
The Annals of Statistics
2004, Vol. 32, No. 3, 898–927
DOI 10.1214/009053604000000247
© Institute of Mathematical Statistics, 2004

CONSISTENT COVARIATE SELECTION AND
POST MODEL SELECTION INFERENCE IN

SEMIPARAMETRIC REGRESSION

BY FLORENTINA BUNEA

Florida State University

This paper presents a model selection technique of estimation in
semiparametric regression models of the typeYi = β′Xi + f (Ti) + Wi ,
i = 1, . . . , n. The parametric and nonparametric components are estimated
simultaneously by this procedure. Estimation is based on a collection of
finite-dimensional models, using a penalized least squares criterion for
selection. We show that by tailoring the penalty terms developed for
nonparametric regression to semiparametric models, we can consistently
estimate the subset of nonzero coefficients of the linear part. Moreover, the
selected estimator of the linear component is asymptotically normal.

1. Introduction. The partially linear regression model was introduced by
Engle, Granger, Rice and Weiss (1986) for the study of the relationship between
weather and electricity sales and has received considerable attention over the
last decade. Givenn i.i.d. P observations((X1, T1), Y1), . . . , ((Xn, Tn), Yn), the
model is

Yi = β ′Xi + f (Ti) + Wi = s(Xi , Ti) + Wi,(1.1)

whereW1, . . . ,Wn are independent, identically distributed and zero mean error
variables, assumed to be independent of(X, T ) ∈ Rq ×R. We assume thatf ∈ Fα,
whereFα is a class of smooth functions with degree of smoothnessα. The appeal
of the model lies in its flexibility. It can be used when a simple linear regression
is adequate, apart from a covariate, usually a confounder, that is known to affect
the response in a nonlinear fashion. More generally, (1.1) can be regarded as a
particular case of a multiple index model and can serve as a first step in a dimension
reduction process.

Two important aspects of optimality in estimating (1.1) are:

O1. Parsimonious selection of the X= {X1, . . . ,Xq} covariates that avoids both
underfitting and overfitting.

O2. Asymptotic normality of theselected estimator ofβ.

Let I0 ⊆ {1, . . . , q} be the index set of the nonzero components ofβ. Let Î be
an estimator ofI0. We interpretP (Î = I0) → 1 as O1. The asymptotic normality
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of β̂
Î
, the estimator ofβ corresponding to the selected index setÎ , is our O2.

Model (1.1) was originally studied under the assumption thatI0 = {1, . . . , q}
and α are known. We shall refer to this situation as Case 0. In this case, one
can construct estimators off andβ using the knowledge ofα and I0, so there
is no need for a model selection procedure. Wahba (1984), Green, Jennison and
Seheult (1985) and Heckman (1986) suggested a least squares approach combined
with spline smoothing for the nonlinear component; Chen (1988) proposed
simultaneous least squares estimation of the parametric and nonparametric parts.
The subsequent literature is vast, and we refer to Bickel, Klaassen, Ritov and
Wellner (1993) and to the monograph by Härdle, Liang and Gao (2000) for
an extensive bibliography. All suggested methods lead to asymptotically normal
estimators ofβ, provided that the estimators off satisfy the minimum requirement

‖f − f̂ ‖2
µT

= oP (n−1/2),(1.2)

for α > 1/2, where ‖ · ‖µT
is the L2(µT ) norm andµT is the probability

distribution of T ; see, for instance, Lemma 11.2, page 202, in van der Geer
(2000), or Chen (1988). Throughout this paper we shall use (1.2) as a prerequisite
for O2 and assess it over functions in Lip∗(α,L2(µT )), with α > 1/2, defined
in Section 2.1. We will compare the rate in (1.2) with the minimax rate in
Corollary 3.1.

In this paper we use model selection based on penalized least squares minimiza-
tion as an estimation procedure. We construct a sequence of finite-dimensional
approximating spaces fors and find the least squares estimator corresponding to
each space. We compute the residual sum of squares corresponding to each esti-
mator and then add a penalty term. Our final estimator is the one with the smallest
penalized residual sum of squares. This yields estimators forβ, I0 andf simulta-
neously.

The aim of this paper is to study the performance of such estimators when we
relax the conditions of Case 0. We consider the following cases:

• Case 2:I0 unknown andα known,α > 1/2.
• Case 3:I0 andα unknown,α > 1/2.

We show in Sections 3.2 and 4 that O1 (the consistency of the selected index) and
O2 (the asymptotic normality of the selected estimator) hold in both cases. We note
that in Case 3 we need O1 and O2 to holduniformly over the range ofα. Notice
further that the smoothness classes are nested, in the sense thatα1 ≥ α2 implies
Lip∗(α1,L2(µT )) ⊆ Lip∗(α2,L2(µT )). Then, to establish the uniformity result it
is enough to show that O1 and O2 hold for the smallest allowableα > 1/2. This is
the approach we adopt in the sequel.

We point out that our strategy of showing O2, in either case, involves two steps.
The first one is to show that̂I stabilizes asymptotically, that is, that O1 holds. The
second one requires that the estimator ofβ of fixed dimensionI0 be asymptotically
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normal. This could be done by quoting directly the result obtained in Case 0 by
Chen (1988), whose method of estimation is the closest to ours. However, the result
of Chen (1988) holds overm times continuously differentiable functionsf (cf. his
Condition 2, page 138), so it is not directlyapplicable to our context, which covers
nondifferentiable functions. We therefore address this situation here, and in fact
we prove that the asymptotic normality ofβ̂ of fixed dimension holds in the more
general case:

• Case 1:I0 known andα unknown,α > 1/2.

O2 was not studied in any of these three cases.
Partial results on O1 were obtained in Case 3. Härdle, Liang and Gao (2000),

for a time series version of model (1.1), used a kernel method to estimatef and
cross validation to selectI0 and the bandwidth simultaneously. They show O1 in
Theorem 6.3.1, page 137, but the construction of their estimator depends on the
unknownI0, as their Assumption 6.6.7, page 158, imposes lower and upper bound
restrictions on the bandwidth that depend onI0.

Chen and Chen (1991) usedB-splines to approximate the nonlinear component
and an Akaike type technique for simultaneous estimation ofI0 and f . They
discuss O1 in their Proposition 2, page 334, under a condition on a random
criterion that depends on the unknownI0 andf . Remark 3 verifies this condition
only for |I0| = 1 and under their Condition 4, page 326, which entails the existence
of a lower bound onf ; the further study of O1 is left as an open problem. We do
not use any of these conditions here.

The remainder of the paper is organized as follows. Section 2.1 contains the
assumptions under which our results hold. In Section 2.2 we give the construction
of our estimators. In Section 2.3 we derive upper-bound oracle inequalities for the
risk of our estimators, and obtain rates of convergence as a consequence. Sections
3 and 4 are central to our paper. In Section 3.1 we discuss penalty choices and
their impact on the rates of convergence derived in Section 2.3. We prove O1
in Section 3.2. In Section 4 we show that the estimators ofβ are asymptotically
normal for the three cases under consideration, therefore establishing O2. Section 5
provides conclusions. The proofs of intermediate results are given in the Appendix.

2. A penalized least squares estimator. In this section we devise estimators
for β andf and establish their consistency.

2.1. Preliminaries. We begin by giving a list of assumptions under which the
results of this paper hold.

Let µ be the joint probability distribution of XandT . Let µX andµT denote
the probability distributions of XandT , respectively. Let Lip∗(α,L2(µT )) denote
a generalized Lipschitz space, for some smoothness parameterα > 0, and let
| · |α,2 be the seminorm in this space [see, e.g., DeVore and Lorentz (1993),
page 51, for definition and properties]. For some positive constantA > 0 define
Dα,2(A) = {g ∈ Lip∗(α,L2(µT )), |g|α,2 ≤ A}.
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ASSUMPTION 2.1. The support ofµ is [0,1] × K , for some compact set
K ⊂ Rq , and on its supportµ admits a density with respect to the Lebesgue
measureλ that is bounded from below byh0 > 0 and from above byh1 < ∞.
In addition,µT ([0,1]) = 1 andµX(K) = 1.

ASSUMPTION 2.2. There existsd > 0 such thatτp = E(|W1|p) < ∞ for
p > 4+ d .

ASSUMPTION2.3. For anyl ∈ Rq \ {0}, Var(l′X|T = t) > 0 for all t ∈ [0,1].
ASSUMPTION2.4. s ∈ L2(K × [0,1], λ).

ASSUMPTION 2.5. θj = E(Xj |T = t) ∈ Dγ,2(A) for someγ > b/4 and
some fixed constantb ≥ 3, for all j ∈ {1, . . . , q}.

Note that Assumption 2.3 ensures that model (1.1) is identifiable; see, for
example, Lemma 11.2 of van der Geer (2000) or Lemma 3 of Chen (1988).

Assumption 2.5 is a sufficient condition on the smoothness ofθj , j ∈ {1, . . . , q},
which ensures thatβ can be estimated at the optimaln−1/2 convergence rate. See
also Chen (1988), Heckman (1986), Speckman (1988) and van der Geer (2000)
for other types of smoothness conditions, typically requiring the existence of a
prespecified number of derivatives forθj .

