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This paper discusses two goodness-of-fit testing problems. The first
problem pertains to fitting an erroristribution to a assumed nonlinear
parametric regression model, while the second pertains to fitting a parametric
regression model when the error distribution is unknown. For the first
problem the paper contains tests based on a certain martingale type transform
of residual empirical processes. The advantage of this transform is that
the corresponding tests are asymptotically distribution free. For the second
problem the proposed asymptotically distribution free tests are based on
innovation martingale transforms. A Monte Carlo study shows that the
simulated level of the proposed tests is close to the asymptotic level for
moderate sample sizes.

1. Introduction. This paper is concerned with developing asymptotically
distribution free tests for two testing problems. The first problem pertains to testing
a goodness-of-fit hypothesis about the error distribution in a class of nonlinear
regression models. The second problem pertains to fitting a regression model in
the presence of the unknown error distribution. The tests are obtained via certain
martingale transforms of some residual empirical processes for the first problem
and partial sum residual empirical processes for the second problem.

To be more precise, léd be an open subset of thedimensional Euclidean
space and lefu (-, #); © € ®} be a parametric family of functions froiR? to R.

For a pair(X, Y) of a p-dimensional random vectdf with distribution function
(d.f.) H and one-dimensional random variable (r¥.yith finite expectation let

m(x):=E[Y|X =x], x € R?,

denote the regression function 8f on X. In the first problem of interest one
assumes: is a member of a parametric famify.(-, ©); ¥ € ®} and one observes
a sequencgX;, Y;), 1 <i <n} such that for somé € ®, the errors

(1.1 i(0) =Y — u(X;,0), 1<i<n,

are independent, identically distributed (i.i.d.) r.v.'s with expected value OF Lt
a specified distribution function with mean 0 and finite Fisher information for
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location, that isF is absolutely continuous with a.e. derivtiyé satisfying

1.2 O</(§/)2dF<oo.

The problem of interest is to test the hypothesis
Hp: the d.f. ofe1(0) is F,

against a class of all sequences of local (contiguous) alternatives where the error
d.f’s A, are such that for somee L>(R, F),

(dA”)l/Z 1+ 1 -
= 14 s
dF o m

(1.3) /adF —0,

n / r,ng =o0(1).
Occasionally, we will also insist thatsatisfy the orthogonality assumption

f/
(1.4) a—dF =0.
f
In the second problem one is again given independent observati®sng;),
1 <i < n}, such thaty; — m(X;) are i.i.d. according to some distribution, not

necessarily known, and one wishes to test the hypothesis
(1.5) Ho:m(-) = u(- 0), for somed € ©.

The alternative toHy of interest here consists of all those sequences of
functionsm, (x) which “locally” deviate from one ofu(x, 8), that is, for some
6 € ® and for some functioiy € Lo(R?, H),

loLitg,  mn(x)=px.0)+ F=E(x) +rng ().
(1.6)

n/rfg(x)dH(x) — 0,

while the errors; —m,, (X;) are still i.i.d. Hereig (x) is a vector ofL,-derivatives
of u(x, 6) with respect t@, assumed to exist; see the assumption (2.4).

Both of these testing problems are historically almost as old as the subject of
statistics itself. The tests based on various residual empirical process#&sg for
have been discussed in the literature repeatedly. For example, see Durbin (1973),
Durbin, Knott and Taylor (1975), Loynes (1980), D’Agostino and Stephens
(1986) and Koul (1992, 2002), among others. Several authors have addressed
the problem of regression model fitting, that is, testing fr see, for example,

Cox, Koh, Wahba and Yandell (1988), Eubank and Hart (1992, 1993), Eubank
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and Spiegelman (1990), Hardle and Mammen (1993), Koul and Ni (2004), An
and Cheng (1991), Stute (1997), Stute, Gonzalez Manteiga and Presedo Quindimil
(1998), Stute, Thies and Zhu (1998) and Stute and Zhu (2002), among others. The
last five references propose tests based on a certain marked empirical or partial sum
processes while the former cited references base tests on nonparametric regression
estimators. See also the review paper of MacKinnon (1992) for tests based on the
least square methodology and the monograph of Hart (1997) and references therein
for numerous other tests éfy based on smoothing methods in the case 1.

However, it is well known that most of these tests are not asymptotically
distribution free. This is true even for the chi-square type of tests with the exception
of the modified chi-square statistic studied in Nikulin (1973) in the context of
empirical processes. Itis also well documented in the literature that chi-square type
tests often have relatively low power against many alternatives of interest, see, for
example, Moore (1986). Hence a larger supply of asymptotically distribution free
(ADF) goodness-of-fit tests with relatively good power functions is needed.

The aim of this paper is to propose a large class of such tests. These will be
the tests based on statistics of a certain ADF modification and extension [see, e.g.,
(5.3) and (5.4)] of the (weighted) empirical process of residuals

W, (0 :=n"Y23"y (XY — u(X;, 0) <y} = F»)].
i=1
—00 <y <00,

wherey is a square integrable function with respectHo The ADF versions of
the Cramér—von Mises and the Kolmogorov—Smirnov tests will be particular cases
of such tests. WritéV; for W,, whenevery = 1—see Sections 3.2 and 5.

As far as the problem of estimation &fs concerned, certain weighted residual
empirical processes play an indispensable role [cf. Koul (1992, 1996)]. A part of
the objective of the present paper is to clarify the role of these processes with
regard to the above goodness-of-fit testing problem.

To begin with, we shall discuss the basic structure of the first problem from a
geometric perspective. This perspective was explored in the context of empirical
processes in Khmaladze (1979). We shall show that uAge¢he asymptotic dis-
tribution ony, and its general function-parametric fogy(y, ¢; 9) [see (2.2)], is
equivalent to that of the projection of (function-parametric) Brownian motion par-
allel to the tensor produgt, - (f'/f). Since a “projection” is typically “smaller”
than the original process we can intuitively understand why, at least for alterna-
tives (1.3), it will lead to increase in asymptotic power if we substitute an esti-
mator@ even in the problems where the true value of the parameter is known.
The distribution of this projection depends not only on the family of regression
functions{u(-, 9); ¥ € ®} andF, but also on the estimatér. Therefore, the limit
distribution of any fixed statistic based &, or ong, (v, ¢; ) will be very much
model-dependent. However, using this “projection” point of view, we shall show
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in Section 3.2 that the tests basedfﬁp corresponding to a certain nonconstant

may be useful, because they may have simpler asymptotic behavior, but at the cost
of some loss of the asymptotic power, and the tests baséthoin general, will

have higher asymptotic power.

But, as mentioned above, the asymptotic null distributioniaf is model
dependent. Proposed martingale transformsWQj(F—l) will be shown to
converge in distribution to a standard Brownian motion[@ril] under Hp, and
hence tests based on these transforms will be ADF for tegfgdt will also be
shown that for any this transform is one-to-one and therefore there is no loss of
the asymptotic power associated with it.

The paper also provides ADF tests for the problem of testing

H, : the d.f. ofe1(0) is F(y/o), VyeR, forsomeo > 0.

In the univariate design case, ADF tests fdg based on certain partial sum
processes and using ideas of Khmaladze (1981) have been discussed by Stute,
Thies and Zhu (1998). An extension of this methodology to the general case of
a higher dimensional design is far from trivial. The second important goal of this
paper is to provide this extension. Here too we first discuss this problem from a
general geometric perspective. It turns out that the weighted partial sum processes
that are natural to this problem are

£.(B:0) :=n"1?Y I{X; € Blo(Y; — u(Xi.9)),

for a fixed real valued functionp with E@?(¢) finite, where B is a Borel
measurable set [R”. Tests based on these processes and the innovation martingale
transform ideas of Khmaladze (1993) [see, e.g., (6.4)] are shown to be ADF,
that is, their asymptotic null distribution is free of the modal-, 8) and the

error distribution, but depends on the design distribution in the gasel.
These tests include those proposed in Stute, Thies and Zhu (1998), whete
e(y)=y,B=(—00,x],x eR.

We mention that recently Stute and Zhu (2002) used the innovation approach of
Khmaladze (1981) to derive ADF tests in a special case of the higher dimension
design where the design vector appears in the null parametric regression function
only in a linear form, for example, as in generalized linear models, and where the
setsB in &,(B; ) are taken to be half spaces. This again reduces the technical
nature of the problem to the univariate case.

In another recent paper Koenker and Xiao (2002) studied tests based on
the transformations of a different process—regression quantile process to test the
hypothesis that the effect of the covariate veckron the location and/or on
the location-scale of the conditional quantileskgfgiven X, is linear inX. They
then used the Khmaladze approach to make these tests ADF. Based on several
Monte Carlo experiments, Koenker and Xiao (2001) report that their tests have
accurate size and respectable power.
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The paper is organized as follows. Section 2 introduces some basic processes
that are used to construct tests of the above hypotheses. It also discusses some
asymptotics undeHy of these processes. Section 3 discusses some geometric im-
plications of the asymptotics of Section 2, while Section 4 gives the martingale
transforms of these processes whose asymptotic distribution uHdesr known
and free fromF. Section 5 contains some computational formulas of these trans-
formed processes. It also provides analogues of these ADF tests for nonrandom
designs and when the underlying observations form a stationary autoregressive
process. Section 6 contains the ADF processes for tesfingection 7 contains
some simulation results to show how well the asymptotic level approximates the
finite sample level for the proposed ADF tests. It is observed that even for the sam-
ple size 40, this approximation is quite good for the chosen simulation study. See
Section 7 for details.

