Choudhury (2001); see Section 5.1
for some further discussion.

1.2. Effective degree of ill-posedness. Problem (1) is an example of a linear
statistical inverse problem in which one observes a noisy version ofKf for some
linear operatorK , and wishes to reconstructf . Such linear inverse problems
are typicallyill-posed in the sense of Hadamard: the inversion does not depend
continuously on the observed data. One manifestation of this is that rates of
convergence of estimators asε → 0 are slower than in the direct case in whichf

itself is observed with noise. We shall formulate some well-known existing results
in terms of a notion of “degree of ill-posedness” (DIP) in order more easily to state
the results of the present paper.

Under appropriate conditions,K will have a singular value decomposition, and
in terms of coefficients in the singular system expansions, the observations may be
written in a sequence form

yk = rkθk + εzk, k ∈ Z,(9)

or, equivalently, after dividing through byrk, as

ȳk = θk + εkzk,(10)
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where ȳk = yk/rk and εk = ε/rk. Let ‖θ‖2
2 = ∑

k∈Z θ2
k . Define the (nonlinear)

minimax risk of estimation with respect to a parameter space� ⊂ �2 via

RN(�, ε) = inf
θ̂

sup
θ∈�

E‖θ̂ − θ‖2
2,(11)

where the infimum is taken over all (measurable) functionsθ̂ of the data. We define
the linear minimax risk by

RL(�, ε) = inf
θ̂L

sup
θ∈�

E‖θ̂ − θ‖2
2,

where attention is restricted to the subclass oflinear estimatorsθ̂L = (θ̂L
k ) with

θ̂L
k = ckyk, for some sequence(ck).

Parameter spaces of primary interest in this paper include, forσ > 0,C > 0,
hyperrectangles

Hσ(C) = {θ : |θk| ≤ C|k|−σ−1/2, k �= 0, andθ0 ∈ R}(12)

andellipsoids

�σ
2 (C) =

{
θ :

∑
k

k2σ θ2
k ≤ C2

}
.(13)

REMARK 1. Within these scales of spaces, the parameterσ measures
smoothness: largerσ corresponds to faster decay of coefficients. When the(θk) are
Fourier coefficients, the ellipsoids correspond exactly to mean-square smoothness
of theσ derivatives off = ∑

θkek . [See, e.g., Kress (1999), Chapter 8.1.] There is
no such simple characterization for hyperrectangles—the definition (12) is chosen
to yield the same rates of convergence as (13) in the homogeneous cases described
next. The parameterC measures size: it corresponds to the radius of balls within
these spaces.

REMARK 2. In (5) we used the complex exponentialseπikt . The model has
the same form if instead one uses the real trigonometric basisēk(t) = cosπkt or
sinπkt or 1/

√
2 according ask > 0, k < 0 or k = 0. Model (9)–(10) applies to

indicesk ∈ Z. For convenience in the rest of the paper, we restrict the indexk

to N+ = {1,2, . . . }. Indeed, since spaces such as (12) and (13) are symmetric
with respect to±k, we haveRN(�, ε;Z) = 2RN(�, ε;N+) + ε2, with the
analogous statement valid also for the linear minimax risks. Consequently, rates
of convergence are certainly unaffected by working onN+.

REMARK 3. The notationa(ε) 
 b(ε) means that there exist constants such
that for sufficiently smallε, c1b(ε) ≤ a(ε) ≤ c2b(ε). The constantsc1, c2 and other
generic constants (denoted byc and not necessarily the same at each appearance)
may depend on parameters of the smoothness class� such asσ , but they do not
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depend onε, θ or the size parameterC. While the size constantC clearly does
not affect the rate of convergence asε → 0, we consider it useful to show the
order of dependence of minimax risks onC. The notationak ∼ bk means that
limk→+∞(ak/bk) = 1. The notationak ≡ c means that, for allk, ak = c.

Suppose that the eigenvalues satisfy a homogeneous decay conditionrk ∼ |k|−α

and that� = Hσ(C) or � = �σ
2 (C). Then it is well known [e.g., Korostelev and

Tsybakov (1993), Chapter 9] that

RN 
 RL 
 C2(1−s)ε2s, s = σ

σ + 1/2+ α
.(14)

For direct data we haverk ≡ 1 in (9) and it is known that

RN 
 RL 
 C2(1−sD)ε2sD , sD = σ

σ + 1/2
.

This motivates the following definition of effective DIP:

α(K,�) := σ

(
1

s
− 1

sD

)
.(15)

For indirect problemsα(K,�) gives a measure of the effect (on the convergence
rate) due to the inversion process. For example, ifK is anα-fractional integration
operator and� = �σ

2 (C), thenrk ∼ |k|−α and so, in this case,α(K,�) = α. As α

gets larger it becomes more and more difficult to recoverf .
Returning to boxcar deconvolution, we note thatrk ∼ |k|−1 corresponds to

an effective DIP ofα = 1. The question studied in this paper is whether the
oscillations inrk of (3) increase the DIP. Compare Figure 1.

The answer turns out to depend on the function class. The main results,
Theorems 1 and 2, can be expressed as saying, so long as logarithmic terms are
ignored, that for ellipsoids and almost all irrationala,

α(Ka,�
σ
2 ) = 3

2 for all σ > 0,

while for hyperrectangles,

α(Ka,H
σ ) =




1, if 0 < σ ≤ 3

2
,

1+ σ − 3/2

2σ + 1
, if

3

2
≤ σ .

(16)

Thus, the DIP of boxcar deconvolution lies between 1 and3
2, and is better (i.e.,

smaller) for more uniform smoothness (hyperrectangles) and for smallerσ .