2.2. The sieves and the estimators. We construct now a sequence of approxi-
mating spaces fors in (1.1). This mimics the construction of approximating spaces
for generalized additive models, as in Barron, Birgé and Massart (1999) or Baraud
(2000). LetI = {i1, . . . , il} ∈ I, whereI = P ({1, . . . , q}), andP (F ) denotes all
subsets of a setF . Denote by[·] the integer part and by log2 the logarithm in
base 2. Letb be a fixed constant,b ≥ 3. Define

An = [log2(n/ logn)1/b],
Jn = [log2(n/ logn)1/2],
Bn = 2An, Nn = 2Jn.

(2.1)

Forkn ∈ {An,An + 1, . . . , Jn} let Kn = 2kn . For eachKn ∈ {Bn, . . . ,Nn} = Kn let
SKn be the linear space of piecewise polynomials of degree at mostr − 1, based
on a regular dyadic partition of size 1/Kn. Thus,SKn is the space of functionsv
on [0,1] of the formv(t) = ∑Kn

j=1Pj (t)1({ j−1
Kn

≤ t <
j

Kn
}), where1(V ) denotes

the indicator of a setV . Note that dim(SKn) = rKn. Denoting the restriction
of λ to [0,1] by λT , let {φj }rKn

j=1 be an orthonormal basis inL2(λT ) for SKn . For
(I,Kn) ∈ I × Kn define

SI,Kn = 〈
xi1, . . . , xil , φ1(t), . . . , φrKn(t)

〉
,
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where〈·〉 denotes the linear span. Note that|I× Kn| = 2q × (Jn −An + 1), where
| · | denotes the cardinality of a set. Notice that dim(SI,Kn) = |I | + rKn.

We recall that the approximating spaceSKn is known to have good approxima-
tion properties for a range of smoothness classes to whichf andθj , j = 1, . . . , q,
may belong; see, for example, DeVore and Lorentz (1993). However, other choices
are possible: spaces generated by piecewise polynomials based on an irregular
partition of [0,1], wavelets or trigonometric polynomials; see Birgé and Massart
(1998) for a detailed discussion.

Let pen(I,Kn) be a penalty term associated withSI,Kn . We defer a detailed
discussion on the penalty term to Section 3.1. For(I,Kn) ∈ I × Kn andu ∈ SI,Kn

let γn(u) = n−1 ∑n
i=1[Yi − u(Xi, Ti)]2.

DEFINITION 2.1. A penalized least squares estimator relative to the collection
{SI,Kn}(I,Kn)∈I×Kn

is anys̃ ∈ S
Î,K̂n

such that

γn(s̃) + pen(Î , K̂n) = inf
(I,Kn)∈I×Kn

(
inf

u∈SI,Kn

γn(u) + pen(I,Kn)

)
.(2.2)

Let Y = (Y1, . . . , Yn)
′. Denote byX then × q matrix with columns(X1,j , . . . ,

Xn,j )
′, 1≤ j ≤ q, and byXI then × |I | matrix obtained fromX by retaining the

columns corresponding to the index setI ⊆ {1, . . . , q}. Let βI be a vector inR|I |
and letδKn be a vector inRrKn . Let ZKn be then × rKn matrix whoseith row is
φ1(Ti), . . . , φrKn(Ti). Then, in matrix notation, our estimator achieves the infimum
below:

inf
(I,Kn)

inf
βI ,δKn

{(
Y − XI βI − ZKnδKn

)′(Y − XI βI − ZKnδKn

) + pen(I,Kn)
}
.(2.3)

Let K̂n andÎ be the indices for which (2.3) is attained. Then, if the minimization
problem has a unique solution, following Seber [(1977), Theorem 3.7], the least
squares estimators ofβI andδKn are, respectively,

β̃
Î
= (

X′
Î

(
Id − P

K̂n

)
X

Î

)−1X′
Î

(
Id − P

K̂n

)
Y(2.4)

and

δ̃
K̂n

= (
Z′

K̂n
Z

K̂n

)−1Z′
K̂n

(Y − X
Î
β̃

Î
),(2.5)

whereP
K̂n

is the projection matrix on the spaceL
K̂n

generated by the columns
of Z

K̂n
. Thus, L

K̂n
= {(g(T1), . . . , g(Tn))

′|g ∈ S
K̂n

} and P
K̂n

= Z
K̂n

(Z′
K̂n

×
Z

K̂n
)−1Z′

K̂n
. Id denotes then × n identity matrix.

For any measureν we denote by‖ · ‖ν theL2(ν) norm. Let


n = {‖̃s‖λ ≤ 2 exp(log2n)}.
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We note that, by Theorem 1.1 in Baraud (2002)P (
c
n) → 0. For technical reasons

we consider as our final estimator ofs,

ŝ(x, t) = s̃(x, t)1
n.

We denote byf̃ the estimator off corresponding tõδ
K̂n

. Hence, the estimators of
the nonlinear and linear part are, respectively,

f̂ = f̃ 1
n and β̂ = β̃1
n.

We mention here the approximating spaces used in the three cases under con-
sideration. We elaborate on this in Section 3.1. For Case 1 we use{SI0,Kn}Kn∈Kn.

In Case 2 we use{SI,Kn,α }I∈I with Kn,α  n1/2α+1. Here and in the sequel the
notationa  b means thata is an integer power of 2 that differs fromb by at most
a factor of 2. In Case 3 we use{SI,Kn,a }I∈I for Kn,a  n1/2a+2, with a > 0 arbi-
trarily close to zero. Notice thatKn,α ∈ Kn if 1/2 < α < (b − 1)/2. We shall need
later the approximation theory result given by (2.7), which holds forα ∈ (0, r).
This motivates the choice ofb ≥ 3 and the definition ofr = [b−1

2 ]. Also, note that
Kn,a  n1/2a+2 ∈ Kn for any 0< a < 1/2.

We show in Appendix A.1 that, under Assumptions 2.1–2.5, the estimators are
unique, except for a set of probability tending to zero. On this set we define our
estimators to be identically zero.

2.3. The consistency of the penalized least squares estimators. In this section
we give finite sample upper bounds on the risk of the estimatorŝ of s. As an
immediate consequence we then obtain rates of convergence for the estimators of
β andf , respectively. Oracle type inequalities for the risk of estimators obtained
via model selection in nonparametric regression have been studied extensively
over the last decade; see, for example, Barron, Birgé and Massart (1999), Baraud
(2000, 2002), Wegkamp (2003) and the references therein. The results carry over
to semiparametric regression and in this paper we adopt the approach of the second
author.

Let fKn be theL2(µT ) projection of f onto SKn. Let C1,C2 > 0 denote
dominating constants independent ofn, given by Theorem 2.1 in Baraud (2002).

THEOREM 2.1. Under Assumptions 2.1–2.5, for pen(I,Kn) ≥ C1(|I | +
rKn)/n,

E‖s − ŝ‖2
µ ≤ C2 inf

Kn∈Kn

{∥∥f − fKn

∥∥2
µT

+ pen(I0,Kn) + ϑn

}
,(2.6)

with ϑn = 1/n + (‖s‖2
λ + 1)exp(−2 log2 n).

We note thatC1 depends onτ2 and thatC2 depends onh0, h1, d,p, τp.
This theorem allows us to obtain rates of convergence forŝ by computing the

infimum above, provided that‖s‖2
λ is bounded, in which caseϑn = O(n−1). This is
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guaranteed under Assumption 2.1 iff ∈ Dα,2(L) andβ ∈ K1, for some compact
setK1 ∈ Rq . Furthermore, the next corollary shows that the rate of convergence
of ŝ is inherited by the estimators ofβ and f . Note that if f ∈ Dα,2(L) for
someL > 0, then by Theorem 2.4, page 358, in DeVore and Lorentz (1993) and
Assumption 2.1, for anyα ∈ (0, r) there existsC(α,L) > 0 such that

‖f − fKn‖2
µT

≤ h1C(α,L)K−2α
n .(2.7)

Define

rn = inf
Kn

{h1C(α,L)K−2α
n + pen(I0,Kn) + ϑn}.(2.8)

Let | · |2 denote the Euclidean norm. For a functiong of generic argumentZ we
denote its empirical norm by‖g‖2

n = n−1 ∑n
i=1 g2(Zi). In addition, by abuse of

notation, we regard herêβ
Î

as a vector inRq by adding 0’s to the necessary
positions.

COROLLARY 2.1. Under Assumptions 2.1–2.5,for pen(I,Kn) ≥ C1(|I | +
rKn)/n, if f ∈ Dα,2(L), 0< α < r , we have:

1. ‖f̂ − f ‖2
µT

= OP (rn), uniformly over f ∈ Dα,2(L) and β ∈ K1.

2. ‖f̂ − f ‖2
n = OP (rn), uniformly over f ∈ Dα,2(L) and β ∈ K1.

3. |β̂
Î
− β|22 = OP (rn), uniformly in β ∈ K1.

We present the proof of these two results in Appendix A.2. We discuss in the
next section our penalty choices and the corresponding values ofrn. Although
f̂ may achieve the minimax optimal rate of convergence, Corollary 2.1 gives
suboptimal rates for the estimator ofβ. We show in Section 4 that we can achieve
the expectedn−1/2 rate of convergence for̂β

Î
, provided thatP (Î = I0) → 1. In

the next section we discuss penalty choices for which this holds.

3. Penalty choices and the consistency of the selected index. There has
been a vast literature on the estimation ofI0 in the fully parametric context and we
only mention here the seminal works of Mallows (1973), Akaike (1974), Schwarz
(1978) and Shibata (1981). Typically, model selection procedures based on a
penalized criterion use penalty terms that are proportional either to|I |/n, where|I |
is the dimension of a fitted model, or to|I | logn/n. These give rise to Akaike-type
(AIC) and Schwarz-type (BIC) methods, respectively. In AIC the selected model
is expected to include about one superfluous parameter [Woodroofe (1982)]. BIC
chooses the correct model with probability converging to 1 [Haughton (1988)].
See also Guyon and Yao (1999) for a recent survey.