2. Function-parametric regression processeswith estimated parameter.

2.1. Function-parametric regression process. Consider a regression process
as is defined in Stute (1997):

n
£,(B,y, ) :=n"Y23"1{X; € B}[I{e; ®) < y} — F(»)],
(2.1) i=1
—00=<y=<o00,¥ €0,
whereB is a Borel measurable set in tipedimensional Borel spad®?, B (R?))
and

(@)=Y — u(X;, %), 1<i<n.

We will use also notatiofiz (X;) for the indicator functiod{X; € B} interchange-

ably. It is natural to consider an extension of the above process where the indica-
tor weights are replaced by some weight functjoiX;). The functiony may be
scalar- or vector-valued. The weak convergence of such processegindtiable

and for a fixed has been developedin Koul (1992, 1996) and Koul and Ossiander
(1994).

It is not any less natural to consider an extension of these weighted empiricals
to those processes where the second indicator involving the error random
variable ¢; (¢) in (2.1) is also replaced by a function. Consider, therefore, a
function-parametric version of (2.1) indexed by a pair of functionsy):

En(y, 91 9) 1= f Y ()Q(NEn(dx. dy: D)
Rp+1
2.2) "
=n—1/22y<xi>[<p(si<ﬁ>) -/ go(y)dF(y)]
i=1
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We shall choosey € Lo(RP, H) and ¢ € L>(R, F). In this way one can say
that &, is defined for the functionx(x, y) = y(x)e(y), which is an element
of L:= Lo(RP*L, H x F). For a generak € L we certainly have

utes 0= [ e (. dy: 9)

_n—l/ZZ (Xi, () — E[a(X;, & ()| X:]).

We will realize, however, that it is sufficient and natural for our present purpose to
restricta to be of the above product type. In the sequel, for any functi§rai I
we will use the notatior$ («) or 8(y, ¢) interchangeably, whenever=y - ¢.

The processes defined at (2.1) and (2.2) are obviously closely related: (2.1)
represents a regression process as a random measuR¥dnwhile (2.2)
represents it as an integral from this random measure. Also, (2.2) defines a linear
functional onlL..

The function-parametric version (2.2) will help to visualize in a natural way
the geometric picture of what is involved when we estimate parameters and show
why and when we need “martingale transformations” (Sections 4 and 6) to obtain
asymptotically distribution free tests.

2.2. Asymptotic increments of &, with respect to parameter. Since# is un-
known, in order to base tests &fp on the proces§, we will need to replace
it by an estimato# in this process. This estimator will be typically assumed to
ben'/?-consistent, that is,

(2.3) 16 — 6| = 0,n"?).

There is thus a need to understand the behavigs @f; 6 + n~1/2v) as a process
in v eRY, v <k < oo. The first thing certainly is to consider the Taylor
expansion of this function im.

To do this assume the following,-differentiability condition of the regression
function u(x, ¥) with respect tod: there exists @ x 1 vector iy of functions
fromR? x ® to RY, such that

w(x, ®) — pu(x,0) = 1f ()@ — 0) + pu(x; 9,6),

0< [ itf (o) dH (x) < o0,

(2.4) . T . g -
Cy = / o (x) Ly (x)dH (x) is positive definite

/ sup p;, 2 (x: 0, G)dH(x)_o(e) ase — 0.
[9—6l<e

Here, and in the sequel, for any Euclidean veotar! denotes its transpose.
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Now, if additionally¢ is differentiable with derivative’ € L>(R, F) satisfying
(2.5) im [ sup 1¢'(y = &) = ¢ WIEdF () =0,
€>0J 0<A<e
then, witha (x, y) = y (x)¢(y), we have the following proposition.

PROPOSITION2.1. Under assumptions (2.4) and (2.5), the following holds
for every 0 < k < o0.

(i) Foranyy € Lo(R?, H)

Sup &, (a; 0 +n~Y?v) — &, (a; )
vl <k
— Ey(Xn)id (X)EQ (e)v] = 0, (D).
(i) For y =nlp, B e B(RP) andafixedn e Lo(R?, H),

sup &4 6 +n"Y?0) — £, (e 6)
BeB. |v]| <k

—n Y g (XD d (X)e ()| = 0, (D).
i=1

Hence, under (2.3) one abtains

(2.6) &l 0) =&(a;0) —n 1> milp(X)id (X)¢ (6920 — 0) + pu(B),
i=1

where p,, (B) is a sequence of stochastic processesindexed by B € 8B, tending to

zero uniformly in B € 8B in probability.

The representation in (i) or in (2.6) will be very convenient and appropriate when
dealing with the fitting of a regression model in Section 6. But for tesfifag
pertaining to the error distribution, as we will see in the next section, the
differentiability of ¢ is restrictive. We may wish, for example, to chogs® be an
indicator function as in (2.1). Thus it is desirable to obtain an analog of the above
proposition br as general & as possible.

Towards this goal, le® denote the linear span of a class of nondecreasing real
valued functions(y), y € R, such that

/ G2 dF(y) < o0,

12
2.7) </[<p(y =l —s)]zdF(y)) < v(jt — 5],

_6557t567
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for somee > 0 and for some continuous functienfrom [0, oo) to [0, o), with
v(0) =0, f; log v~ 1(r)dt < co. This is a wide class of functions and will be a
source of ouip in what follows.

For any two functions, g € L, let

@p) = [ @B ) dH@AF ).

Note that ifo or botha, 8 are vector functions, thefa, ) or («, ﬁT) is a vector
or a matrix of coordinate-wise inner products. llet| := («”, «)¥/? for a vector
functiona. Finally, let

mo(x,y) 1= fuo()¥r(y), xR’ yeR,
Note that
(fo, [g) = Ca,
(mo. mg) = Collvrs %

We are ready to state

PROPOSITION 2.2. Suppose that (1.2) and (2.4) hold. Then for a(x, y) =
y@e(y)withy € Lo(RP, H), ¢ € @,

(2.8) En (s 0) = £, (3 ) + (@, m) )nY%@ — 6) + 0, ().

To appreciate some implications of (2.8) we need to consider those estimators
of 6 that admit an asymptotic linear representation. For the purpose of the present
paper it would be enough to assume this. However, for completeness of the
presentation we give a relatively broad set of sufficient conditions under which
a class of M-estimators is asymptotically linear. ey, 9 € ©} be a family
of g-dimensional functions ofR” with coordinates inLo(R”, H). Let By :=
N - ¢, ¢ € . Define an M-estimatad to be a solution of the equation

(2.9) En(By; ) =0.
The following proposition gives a set of sufficient conditions for this estimator to
be asymptotically linear.

PrROPOSITION2.3. Suppose that (1.2) and (2.4) hold. In addition, suppose
¢ € ® and {ny, ¥ € ®} aresuch that

(2.10) / sup o — melPdH =o(l),  ase— 0,
R? |9—0] <€
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and the matrix {8y, m9T> is nonsingular. Then 6 defined at (2.9) satisfies
(2.11) Y26 —6) = —(Bo, mg) "4 (B 6) + 0, (D).

In particular, if {{5; ¥ € ©} satisfies (2.10),then the solution 8 of the likelihood
eguation

(2.12) En(my; ) =0
has the asymptotic linear representation

(2.13) nY26 —0) = —(mg, m>)"2e,(mg; 0) + 0, (1).

From now ond will stand for the solution of (2.12), and we shall use the
abbreviated notatio, (o) = &,(«; 0), &, (@) = &,(a; §) and &,(a) = &,(«; 6).
Combining (2.8) with (2.11) and (2.13), we see that the leading terg aind
of Sn, in general, can be represented as the linear transformatign of

(2.14) Eu(@) = &y (a) — (@, m} ) (mg, mE ) 72E,(mg) + 0,(1),
(2.15) En(@) = &u (@) — (. mY ) (Bo, m} ) 1e,(Bo) + 0, (D).

These linear transformations have a remarkably simple and convenient structure
as is described in Section 2.3.

2.3. Processes £, and &, as projections. Let us use the notation 1 for the
function in y identically equal to 1, so that, for example, 1) = [ (y)dF (y)
and letpl = ¢ — (¢, 1), and fora = y - ¢ let al = y - ¢1. It is obvious that
En(e) = &a(ah).

Fora € L and a vector-valued functiof, with coordinates irlL, such that the
matrix <5,mg> is nonsingular (we require this for simplicity, although it is not
necessary), let

(2.16) Mo = — (o, mg ) (mg, mg) "'me,

(2.17) Mga =a — (a,mi) (B, mI)~1p.

PROPOSITION2.4. (i) The linear transformation o — «! is an orthogonal
projection in L parallel to functions which are constant in y.

(if) Thelinear transformation Ig, (and thereforeIT) isa projection. It projects
parallel to By on a subspace of functions orthogonal to mg. In particular IT isan
orthogonal projection parallel to mg.