REMARK 4. We caution that the literature contains other definitions of DIP
of an inverse problem: for example, in Mathé and Pereverzev (2001), it refers to
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FIG. 1. An illustration of the degree of the DIP for the boxcar deconvolution operator with
a = 2/(

√
5 + 1). Using a log-scale along the vertical axis, the function k → r−2

k is depicted for

k = 0,1,2, . . . ,500 (oscillating solid line). For comparison purpose we also depict k → r−2
k for a

homogeneous operator with DIP= 1,1.5,2 taking eigenvalues rk = ck−α, where α = 1,1.5,2 and
c = 0.58 (smooth dashed curves).

a numerical index of distance from invertibility. While these notions are certainly
related, the definition used here is simply a convenience for interpreting results
stated formally in Sections 3 and 4: it refers to the drop in rate of convergence due
to presence of the decaying eigenvaluesrk .

REMARK 5. There is an elbow in rates atσ = 3
2 for hyperrectangles but

not ellipsoids. This contrasts with results obtained for homogeneous opera-
tors (14). Observe that the rates of convergence are worse for ellipsoids than
for corresponding hyperrectangles: this occurs because the uniform hyperrectan-
gle constraint (12) operates oneach coordinate and so provides less scope for
maximizing risk by concentrating signal energy in coordinates where‖ka‖ is
small than does the ellipsoid case where only a total energy constraint (13) ap-
plies.
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2. Preliminaries.

2.1. Diophantine approximations. We recall some pertinent parts of the clas-
sical theory, referring to Lang (1966) and Khinchin (1992) for further details. The
study of approximations such as (8) is connected to the approximation of irra-
tionals by rationals known as Diophantine approximations. For a given irrational
numbera, we distinguish the systematic approximations‖ka‖, k = 1,2, . . . of (8)
from thebest rational approximationsp/q: by best-approximation we mean that

|qa − p| < min
1≤k<q

‖ka‖.(17)

Given the sequence of solutions(pn, qn) to (17), the rate of approximation is
defined in terms of the decay of

D(a,qn) =
∣∣∣∣a − pn

qn

∣∣∣∣.(18)

Apart from the two basic groups of real numbers, rationals and irrationals, there
exists a much finer division of irrational numbers based upon the degree to which
they can be approximated by rational fractions. This may range fromO(1/q2

n)

to arbitrarily much faster, as explained below. These rates depend crucially on
the best-possible rational approximation (17). The solution of (17) is given by
the continued fractions algorithm which, unlike systematic fractions (‖ka‖/k,
k = 1,2, . . . ), captures the arithmetic properties of the number to be approximated.

2.2. Continued fractions and convergents. Any real numbera that is not an
integer may be uniquely determined by its continued fraction expansion

a = a0 + 1

a1 + 1
a2+ 1

a3+···

= [a0;a1, a2, . . .],(19)

wherea0 is an integer anda1, a2, . . . is an infinite sequence of strictly positive
integers. In the algorithm (19) the numbersak are called theelements or partial
denominators. To each infinite sequence(ak) corresponds a unique irrational
numbera and vice versa. At stagen the algorithm uses only the firstn-elements:
[a0;a1, a2, . . . , an]. For such a terminating continued fraction only a finite number
of operations are involved and the result is clearly a rational number:

a0 + 1

a1 + 1
. . .+ 1

an

= [a0;a1, a2, . . . , an] = pn

qn

.(20)

The rational numbers(pn/qn), n = 0,1, . . . are called theconvergents of a.
Returning to the problem of approximating an irrational numbera by rationals,
we have that, forn ≥ 1,

inf
1≤k≤qn

‖ka‖ = |qna − pn| = ‖qna‖.(21)
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In words, theconvergents satisfy the best-approximation property (17). Indeed,
any best-approximation is a convergent since, forn ≥ 1, qn is the smallest integer
q > qn−1 such that‖qa‖ < ‖qn−1a‖ [see, e.g., Lang (1966), page 9]. The quality
of best-approximation is given by

1

2qn+1
< ‖qna‖ <

1

qn+1
(22)

[Lang (1966), page 8]. While for systematic approximation, with 1≤ k < qn, Lang
[(1966), page 10] shows that

‖ka‖ >
1

2qn

.(23)

It is informative to note that, forn ≥ 2, the algorithm (20) can be written as

qn = anqn−1 + qn−2, pn = anpn−1 + pn−2,(24)

from which follow some basic properties of the convergents of all irrational
numbersa:

(i) The denominatorsqn grow at least geometrically:

qn+i ≥ 2(i−1)/2qi, i > 1.(25)

(ii) For all n ≥ 0,

an <
qn

qn−1
≤ an + 1.

The qualitative nature of rational approximations can, therefore, be measured by
the size of the elements in the continued fraction algorithm, from (22),

1

2q2
n(an+1 + 1)

< D(a, qn) <
1

q2
nan+1

.(26)

Faster approximation will occur for those irrationals with larger elementsan and
vice versa. Families of irrational numbers can be defined according to the size of
their elements.

DEFINITION 1. We say that an irrational numbera is badly approximable
(BA) if

sup
n

an(a) < ∞.

From (26), we see that arbitrarily fast rates of approximation are possible.
A natural question arises—are there general laws which govern the approxi-

mations of classical irrational numbers?—Again, some answers follow from the
continued fraction algorithm [Khinchin (1992), Chapter II]. One class of results
concerns algebraic numbers—roots of polynomials with integer coefficients. For
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example, it can be shown that quadratic irrationals (such as
√

5 ) have periodic el-
ements and so are BA. And cubic irrationals (e.g., 51/3) cannot be approximated
with a rate faster than 1/q3.