In semiparametric models we cannot obtain the consistency ofÎ by a simple
extension of these methods, because a penalty term proportional to(|I | +
Kn) logn/n no longer suffices. In the parametric case a penalty term essentially
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balances out the residual variance of competing models of different dimensions,
and the bias term disappears for the models that include the true one. However, in
the semiparametric case the penalty term is also required to balance out the bias
introduced by approximatingf within a finite-dimensional space. Since in general
f does not belong to any of the approximating spaces, this bias is not zero, and
a penalty that is proportional to the dimension of a fitted model is too small to
achieve the correct balance.

3.1. Penalty choices and rates of convergence. In this section we give
sufficient conditions on the penalty term for which the optimality criteria O1 and
O2 hold.

We first discuss O1, which isP (Î �= I0) → 0. Note that

P (Î �= I0) = P (I0 �⊂ Î ) + P (I0 � Î ).(3.1)

We showed in Corollary 2.1 that the estimators ofβ are consistent, for any
penalty term that satisfies pen(I,Kn) ≥ (|I | + rKn) logn/n. We will show in
Theorem 3.1 that the first term in (3.1) converges to zero, for any penalty term
that satisfies this restriction. However, we cannot use the consistency ofβ̂

Î
to

show that the second term converges to zero, as we can overestimate the model but
still consistently estimate 0’s. The study of the convergence to zero of the second
term in (3.1) leads to the second set of restrictions on our penalty term, namely,
pen(I,Kn)−pen(I0,Kn) > h1C(α)LK−2α

n . This condition means that the penalty
term needs to be greater than the bias induced by approximatingf . Intuitively, if
the bias due to the nonparametric component is present, it acts as a confounder,
and the true parametric dimension cannot be recovered. Formally, as in (3.21), this
condition ensures thatI0 can be found asymptotically.

We show in Theorem 3.1 below that O1 holds if the two conditions below are
satisfied simultaneously:

(i) pen(I,Kn) − pen(I0,Kn) > h1C(α)LK−2α
n ,

(3.2)
(ii) pen(I,Kn) ≥ (|I | + rKn) logn/n.

We discuss now sufficient conditions on the penalty term under which O2 holds.
Recall that (1.2) is a prerequisite for O2. With the notation of Section 2.3, (1.2) can
be rewritten as

√
nrn → 0 for rn = inf

Kn

{h1C(α,L)K−2α
n + pen(I0,Kn) + ϑn}.(3.3)

We show in Theorems 3.1 and 4.2 that O1 and O2 are compatible if
(3.2) and (3.3) hold simultaneously. Note now the apparent contradiction between
(3.2)(i) and (3.3): the first one essentially requires that the penalty term dominate
the bias forall Kn, whereas the oracle inequality of Theorem 2.1 tells us that
the best rate of convergence off̂ is achieved fora particular Kn, namely, the
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one realizing the best bias-variance trade-off. Notice further that by simply taking
pen(I,Kn) = (|I | + rKn) logn/n, we would have (3.2)(i) satisfied uniformly over
α ∈ (1/2, r) only if, up to multiplicative constants,Kn > n/ logn for all Kn ∈ Kn,
in which case the estimators would no longer be defined.

The first part of the solution is to construct a penalty term in which the
dimensions|I | andrKn are multiplied rather than added. Thus, we first consider

pen(I,Kn) = 2(|I | + 1)rKn logn/n.(3.4)

This penalty satisfies (3.2)(ii) and we show in Corollary 3.1 that it also leads to an
rn that satisfies (3.3).

However, if we use (3.4) for either Case 2 or Case 3, then (3.2)(i) holds only if,
up to multiplicative constants,Kn > (n/ logn)1/2α+1 for all Kn ∈ Kn.

If α > 1/2 is known, then forKn,α  n1/2α+1 andn large enough,

pen(I,Kn,α) = 2(|I | + 1)rKn,α logn/n(3.5)

satisfies (3.2) by construction, and (3.3) holds by Corollary 3.1,for this α. We use
the penalty term (3.5) in Case 2, for the approximating spaces{SI,Kn,α }I∈I.

If α is not known, as in Case 3, we can no longer define a penalty term
that depends onα. In this case we need to construct a penalty that satisfies
the contradictory requirements (3.2)(i) and (3.3) for allKn and uniformly over
α > 1/2. Since they cannot hold simultaneouslyfor all Kn, the strategy we
suggest is to find thebest Kn for which they are met, uniformly overα > 1/2.
For this, first recall that the smoothness spaces Lip∗(α,L2(µT )) are nested: the
smaller theα, the larger the space and, also, the smaller theα, the larger the bias
term 1/Kα

n . Thus, the largest bias that needs to be dominated by the penalty term
will correspond toα = 1/2+ a for a > 0 and arbitrarily close to zero, since this is
the worst allowable case ofα. This reduces the penalty choice to the one of Case 2,
for this particular choice ofα; namely, we chooseKn,a  n1/2a+2 and

pen(I,Kn,a) = 2(|I | + 1)rKn,a logn/n.(3.6)

The corresponding approximating spaces are in this case{SI,Kn,a }I∈I. Then,
uniformly over α, (3.2) holds by construction, and (3.3) holds by Corollary 3.1.

We remark now that in Case 1, in whichI0 is considered known, (3.2)(ii) is
no longer required. Only (3.2)(i), which also guarantees the consistency of the
estimator ofβ, and (3.3) are needed. We shall therefore use the penalty term (3.4),
in connection with the approximating spaces{SI0,Kn}Kn∈Kn , for this case.

We conclude this section with Corollary 3.1, which is an immediate conse-
quence of Theorem 2.1. This result summarizes the rates of convergence corre-
sponding to each penalty term, and shows that (1.2) holds in each case. We give
the proof in Appendix A.2.

COROLLARY 3.1. Under Assumptions 2.1–2.5,if f ∈ Dα,2(L), we have:
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1. α unknown.

(a) If pen(I0,Kn) = 2(|I0| + 1)rKn logn/n, then

rn = O
(
(logn/n)2α/2α+1),

for any α ∈ (1/2, r) and known I0.
(b) If pen(I,Kn) = 2(|I | + 1)rKn,a logn/n, then

rn = O
(
logn/n(2a+1)/(2a+2)

)
,

for any α ∈ [1/2+ a, r), with a > 0 arbitrarily close to zero.

2. α known.
If pen(I,Kn,α) = 2(|I | + 1)rKn,α logn/n and α ∈ (1/2, r), then

rn = O
(
logn/n2α/2α+1).

REMARK 3.1. Notice that in 1(a) of the above corollaryrn is the minimax
adaptive rate of convergence, up to a logn factor. Since 2α/2α + 1 > 1/2 for any
α > 1/2, (1.2) holds uniformly overα ∈ (1/2, r).

For part 2,rn is the minimax rate, up to a logn factor, and (1.2) holds for the
particular fixedα.

For 1(b), although the rate is suboptimal relative to minimax, we have(2a +
1)/(2a + 2) > 1/2 for any a > 0, and so again (1.2) holds uniformly over
α ∈ [1/2+ a, r).

REMARK 3.2. We note that the rate of convergence in 1(a) is achieved for
K∗

n  (n/ logn)1/2α+1. This dimension belongs to ourKn for all 1/2 < α < r =
[(b − 1)/2].

3.2. The consistency of the selected index.

THEOREM 3.1. If f ∈ Dα,2(L) and Assumptions 2.1–2.5hold, then:

(a) P (Î �= I0) → 0 as n → ∞, for the penalty term given by (3.5)and for some
given α ∈ (1/2, r).

(b) P (Î �= I0) → 0 as n → ∞, for the penalty term (3.6), uniformly over
α ∈ [1/2+ a, r) for some a > 0, arbitrarily small.

PROOF. Notice that

P (Î �= I0) = P (I0 � Î ) + P (I0 �⊂ Î ).(3.7)

We show that each term in (3.7) converges to zero.
1. P (I0 � Î ) → 0 asn → ∞.
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(a) Notice that ifI0 = {1, . . . , q}, P (I0 � Î ) = 0, so it is enough to consider
I0 � {1, . . . , q}. Then

lim
n→∞P (I0 � Î ) = lim

n→∞
∑
I⊃I0

P (Î = I ).(3.8)

For I ⊃ I0 and re-denotingKn = Kn,α  n1/2α+1, define

fn(I,Kn) = inf
v∈SI,Kn

{γn(v) + pen(I,Kn)}.(3.9)

Recall thatfKn is the L2(µT ) projection off onto SKn. Define sn(x, t) =
βI0x+fKn(t), with βI0 regarded as a vector inRq , by adding zero to the necessary
positions. Notice thatsn ∈ SI0,Kn and sosn ∈ SI,Kn for all I ⊃ I0. Also, by (3.9)
note that

fn(I0,Kn) ≤ γn(sn) + pen(I0,Kn).

Then, by the definition of the estimator, we have

P (Î = I ) = P
(
fn(I,Kn) − fn(I

′,K ′
n) ≤ 0, for all I ′ �= I

)
≤ P

(
fn(I,Kn) − fn(I0,Kn) ≤ 0

)
(3.10)

≤ P

(
sup

v∈SI,Kn

(
γn(sn) − γn(v)

) ≥ pen(I,Kn) − pen(I0,Kn)

)
.