(i) Adjoint projectors 1‘[;}9 (and therefore IT*) project parallel to mg. For any
two vector functions 8, A,

(2.18) [T 115 = T3,
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We can therefore say that under the regularity conditions that guarantee
the validity of the expansions at (2.8), (2.11) and (2.13), the substitution of
the M-estimatord in &,(«; 6) for 6 is asymptotically equivalent to projecting
&,(a; 0) parallel to the linear functionaky generated byiy andvy ¢. Similarly,
the substitution of the MLB in &,(«; 6) for 6 is asymptotically equivalent to
projectingé, («; 6) orthogonal tony . Moreover, the property (2.18) shows that the
leading terms of, («; 61) and&,(«; 62), for any two estimatordy, 6> admitting
the asymptotic linear representation (2.11), are in one-to-one correspondence with
each other. Even though one of the estimators may be asymptotically more efficient
than the other, (2.18) shows that the stocks of test statistics based on each of these
processes are asymptotically the same. Therefore the inference based on either
£, (av; B1) Or &, (a; B2) will be asymptotically indistinguishable.

We end this section by outlining the proofs for Propositions 2.2 and 2.4.
Throughoutg; stands fok; (0), 1<i <n.

2.4. Some proofs.

SKETCH OF THE PROOF OFPROPOSITION 2.1. We shall sketch details
only for part (ii), while those for part (i) are similar and simpler. L&t(v) =
w(Xi, 0 +n"Y2v) — u(X;,0). Rewrite

En(o; 0 +n Y20) — £y (@ 0) —n ™Y milp(X)id (X)¢' (v
i=1

=01 0l (X)) (e + Ai(v)) — (&) — Aig(e1)]

i=1

n
+n 2y g (X)[A(v) — if (Xi)n™YP0le! (e0).
i=1
The condition (2.4) implies that for every > 0, 3N, < oo such that with
probability at least 1- ¢ the following holds for alls > N¢:

E{ sup > 1A (v) —n Y2l (X)v)? sup 1A ()| =0,(D).

lvll<k;—1 1<izn;|vl=k

This fact and (2.5) imply the conclusion (ii) in a routine fashionl

Before proving the next proposition, we recall from Hajek (1972) that (1.2)
implies the mean-square differentiability gt/2:

fPo+8 -2y _1f

JY2(y) 2f

[ Prinarm=oed, 50

—é+pr(y;é),
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This fact is used implicitly in the following proof and throughout the discussion in
the paper without mentioning it explicitly.

PROOF OF PROPOSITION 2.2. Recalla(x,y) = y(x)p(y). Rewrite &, =
€no + &, Where

Enol ) =12 Yy (X0 0(e:(9)) = Ealp(e: (9) | X:])],

i=1

n
Er(@; ) i=n""2 Yy (X)) Egl(ei )| Xi] — Eolo(e:©))] ]
i=1
Note thatt,, («; 0) = &, (a; 6).
To prove Proposition 2.2 it thus suffices to show that for everykO< oo,

(2.19) SUP [Eno (3 0 + 1 Y20) — &5(a; 0)] = 0, (1),
loll<k
(2.20) sup €7 (a; 0 +n~Y20) —mT (@; )n~Y2u| = 0, (D).
loll<k

But (2.19) will follow from the equicontinuity condition of the procegs(«; -):

sup o (a; ) — &nola; )| = 0p(1),
[9—0ll<e

asn — oo ande — 0. This in turn follows from the argument below.

A ¢ € ® may be written a® = ¢1 — @2, where nondecreasing, ¢> both
satisfy (2.7). Letl; :=sign(y(X;)),i =1,...,n. Then for anys > 0 and for all
i=1...,n,

Yy Xle1(Y; — A —381;) —p2(Y; — A +61;)]
<yXpe¥;i—A)
<yX)le1(Y;i — A+381;) —p2(Y; — A —=$51)].

The expected value of the square of the above upper and lower bounds is bounded
from above by

fyde 202(25).
Therefore the bracketing entropy (log of covering number) does not exceed

Iogv‘1<t/[2/ yZdHT/Z),

and hence is integrable by the definitionwofTherefore, by a result in van der
Vaart and Wellner (1996, Sections 2.5.2, 2.7), (2.19) follows.
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To prove (2.20), let, as abova, (v) = u(X;, 0 +n~Y2v) — u(X;, 6). Then one
has

£ (s 0 +n~Y?y)

=123y ) [ WG+ A1) - FO]dy
i=1

=1y DT (XD [ AP ()Y + pa(0)

i=1
= (a, m} Yo+ pi(v),

where under the assumed conditions and using an argument similar to one used, for
example, in Hajek andi&ak (1967) one can show that SYPk 1oy (V)] = 0, (D).
O

PROOF OFPROPOSITION2.4. Let us prove part (iii) only. We need to show
thatl‘l:gl‘lj&(a) = H;éf(a). We have

T5IT; 8 (o) = T8 () — Mo, m ) (h,mf) H8 ().
But, by definition,
[T (o, md ) = (@, mf) — (@, m ) (B.md)~HB.m}) =0.
Hence the last claim. It implies thﬁtj;l‘[j; = H;}, that is,l‘l;} is a projection. The
remainder of the proof is obvious[]

3. Limiting processand asymptotic power.

3.1. Thelimiting process. Letb(x, y),x € R”,y € R, be a Brownian motion
with covariance function” (x A x")F(y A y'), wherex A x" is the vector with
coordinates mitx;, x/),i = 1,..., p. In the discussion below aly’s and ¢’s
are in Lo(R?, H) and L2(R, F), respectively, that is(y, ¢) € L. Define, for
a(x,y) =y @)e(y), the function parametric Brownian motion

b(a) :=b(y,¢) = /]Rp+l Yy (X))o (y)b(dx,dy).

Clearly the clas$b(«) :« € L} is a family of zero mean Gaussian random variables
with the covariance given by

Eb(a1)b(a2) = (a1, a2).
Let
E(@):=b(y,p) — (g, Vb(y, 1) =b(y, o) = b(ah).
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The family{&¢(«) : o € L} is also a family of zero mean Gaussian random variables
with the covariance

E&(a)E(@2) = (y1, v2) [{91, 92) — (91, 1) (2, D] = (a1, ad).

Thus,&(a) is a function parametric Kiefer processdnand simply a Brownian
motion ine!. Finally, define

E(a) :=&(a) — (@, m} ) (mg, mE) "2 (mg) = TE ().

Since (Yr,1) = [ f'(y)dy = 0, we have&(mg) = b(mg). Hence,é can be
rewritten as

B.1) &) =b@h) — (@, mf)(mg,m{) Tb(mg) = Mb(a) = b(Ilah).
It seems easier to use below the notatignfor Mol
a) =at — (@t mg)(mg, m}) tmy,

which is the part ofx orthogonal to 1 andzy.

Here and everywhere below we will consider only the case of orthogonal
projectors, which asymptotically correspond to the substitution of the MLE. As
our comment after Proposition 2.4 shows, we can do this without loss of generality.

In view of (2.14), the reason for introducing the processesdé is clear and
is given by the following statement.

ProPOSITION 3.1. Suppose that the conclusion (2.14) holds. Then the
following holds for every o € LL:
Under Hy

(3.2) E@) S E@),  Ee) S E@).

Under the alternatives (1.3)

En(@) S E(a) + (o, a),

(3.3) A 4o , _—
(@) = &(a) + (a, a) — (o, my ) (mg, my )~ ~(mg, a).

Because botl§, andé, are linear ina, the above proposition is equivalent to
the weak convergence of any finite-dimensional distributions of these processes.
Hence the possible weak limits of these processes are uniquely determined.

From (3.2) and (3.3) we see that the asymptotic shiftépfunder the
alternatives (1.3) and (1.4) is simplw, a), if « 1 mg, that is, if eithery L iy
oro L lﬁf.
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3.2. Thecaseof y L ig. Inthis case there exists an optimal choicgrafhich
will maximize the asymptotic “signal to noise” rati®d of &, (y, ¢) uniformly in a,
that is, uniformly in alternatives (1.3), where

_lea)l _ v Dl g a)]
[l Iyl el
Here, too, we use the notation 1 for the functiorrilentically equal to 1. Clearly,
they that maximizesA, uniformly in a, is they that maximizes the ratio
I{y, 1)|

Iyl
subject to the condition that L 19, and is given by

Loi=1- [ af dH Ciio =1~ ] . 1C; e,

On the other hand, the that maximizes\ or (3.4) among aly € L>(R?, H) is 1.
Then 1, is simply part of the identity function 1 orthogonal ig. It thus follows
that 1, (x) = 0 whenu(x, 9#) is linear in® and has a nonzero intercept.

Now consideE (1, , ) as a process ip, assuming that1, || # 0. Since 1 - ¢
is orthogonal tgig, from (3.1) we obtain

E(lL, ) =1L, ) =b(1y,oh.