Another class of results constitutes the “measure theory” of continued fractions.
For example,almost all numbers (i.e., except a set of Lebesgue measure zero)
have unboundedan [Khinchin (1992), Theorem 30]. On the other hand, for almost
all numbers, it is also true that the rate of approximation can be no faster than
O(1/q2

n(logqn)
1+δ), δ > 0. For us, an important consequence (see the Appendix)

is the following. For eachδ > 0, there is a setAδ of full measure such that

qn+1 ≥ qn logqn infinitely often,(27)

and yet

qn+1 ≤ qn(logqn)
1+δ for all largen > n(a).(28)

Henceforth, the usage “almost alla” means “for alla in Aδ.”

2.3. Minimax risk. We recall some basic results, established for the direct
data settingrk ≡ 1 (or εk ≡ ε) in Donoho, Liu and MacGibbon (1990), and
easily extended to the indirect setting (10) (see the Appendix). If� is compact,
orthosymmetric and quadratically convex, then

RN(�, ε) ≤ RL(�, ε) ≤ µ�RN(�, ε),(29)

whereµ� ≤ 1.25 is the Ibragimov–Khasminskii constant; see Donoho, Liu and
MacGibbon (1990). For such sets, we also have

1
2RP (�, ε) ≤ RL(�, ε) ≤ RP (�, ε),

where we define

RP (�, ε) = sup
θ∈�

∑
k

θ2
k ∧ ε2

k .(30)

In the light of bounds (7) and Remark 2, our task is, then, to evaluateRP (�, ε) for
selected�, smallε andk ∈ N+, for the boxcar operator, which has

εk

‖ka‖ ≤ εk ≤ π

2

εk

‖ka‖ for all k > 0.(31)

2.4. An equidistribution lemma. While precise bounds (22) are available for
best-possible rational approximations to an irrational numbera, the quality of
systematic rational approximations‖ka‖, k = 1,2, . . . , changes considerably as
k varies. As a result,rk and r−2

k oscillate widely ask changes; see Figure 1.
However, theaverage behavior is much less susceptible to fluctuations. Indeed,
ask runs over a block of lengthq, the values of‖ka‖ have a distribution that is in
certain respects close to discrete uniform onq−1,2q−1, . . . ,1.
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LEMMA 1. Let p/q and p′/q ′ be successive principal convergents in the
continued fraction expansion of a real number a. Let N be a positive integer with
N + q < q ′. Let h be a nonincreasing function. Then we have upper and lower
bounds

q∑
µ=4

h(µ/q) ≤
N+q∑

k=N+1

h(‖ka‖) ≤ 2
q−3∑
µ=1

h(µ/q) + 6h
(
1/(2q ′)

)
.(32)

PROOF. The argument is a modification of that used by [Lang (1966),
page 37]. Sincep/q is a principal convergent, we may writea in the form
a = p/q + δ/q2 with |δ| < 1. Writing k = N + ν with ν = 1, . . . , q, one gets

ka = Na + νp/q + εν, |εν | < 1/q.

Sincep andq are relatively prime, the sets{νp/q, ν = 1, . . . , q} and{µ/q, µ =
0, . . . , q − 1} are equal moduloZ. To eachk there is associated a uniqueν and,
hence,µ, and settingxµ = Na + µ/q, we have

ka = xµ(k) + εµ(k) (modZ).

The points{xµ,µ = 1, . . . , q} form an equispaced set with exactly one point in
each intervalIµ−1 = [(µ − 1)/q,µ/q).

Let R(ξ) = ξ − [ξ ] denote theremainder of a real numberξ . Consider first the
setK1 of indicesk for which the corresponding pointsxµ lie in I0 ∪ I1 ∪ Iq−1:
clearly, |K1| = 3. Sincek < q ′, we have from the remark following (22) that
R(ka) ≥ ‖ka‖ ≥ 1/(2q ′). Hence, the sum ofh(R(ka)), for k ∈ K1, is bounded
by 3h(1/(2q ′)).

Let K2 be the set of remaining indicesk in {N + 1, . . . ,N + q}, so that the
corresponding pointsxµ lie in I2 ∪· · ·∪ Iq−2. Since all|εµ| < 1/q, each of the left
endpoints ofI1, . . . , Iq−3 is a lower bound for exactly oneR(ka), k ∈ K2 and the
right endoints ofI3, . . . , Iq−1 each are upper bounds for exactly oneR(ka).

Combining this with the upper bound forK1, we obtain

q∑
µ=4

h(µ/q) ≤
N+q∑

k=N+1

h(R(ka)) ≤
q−3∑
µ=1

h(µ/q) + 3h
(
1/(2q ′)

)
.(33)

This inequality remains valid if we replaceh(R(ka)) by h(1 − R(ka))—indeed,
the proof is simply “reflected about1

2,” and we note that fork in the (reflected)K1,
we have 1−R(ka) ≥ ‖ka‖ > 1/(2q ′). Since‖x‖ = min{R(x),1−R(x)}, we have

h(‖x‖) = max
{
h(R(x)), h

(
1− R(x)

)}
,

and using(a + b)/2≤ max{a, b} ≤ a + b, the lemma follows from (33) applied to
R(ka) and 1− R(ka). �
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REMARK 6. The proof shows that the upper bound continues to hold if the
middle sum is taken overN + 1≤ k ≤ N + k0, wherek0 ≤ q and we assume only
N + k0 < q ′.

REMARK 7. The bounds provided by this lemma are often sharp up to
constants. For example, ifa is BA andh(x) = 1/x,

N+q∑
k=N+1

‖ka‖−1 
 q logq.