For any functiong of generic argumentZ we denoteg = (g(Z1), . . . , g(Zn))
′.

For anyU = (U1, . . . ,Un)
′ we let‖U‖2

n = 1
n

∑n
i=1 U2

i , 〈U,g〉n = 1
n

∑n
i=1 Uig(Zi).

Notice then that, by the definition ofγn andsn, we have

γn(sn) − γn(v) = 2
〈
W, f − fKn

〉
n − ∥∥f − fKn

∥∥2
n

+ 2〈W,v − s〉n − ‖s − v‖2
n + 2

∥∥f − fKn

∥∥2
n.

Let an = pen(I,Kn) − pen(I0,Kn). Then, by (3.10) we obtain

P (Î = I ) ≤ P

(
sup

v∈SI,Kn

(
2〈W,v − s〉n − ‖s − v‖2

n ≥ an/3
))

+ P
(
2
〈
W, f − fKn

〉
n − ∥∥f − fKn

∥∥2
n ≥ an/3

)
(3.11)

+ P
(∥∥f − fKn

∥∥2
n ≥ an/6

)
.

Recall thatPKn is the projection matrix onto

LKn = {(
g(T1), . . . , g(Tn)

)′∣∣g ∈ SKn

} ⊂ Rn.

Define byPI,Kn the projection matrix onto

LI,Kn = {(
h(X1, T1), . . . , h(Xn, Tn)

)′∣∣h ∈ SI,Kn

} ⊂ Rn.
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Then

2〈W,v − s〉n − ‖s − v‖2
n

= 2
∥∥PI,Kns − v

∥∥
n

〈
W,

v − PI,Kns
‖PI,Kns − v‖n

〉
n

− ∥∥PI,Kns − v
∥∥2
n

+ 2
∥∥PI,Kns − s

∥∥
n

〈
W,

PI,Kns − s
‖PI,Kns − s‖n

〉
n

− ∥∥PI,Kns − s
∥∥2
n

≤
〈
W,

v − PI,Kns
‖PI,Kns − v‖n

〉2

n

+
〈
W,

PI,Kns − s
‖PI,Kns − s‖n

〉2

n

=
〈
W − PI,KnW,

v − PI,Kns
‖PI,Kns − v‖n

〉2

n

+
〈
PI,KnW,

v − PI,Kns
‖PI,Kns − v‖n

〉2

n

+
〈
W,

PI,Kns − s
‖PI,Kns − s‖n

〉2

n

≤ ∥∥PI,KnW
∥∥2
n +

〈
W,

PI,Kns − s
‖PI,Kns − s‖n

〉2

n

,

using 2|xy| ≤ x2+y2 for the first inequality and Cauchy–Schwarz for the last one.
Using an identical reasoning, we also obtain that

2
〈
W, f − fKn

〉
n − ∥∥f − fKn

∥∥2
n ≤ ∥∥PKnW

∥∥2
n +

〈
W,

PKn f − f
‖PKn f − f‖n

〉2

n

.

All ratios introduced above are defined to be zero if the denominator is zero, in
which case the first two probabilities in (3.11) are identically zero. Then, for the
first two terms in (3.11),

P

(
sup

v∈SI,Kn

(
2〈W,v − s〉n − ‖s − v‖2

n ≥ an

3

))
(3.12)

≤ P

(∥∥PI,KnW
∥∥2
n ≥ an

6

)
+ P

(〈
W,

PI,Kns − s
‖PI,Kns − s‖n

〉2

n

≥ an

6

)
.

Similarly,

P

(
2
〈
W, f − fKn

〉
n − ∥∥f − fKn

∥∥2
n ≥ an

3

)
(3.13)

≤ P

(∥∥PKnW
∥∥2
n ≥ an

6

)
+ P

(〈
W,

PKnf − f
‖PKnf − f‖n

〉2

n

≥ an

6

)
.

We shall use Rosenthal’s inequality, stated in Appendix A.4, to bound the
second term in both (3.12) and (3.13). The application of this inequality, as in
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the proof of Theorem 3.1, page 484, of Baraud (2000), leads to

P

(〈
W,

PI,Kns − s
‖PI,Kns − s‖n

〉2

n

≥ an

6

)
≤ C(p)E|W1|pn−p/2

(
an

6

)−p/2

,(3.14)

for anyp ≥ 2 and a constantC(p) that depends only onp.
Recall that by the definition (3.5), pen(I,Kn) = 2(|I | + 1)rKn logn/n, and so

an = pen(I,Kn) − pen(I0,Kn) ≥ 2Kn logn/n,(3.15)

by the definition of the penalty term (3.5). Recall that, by Assumption 2.2, we have
E|W1|p < ∞ for any p > d + 4, for somed > 0. Then, by (3.14) and defining
B = 3p/2C(p)E|W1|p, we obtain

P

(〈
W,

PI,Kns − s
‖PI,Kns − s‖n

〉2

n

≥ an

6

)
≤ B

(Kn logn)p/2
→ 0,(3.16)

and, using an identical argument,

P

(〈
W,

PKnf − f
‖PKn f − f‖n

〉2

n

≥ an

6

)
≤ B

(Kn logn)p/2 → 0,(3.17)

sinceKn  n1/2α+1 → ∞ for all α > 0.
We will now invoke Corollary 5.1, page 478, in Baraud (2000) to bound the first

term in either (3.12) or (3.13). We discuss first (3.12). Notice thatE‖PKnW‖2
n =

σ 2 tr(PKn)/n = σ 2rKn/n, using the standard properties of the projection operator.
Then, by Corollary 5.1 of Baraud (2000), for anyp ≥ 2 such thatE|W1|p < ∞
and for anym > 0,

P
(
n
∥∥PKnW

∥∥2
n ≥ rσ 2Kn + 2σ 2

√
rKnm + σ 2m

) ≤ C′(p)ϑpr
Kn

mp/2 ,(3.18)

for some constantC′(p) > 0 depending only onp and forϑp = E|W1|p/σp and
σ 2 = EW2

1 .

We shall use (3.18) withm = K
3/4
n logn. Recall now (3.15) and notice that, for

n large enough,

nan/6 ≥ rσ 2Kn + 2σ 2
√

rKnK
3/4
n logn + σ 2K3/4

n logn,

for all Kn ∈ Kn. We mention that other choices ofm are possible, but at the price
of additional technicalities and with very little gain in terms of the overall result.
Then, withB ′ = rC′(4)ϑ4 and using (3.18), we obtain

P

(
n
∥∥PKnW

∥∥2
n ≥ nan

6

)
≤ B ′

K
(3p−8)/8
n (logn)p/2

→ 0,(3.19)

since, by Assumption 2.2,p > 4+ d > 8/3 for anyd > 0.
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For (3.13) we first notice thatE‖PI,KnW‖2
n = σ 2(|I | + rKn)/n. Then, if we

replace aboverKn by |I | + rKn, we also obtain

P

(
n
∥∥PI,KnW

∥∥2
n ≥ nan

6

)
≤ B ′′

K
(3p−8)/8
n (logn)p/2

→ 0,(3.20)

for an appropriately modified constantB ′′.
We bound now the last term in (3.11). Recall the approximation error bound

of (2.7). By Markov’s inequality and (3.15) we have, withC = 3C2(α)L2h1,

P

(∥∥f − fKn

∥∥2
n ≥ an

6

)
≤ 6E‖f − fKn‖2

µT

an
(3.21)

≤ C

K2α
n

× n

Kn logn
≤ C

logn
→ 0,

by the choice ofKn  n1/2α+1.
Notice now that the number of terms in (3.8) is bounded byA1, whereA1 > 0,

independent ofn, is the number of models the linear part of which includes the
I0 variables. Then, by (3.8), (3.11), (3.16), (3.17) and (3.19)–(3.21), we obtain
P (I0 � Î ) → 0, which is the desired result.

(b) The proof is almost identical for this case, in which we now re-denote
Kn,a  n1/2a+2 by Kn and use the penalty term (3.6) instead of (3.5). Note that
(3.16), (3.17), (3.19) and (3.20) only require thatKn → ∞, and thus they hold
independently ofα or a. The only difference is in (3.21), which now becomes

P

(∥∥f − fKn

∥∥2
n ≥ an

6

)
≤ 6E‖f − fKn‖2

µT

an

≤ C

K2α
n

× n

Kn logn
≤ C

K2a+1
n

× n

Kn logn
(uniformly overα ≥ 1/2+ a)

≤ C

logn
→ 0 for Kn,a  n1/2a+2.

Then the concluding argument is identical to the one above.
2. P (I0 �⊂ Î ) → 0. The proof is the same in both cases. Letc = infj∈I0 |βj | and

notice that, by the definition ofI0, we havec > 0. Consequently,|β̂jn − βjn | =
|βjn |, for all jn ∈ I0 \ Î , and

P (I0 �⊂ Î ) ≤ P (j ′
n /∈ Î , for somej ′

n ∈ I0)

≤ P
(∣∣β̂j ′

n
− βj ′

n

∣∣ = ∣∣βj ′
n

∣∣) ≤ P
(∣∣β̂j ′

n
− βj ′

n

∣∣ ≥ c
) → 0,

by the component-wise consistency ofβ̂
Î

implied by 3 of Corollary 2.1. This
completes the proof of this theorem.�
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4. Asymptotic normality.