It thus follows tha€ (1, , ¢) is a Brownian bridge imp. If, for example, we choose
e(y) = ¢ (y) =I(y < F71()), 0 <t < 1, then along the family of functions
{¢:(),0<t < 1}, the process

u() _5<n1 ||""f)

is a standard Brownian bridge witu (s)u(t) =s At — st.
A prelimiting form of the process is

L1,
fin (1) = a(i,%)

111l

(3.4)

’

1, . (X; _
—1/22 LnlXD) e ) < FAw) - 11,

110l
1p,(x):=[1—- </:Lévl>ncé_’n/lé(x)]’ x eR?,
where
Copi= //l@/lgdHn,
(if o = [ if dH,.

1Lemlln = (L= (] DaC) Hit g, 1))
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and wherefi,, is the empirical d.f. of the design variablgs;, 1 <i < n}. One can
verify, using, for example, the results from Koul (1996), that under the present
setup,u, converges weakly to a Brownian bridge. Hence, for instance, tests
based on

1
suplt, ()] or /0 i (1) 2t

will have asymptotically the well-known Kolmogorov and Cramér—von Mises
distributions, respectively.

Now, suppose that the design dH. and the regression functiqmny are such
that

(3.5) (o, 1) = / figdH =0,

Then 1, =1, andii, = Wi(F 1), the ordinary empirical process of the residuals
whose weak convergence to Brownian bridge can also be derived from Koul (1996)
under the present setup.

There is, however, a drawback in the choig@zo[ i1y although, as we see, this
choice ofy makes the asymptotic behavior §f in ¢ simple, the tests based on
the proces$, (|1, 7111, ¢) will in general have some loss of asymptotic power.
Consider for the moment the problem of testiFg vs. the alternative (1.3) for
givena whené is known. Then the shift function that will appear in the asymptotic
power for&, (y, @) is |{y, L){e, a)|/|ly llllell. This will attain its maximum iny
when y = 1. However, for the process,(1,,¢) the corresponding shift is
uniformly smaller in absolute value:

’(h, 1)
12l

and, in particular, the statisti€,(1,,a) will have smaller asymptotic power
against the alternative than the statisti¢, (1, a). The actual loss may be quite
small, depending on the quantity

IL00? =1— (4§, Cy g, 1),
and may actually equal 0, if (3.5) holds. But, in general, there is some loss.

We shall see in Section 6 that the choiceyol iy will become most natural
when fitting a regression model. Howevene should not think that the loss of
power associated with this choice in testing the hypothHgis unavoidable due
to the estimation of the nuisance parameters. On the contrary, estimation of the
parameter may lead to ancrease of power against “most” alternatives. We will
see this better in the next section.

Finally, we remark that the geometric picture, similar to the one depicted by
Propositions 2 and 31 and also in this and the next sections, was developed in the
context of the parametric empirical processes in Khmaladze (1979). See also the
monograph by Bickel, Klaassen, Ritov and Wellner (1998) describing the related
geometry in connection with efficient and adaptive estimation in semiparametric
models.

(w,a)‘<|<<ﬂ,a>|



1010 E. V. KHMALADZE AND H. L. KOUL

3.3. Thecaseof ¢ L ¥y¢. This case is important for two reasons. The first is
that in this case agaifi(y, ¢) = £(y, ¢), that is, the asymptotic behavior of the
processeé,, () andé&, (o) underHy is the same. The second is that if we assume
thata of (1.3) also satisfies (1.4), then there is in general a gain in the signal to
noise ratio if we choose orthogonal toy ;. Indeed, letp; denote the part ap
orthogonal toyr and 1. The signal to noise ratio f65(y, ¢ ) is asymptotically
larger than that forg, (v, ¢), as is seen from the following elementary argument:

(r.Dip.a) (v, Dler.a) _(v.1){er,a)
Iyl le Iyl el = vl lecl

gl

becausdip’|l > llgL .
It is also obvious that the optimal choice pthat maximizesA uniformly in a
is y = 1. Therefore, consider the process

(3.6) E(Lo)=8(1,¢9)=b(1,9)

as a process in, for ¢ satisfyingy L ¢ ande L 1. From (3.6) it is clear that if
we had a family of functiongy;, 0 <t < 1} from L»(R, F) such that

(3.7) (@1, 1) = {er, ¥y) =0,
(3.8) (@f, 1) = t, 0<r<1,
(3.9 @1y — @1y, 1) =0, 12 > 11,

then the process(l, ¢;), 0 <t <1, would be a Brownian motion in 8 r < 1.
Hence, all tests based on

n
n Y23 g (e0).  0=r=<1,
i=1

will be ADF.

It is straightforward to construct a family of functions satisfying (3.8) and (3.9).
For example, take any functignfrom Ly(R, F) such thatL(y) := [” ¢?dF is
a continuous distribution function dh, andg? f > 0, a.e. Then the family

@ (y) == oWI{y < L71(1)},

(3.10)
L71@) :=inf{y e R:L(y) > 1}, 0<r<1,

satisfies these conditions. However, finding a farity, 0 < ¢ < 1} that satis-
fies (3.7) as well becomes far less straightforward. It is here we will exploit the
“martingale transform” ideas of Khmaladze (1981, 1993).
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4. A martingale transform. Let h(y) := (1, wf(y))T be an extended score
function of the error distribution and set

1-F(@y) —f»
-fo» [ w§<z>dF<z>) |
i

t=F(y).

The matrixI'; will be assumed to be nonsingular for everg @ < 1. This, indeed,
is true if and only if 1 and) ¢ (y) are linearly independent on the set ¢ for all
sufficiently largec. This, in turn, is true ify s is not a constant in the right tail of

the support off. Then the unique inverde ! exists for every G< r < 1. [The case
whenT; is not uniguely invertible does not create, however, much of a problem
for the transformation (4.1), as is shown in Tsigroshvili (1998).]

Now, observe that the condition (3.7) above is equivalent to requiringetbat
orthogonal to the vectdr. For a functiony € L>(R, F), consider the transforma-
tion

(41) Lo =¢() - /Kyw(z)hT(z>F;é)dF<z)h(y>, yeR.

I, :=/ h(z)hT(z)dF(z):(
zzy

Let, fora(y, ¢) €L,

w() :=E(y, Ly), a=y-g.
We have the following:

ProOPOSITION4.1. Let # :={p € L2(R, F):{p, h) = 0}. The transforma-
tion L of (4.1)isanorm preserving transformation from Lo(R, F) to #:

Lo Lh, Lol = llell.
Consequently the process w («) is a (function parametric) Brownian motion on L.

A consequence of this proposition is the following corollary:

COROLLARY 4.1. Suppose {¢;, 0 <t < 1} is a family of functions satisfying
the conditions (3.8) and (3.9). Then {L¢;,0 <t < 1} is a family of functions
satisfying all three conditions (3.7)—(3.9).Consequently, {€ (y, L¢;),0 <t < 1},
for any fixed y with ||y || = 1, isa standard Brownian motionin ¢.

Now, if {&,(y, £¢:),0 <t < 1} converges weakly t¢é (y, L¢;),0 <t < 1},
then tests based on any continuous functional§,6f, L¢,) will be ADF for
testing Hop. Some general sufficient conditions for the weak convergence of
{én(y, ¢:),0 <t < 1} can be drawn from Proposition 6.2. Others can be inferred
from, for example, van der Vaart and Wellner (1996). In particular, these claims
hold for the family{¢;, 0 <t < 1} given at (3.10).
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It is also important to note that the transformatiéns free fromy and, hence,
the statement concerning the asymptotic distributiofépfy, L¢;),0 < <1} is
valid for anyy € L>(R?, H).

Another consequence of Proposition 4.1 is worth formulating separately.

PROPOSITION4.2. Let 6 be any estimator which satisfies (2.3) [and does
not necessarily have a linear representation (2.11)] and let v/ be a function of
bounded variation. If, additionally, (1.2)and (2.4) hold, then for everya =y - ¢
with y € Lo(R”, H) and ¢ € ®, under Hp,

= d
En(y, L) = w(a),
while under alternatives (1.3),

E,(y. L£o) > w(e) + (Lo, a).

This proposition shows thafthough we used asyptotically linear representa-
tions (2.11) and (2.13) of andé to develop the previous theory, for the as-
ymptotic behavior of the transformed procesggs/, £L¢) and &,(y, L¢) the
behavior ofd andé plays only a minor role.

It is instructive to consider informally a probabilistic connection between the
processe$ (y, ¢;) andé(y, Lg;). Let us associate withé (v, ¢;),0 < < 1} its
natural filtration{¥;, 0 <t < 1}, where eacls -field is

Fi=clé(y,p),s<t}, 0<r<l1,

and consider the filtered proceXy, ¢;), %,0 < < 1}. This is int a Gaussian
semimartingale and it can be shown that the pro¢ésg, £¢;), %,0 <1 < 1}

is actually its martingale part. In other wordsif denotes the Volterra operator
defined by the integral on the right-hand side of (4.1), then the identity

4.2) E(y, o0 =E(r. Vo) +E(y, Lo), 0<r<1,

is simply the Doob—Meyer decomposition of the procsy, ¢;), %;,0 <t < 1}.

Details of this decomposition can be found in Khmaladze (1993), where the
general construction of this form for a function-parametric process was introduced
and studied. The notion of Doob—Meyer decomposition for a semimartingale can
be found, for example, in Liptser and Shiryayev (1977).