3. Hyperrectangles.

3.1. Statement and outline. To state the main results, introduce two rate
constants

r = (
σ + 1

2

)/(
σ + 5

2

)
, r̄ = σ/

(
σ + 3

2

)
,

and note thatr < r̄ if and only if σ > 3/2. More precise results are possible
in the BA case, while for generic irrationals, the consequences (27) and (28) of
Khinchin’s theorem lead to only slightly weaker statements.

THEOREM 1. For BA a we have

RN

(
Hσ(C), ε

) 





C2(1−r)ε2r , if σ > 3
2,

Cε log(C/ε), if σ = 3
2,

C2(1−r̄)ε2r̄ , if 0 < σ < 3
2.

(34)

For almost all a, the previous bounds remain valid for 0 < σ < 3
2, while for σ ≥ 3

2,
for each δ > 0,

RN

(
Hσ(C), ε

){≤ c2(logC/ε)5+δC2(1−r)ε2r for all small ε,

≥ c1(logC/ε)2rC2(1−r)ε2r for infinitely many ε.
(35)

There is thus an “elbow” in the rates of convergence atσ = 3
2. Comparison with

(14) shows that forσ < 3
2, the DIP isα = 1 (as if the sinusoidal term were not

present inrk). However, forσ > 3
2, the DIP given by (16) increases gradually from

1 to a limiting value of32 for largeσ .
This result does not cover irrationals with fast rates of approximation (e.g., 1/q3

or higher, as discussed in Section 2.2), but, of course, such numbers form a set of
Lebesgue measure zero.

We outline the main steps of the proof, with details to follow in Section 3.3.
First, as notational convention, we introduce a parameterτ = σ + 1

2, so that
� = Hτ−1/2(C) = {θ : |θk| ≤ Ck−τ }. With these conventions, (30) becomes

RP (�, ε) = ∑
k>0

C2k−2τ ∧ ε2
k := ∑

k>0

mk(ε).(36)
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First, we use the continued fraction approximation toa: pn/qn, n = 0,1,2, . . . ,

and for frequencies nearqn, split the sum into blocks of lengthqn. Thus,∑
k>0

mk(ε) = ∑
blocks

∑
k∈block

mk(ε),(37)

where
∑

blocks is the sum over all blocks asn varies, the blocks being of lengthqn

betweenqn andqn+1. We then apply the equidistribution lemma to the sum within
blocks. The block sums are then collected into one of three zones:

RP (�, ε) = ∑
k

mk(ε) = V (ε) + M(ε) + B(ε).(38)

These zones (variance, mixed and bias) are illustrated in Figure 2, and defined
formally at (45).

FIG. 2. An illustration of the variance-mixed-bias zones. Using a log-scale along the vertical
axis, the plot shows both functions k → ε2

k (oscillating dotted curve) and k → C2 k−2τ (smooth

dashed curve), with a = 2/(
√

5 + 1), ε = 10−8, C = 1 and τ = 2, which corresponds to
σ = 3/2. Solid vertical lines indicate the borders of the key zones. The thick solid line plots
k → mk(ε) = C2k−2τ ∧ ε2

k .
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3.2. Frequency partitions determined by an irrational. Any irrational num-
bera defines a unique sequence of convergents:pn/qn;1 = q0 < q1 < · · · < qn <

qn+1 < · · · . Defineln ≥ 1 as the largest integer strictly less thanqn+1/qn, thus,

lnqn < qn+1 ≤ (ln + 1)qn.

Consider a nonuniform grid

. . . , qn,2qn, . . . , lnqn, qn+1,2qn+1, . . . , ln+1qn+1, qn+2, . . . .

Introduce indicesν = (n, l), l = 1, . . . , ln; n = 1,2, . . . . The bivariate indices
ν = (n, l) are totally ordered by lexicographic ordering and we refer to their
components by the functionsn(ν), l(ν). Furthermore, each indexν has an
immediate successor, which in slight abuse of notation we denote byν + 1. So
our grid is

Nν = l(ν)qn(ν);(39)

this grid defines a partition ofN+ by blocks which betweenqn andqn+1 have
length≤ qn:

N+ = ⋃
ν

Bν, Bν = [Nν,Nν+1).(40)

Clearly,

|Bν | = Nν+1 − Nν =
{

qn(ν), unlessl(ν) = ln(ν),

∈ [1, qn(ν)), if l(ν) = ln(ν).

To simplify certain calculations we use blocks of lengthqn(ν) only, introducing

Cν = [Nν,Nν + qn(ν)] ⊃ Bν.(41)

By construction, for a given integerk, there are at most twoCν such that
k ∈ Cν . Hence, summing over allCν in place ofBν will only affect the rate by
a multiplicative constant of at most 2.

3.3. Proof of Theorem 1.

3.3.1. Key zones and bounds. First, recall thatmk(ε) is defined at (36) and use
bounds (31); by constructionqn(ν) ≤ Nν so that fork in a block[Nν,Nν + qn(ν)],
Nν ≤ k ≤ 2Nν , hence,

mk(ε) 
 C2k−2τ ∧ ε2 k2

‖ka‖2 
 C2N−2τ ∧ ε2 N2

‖ka‖2 := hN(‖ka‖).(42)

We suppress the indexν when not necessary. From the equidistribution lemma,
q∑

µ=4

hN

(
µ

q

)
≤ ∑

k∈Cν

hN(‖ka‖) ≤ c

q∑
µ=1

hN

(
µ

q

)
+ chN

(
1

2q ′
)
.(43)

To estimate these sums, we use an easily verified bound.
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LEMMA 2. If q > 2r and κ > 0, then
q∑

µ=r

1∧
(

κ

µ

)2


 min{κ2, κ, q},

where the constants needed for 
 depend only on r .