4.1. Asymptotic normality of β̂I0. In this section we assume thatI0 ⊆
{1, . . . , q} is known. Then, with the notation of Section 2.2, (1.1) becomes

Yi = β ′
I0

XI0,i + f (Ti) + Wi.(4.1)

HereXI0 denotes the vector of covariates corresponding to the index setI0. Let
|I0| = q0 for some knownq0 ≤ q. In order to emphasize the dimension of the
parametric part, we re-denoteβI0 by βq0 and its estimator bŷβq0. We first consider
estimators forβq0 andf within the family of approximating spaces{SI0,Kn}Kn∈Kn .
Recall that this corresponds to our Case 1 defined in the Introduction. We show
in the following theorem that estimatingf adaptively preserves the asymptotic
normality of β̂q0.

Let q0 = (σkj )q0×q0, with σkj = Cov(Xk,Xj) − Cov(θk(T ), θj (T )), for
(j, k) ∈ I0 × I0, and let Var(W) = σ 2.

THEOREM 4.1. Let β̂q0 be the estimator of βq0 based on the approximating
spaces {SI0,Kn}Kn∈Kn . Under Assumptions 2.1–2.5,if f ∈ Dα,2(L), then

√
n
(
β̂q0 − βq0

) d→ Nq0

(
0, σ 2−1

q0

)
.

Theorem 4.1 holds uniformly overα ∈ (1/2, r) andγ ∈ (b/4, r), b ≥ 3.
Corollary 4.1 is an immediate consequence of this theorem. Recall the

definitionsKn,α = n1/2α+1 andKn,a = n1/2a+2.

COROLLARY 4.1. Let β̂q0 be the estimator of βq0 based on either SI0,Kn,α

or SI0,Kn,a . Under Assumptions 2.1–2.5,if f ∈ Dα,2(L), then

√
n
(
β̂q0 − βq0

) d→ Nq0

(
0, σ 2−1

q0

)
.

Corollary 4.1 holds uniformly overγ ∈ (b/4, r), b ≥ 3. Also, it holds for
any fixed α ∈ (1/2, r) if SI0,Kn,α is used, and uniformly overα ∈ (1/2 + a, r)

for SI0,Kn,a . We note that the estimatorŝβq0 are different in each situation; we have
used the same notation for brevity, since we are only interested in their limiting
distribution. The proofs are given in Appendix A.3.

4.2. Cases 2 and 3: asymptotic normality of β̂
Î
. Throughout this section we

regardβ̂
Î

andβ̂I0 as vectors inRq , by adding 0’s in the necessary positions. Also,
we re-denoteβ ∈ Rq by βI0 ∈ Rq to emphasize that the only nonzero components
of β correspond to the index setI0. Let V0 = σ 2−1

q0
. Let V = (Vij )q×q , where

Vij = V0
ij for (i, j) ∈ I0 × I0 and zero otherwise.



MODEL SELECTION IN SEMIPARAMETRIC REGRESSION 913

THEOREM 4.2. If f ∈ Dα,2(L) and Assumptions 2.1–2.5hold, then we have
the following results:

Case 2. If pen(I,Kn,α) = 2(|I | + 1)Kn,α logn/n, for some given 1/2< α < r ,

then
√

n(β̂
Î
− βI0)

d→ Nq(0,V).

Case 3. If pen(I,Kn) = 2(|I |+1)Kn,a logn/n, then
√

n(β̂
Î
−βI0)

d→Nq(0,V),
uniformly over α ∈ [1/2+ a, r) for 0 < a < r − 1/2.

In both cases, the limiting distribution has all its mass concentrated on the space
generated by the I0 covariates.

PROOF. We prove that, in both cases, for anyc ∈ Rq ,

c′√n
(
β̂

Î
− βI0

) d→ N(0, c′Vc) asn → ∞,(4.2)

which leads to the desired result. For anyb ∈ R, c ∈ Rq we have

P
(
c′(√n

(
β̂

Î
− βI0

)) ≤ b
)

= P
(
c′(√n

(
β̂

Î
− βI0

)) ≤ b, Î = I0
)

(4.3)

+ P
(
c′(√n

(
β̂

Î
− βI0

)) ≤ b, Î �= I0
)

= P
(
c′(√n

(
β̂I0 − βI0

)) ≤ b
) − P

(
c′(√n

(
β̂I0 − βI0

)) ≤ b, Î �= I0
)

+ P
(
c′(√n

(
β̂

Î
− βI0

)) ≤ b, Î �= I0
)
.

Since, by definition,β̂I0 ∈ Rq has nonzero elements only in the positions
corresponding toI0, then

c′(√n
(
β̂I0 − βI0

)) = c′
0
(√

n
(
β̂q0 − βq0

))
,(4.4)

wherec0, β̂q0 andβq0 are obtained fromc, β̂I0 andβI0, respectively, by deleting
the coordinates corresponding to zeros inβI0. Now, we have that

P
(
c′(√n

(
β̂

Î
− βI0

)) ≤ b, Î �= I0
) ≤ P (Î �= I0)

and that

P
(
c′(√n

(
β̂I0 − βI0

)) ≤ b, Î �= I0
) ≤ P (Î �= I0).

By Theorem 3.1,P (Î �= I0) → 0 in both cases. Thus, from (4.3) and (4.4) we
obtain

lim
n→∞P

(√
n
(
c′(β̂

Î
− βI0

)) ≤ b
) = lim

n→∞P
(√

n
(
c′

0
(
β̂q0 − βq0

)) ≤ b
)
.(4.5)

In both cases, the right-hand side in (4.5) converges toN(0, c′
0σ

2−1
q0

c0), by
Corollary 4.1. Lemma A.5, in Appendix A.4, shows that the only symmetric and
semipositive definite matrixV such that

c′
0V0c0 = c′Vc for anyc ∈ Rq,
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is given byVij = V0
ij for (i, j) ∈ I0 × I0 and zero otherwise. Then (4.2) holds and

the proof of the theorem is complete.�

We discuss below the limiting covariance matrix given by Theorems 4.1 and 4.2,
under the assumption that the error distribution is Gaussian.

First note that the information bound for a regular estimator ofβ in (4.1) is
σ 2−1

q0
, for some knownq0 ≤ q; see, for example, Example 5, page 110, in Bickel,

Klaassen, Ritov and Wellner (1993). Then, Theorem 5.1 shows that, forknown I0,
β̂q0 is asymptotically efficient.

However, if I0 itself is regarded as a parameter, as in our Cases 2 and 3, the
classical information bound theory no longer applies and we need to resort to other
means to assess the performance of our estimators. We thus verify whether our
method, which is not based on a priori knowledge ofI0, leads to estimators with
the same limit behavior as of those constructed knowingI0. By Theorem 4.2 and
the continuous mapping theorem, we obtain

√
n
(
β̂q0 − βq0

) d→ Nq0

(
0, σ 2−1

q0

)
(4.6)

and
√

n(β̂q1 − βq1)
d→ 0, whereβq1 denotes the vector of zero coefficients inβ.

Then, indeed,β̂q0 achieves the information bound forβq0 in (4.1). Notice now
that if I0 is known prior to estimation, then one can setβ̂q1 to zero, whereas our
method may estimateβq1 by nonzero sequences. However, they converge to zero
at ann−1/2 rate.

For Cases 2 and 3 a much simpler method of estimation in (1.1) is to fit
the model with all covariates included. This will reduce the computing time
considerably, since we will only fit one model. We denote byβ̃ ∈ Rq the
corresponding estimator; note that this estimator is different in the two cases, but
here we are only interested in its limiting distribution, so we use the same notation.
This simpler procedure of estimation is also independent ofI0 and, as above, we
study the performance of̃β by investigating its asymptotic properties under the
assumption thatI0 is known. Using the same reasoning as in Theorem A.1 and,
with βI0 denoting, as above, a vector inRq having nonzero components only in the

I0 positions, one can show that
√

n(β̃ − βI0)
d→ Nq(0, σ 2−1

q ). Let I = q/σ
2.

Consider the partition ofI in blocks I11, I12, I21, I22, whereI11 and I22 have
dimensionsq0 × q0 andq1 × q1, respectively. Then, as in Bickel, Klaassen, Ritov
and Wellner [(1993), page 28],

√
n
(
β̃q0 − βq0

) d→ Nq0(0, I−1
11.2)(4.7)

and
√

n(β̃q1 − βq1) → Nq1(0, I−1
22.1), whereI11.2 = I11 − I12I−1

22 I21 and I22.1 =
I22 − I21I−1

11 I12. Note that the limiting distribution in (4.7) coincides with the one
in (4.6) only if I12 = 0. Thus, although this procedure might be more appealing
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from a computational point of view, it leads to estimators with higher variance,
if the true model corresponds to a proper subset of the full collection of the X
covariates.

5. Conclusions. This article studies simultaneous estimation ofβ, I0 andf .
We showed that one can consistently estimateI0 and obtain asymptotically normal
estimators for the selected estimator ofβ. The construction of the approximating
spaces used for estimation parallels the one used in parametric or nonparametric
model selection problems, but the penalty term needs to be adjusted for the
semiparametric case. We summarize our findings in each of the cases under
consideration.

• Case 2:I0 unknown andα > 1/2 known. O1 and O2 hold. For the ap-
proximating spaces{SI,Kn,α }I∈I and the penalty term pen(I,Kn,α) = 2(|I | +
1)rKn,α logn/n, with Kn,α  n1/2α+1, we showed thatP (Î = I0) → 0 and that√

n(β̂
Î
− βI0)

d→ Nq(0,V) for a specified α. The rate of convergencern of f̂ is
of orderO(logn/n2α/2α+1), which is the minimax optimal rate for a givenα,
up to a logn factor.