REMARK 4.1. SinceLy is orthogonal to 1 and tg ¢, the equality (4.2) can
be rewritten in terms of the procebs

(4.3) b(y, o) =b(y, Vo) +b(y, Lg).

To some extent this is an unusual equation because both prode3ses)
and b(y, L¢;), taken separately, are Brownian motions. However, the nature
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of (4.3) can be more clearly understood as foIIows:{rEf, 0 <t <1} be the
natural filtration of the proceds(y, ¢;) in ¢ and let us enrich it with the -field
o{b(y,h)}. Thenthe procesd(y, ¢;), ff‘;b VvV o{b(y,h)},0<t <1}is a Gaussian
semimartingale (and not a martingaleyg4.3) is its Doob—Meyer decomposition.
See, for example, Liptser and Shiryayev (1989) for more details on this.

REMARK 4.2. Another consequence of the orthogonality.&#, to 1 and
to ¥ ¢ is this: although the processy, ¢;) with ¢; chosen according to (3.10) with
a nonconstan is not a Brownian bridge (because in this c#gg||® < [l¢;|1? = 1)
and hence even the processy, ¢;) with known value of parameter and statistics
based on it may have an inconvenient limiting distribution, the transformed process
&(y, L) is thestandard Brownian motion for any such choice af;.

We shall now describe an analog of the above transformation suitable for testing
the hypothesisH, : G(y) = F(y/o) Yy € R and for somer > 0. Let6 be an
estimate ob based or{(X;, Y;), 1 <i < n} satisfying

(4.4) InY26 — o) = 0,(D).

The analog of the processgshere is
. L Y; — uw(X;, 0)
o) = 2 Yy o2 - [par|
i=1
To transform its weak Iimiég underH,, again define an extended score function

of F((y — u)/o) with respect to both parametetsand o, which is i, (y) =
LY ru(y/o), ¥re(y/o)T, where obviously

(2) =20 (2)

With notation

the analog of thé&'; matrix is
1-1 —q(1) —qqs (1)

1 1
| 10 [[P0ds [Ta@ineds

1 1
—g5 (1) /, G(8)go (s)ds /t G2(s)ds
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Again, assume ttht;,1 exists for all 0< ¢ < 1. Then, as above, let

Y T ~1
(45) Loy i=em) - [ @M@ dF@ha(),  yeR

One can show that,, is a norm preserving transformation frab (R, F) to the
subspace#, ={p € Lo(R, F) . {¢p, h,) = 0} and hencé& (y, L,¢) is a Brownian
motion onL.

PROOF OF PROPOSITION 4.1. Though we could refer to the proof of
Proposition 6.1, for presentational purposes it seems more convenient to give
it here separately. Let, within this proof only;(¢) := ¢(F~1(r)) and g(¢) =
h(F~1())for0O<7 <1.Then

/ Loh()T dF ()
1 1 pt
- / V(g di — / / V()g) T lds g(0g” (1) dt
0 0 JO
1 1 1 1
- f V(g di — f ¥()g() T f ¢(g” (1) dt ds
0 0 K

1 1

- f v di — f w()g()! ds
0 0

=0.

For the technical justification of the interchange of integration in the second
equation above see the proof of Proposition 6.1 below or Khmaladze (1993).
Similarly, we also have

/[Ji 2 F — /1 2 Y Tyl [
¢l = | ¥s)ds—2| ¥(s)g (9T V(1)g(t)dsdt
0 0 s

1 ,1
+ f f W ()g" ()T Ty Cuh (Y (1) ds di
0 JO

=/<p2dF. 0

PROOF OF PROPOSITION 4.2. If ¥ is a function of bounded variation
and ¢ € @, then Ly € ® and therefore we can use (2.8). Together with the
orthogondity property Lo L ¥ ¢, which implies that{.La, mg) = 0, we obtain
that

E1(La) = & (La) +0,(D)

and the rest follows from Proposition 4.1, the CLT fpn.L«) and a standard
contiguity argument. [
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5. Some explicit formulasand remarks.

5.1. Transformation of the processes Wl and én(l, ¢r). In this section we
shall apply the above transformation to residual empirical processes and give
computational formulae of the transformed processes for te&iyand H,, .

Recall from the previous sections that, fox0 < 1,

(5.1) Ua(t) = Wa(F~H ) =n" Y2 [I{e; (0) < F ()} — 1]
i=1
and
(5.2) E(Lg)=n" 1/22[ i @) 1er@) = F o) - |
y

<F~1(1)

w(y)dF(y)],

where in (5.2)p; (y) = o(0)I(y < F~ 11)). Note thatl?l(t) also correspondsto the
£,(1, @), with ¢, (y) =I{y < F~1(r)}. As another practically useful consequence
of orthogonalityof L¢ to 1, we have the following equality:

n
En(y, LO) =n"Y2Y "y (Xi) Lo(5i(0)) + 0, (D).
i=1
It means that we only need to construct transformations of random summands
in (5.1) and (5.2). Introduce vector-functions

G2 = f TR BGAF(),

J(@) = f eOITFL M AF(),  zeR.

Then the transformatios of (4.1) applied tal; of (5.1) gives

Do) =n"Y2 3" [I{ei@) <2} = [1 v, ()]G (z A& D)),

Pi=1
(5.3) = F().

while the transformation of (5.2) is

Wua(t) =n~ 1/22[ (e )i ) < 2} = [1, ¥4 (8:(0)]J (2 A 2:)) ],

5.4 i=1
(®-4) t = F(2).

Similgrly, to describe ADF tests foH, based on the analog @y, let now
ri =¢;(0)/6, and let us consider the processes

n Y23 (I < 2) — F(2)], n_l/ZZ[q)(fi)H{Pl- <z} —/ w(y)dF(y)],
i=1 y=z

i=1
t=F(), zeR.
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Then arguing as above, we are led to the following respective computational
formulae:

wo1(®) =n" Y2 [I{F < 2} — hl(2(0))Gs (2 A &:(D))],
i=1

wa2(t) = n Y23 (IR < 2} — hE (2(0)) J5 (z A & (9))],
i=1

t=F(2), zeR,

whereh, (y) is as in the previous section, whig, andJ, are defined as with
replaced by:, andrI” replaced by[',,.

These formulae may be used in the computation of any test statistic based on
continuous functionals ofv,1, w,2. From the theory developed above, if these
functionals are invariant under the usual time transformatienf (y), they will
be ADF!

5.2. Nonrandomdesign. We now state some analogous facts for the case of a
nonrandom design where now the design vectors are denoteg.ldn analog of
the condition (2.4) here is as follows: There exigt-aectorir onR? x ® and a
q X g positive definite symmetric matriX such that

=0 Y (e, 0) T (X0, 0) > 2,

(5.5) maXi<; <, 1~ Y2 1 (xui, 0) || = 0(2),

SUPL<; <n 172y _py <M W Cenis 9) = Wi, 6) = (0 = )T fulxni, )] = 0 (D).

Under these conditions on the regression function and the rest of the conditions as
before, the analogs of the above results witlX;, -) replaced by (x,;, -) remain

valid in the present case. Using the results from Koul (1996), it is possible to obtain
the analog of the expansions (2.14) and (2.15) under more general conditions on
the functionu than given in (5.5), but we refrain from doing this for the sake of
not obscuring main ideas and for the sake of brevity.

A similar remark applies to the linear regression model. In particular, in the
case of nonrandom and general designs, but having the design matrixX of
rank p, just replace:~1/2X; in the above formulas byx’X)=1/2x,;, 1<i <n,
everywhere. Then tests based on the analoguas,pandw,»> are ADF for Hp,
provided max<; <, n¥/2||(X'X)~Y?x,;|| = O(1).

5.3. Autoregressive time series. Because of the close connection between
regression and autoregressive models, analogues of the above ADF tests pertaining
to the error distribution are easy to see in this case. Accordingly, sugpose
ieZ:={0,4£1, +2, ...}, is now an observable stationary and ergodic time series.
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Let « be as before satisfying (1.1) witki; := (¥;_1, ..., Yl-_p)T, wherep > 1is
a known integer. Then the above tests with tkijswill be again ADF for testing
Hp. A rigorous proof of this claim is similar to that appearing above, with the
proviso that one uses the ergodic theorem in place of the law of the large numbers,
and the CLT for martingale differences in place of the Lindeberg—Feller CLT. Note
that nowH is the d.f. of the random vectdf.

In the case of a stationary and ergodiicear AR(p) model, that is, when
wix, ) = x'9, if the null error d.f. F has mean zero and finite variance, then
EXo =0, that is, (3.5) is automatically satisfied, and hence tests based on the
analog ofU; of (5.1) will be a priori ADF for Hy. This was first proved in Boldin
(1982), assuming” has bounded second derivative, and in Koul (1991) when
F has only a uniformly continuous density. Thus, in linear autoregressive models
the above transformation is useful only when there is a nonzero mean present in
these models.

6. Fitting a regression model. In this section we shall develop some tests
based on innovation processes that will be asymptotically distribution free for
fitting a parametric model to the regression functiaix) := E(Y|X = x).
Actually we consider a somewhat more general problem where we fit a parametric
model to a general regression function defined as follows.