Now apply this tohN(x) = C2N−2τ ∧ ε2N2x−2. Writing alsoε = ε/C, we
obtain

q∑
µ=r

hN(µ/q) 
 C2N−2τ min
{
ε2N2(1+τ)q2, εN1+τ q, q

}
.(44)

We can now formally define the zone to which a blockBν (or Cν ) belongs in
terms of the value ofεN1+τ

ν qn(ν). Again suppressing the subscriptν, we say

Bν ∈



Variance zone ⇔ εN1+τ q ≤ 1,

Mixed zone ⇔ 1< εN1+τ q ≤ q,

Bias zone ⇔ εN1+τ q > q.

(45)

Thus, the zone describes which term appears in the minimizer in (44). Letν0 < ν1
be the last indices for whichεN1+τ

ν qn(ν) ≤ 1 andεN1+τ
ν ≤ 1, respectively, and set

k0(ε) = Nν0+1 and k1(ε) = Nν1+1.(46)

Frequenciesk < k0 lie in the variance zone, those withk0 ≤ k < k1 in the mixed
zone, and those withk ≥ k1 in the bias zone.

Consider now the second term in the upper bound of (43):

hN

(
1/(2q ′)

) = C2N−2τ
(
1∧ (2εN1+τ q ′)2).

If εN1+τ q > 1, then, of course, so isεN1+τ q ′ and so hN(1/(2q ′)) =
C2N−2τ < C2εN1−τ q can be ignored in comparison with (44). On the other
hand, ifεN1+τ q ≤ 1, thenhN(1/(2q ′)) ≤ 4ε2N2(q ′)2 and this bound dominates
ε2N2q2. In summary, we have derived the following key bounds:

∑
k∈Cν

mk(ε)




≤ cε2N2(q ′)2, ν ∈ (variance zone),


 CεN1−τ q, ν ∈ (mixed zone),


 C2N−2τ q, ν ∈ (bias zone).

(47)

The variance zone. Consider first valuesk < k0(ε) such that the contribution to
the minimax risk is due to oscillations occasioned by Diophantine approximation
only. Here the first bound of (47) applies and the hyperrectangle constraintk →
C2k−2τ has not yet any smoothing effect.

We first derive an expression fork0 in terms ofε. If ν = ν0 + 1, we have by
definition,

ε−1 < N1+τ
ν qn(ν) ≤ N2+τ

ν = k2+τ
0 and sok0 ≥ ε−1/(2+τ).
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On the other hand, again by definition,ε−1 > N1+τ
ν0

qn(ν0) ≥ q2+τ
n(ν0)

. Writing Ln for
qn+1/qn, we obtain

k0 = Nν0+1 ≤ qn(ν0)+1 ≤ Ln(ν0)qn(ν0) ≤ Ln(ν0)ε
−1/(2+τ).

For BA a, Ln ≤ c, while for almost alla and all largen, (28) shows that
Ln ≤ (logqn)

1+δ . To summarize,

k0 
 (C/ε)1/(2+τ) for BA a,

k0 ≤ c(C/ε)1/(2+τ)
(
(logC/ε)

)1+δ for almost alla.

First, sum over blocks using partition (40) and apply bound (47) in the variance
zone:

V (ε) =
k0−1∑
k=1

mk(ε) = ∑
ν≤ν0

∑
k∈Bν

mk(ε) ≤ cε2
∑
ν≤ν0

N2
ν q2

n(ν)+1.(48)

Using grid (39), and settingν0 = (n0, l), l ≤ ln0, we obtain

V (ε) ≤ cε2
n0∑

n=1

ln∑
l=1

l2q2
nq2

n+1 ≤ cε2
n0∑

n=1

l3n q2
n q2

n+1 ≤ cε2L̄5
n0

n0∑
n=1

q4
n,(49)

where we have set̄Ln0 = max{Ln,n ≤ n0}.
The denominatorsqn grow at least exponentially [cf. (25)] and so usingqn0 ≤

ε−1/(2+τ), we find

ε2
n0∑

n=1

q4
n ≤ cε2q4

n0
≤ cε2(C/ε)4/(2+τ) = cC2(1−r)ε2r .

In the BA case,L̄n0 ≤ c, while for almost alla we haveL̄n0 ≤ (logqn0)
1+δ/5 ≤

c(logε)1+δ/5. In summary,

V (ε) ≤
{

cC2(1−r)ε2r , for BA a,

c
(
log(C/ε)

)5+δ
C2(1−r)ε2r , for almost alla.

(50)

The mixed zone. We are now interested in indicesk ∈ [k0, k1) where both
oscillations and the hyperrectangle constraintC2k−2τ contribute to the minimax
risk; it ends where the oscillations stop. By definition,k1 = Nν1+1 satisfiesNν1 ≤
ε−1/(1+τ) < Nν1+1. Since alwaysNν+1 ≤ 2Nν , it follows that

k1 
 ε−1/(1+τ) = (C/ε)1/(1+τ).

Using bound (47) in the mixed zone, together with|Cν | = qn(ν), andN ≤ k ≤
2N yields∑

k∈Cν

mk(ε) 
 Cε N1−τ
ν qn(ν) 
 Cε

∑
k∈Cν

N1−τ
ν 
 Cε

∑
k∈Cν

k1−τ ,
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which shows that for sums over blocks of lengthqn(ν) in the mixed zone, we
may replacemk(ε) by εk1−τ . Since the blocksCν form a cover of the integers
k0, . . . , k1 − 1 of redundancy at most two,

M(ε) =
k1−1∑
k=k0

mk(ε) 
 Cε

k1−1∑
k=k0

k1−τ .