• Case 3:I0 and α > 1/2 unknown. O1 and O2 hold. For the approximating
spaces{SI,Kn,a }I∈I, with Kn,a  n1/2a+2, a > 0 arbitrarily close to zero, and
for the penalty term pen(I,Kn,a) = 2(|I | + 1)rKn,a logn/n, we showed that

P (Î = I0) → 0 and that
√

n(β̂
Î

− βI0)
d→ Nq(0,V) uniformly over α > 1/2.

The ratern of f̂ is of orderO(logn/n(2a+1)/(2a+2)).

We also note that in Case 1:I0 known, α unknown, for the approximating
spaces{SI0,Kn}Kn∈Kn and the penalty term pen(I,Kn) = 2(|I | + 1)rKn logn/n,

we have shown that
√

n(β̂I0 − βI0)
d→ Nq0(0, σ 2−1

q0
) for q0 = |I0|. Also, rn =

O((logn/n)2α/2α+1) for anyα ∈ (1/2, r). Thus,f̂ is minimax adaptive, up to a
logn factor.

APPENDIX

A.1. The unicity of the least squares estimators. In this section we give the
proof of the asymptotic unicity of our estimators.

LEMMA A.1. Under Assumptions 2.1 and 2.3, Z′
Kn

ZKn is invertible for any
Kn ∈ Kn, except for an event whose probability tends to zero as n → ∞.

PROOF. Notice that, for anyKn ∈ Kn,

Z′
Kn

ZKn =
(

n∑
i=1

φj(Ti)φ
′
j ′(Ti)

)
1≤j,j ′≤rKn

.
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Then Z′
Kn

ZKn is invertible if and only if � = n−1Z′
Kn

ZKn is invertible. Let

{ζj }rKn

j=1 be the eigenvalues of�, and let(1/ζ )max= sup{1/ζ1, . . . ,1/ζrKn}. Thus,
� is invertible on the set where(1/ζ )max ≤ ρ0 < ∞, for someρ0 > 0. By the
proof of Lemma 3.1, page 492, in Baraud (2000), since(φj )

rKn

j=1 are orthogonal
in L2(λT , [0,1]), we have(

1

ζ

)
max

= sup
u∈SKn\{0}

‖u‖2
λT

‖u‖2
n

.

Notice that Assumption 2.1 implies that the density ofT with respect toλT is
bounded above and below byLh1 andLh0, respectively, where 0< L < ∞ is the
Lebesgue measure of the compact setK . Also, under Assumptions 2.1 and 2.3,
Proposition A.2, adapted to the caseq = 0, ensures that for some constantD1 > 0
conditionHCon:‖u‖∞ ≤ D1

√
rNn‖u‖λT

for all u ∈ SNn of Baraud (2002) holds.
Then, by Lemma 6.2, page 21, and the proof of Proposition 5.2, page 24, in Baraud
(2002), for allρ0 > L−1h−1

0 and for a constantD > 0 depending onL,h0, h1
andρ0, we obtain

P

((
1

ζ

)
max

> ρ0

)
= P

(
sup

u∈SKn\{0}
‖u‖2

λT

‖u‖2
n

> ρ0

)

≤ P

(
sup

u∈SNn\{0}
‖u‖2

λT

‖u‖2
n

> ρ0

)

≤ r2N2
n exp

(
− Dn

D2
1N2

n

)
→ 0,

where the first inequality holds because the approximating spaces are nested and
the convergence to zero holds sinceNn  (n/ logn)1/2, by construction. This
concludes the proof of this proposition.�

REMARK A.1. SinceKn,α  n1/2α+1 and Kn,a = n1/2a+2 belong toKn,
by construction (see page 903) the above result implies thatZ′

Kn,α
ZKn,α and

Z′
Kn,a

ZKn,a are also invertible.

LEMMA A.2. Under Assumptions 2.1–2.5, for any I ⊆ {1, . . . , q}, X′
I (Id −

P
K̂n

)XI and X′
I (Id − PKn,α )XI , α ∈ (1/2, r), are invertible except for an event

whose probability tends to zero as n → ∞.

The proof of this lemma is based on Proposition A.1, which in turn requires the
proof of Lemma A.3. We use the following notation here and in the sequel.

NOTATION A.1. Let |I | = (σkj )|I |×|I |, with σkj = Cov(Xk,Xj ) −
Cov(θk(T ), θj (T )), for (j, k) ∈ I × I , I ∈ I. Let θj = (θj (T1), . . . , θj (Tn))

′,
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εij = Xij − θj (Ti), εj = (ε1j , . . . , εnj )
′, for j ∈ I and 1≤ i ≤ n. Also, let θ

andε be then × |I | matrices having columnsθj andεj , respectively. LetIq =
{1, . . . , q}. Recall that for anyU = (U1, . . . ,Un)

′ we denote‖U‖2
n = 1

n

∑n
i=1 U2

i .

LEMMA A.3. Under Assumptions 2.1–2.5,∥∥(
Id − P

K̂n

)
θj

∥∥
n = OP

(
(logn/n)1/4),(A.1)

for any j ∈ Iq .

PROOF. Let bn = (logn/n)1/2. First notice that

P
(∥∥(

Id − P
K̂n

)
θj‖2

n ≥ bn

) ≤
Jn∑

kn=An

P
(∥∥(

Id − P2kn

)
θ j

∥∥2
n ≥ bn

)
,(A.2)

with Kn = 2kn . Next, observe thatPKnθ j is the projection ofθ j onto LKn =
{(g(T1), . . . , g(Tn))

′; g ∈ SKn}. For everyKn ∈ Kn let θj,Kn be theL2(µT )

projection ofθj ontoSKn . Then∥∥(
Id − PKn

)
θj

∥∥
n ≤ ∥∥θ j − θj,Kn

∥∥
n.

By Assumption 2.5θj ∈ Dγ,2(A). Thus, by (2.7)‖θj − θj,Kn‖2
µT

≤ h1C(γ,A) ×
K

−2γ
n . Then, by Markov’s inequality and recalling, by (2.1), thatAn = [log2(n/

logn)1/b], b ≥ 3, and denotingJn = [log2(n/ logn)1/2], we obtain

P
(∥∥(

Id − P
K̂n

)
θj

∥∥2
n ≥ bn

) ≤
Jn∑

kn=An

P
(∥∥θj − θ j,Kn

∥∥2
n ≥ bn

)

≤
Jn∑

kn=An

h1C(γ,A)
1

K
2γ
n

n1/2

(logn)1/2

≤ h1C(γ,A) log2 n
(logn)2γ /b−1/2

n2γ /b−1/2

→ 0,

for γ > b/4, which concludes the proof of this result.�

REMARK A.2. The proof of the above result also implies that (A.1) holds
with K̂n replaced by anyKn ∈ Kn. Thus, in particular, it holds forKn,α  n1/2α+1

andKn,a = n1/2a+2.

PROPOSITIONA.1. Under Assumptions 2.1–2.5we have

X′
I

(
Id − P

K̂n

)
XI /n

P→ |I |.(A.3)
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PROOF. With the Notation A.1, each row inX′
I can be written asθ ′

j + ε′
j .

Then, for everyj, k ∈ I , we have(
X′

I

(
Id − P

K̂n

)
XI

)
jk

= (εj + θj )
′(Id − P

K̂n

)
(εk + θk)

(A.4) = ε′
j

(
Id − P

K̂n

)
εk + ε′

j

(
Id − P

K̂n

)
θ k

+ θ ′
j

(
Id − P

K̂n

)
εk + θ ′

j

(
Id − P

K̂n
)θ k.

Notice thatε′
jεk/n

P→ σjk , by the law of large numbers and the definition ofσjk.
Also, as in the proof of Lemma 5 of Chen (1988),

P
(∣∣n−1(ε′

iPK̂n
εj

)∣∣ ≥ c
) ≤ rc−1n−1E(K̂n) → 0(A.5)

for anyc > 0, sinceE(K̂n) ≤ Nn  (n/ logn)1/2. Notice now that, by the Cauchy–
Schwarz inequality,

n−1∣∣ε′
j

(
Id − P

K̂n

)
θk

∣∣ ≤ ‖εj‖n

∥∥(
Id − P

K̂n

)
θ k

∥∥
n

P→ 0,

since‖εj‖n →a.s σjj , which is finite, and‖(Id − P
K̂n

)θ k‖n
P→ 0 by Lemma A.3.

By symmetry, we also haven−1θ ′
j (Id − P

K̂n
)εk

P→ 0. For the last term in (A.4),
by the Cauchy–Schwarz inequality and by Lemma A.3, and sinceId − P

K̂n
is

idempotent, we have

n−1∣∣θ ′
j

(
Id − P

K̂n

)
θk

∣∣
= n−1∣∣((Id − P

K̂n

)
θj

)′((Id − P
K̂n

)
θk

)∣∣
(A.6) ≤ ∥∥(

Id − P
K̂n

)
θj

∥∥
n

∥∥(
Id − P

K̂n

)
θ k

∥∥
n

P→ 0. �

REMARK A.3. By Remark A.2 and the proof above, we can conclude that
(A.3) holds with K̂n replaced by anyKn ∈ Kn. Thus, as before, it holds for
Kn,α  n1/2α+1 andKn,a = n1/2a+2.