For a real-valued measurable functignon R, let ¥, denote a class of
distribution functionsF onR such thay € L>(R, F) andf |p(y +1)| F(dy) < oo
for all || <k < oo. Letm,(x) be defined by the relation

6.1) Elo(Y —my(0)|X =x] =0,

Note that ifp(y) =y, thenm, (x) = m(x), while if (y) =I{y > 0} — (1 —-«a), for
an O< a < 1, thenm,, (x) is theath quantile of the conditional distribution of,
given X = x. The choice ofp is up to the practitioner. The d.¥ of the error
Y —m,(X) will be assumed to be an unknown membet®ffor a giveng.

The problem of testingHp is now extended to testing the hypothesis that
H,:my(x) = n(x,0) for someé € ® against the alternatives described in (1.6).
Consider again the function-parametric regression process

n
En(y.9:9) i=n"2Y y(X)e(Y; — w(Xi, ).
i=1
Note that because of (6.1), unddy E&,(y, ¢;0) =0.
Let & be an M-estimator of satisfying (2.9) corresponding tgy = /iy.
Suppose, additionallyF” € ¥, is such that the function — [¢@(y + 1) F(dy),
t € R, is strictly monotonic and differentiable in a neighborhood of 0. Now, if
we consider problems whergy) is differentiable, such ag(y) = y, which is a
most interesting case, then we need to assume regularity condition (2.4) on the
regression functiom (-, 9). While in the case of a nondifferentiabje as in, for
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examplegp(y) =I{y > 0} — (1 — ), we need to assume as well thatalthough
unknown, satisfies also (1.2). In both cases, under (2.4) and @sHlisfies (2.11)
and we obtain

E(y. @) =Ea(y, @) — (v, lh)Coen (20, @) + 0, (1)
=& (yL,0) + 0p(1)7

where

yL(x) =yx) —(y, 10)Crlp(x),  x eRP,

is the part ofy orthogonal tgiy and no transformation af is involved.

We emphasize that it is only for motivational purposes we are confining
attention here to M-estimators. As we shall see Iateryéh%fconsistent estimator
may be used to construct ADF tests fdy.

Now one can show that undéf,, for eachy, ¢ of the given type,

. d
(6.2) En(y, @) = b(yL, 9),
while under any sequence of alternatives (1.6),

En(y.0) > b(y1. )+ AlyL. o),

where A is either (¢, 1) or —(p, ¥ ) depending on whether we assume
(2.4) and (2.5) or (1.2).

As this last result shows, the asymptotic shift of the regression prégessy)
under the alternatives (1.6) is the linear functionalgélefined by the functiom, .
Therefore, to be able to detect all alternatives of the assumed type, we need to have
a substantial supply of , that is, we need to considgr(y, ¢) as a process i,
and there is no need to vagyjust in the same way as we had to varywhen
testing our previous hypothesif and keepy fixed. We do not try to choose in
any sense “optimaly because the result will depend éh while we prefer to
work under the assumption that we do not know this d.f. Thus we can and will
assume thap in the rest of this section is fixed.

From (6.2) we note that the limiting process as a functioryims again a
projection of Brownian motion, but as a function jn , it is just a Brownian
motion.

Now we may have a convenient and customary way to parametggse) in
y € L2(RP, H) to obtain processes with a standard and convenient distribution,
and if we had similar ways to do this in subspaced.ofR?, H), we could have
the same convenient limiting processes in our problem. This, however, is not a
straightforward task, as we have said earlier, especially because these subspaces,
being orthogonal tgiy, change from one regression function to another, and
may even well change for the same regression function along the changes in the
parametep.
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Nevertheless, we will see below that given a “convenient” indexing ¢ass
L>(RP, H), in the sense thdb(y, ¢), y € Go} forms a “convenient” asymptotic
process—say, we can find the distribution of statistics basdd@n ¢), y € $o}
easily, and so on—we can map it isometrically into the subspace of functions
orthogonal toiy. Thus, we obtain the process(y, ¢), y € G}, whereg, is the
image of this isometry, which on the one hand has exactly the same distribution
and therefore carries the same “convenience” as the prle@ssy), y € $o}, and
on the other hand, is the limiting process &ty, ¢) if we index it by y € %0

To achieve this goal, first introduce the so called scanning family of measurable
subsetsA :={A;:z € R} of R? suchthatA, C A,, forallz <z, H(A_») =0,
H(Ax) =1, andH(A,) is a strictly increasing absolutely continuous function
of z e R.

To give examples, letx/ denote thejth coordinate of thep-dimensional
design variableX, j = 1, ..., p. Suppose that the marginal distribution X# is
absolutely continuous. Then we can take the fardily= {x e R?:x! <z} as a
scanning family. Or, if the sun¥! + - .. + X? is absolutely continuous, then one
can take the family of half spacels = {x e R? :x1 +x2+ ... +xP <z}.

Now let B¢ denote the complement of the &t

z(x) :=inf{z:A; > x},

Cri= [ MG (AH). (eR.

Ty = . YR WE dHW @), xR, 90,
z(X

We shall often writeC,, T for Cy ;, 75, respectively. Now, define the operator
Kyx):=yx)—Ty), x eRP.
PROPOSITIONG6.1. Let § :={y € Lo(R?, H):(y, jtp) = O}. Assume C; is

nonsingular for all —oco < z < co. Then the transformation X is a norm
preserving transformation from Ly(R?, H) to §:

Ky L 1o, Kyl =l
Consequently, for any fixed ¢, the process w(y, ¢) = E(Ky,¢) is (function
parametric) Brownian motion in y.

Similarly to Proposition 4.2, the following corollary shows that much less is
required from an estimatdr than its asymptotic linearity. The random vecfor
below can be thought of as the limit in distribution.gf: (6 — ).

COROLLARY 6.1. Let & beany process of the form

E(v,@)=b(y,0) =y, 1) Z,
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where Z is a random vector (not necessarily Gaussian) in R?. Then for any fixed
¢ € L2(R, F), the process

w(y, ) =E(Kv, 9)

isBrownian motioniny € Lo(R”, H).

Now we shall, as an example, focus on the casel g, for B a Borel setirnR”.
Then

KIp(x) =Ip(x) - / T5(y)ftg (3)Cyy dH () j1o(x).
z(x)

In view of the above discussion, our transformation is the process

wn(B) :=&,(K1g, ¢)

b2y [}I (Xi) —
(6.3) ; ? /

Azxp)

T5(y) e ()€ 3y dH (y) ;ze(Xi)}

x (Y — n(X;,0)).

We do not consider in this paper the problem of weak convergence of transformed
processess, (v, L), ¢ € ®o} or {£,(Ky, ¢), ¥ € o} to corresponding Brown-

ian motions for appropriate indexing classkg and G in full generality. Nev-
ertheless we shall now state a sufficient condition under which the process (6.3)
converges weakly to a set-parametric Brownian motion on the practically impor-
tant class of sets—a subclagy of all right closed rectangles iiR”, that is,

Bo C {(—o0, v], v € RP}. Our assumption is the following:

(6.4) There exists a > 0 such thatB € A;_, for all B € Bo.

This condition isnot necessary, but simplifiefi@ proof substantially. See
Khmaladze (1993) for the version without this condition.

Let{w(B), B € 8o} be set-parametric Brownian motion @&y with covariance
function

Ew(B)w(B')=cH(BN B,

where, without loss of generality we can assume the constembe 1; compare
Remark 6.1.

The space in which we will consider weak convergencepivill be £>°(%0),
whereGo = {Ig(-), B € Bo} is equipped with thd.>-norm. [See, e.g., page 34 in
van der Vaart and Wellner (1996).] Now, writg, £; for &;(9), &;(0), respectively.
Also, lete denote a r.v. having the same distributiorcga®).
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PROPOSITION6.2. Suppose regularity conditions (2.4) and (2.5) are satis-
fied. Suppose also E¢2(e) = 1 and @ is any estimator such that f(@ —0) =
0,(1). If Bg issuch that (6.4)is satisfied then, under H,,

wn 5w, inI®(Go).

REMARK 6.1. In the definition (6.3) of the process, we assumed that
E¢?(¢) = 1 without loss of generality. Indeed, we can always replate) by
@(8)/6 In w,, wheres? =n=1Y"  ¢2(&;) is an estimator ob? = E¢?(e).
Then it is obvious that the processes which incorpora®)/6 and ¢(¢;) /o,
respectively, will converge to each other, uniformlyBnin probability.

Since the kernel of the transformatiGhdepends o®, we will certainly need
to replace it with an estimator. It seems the simplest to use the same estiraator
is used irg,, although it is not necessary and in principle any consistent estimator
can be used: small perturbation @fin 75 will only slightly perturb the process
£,(Toy, v). To prove this latter statement formally, we need to complement (2.4)
by the following two mild assumptions.