Thus, in the mixed zone,

M(ε) 





Cεk2−τ
0 
 C2(1−r)ε2r , if τ > 2,

Cε log(k1/k0) 
 Cε log(C/ε), if τ = 2,

Cεk2−τ
1 
 C2(1−r̄)ε2r̄ , if 1

2 < τ < 2.

(51)

The bias zone. Note that for k ≥ k1, since always‖ka‖ ≤ 1, we have
ε2k2/‖ka‖2 ≥ ε2k2 ≥ C2k−2τ and so there is no longer any effect of oscillation,
andmk(ε) = C2k−2τ in (36). Hence,

B(ε) = ∑
k≥k1

mk(ε) = C2
∑
k≥k1

k−2τ 
 C2k−2τ+1
1 
 C2(1−r̄)ε2r̄ .(52)

We emphasize that bounds (51) and (52) apply to all irrationalsa.

3.3.2. Summary. We return to (38). In the BA case (and also the a.a. case when
1
2 < τ < 2), it is apparent from (50), (51) and (52) thatV + B + M 
 M , which
establishes (34).

It remains to consider the a.a. case withτ ≥ 2. The upper bound in (35) is
apparent from (50). For the lower bound, leta be an arbitrary irrational with
convergentspk/qk , k = 0,1,2, . . . . Simply by choosingθ to be zero except in
thekth coordinate—in whichθk = Ck−τ —we obtain the elementary lower bound

RP (�, ε) ≥ sup
k

C2k−2τ ∧ ε2
k .(53)

Sinceεk ≥ εk/‖ka‖, we find using (22) that fork = qn,

C2k−2τ ∧ ε2
k ≥ C2q−2τ

n ∧ ε2q2
nq2

n+1.

Using (27) in (53), we deduce that for almost alla there exists a sequencenl

such that

RP (�, ε) ≥ sup
l

C2q−2τ
nl

∧ ε2q4
nl

(
logqnl

)2
.(54)

Construct a sequence(ε[l]), l = 1,2, . . . , with

C2q−2τ
nl

= ε[l]2q4
nl

(
logqnl

)2
, which givesqnl


 (ε[l] logε[l]−1)−1/(2+τ),(55)

and using such anε[l]-sequence in (54), together with (55), yields the required
bound

RP (�, ε[l]) ≥ C2q−2τ
nl


 (
log(C/ε[l]))2r

C2(1−r)ε[l]2r .
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4. Ellipsoids. For an ellipsoid� = �σ (C) defined as in (13), let̃r = σ/(σ +
2). The goal of this section is to establish the following:

THEOREM 2. For σ > 0 and BA a, we have

RN

(
�σ (C), ε

) 
 C2(1−r̃)ε2r̃ .

For almost all a, bounds (35) hold for RN(�σ (C), ε) with r replaced by r̃, for all
σ > 0.

Sincer̃ = σ/(σ + 2), the DIPα(Ka,�
σ (C)) = 3

2 for all ellipsoids, regardless
of the value of the smoothness indexσ .

Upper bound. As with hyperrectangles, the aim is to use sums over blocks of
length≈ q. To do so, we define slightly larger ellipsoids based on the partition{Bν}
of (40):

�a = �σ
a (C) =

{
θ :

∑
ν

N2σ
ν

∑
k∈Bν

θ2
k ≤ C2

}
,(56)

where the indexa indicates that the grid depends on number theoretical properties
of a. By definition (40) of the partition,k ∈ Bν implies thatk ≥ Nν so that� ⊂ �a

and, hence,R(�,ε) ≤ R(�a, ε).
We may now split the optimization across and within blocks:

RP (�a, ε) = sup

{∑
ν

∑
k∈Bν

θ2
k ∧ ε2

k : θ ∈ �a

}

(57)

= sup

{∑
ν

bν(tν, ε) :
∑
ν

N2σ
ν t2

ν ≤ C2

}
,

where the optimization within blockBν is subject to the quotat2
ν :

bν(tν, ε) = sup

{ ∑
k∈Bν

θ2
k ∧ ε2

k :
∑
k∈Bν

θ2
k ≤ t2

ν

}
= min

{
t2
ν ,

∑
k∈Bν

ε2
k

}
.(58)

The equidistribution lemma can be applied to this last sum:
∑

ε2
k 
 ε2 ∑

k2/

‖ka‖2. On dropping the subscriptν, we obtain

∑
k∈Bν

k2

‖ka‖2 ≤ 4N2
∑
k∈Bν

1

‖ka‖2 ≤ 8N2

{ q∑
µ=1

q2

µ2 + 3(2q ′)2

}
≤ cN2(q ′)2.

Hence, from (57) and (58),

RP (�a, ε) ≤ c sup

{∑
ν

min
{
t2
ν , ε2N2

ν q2
n(ν)+1

}
:
∑
ν

N2σ
ν t2

ν ≤ C2

}
.(59)
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Observe that for any positive sequences(uν), (cν) and(dν), with dν nondecreas-
ing,

sup
u

(∑
ν

min(uν, cν) :
∑
ν

dνuν ≤ 1

)
≤ ∑

ν≤ν0

cν(60)

for any valueν0 for which ∑
ν≤ν0

cνdν ≥ 1.(61)

Applying this to (59) withuν = t2
ν , cν = ε2N2

ν q2
n(ν)+1 and dν = N2σ

ν /C2, we
obtain

RP (�a, ε) ≤ cε2
∑
ν≤ν0

N2
ν q2

n(ν)+1.(62)

Herecνdν = ε2N2σ+2
ν (q ′)2 = ε2(lqn)

2σ+2q2
n+1 if ν = (n, l). Let Nn = {ν :qn ≤

Nν < qn+1} and note, since(ln + 1)qn ≥ qn+1, that

CDn := ∑
ν∈Nn

cνdν = ε2q2σ+2
n q2

n+1

ln∑
1

l2σ+2

≥ cε2(ln + 1)2σ+3q2σ+2
n q2

n+1 ≥ cε2lnq
2σ+4
n+1 .