PROOF OF LEMMA A.2. Let P denote any of the two projection matrices.
We show that, for anycI ∈ R|I | \ {0} the sequencec′

IX′
I (Id − P)XI cI tends

in probability to ∞, which implies that the corresponding matrixP is positive
definite, hence invertible, except for a set of probability tending to zero.

By Proposition A.1 and Remark A.3, we have thatX′
I (Id − P)XI /n

P→ |I | for
any of the two projection matrices. Then, by the continuous mapping theorem, for
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any cI ∈ RI \ {0} we have thatc′
I X′

I (Id − P)XI cI/n
P→ c′

I|I |cI . If we denote
 = |Iq |, then, by Assumption 2.3, for any nonzerol ∈ Rq ,

l′l = Var
(
l′
(
X − E(X|T )

))
=

∫
[0,1]

Var(l′X|t) dµT (t) > 0.

Thus  is positive definite, and so is|I |, for any I ∈ I. Hencec′
I X′

I (Id −
P)XI cI

P→ ∞, which completes the proof of this lemma.�

A.2. The consistency of the penalized least squares estimators and rates
of convergence. We first establish Theorem 2.1. This theorem is a direct
consequence of Theorem 2.1 of Baraud (2002). The next proposition verifies that
its condition(HCon) holds.

PROPOSITION A.2. If Assumptions 2.1 and 2.3 hold, then there exists a
constant K ≥ 1 such that, for any g ∈ SIq,Nn ,

‖g‖∞ ≤ K
√

q + rNn‖g‖λ,

where ‖g‖∞ = supz∈K |g(z)|. Also note that, by Assumption 2.1and by construc-
tion, g ∈ L2(K × [0,1], λ). Here we recall that SIq,Nn is the largest of the ap-
proximating spaces introduced in Section 2.2,with Iq = {1, . . . , q} and Nn given
in (2.1).

PROOF. Recall that{φj }rNn

j=1 is an orthonormal basis inL2(λT , [0,1]) for
the linear spaceSNn defined in Section 2.2. Then we can write anyg ∈ SIq ,Nn

asg(x, t) = ∑q
j=1ajxj + ∑rNn

j=1bjφj (t). By Lemma 1, page 337, in Birgé and

Massart (1998), we have that maxt∈[0,1]
∑rNn

j=1φ2
j (t) ≤ (2r − 1)2Nn. Also, by

Assumption 2.1, there exists anM > 0 such that|X|2 ≤ M with probability 1.
Hence, applying the Cauchy–Schwarz inequality, we obtain

‖g‖2∞ ≤ 2
q∑

j=1

a2
j max

x∈K

q∑
j=1

x2
j + 2

rNn∑
j=1

b2
j max

t∈[0,1]

rNn∑
j=1

φ2
j (t)

(A.7)

≤ 2
(
M2 + (2r − 1)2)(q + rNn)

{ q∑
j=1

a2
j +

rNn∑
j=1

b2
j

}
.

Next, we show that there exists aK1 ≥ 1 such that

q∑
j=1

a2
j +

rNn∑
j=1

b2
j ≤ K1‖g‖2

λ.(A.8)
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Recall thatθj (t) = E(Xj |T = t), j = 1, . . . , q. SinceE{(Xj − θj (T ))φk(T )} = 0
for all j andk, we obtain

‖g‖2
µ = E

{ q∑
j=1

ajXj +
rNn∑
j=1

bjφj (T )

}2

(A.9)

= E

{ q∑
j=1

aj

(
Xj − θj (T )

)}2

+ E

{ q∑
j=1

ajθj (T ) +
rNn∑
j=1

bjφj (T )

}2

.

Recall that  = (σij )q×q , with σij = Cov(Xi,Xj ) − Cov(θi(T ), θj (T )), is
positive definite and so its smallest eigenvalueλmin > 0, by Assumption 2.3. Also,
recall that, under Assumption 2.1,µ has on its support a density with respect toλ

that is bounded below byh0 > 0 and above byh1 < ∞. Then, from (A.9) and
under Assumption 2.1, with a= (a1, . . . , aq), it follows that

h1‖g‖2
λ ≥ ‖g‖2

µ ≥ E

{ q∑
j=1

aj

(
Xj − θj (T )

)}2

= a′a≥ λmin

q∑
j=1

a2
j .

Let λX denote the restriction ofλ to the compact setK . Then

rNn∑
j=1

b2
j =

∥∥∥∥∥
rNn∑
j=1

bjφj

∥∥∥∥∥
2

λT

[since{φj }rNn

j=1 is orthonormal inL2(λT , [0,1])]

≤ 1

λX(K)

∥∥∥∥∥
rNn∑
j=1

bjφj

∥∥∥∥∥
2

λ

[multiplying and dividing byλX(K)]

≤ 2

λX(K)

(‖g‖2
λ + h0E(a′X )2),

(adding and subtractinga′X and by Assumption 2.1)

≤ 2

λX(K)
(1+ h0h1M

2λ−1
min)‖g‖2

λ [by Assumption 2.1 and (A.10)].

From the last two displays above we conclude that (A.8) holds, withK1 =
2

λX(K)
(1+ h0h1M

2λ−1
min) + h1λ

−1
min. This, together with (A.7), concludes the proof

of this proposition. �

PROOF OFTHEOREM 2.1. LetsI,Kn be theL2(µ) projection ofs ontoSI,Kn .
The previous proposition and Assumptions 2.1–2.4 verify that Theorem 2.1 of
Baraud (2002) can be invoked. Then

E‖s − ŝ‖2
µ ≤ C2 inf

I×Kn

{∥∥s − sI,Kn

∥∥2
µ + pen(I,Kn) + ϑn

}
.
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Recall now thats(x, t) = β ′x + f (t). For anyKn ∈ Kn, let sn(x, t) = β ′x +
fKn(t) ∈ SI0,Kn , where we recall thatfKn is theL2(µT ) projection off ontoSKn .
Then we have

E‖s − ŝ‖2
µ ≤ C2 inf

I0,Kn

{‖s − sn‖2
µ + pen(I0,Kn) + ϑn}

≤ C2 inf
Kn

{∥∥f − fKn

∥∥2
µT

+ pen(I0,Kn) + ϑn

}
. �

PROOF OFCOROLLARY 2.1. As an immediate consequence of Theorem 2.1
and the definition ofrn (2.8), we have‖s − ŝ‖2

µ = OP (rn). Let now(X∗, T ∗) ∼ µ,
with (X∗, T ∗) independent of(X1, T1), . . . , (Xn, Tn). Write E∗ for integration
with respect to(X∗, T ∗) only. Notice thatE∗((X∗ − E∗(X∗|T ∗))m(T ∗)) = 0 for
all bounded measurable functionsm. Then

‖s − ŝ‖2
µ = E∗(s − ŝ)2(X∗, T ∗)

= E∗{(f − f̂ )(T ∗) + (β̂ − β)′E∗(X∗|T ∗)}2

+ E∗{
(β̂ − β)′

(
X∗ − E∗(X∗|T ∗)

)}2
.

Since‖s − ŝ‖2
µ = OP (rn), then

E∗[
(β̂ − β)′

(
X∗ − E(X∗|T ∗)

)]2 = OP (rn).(A.10)

Since(X∗, T ∗) is independent of̂β, by construction we also have

E∗[
(β̂ − β)′

(
X∗ − E(X∗|T ∗)

)]2 = (β̂ − β)′(β̂ − β) ≥ λmin|β̂ − β|22.(A.11)

Thus, from (A.10) and (A.11), and sinceλmin > 0, we have that for anyβ ∈ K ,
|β̂ − β|2 = OP (r

1/2
n ).

If we let f̂1(x ) = β̂ ′x, then we also have‖f̂1 − f1‖µX
= OP (r

1/2
n ). Thus

‖f̂ − f ‖µT
= ‖(f̂ − f ) + (f̂1 − f1) − (f̂1 − f1)‖µ

≤ ‖ŝ − s‖µ + ‖f̂1 − f1‖µX
= OP (r1/2

n )

for anyf ∈ Dα,2(L).
For the empirical norm counterpart of this result, recall that we defined


n = {‖̃s‖λ ≤ 2 exp(log2 n)}.
From Baraud [(2002), proof of Theorem 1.1, page 19] we find for some constants
c1, c2 > 0 that

P (
c
n) ≤ c1{exp(−2 log2n) + n2 exp(−c2 log3n)} → 0.(A.12)
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Thus, it is enough to study the convergence rate of‖f̂ − f ‖n on 
n. Notice that
on
n we haveŝ = s̃, β̂ = β̃ andf̂ = f̃ . Thus

‖f̂ − f ‖2
n1
n ≤ 2‖ŝ − s‖2

n1
n + 2

n

n∑
i=1

{(β̂ − β)′Xi}21
n

≤ 2‖s̃ − s‖2
n + 2

n

n∑
i=1

{(β̂ − β)′Xi}2 = OP (rn),

because(β̂ − β)′n−1 ∑n
i=1 XiX

′
i (β̂ − β0) = OP (rn), since|β̂ − β|22 = OP (rn), as

above, andn−1 ∑n
i=1 XiX

′
i converges in probability. Also‖̃s − s‖2

n = OP (rn), by
Corollary 3.2, page 474, in Baraud (2000), the conditions of which are verified by
our assumptions and Proposition A.2. This completes the proof of this corollary.