Let

d?(91,92) = E| 19, (X) — 1o, (X |PEQ2@),  &:=e(d), ¥ €O,

p@6):= sup d(¥1,v?), 8> 0.
[P1—D2ll <8

Suppose thaE¢?(¢) = 1, and that for some > 0,
sup Zlmmx ) = fo,(X0) |2 = a2 (91, 92)| = 0, (D),
6.5) [91—02(<e| T

asn — oo,

(6.6) Zk,o(eZ_k) < Q.
k=0

Define the estimated tranformed process:
@ (B) := &, (I3, ¢) — &.(T51 5, ).
We have the following statement.
PROPOSITIONG.3. Let {lIp, B € Bg} be any callection of indicator functions
such that B satisfies (6.4). Then under the assumptions (6.5) and (6.6),

sup |, (B) — wa(B)| = 0,(D).
BeBg



1022 E. V. KHMALADZE AND H. L. KOUL

To prove this last proposition we will use the following lemma, which is of
independent interest. Let, forca> 0,

1 n
D, = { sup = > [y (X0) — i, (X0) 202 @) < L+ ¢)d?(8)
[91—020l<6 1 ;24

forall0<§ <c}.

LEMMA 6.1. Let {I4, A € A’} beany collection of indicator functions. Then
under the assumptions (6.5) and (6.6),

P(nglllo Euafin, 9) — En(Lajia, )] > x|Dn)

< exp{—(x/Z)c > ko(e 2"‘)},

k=0

E{ sup |§n<ﬂm,<p>—§n<ﬂAue,¢>|Z|Dn}
|9 -0 <e

[e.e]
<C Zk,o(e 2_k) — 0,
k=0

ase — 0, where C isa positive universal constant.

Now we prove all three propositions and the lemma.

PROOF OF PROPOSITION6.1. Fix ak < oo and considety, := yl4,. We
shall first show thatX yx, i1 ) = 0. Note thaty € A, () is equivalent tor € Ag(y)

for almost allx, y with respect to the measufe. This fact, together with changing
the order of integration, yields

(Kyi, iid)

= [ nwif 0 dH )
~[ [ wed et dH il @ dH
RP Az(x)
= i) — | O adMCEdHY) | Re()id () dH (x)
’ '/Rp ’ ) '/Aém ’

= (Y, 1) — (Vies 23)
=0.
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Now we shall show that
(6.7) (K vies Kvie) = (Vi Vi) -
Using the notation

ol @)= [ nogmegdiy.  zeR

rewrite
(K v, Kvi)

= (Ve i) — 2 /R Pl o @)y () dH ()
+ /R , Pt () o () ik () p(z(x)) dH (x)
= Ve i) — 2 / ol ()€, dpe(z) + / ol (2)dCopi(2)
ZSZO —00

= (Y, i) — oL (D) Coo ()| ™.

Becausey, = yl,,, the functionp; remains bounded as— oo and hence the
substitution in the above equals zero, thereby proving (6.7).

Next, by definitiony, — y ask — oco. Letk — oo in (6.7) to conclude that it
remains true for a genergle Lo(R?, H). [

PROOF OFPROPOSITIONG.2. Using the definition of the operatéf one can
write

sup |wn(B) - ‘i:n(JCHB’ @)l

BeBg
< sup |&,(Iz, @) — &, (I, @) — E¢'E(Igil) n/2(0 — 6))
BeBg
+ sup 16 (T 15, ¢) — &.(T Ip, ) + E¢' EAg D )n™?@ — 0)].
BeByp

However, Proposition 2.1 implies that tfiest supremum on #right-hand side
is 0,,(1). To deal with the second supremum, let us use the factlthat(y) =
]IAg(V) (x) a.e. and change the order of summation and integration:

(T =—1/2n T 1 UH () e (X (e;
6Ty ) =Y /. ) YO OICT dH (s (Xpten

= [ OiFOICHTascoiar 9) dH ),
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Similar equality is certainly true fog,. Therefore, using Proposition 2.1 once
again, we obtain

sup 1&,(T 1, @) — £,(T g, @) — E¢' E(Ip il )nY2(6 — )| = 0,,(2).
BeBy O

PROOF OFPROPOSITIONG.3. First note that from the previous proof we have
@ (B) = wa(B) = &:(T51p, 9) — £(Tolp, ).
Now let
" (v, 9) = 1y () Cy iy
and
En(z,9) = &n(lac, Foos )
Then we can rewrite

ETole. @) = [ Lih ;2 (L, o 9) dH ()

- / I ()17 (v, 9o (z(3), 9) dH ().
Since
&, (T35, @) — £.(Tolp, )|

<T5_p1=e) SUP 1&:(To1p, 9) — &:(Tolp, )|
l?—6]<e

+ H{||9~_9||>€}|§n(%]13a ®) — gn (Tolp, 9|

andd is consistent estimator, it is enough to prove that
sup f Is()|n" (v, 9)E(2(y), ®) — 0" (v,6)&: (z(), 6)| dH ()
BeBo,||0—-0| <€
= Op(l)’

ase — 0 andn — oo. Using the Cauchy—-Schwarz inequality and the fact that
B c A1, we find that the left-hand side of the above equality is bounded
above by

sup [nG, ) — G Ou &, )
|10 —0]<e

+1nCOla sup 1€, ) — &, Dlu,
|9 -0 <e

where|| - || g is the L> norm with respect tdd .
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Since C; is nonsingular forz; < 1 — ¢, we have|n(-,0)||g < co. Moreover,
[ty being continuous i® in mean square sense [condition (2.4)], it follows that
for all sufficiently smalle, Cy . is nonsingular for all|9 — 0| <€, z<1—1,and
that supy _g;<c In¢,9) —n(-, O)llx is small. What remains therefore to show is

that SUc g, 96y <e 16aC. Dz = 0,(1), and that SUp, g, g < 1E (. ?) —
£.(,0)| = 0p,(1) asn — oo and e — 0. These properties are proved in
Lemma6.1. [

PROOF OFLEMMA 6.1. First note that a symmetrization lemma [see, e.g.,
van der Vaart and Wellner (1996), Section 2.3.2] can be used to imply that

1€ (2, 91) — En(z, 92)|| < 2|1E2(z, 1) — EX(z, ¥2) I,
where
Ed. ) =n"Y2Y eilacis (X))o (&),
i=1

and {e¢;}7_, are Rademacher random variables independent(&f, Y;)}! ;.
Averaging first ovefe;}?_,, we obtain for alk > 0,

E[exp{t HIE0(z, 91) — £0(z, 92) 11} Da]
< E[exp{Zt‘zn‘lzwﬂmxo - mz<xi>u2¢2<éi>}]z)n}
i=1
<exp(2r 2414 ) p2(191 — D21}

Following van der Vaart and Wellner (1996), Section 2.2, denotgXy, p, the
Orlicz norm of the random variablé induced by the functiogy (x) = ¢* — 1—this
is the smallest constantsuch thatE[exp(|X|/t) — 1|D,] < 1. Then the previous
inequality implies that

I1E2(z, 91) — €Dz, 92)lly. b, < Co(I91— V2.
Sincee™/! — 1> (x/1)2/2!, itimmediately follows that

E sup &y, ®) —E&(y,0)|?
|9 —0|<e

52‘

sup 16,0~ B 0|
[9—6ll<e ¥, Dy
We now show that the Orlicz norm on the right-hand side is small for semall
We will do this by slightly adjusting the chaining argument. Lét5) be the
covering number [the cardinality of the minimé&inet & (8)] of the unit ball in
RY. Let eachziy1 € N (27%71) be linked to uniquey € & (27%) in such a way
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that||cx1 — &l < 27%. Then using the Fundamental Lemma 2.2 of van der Vaart
and Wellner (1996), Section 2.2, one can write (with-= ¢¢)

max [|&,(y, %) — &(y, Fx12) | H
) ¥, Dy

ko Ukl

<CINNQ@ M pe27h).

Hence
sup %0 9) — £, 01|
lo—6l<e ¥, Dn
< max ||&,(v, %) — &n(y, O
6.9 <3| e 1600 G0 e |

o0 o
<CY INMN@pE2™)=Cq ) kpe2™),
k=1 k=1
where the last inequality follows from obvious estimation from abadvéj) <
C874. Sincep(e2¥) — 0 ase — 0 and the series converges for some 0, it
tendsto 0 ag — 0.
Finally, combine the symmetrization and Markov inequalities to obtain

P( Sup [1E.(y. 9) —&.(3.0)] > x|Dn)
l0—0ll<e

0 0 X
< P<H sup 20,9~ 2000l = 5[
U—0ll<e

<ol sup 120 9) - E20.0)1 ][0, [exe( -5

l0—0l<e

From the definition of the Orlicz normisup ;o< IE2(y. ®) — £2(y. D)l lly.p,
and the inequality (6.8), it follows that the expectation above does not exceed 2 for
t=qY i qkp(e 2-%). Hence the inequality of the lemmal]

We end this section by pointing out that the conditions (6.5) and (6.6) are
trivially satisfied in the casg (x, ) = ¢'S(x), whereS(x) is a vector of functions
of x with finite second moment || S(X)||2.

7. Somesimulations. This section presents some simulations to see how well
the finite sample level of significance is approximated by the asymptotic level
for the supremum of the absolute values of the transformed processes defined
at (5.3) and (6.3). It is noted that when fitting a standard normal distribution to the
errors with a rapidly changing regression function, or when fitting a two-variable
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linear regression model with standard normal errors and using the least squares
residuals, this approximation is very good even for the sample size 40, especially
in the right tail.