Let n0 be the first indexn for whichCDn ≥ 1: sinceCDn0−1 ≤ 1, we have

ε2q2σ+4
n0

< 1/
(
cln0−1

)
and soqn0 ≤ cε−1/(σ+2).(63)

Since (62), together with (63), is exactly the situation reached at (48) in the
hyperrrectangle case (withτ replaced byσ ) we conclude that the bounds (50)
apply (withr replaced bỹr).

Lower bound. Arguing exactly as at (53), but withτ replaced byσ ,

RP (�, ε) ≥ sup
n

C2q−2σ
n ∧ ε2q2

nq2
n+1.(64)

In the BA case, letn0 be the last indexn for which ε2q4
n < C2q−2σ

n , so that
q2σ+4
n0

< ε−2 andq−2σ
n0

> ε2σ/(σ+2). From (64) atn = n0 + 1, we find

RP (�, ε) ≥ C2q−2σ
n0+1 ≥ cC2q−2σ

n0
≥ cC2(1−r̃)ε2r̃ .

For the almost all case, the argument is the same as before at (54) and below.
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5. Discussion.

5.1. Periodic vs. nonperiodic. Recent papers by Hall, Ruymgaart, van Gaans
and van Rooij (2001) and Groeneboom and Jongbloed (2003) consider in part a
density estimation version of the deconvolution problem in which the data consist
of an i.i.d. sampleYi = Xi + zi in which Xi are i.i.d. with unknown density
f andzi are i.i.d. uniform on[−a, a] and independent of theXi . Groeneboom
and Jongbloed (2003) derive pointwise limiting distributions of estimators off

based on kernel smooths of nonparametric MLEs of the distribution function
of f . The work of Hall, Ruymgaart, van Gaans and van Rooij (2001) looks
at maximum global estimation errors, and so is perhaps closer in spirit to the
present investigation. Instead of any periodicity assumptions, it is assumed there
that the densityf has compact support onR. The compact support permits
an explicit inversion formula: ifg = Kaf and I is chosen large enough that
x − Ia < inf suppf , then

f (x) = 2a

I∑
i=1

g′(x − ia).

In this case Hall, Ruymgaart, van Gaans and van Rooij (2001) show that the DIP
α(Ka,F

σ ) = 1 for F σ of both hyperrectangle and ellipsoid type, in contrast to
the results found for the periodic model considered here. The difference in results
may perhaps be understood by observing that sinusoids, which are basic to the
periodic model, do not have compact support. Thus, the models capture genuinely
different phenomena.

5.2. Effect of rational approximations to a. In practice, computer code works
with rational numbers—what effect will this have on our conclusions? A few
remarks can be made even without getting into specifics of particular models of
computation or attempting a full analysis.

A basic issue is whether the boxcar widtha is under the investigator’s control.
If it is—our first scenario—then we might imagine replacinga by αm = pm/qm,
say, so that model (4) becomes

yk = rk(αm)θk + εzk, rk(αm) = sinπkαm

πkαm

.(65)

Herepm/qm might be one of the sequence of best rational approximations toa.
The approximation results of Section 2.2 show that our analysis of estimation in
model (65) is unchanged from that of irrationala, at least for frequenciesk ≤ qm,
sincea andαm will have the same convergentspr/qr for r ≤ m. Thus, one could
simply chooseqm large enough that the tail bias accruing to frequencies aboveqm

is negligible. To be more specific, assume that� is a hyperrectangleHσ(C), and
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thatε is known. Letη > 0 be small [we could letη(ε) → 0 with ε to preserve rates
of convergence]. We can choosek2 > k1(ε) [defined at (46)] so that the tail bias

C2
∑
k>k2

k−2σ+1 ≤ ηR
(
Hσ (C), ε

)
,

and then choosem large enough thatqm ≥ k2. A minimax estimator forHσ(C)

under model (65) will be essentially identical in structure with one for the original
irrational a, since in either case, the zero estimator is used at all frequencies
k > qm.

In the second scenario, the boxcar widtha is determined by nature and the
investigator must work with the datay from model (4). We still assume that the
value ofa is known, but must use rational approximations toa in our estimators
based ony. For definiteness, consider again the case� = Hσ(C) and setτk =
Ck−τ . Consider the risk of linear ruleŝθk(y) = ckyk if εk ≤ τk and θ̂k(y) = 0
otherwise. IfS = {k : εk ≤ τk}, then the risk of such a rule is

r(c, θ) = ∑
k∈S

[c2
kε

2 + (1− ckrk)
2θ2

k ] + ∑
k /∈S

θ2
k .