�

PROOF OFCOROLLARY 3.1. We evaluate now (2.8) for each penalty choice.
For the penalty term (3.4), the infimum is achieved forK∗

n  (n/ logn)1/2α+1

and hencern = O((logn/n)2α/2α+1).
For (3.5), rn = O(logn/n2α/2α+1) is obtained by replacingKn by Kn,α 

n1/2α+1 in (2.8).
For (3.6),rn = O(logn/n(2a+1)/(2a+2)) is obtained by replacingKn by Kn,a 

n1/2a+2 in (2.8). �

A.3. The asymptotic normality of β̂q0 .

LEMMA A.4. Under Assumptions 2.1–2.5,if f ∈ Dα,2(L), we have

ε′(Id − P
K̂n

)
f/

√
n

P→ 0,(A.13)

θ ′(Id − P
K̂n

)
W/

√
n

P→ 0,(A.14)

θ ′(Id − P
K̂n

)
f/

√
n

P→ 0,(A.15)

ε′P
K̂n

W/
√

n
P→ 0 as n → ∞.(A.16)

The above results hold uniformly over α ∈ (1/2, r) and γ ∈ (b/4, r), b ≥ 3.

PROOF OF THEOREM 4.1. Let f = (f (T1), . . . , f (Tn))
′ and W = (W1,

. . . ,Wn)
′. Recall Notation A.1, specialized now toI = I0. By Lemma A.1, except

for an event with probability tending to zero,
√

n
(
β̂q0 − βq0

) = √
n
(
X′

I0

(
Id − P

K̂n

)
XI0

)−1X′
I0

(
Id − P

K̂n

)
f

(A.17)
+ √

n
(
X′

I0

(
Id − P

K̂n

)
XI0

)−1X′
I0

(
Id − P

K̂n

)
W.
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SinceX′
I0

= θ ′ + ε′, then
√

n
(
X′

I0

(
Id − P

K̂n

)
XI0

)−1X′
I0

(
Id − P

K̂n

)
f

= n
(
X′

I0

(
Id − P

K̂n

)
XI0

)−1(A.18)

× (
θ ′(Id − P

K̂n

)
f/

√
n + ε′(Id − P

K̂n

)
f/

√
n

)
,

and √
n
(
X′

I0

(
Id − P

K̂n

)
XI0

)−1X′
I0

(
Id − P

K̂n

)
W

= n
(
X′

I0

(
Id − P

K̂n

)
XI0

)−1(A.19)

× (
ε′W/

√
n − ε′PW/

√
n + θ ′(Id − P

K̂n

)
W/

√
n

)
.

By Proposition A.1 applied toI = I0, n(X′
I0

(Id− P
K̂n

)XI0)
−1 P→ −1

q0
asn → ∞.

Also, notice thatε′W = ∑n
i=1 Di , whereDi = Wiεi are i.i.d. vectors withEDi = 0

andE(DiD′
i ) = σ 2q0. Then it follows from the multivariate central limit theorem

that

ε′W/
√

n =
n∑

i=1

Di/
√

n
d→ Nq0

(
0, σ 2q0

)
.(A.20)

Then, by (A.17)–(A.20), Lemma A.4 and Slutsky’s lemma,
√

n
(
β̂q0 − βq0

) d→ Nq0

(
0, σ 2−1

q0

)
. �

PROOF OFLEMMA A.4. We begin by proving (A.13). Recall the definition
of εji , j = 1, . . . , q, i = 1, . . . , n, introduced in Appendix A.1. Then, by
Assumption 2.1, for some constantCε > 0 we have|εji | ≤ Cε for all j and i,
except for a set of measure zero. Recall thatfKn is theL2(µT ) projection off onto
SKn and sofKn ∈ LKn = {(g(T1), . . . , g(Tn))

′|g ∈ SKn}. Then, for everyc > 0, by
Markov’s inequality and (2.7),

P
(∣∣ε′

j

(
Id − P

K̂n

)
f/

√
n
∣∣ > c

) ≤
Jn∑

kn=An

P
(∣∣ε′

j

(
Id − P2kn

)
f/

√
n
∣∣ > c

)

≤ C2
ε

c2

Jn∑
kn=An

E
∥∥f − P2kn f

∥∥2
n ≤ C2

ε

c2

Jn∑
kn=An

E
∥∥f − fKn

∥∥2
n

= C2
ε

c2

Jn∑
kn=An

∥∥f − fKn

∥∥2
µT

≤ C2
ε

c2 h1C(α,L)

Jn∑
kn=An

1

22αkn
→ 0.
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The second result of this lemma is very similar to (A.13). NowW will play the
role of εj andθj the role off. To emphasize more the similarity, we shall in fact

prove thatW′(Id−P
K̂n

)θ j /
√

n
P→ 0 for eachj ∈ I0. As above, applying Markov’s

inequality and using now the independence ofW and(X, T ), we obtain

P
(∣∣W′(Id − P

K̂n

)
θj /

√
n
∣∣ > c

) ≤
Jn∑

kn=An

P
(∣∣W(

Id − P2kn

)
θ j /

√
n
∣∣ > c

)

≤ σ 2

c2
h1C(γ,A)

Jn∑
kn=An

1

22γ kn
→ 0,

for anyc > 0 andγ > b/4, by (2.7) applied toθj and recalling Assumption 2.5.
For the third result of this lemma notice that, by the same argument as in (A.6),

with f replaced now byθ k we obtain

n−1/2∣∣θ ′
j

(
Id − P

K̂n

)
f
∣∣ ≤ √

n
∥∥(

Id − P
K̂n

)
θ j

∥∥
n

∥∥f − P
K̂n

f
∥∥
n

≤ √
n
∥∥(

Id − P
K̂n

)
θ j

∥∥
n‖f − f̃‖n,

where we recall now the definition of̃f from Section 2.2 and that̂f = f̃ 1
n .

P
(√

n
∥∥(

Id − P
K̂n

)
θ j

∥∥
n‖f − f̃‖n ≥ c

)
= P

(√
n
∥∥(

Id − P
K̂n

)
θ j

∥∥
n‖f − f̃‖n ≥ c,
n

)
+ P

(√
n
∥∥(

Id − P
K̂n

)
θj

∥∥
n‖f − f̃‖n ≥ c,
c

n

)
≤ P

(√
n
∥∥(

Id − P
K̂n

)
θj

∥∥
n‖f − f̂‖n ≥ c

) + P (
c
n) → 0,

by Corollary 3.1 and Lemma A.3, and sinceP (
c
n) → 0 by Theorem 2.1 in Baraud

(2002).
Finally, notice that if in (A.5) we replaceεk by W, we obtain, up to

constants, thatP (|n−1/2ε′
jP

K̂n
W| > c) ≤ E(K̂n)/c

√
n → 0, sinceE(K̂n) ≤ Nn 

(n/ logn)1/2 by (2.1). This completes the proof of this lemma.�

PROOF OFCOROLLARY 4.1. The proof of this corollary follows immediately
by replacingK̂n throughout the proofs of Theorem 4.1 and Lemma A.4 by
Kn,α andKn,a , respectively. �

A.4.

LEMMA A.5. Let V be a symmetric, semipositive definite q × q matrix. Let
V0 be a symmetric, positive definite q0 × q0 matrix. Let c ∈ Rq and c0 ∈ Rq0,
c0 = (c1, . . . , cq0). Then the only V which satisfies

c′
0V0c0 = c′Vc for any c ∈ Rq(A.21)
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is

V =
(

V0 Oq0×(q−q0)

O(q−q0)×q0 O(q−q0)×(q−q0)

)
,

where the O matrices have all 0 elements.

PROOF. Since we seekV symmetric and satisfying (A.21), thenV has, in
general, the structure below:

V =
(

V0 Aq0×(q−q0)

A′
(q−q0)×q0

B(q−q0)×(q−q0)

)
,

with arbitraryA andB. Since we require (A.21) to hold forany c ∈ Rq , we show
that A and B are zero matrices of appropriate dimensions. First we note that
for any symmetric, semipositive definite matrixC, x′Cx = 0 for anyx implies
C = O, with O being the zero matrix. Now letc ∈ Rq be arbitrary and write it as
c = (c0, c1), for c1 ∈ Rq−q0. Then

c′Vc = c′
0V0c0 + c′

0Ac1 + c′
1A′c0 + c′

1Bc1.(A.22)

We find thenA andB such that (A.22) holds, or equivalently, such that

2c′
0Ac1 + c′

1Bc1 = 0 for anyc ∈ Rq .(A.23)

Since we want the above display to hold for anyc ∈ Rq , then it should, in
particular, hold forc = (0, c1). Thus, from (A.23),B must satisfy

c′
1Bc1 = 0 for anyc1 ∈ Rq−q0.(A.24)

Now note that sinceV is semipositive definite, so isB. This, in connection
to (A.24), implies then thatB = O(q−q0)×(q−q0). Then we have to findA that
satisfiesc′

0Ac1 = 0, for anyc0 ∈ Rq0 and c1 ∈ Rq−q0. Thus, the equation must
be, in particular, satisfied for the canonical basis inRq0 andRq−q0, respectively,
which implies thatA = Oq0×(q−q0), which completes the proof of this lemma.�

LEMMA A.6 (Rosenthal’s inequality). Let U1, . . . ,Un be independent cen-
tered random variables with values in R. For any p ≥ 2, we have

E

∣∣∣∣∣
n∑

i=1

Ui

∣∣∣∣∣
p

≤ C(p)

(
E

n∑
i=1

|Ui|p +
(
E

n∑
i=1

U2
i

)p/2)
,

where C(p) > 0 depends only on p.

For a proof of this inequality see, for example, Petrov (1995).
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