The lack of an analytical form of the distribution of the supremum of
the Brownian motion on0, 1]2 created an extra difficulty here. We had to
first obtain simulated approximation to this distribution. This was done by
simulating an appropriate two time parameter Poisson process of sampl&size 5
with 20K replications. Selected quantiles based on this simulation are presented
in Tables 2 of Section 7.2. This should be of independent interest also.

7.1. sup|w,i(z)| of (5.3) This section presents some selected empirical
percentiles of the transformed statistiy, := sup |w,1(z)| of (5.3) for testing
Hp: F is the standard normal d.f. The regression function is taken to be
w(x,®) = e, with trued = 0.25, the regressors;,i =1, ...,n,are chosento be
uniformly distributed on2, 4], and the errors; =¢;(6),i =1, ..., n, are standard
Gaussian. In this case tliefunction of Section 5.3 becomes

r-1 _ 1 (1+ya(y) a(y))
FO T - Fllyay) +1— a2\ a(y) 1)
wherea(y) = f(y)/(1 — F(y)), with f and F denoting the standard normal

density and d.f., respectively. Consequently, the vector-funciiaf (5.3) is now
equal to

"= [ @-»ri rody

¢ 1

and, eventually, the transformed process of (5.3) has the form

Do1(1) = n—l/ZZ[H{e,- @) <)
i=1
(7.2)

B /Z/\Ei(é) 1+8j(é)(a(y) - )
—oo  ya(y) +1—d?(y)

Although the form of the regression function does not participate in the
martingale transformatiott it still may affect the finite sample behavior of the
transformed process as far as it affegtsé),i =1 ...,n, whered is the MLE
under the null hypothesis. It was thus of interest to see whether the estimation
of 8 will not affect the values oti(é), i=1,...,n, too much and worsen the
convergence of the transformed process to its limit. For this reason we chose a
more or less rapidly changing regression function. On the other hand there was
no point in choosing multidimensional regressatshere, since the transformed
process depends solely elr(é), i=1,..., n.

a(y)dy], (= F(2).



1028 E. V. KHMALADZE AND H. L. KOUL

TABLE 1
Sdlected quantiles of P(D;, > dy)

o 0.2 0.1 0.05 0.025 0.01

n\d, 164 1.9 224 250 281

40 0.168 0.084 0.046 0.029 0.019
100 0.178 0.093 0.052 0.029 0.014

We simulated (X;, ¥; = ¢%25%i 4 ¢;), 1 < i < n} for sample sizes = 40, 100
and for each sample calculated the value of the Kolmogorov—Smirnov statistic
D,, .= suf|w,1(t)|; 0 <t < 1}, with w,1(¢) as in (7.1). This was dona = 10K
times. In Table 1, is the 10Q1 — «)% percentile of the limiting distribution of
D,. The values are obtained by approximating the d.f. of the supremum of the
Brownian motion ovef0, 1] by 4(z) := P(SURy,1 |£,(t) — nt|//n < z), with
n = 5K, whereg, (1), t € [0, 1], is a Poisson process with intensity The d.f.g
was calculated using the exact recurrence formulas and code given in Khmaladze
and Shinjikashvili (2001). The values obtained are accurate 195°.

Table 1 also gives the Monte Carlo estimatesPgD,, > d,) for n = 40 and
n = 100 based om: = 10K replications. The resulting (simulated) distribution
functions of D,, along with g as solid line are shown in Figure 1. The quality
of approximation appears to be quite close to what one has in the classical case of
the empirical process and the limiting Brownian bridge especially in the upper tail,
where we need it the most.

prob
E}
n
=]
o

Fic. 1. E.df.of D, for n =40,100,m = 10K and §.
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7.2. sug |w,(B)| of (6.3). Here the regressorX;, i = 1,...,n, are two-
dimensional Gaussian random vectors with standard normal marginal distributions
and correlation. The regression function being fitted is chosen to be linear:

(7.2) w(x, 9) = d1x1 + 92x2,

with the true parametet’ = (1, 1), while the scanning family4 = {A,:z € R}
is just one of the examples mentioned in Section46:= {x € RZ:x! < z}.
Letw,, wy be as in Section 6.

For the above regression function and the scanning family the m@itrixhas
the form

= 1 <r2 —r) 1 <(za(z)+1)_l 0)
T M= -F@1\ —r 1 1—F(2) 0 0

and the integral in (6.3) becomes

/”AX” ya(y) F(xz—ry)d % ._/"Mxila( ) 1 dy (Xip—r Xin)
o ya+1 \V1—2) T L ST e
Here, as abovef and F denote the standard normal density and distribution
function, respectively. In our simulations the class of sBtsvas chosen to
be (—oo, x], x € R2. Write w,(x), wy(x) for w,(B), wy(B) wheneverB =
(—o0, x], x € R2, respectively. Choosing(y) = y andé to be the least squares
estimator, the transformed process (6.3) becomes

n x1AXi1 _
12 _ ya(y) (xz ry) _
wp(x)=n I(X; <x —/ F dy X
") ,Zzl[( e R T RS W) A

x1AXi1 1
- [ a5 dr e —rxin)|
—o0 1-r

x (Y; — n(X;, 0)).

LetV, :=sup, |lw,(x)|, Vi :=sup, lwg (x)|.

In order to demonstrate how well the null distributionf is approximated by
the distribution ofV, we had to first understand the form of the latter distribution.
We thus first obtained an approximation for the distribution of this r.v. as follows.

Let H(x1,x2;7), x = (x1,x2)" € R2, denote the d.f. of the bivariate normal
distribution with standard marginals and correlatioh.et

(7.3) Hy(s, 1) := H(FY(s), F1(t); r), 0<s,t<1,

be the corresponding copula function, and dels, 1) := wy (F~1(s), F~1(1)).
The d.f. P(sup, ,<1lw(s,?)| < v) is the limit asn tends to infinity of, and is
approximated by,

L) i= P(_SUP [6un,(5.1) = nH,(5.1)| /¥ <)

O<s,t<1
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TABLE 2

Sdlected values of (v, L, (v))
(&)for r =-0.5
x 0.72 0.88 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
L(x) 0.00 0.01 0.05 0.25 0.50 0.69 0.82 0.91 0.95 0.98 0.99 0.995
(b)for r =0
x 0.66 0.84 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25
Ly (x) 0.00 0.01 0.07 0.30 053 0.72 0.84 091 0.95 0.98 0.99 0.995
(c)for r =0.5
x 0.59 0.79 1.00 1..25 1.50 1.75 2.00 2.25 250 2.75 3.00 3.25
Ly (x) 0.00 0.01 0.11 035 057 0.74 0.85 092 0.96 0.98 0.99 0.996

whereé&,y (s,t) is a Poisson process qd0, 1]? with expected valueH, (s, 1).
Table 2 gives the simulated values of these probabilities fer—0.5, 0, Q5 and

n =5K, with m = 20K replications. This table is based on the tables and graphs of
the distribution functiorL, and percentile points, prepared by Dr. R. Brownrigg,
available at www.mcs.vuw.ac.nz/ray/Brownian.

Although the distribution ofVy; depends on the copula functidd., the first
useful observation is that relatively sharp change&,irdo not appear to change
the distribution of this r.v. by much. Table 3 summarizes a few selected percentiles
to readily assess the effectiobn them. It contains the values @f defined by the
relation 1— L, (v,) = «. One readily sees that these values are very stable across
the three chosen valuesgfespecially forr < 0.1.

We illustrate the closeness of the distribution1yf for finite n to the limiting
distribution with the graphs of e.d.f.s far= 40, 100, withm = 10K replications.
Figure 2 shows the (simulated) d.f.'s ®f, for n = 40, 100;m = 10K, and the
approximating d.f.L, (solid line) for H, as in (7.3) withr = —0.5, 0, and .

One readily notes the remarkable closeness of these d.f.’s, especially in the right
tail.

TABLE 3
Sl ected values of v, for r = —0.5, 0, Q5

r\e 05 025 020 010 0.05 0.025 0.01

-05 150 186 195 223 250 274 3.03
00 146 181 191 221 246 270 3.03
05 142 177 188 217 243 270 298
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prob

prob

prob

I T T T
0 1 2 3 4

T

Fic. 2. (a)E.df. of V,, n = 40, 100,with m = 10K, and df. L, r = —0.5. (b) E.df. of V,,,

n =40, 100,with m = 10K, and df. L,, r = 0. (c) E.df. of V,, n = 40, 100,with m = 10K, and
df.L,,r=05.
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TABLE 4
P(V;, > vyg), m=20K

n r\e 0.2 0.1 0.05 0.01

40 -05 0.166 0.084 0.045 0.012
0.0 0.166 0.085 0.045 0.011
0.5 0.162 0.084 0.042 0.008

100 -0.5 0.179 0.092 0.046 0.009
0.0 0.183 0.092 0.048 0.008
0.5 0.178 0.093 0.046 0.009

Table 4 gives the simulated values BV, > v,) for several values ok and
sample sizes = 40 andn = 100, based om = 10K replications. From this table
one also sees that the large sample approximation is reasonably good for even the
sample size of 40 and fairly stable across the chosen values of
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