Suppose thata is irrational: with infinite precision, we could use an estimator
ck = 1/rk that makesr(c, θ) = ∑

θ2
k ∧ ε2

k . Now consider the difference in risk that
results from an approximation̂ck = 1/r̂k, wherer̂k = (sinπkâ)/(πkâ) for some
rational approximation̂a = pm/qm to a,

r(ĉ, θ) − r(c, θ) = ∑
S

{[(
rk

r̂k

)2

− 1
]
ε2
k +

(
1− rk

r̂k

)2

θ2
k

}
;

if we write rk/r̂k = 1+ δk , and assume thatδ̄ = supk∈S |δk| ≤ 1,

sup
�

|r(ĉ, θ) − r(c, θ)| ≤ 3δ̄RP (�, ε) + δ̄2
∑

τ2
k .(66)

Using a derivative bound ona → sinπka and then (7),

|δk| ≤ â

a

∣∣∣∣sinπka

sinπkâ
− 1

∣∣∣∣ +
∣∣∣∣ âa − 1

∣∣∣∣ ≤ |â − a|
a

{
πk

sinπkâ
+ 1

}
≤ 2|â − a|

a

k

‖kâ‖ .

If â = pm/qm andk < qr , then from (26), (23) and (25),

|δk| ≤ 4

a

(
qr

qm

)2

≤ 8

a
2−(m−r).

Consequently, the risk difference due to using a rational approximationâ can be
made as small as desired by first selectingr so that sup{k :k ∈ S(ε)} < qr and then
m so that the bound onδk and, hence,̄δ is as small as needed.
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5.3. Generalizations. 1. It seems likely that estimators which are adaptive
with respect toσ and C could be constructed (for a fixed irrationala) by
grouping frequenciesk within a given block[qn, qn+1) into a number of subblocks
according to the value of‖ka‖ and then using some form of James–Stein shrinkage
within each subblock. This methodology is now quite well established on other
inverse problems with monotone eigenvalues; see, for example, Cavalier and
Tsybakov (2002). Alternatively, adaptivity (up to logarithmic terms) is established
via a wavelet deconvolution approach in Johnstone, Kerkyacharian, Picard and
Raimondo (2004) for a class of Besov spaces including ellipsoids (13).

2. The ellipsoid results might also have been derived using the explicit
evaluation of minimax risk given by Pinsker (1980). However, the method used
here allows extension of the rate results to weightedl2r bodies of the form
� = {θ :

∑
k2σrθ2r

k ≤ C2r} for r ≥ 1 using essentially the same argument as for
ellipsoids. For example, the analog of (58) states that if the ordered increasingε(k)

corresponding to indices within a blockBν satisfy some boundε(k+1)/ε(k) ≤ γ (as
happens for the boxcarKa), then

bν(tν, ε) = sup

{ ∑
k∈Bν

θ2
k ∧ ε2

k :
∑
k∈Bν

θ2r
k ≤ t2r

ν

}



l0∑
1

ε2
(j ),

where l0 = sup{l :
∑l

j=1 ε2r
(j ) ≤ t2r}, and such sums can be estimated by the

methods of this paper.
3. It is straightforward to extend the results of this paper to iterated kernels

Ka = ((2a)−1I[−a,a])�m with eigenvaluesrk = (sinπka)m/(πka)m. However,
kernels of the formKa,b = (2a)−1I[−a,a] � (2b)−1I[−b,b] have eigenvalues

rk = sinπka

πka

sinπkb

πkb

 ‖ka‖‖kb‖

k2ab
,

while the linear motion kernel (6) has

rk1,k2 = sinπ(k1a + k2ra)

π(k1a + k2ra)
.

Considerable work exists on simultaneous Diophantine approximation problems
[Schmidt (1980), Chapter 2], but whether this enables rate of convergence
calculations is an open question.

APPENDIX

PROOF OF (27) AND (28). We recall the convergence/divergence theorem
of Khinchin [(1992), Theorem 32]. Letψ(x) be a positive continuous function of
x > 0, such thatxψ(x) is nonincreasing. Then the inequality‖qa‖ < ψ(q) has, for
almost alla, a finite or infinite number of solutions in positive integersq according
as

∫ ∞
c ψ(x) dx converges or diverges.
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For (27), considerψ(x) = (2x logx)−1. Since the integral diverges, letq be
one of the infinitely many solutions to‖qa‖ < ψ(q) and choosen so thatqn ≤
q < qn+1. It then follows from (22) and the property stated after (21) that

1

2qn+1
≤ ‖qna‖ ≤ ‖qa‖ ≤ 1

2q logq
≤ 1

2qn logqn

,

from which (27) is immediate.
For (28), considerψ(x) = x−1(logx)−1−δ . Since the integral converges, for all

q > q(a, δ), we have‖qa‖ ≥ ψ(q). In particular, from (22), for largen,

1

qn+1
≥ ‖qna‖ ≥ 1

qn(logqn)1+δ
,

from which we obtain (28). �

PROOF OF (29). The method used to establish (29) for direct data may be
extended in a straightforward manner to model (9), for example, by stepping
through the arguments in Johnstone [(2003), Hyperrectangles chapter]. The key
step in this approach, as in Donoho, Liu and MacGibbon (1990), is to establish
that

RL(�, ε) = sup
τ∈�

RL

(
�(τ), ε

)
,(67)

where�(τ) is the hyperrectangle�[−τi, τi]. This can be reduced to the Kneser–
Kuhn minimax theorem [Johnstone (2003), Corollary A.4] applied to payoff
function

f (c, s) = ∑
k

[ε2c2
k + (1− ck)

2sk],(68)

defined for(c, s) ∈ �2(N) × �1(N). But result (67) extends immediately to model
(9) by replacingε2 with ε2

k in (68) and changing the domain ofc to the weighted
Hilbert space�2(N, (ε2

k )) = {c :
∑

c2
kε

2
k < ∞}, and applying the minimax theorem

in the same way. �
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