The Annals of Statistics

2004, Vol. 32, No. 3, 898-927

DOI 10.1214/009053604000000247

© Institute of Mathematical Statistics, 2004

CONSISTENT COVARIATE SELECTION AND
POST MODEL SELECTION INFERENCE IN
SEMIPARAMETRIC REGRESSION

By FLORENTINA BUNEA
Florida State University

This paper presents a model selection technique of estimation in
semiparametric regression models of the tpe= pg'X; + f(T;) + W;,
i =1,...,n. The parametric and nonparametric components are estimated
simultaneously by this procedure. Estimation is based on a collection of
finite-dimensional models, using a penalized least squares criterion for
selection. We show that by tailoring the penalty terms developed for
nonparametric regression to semiparametric models, we can consistently
estimate the subset of nonzero coefficients of the linear part. Moreover, the
selected estimator of the linear component is asymptotically normal.

1. Introduction. The partially linear regression model was introduced by
Engle, Granger, Rice and Weiss (1986) for the study of the relationship between
weather and electricity sales and has received considerable attention over the
last decade. Given i.i.d. P observations(Xy, T1), Y1), ..., ((X,, T,), Y»), the
model is

1.1) Yi = pB'X; + f(T) + Wi = s(X;, Th) + Wi,

where W, ..., W, are independent, identically distributed and zero mean error
variables, assumed to be independendof7T) € R x R. We assume that € #,,
wheref, is a class of smooth functions with degree of smoothone3$he appeal
of the model lies in its flexibility. It can be used when a simple linear regression
is adequate, apart from a covariate, usually a confounder, that is known to affect
the response in a nonlinear fashion. More generally, (1.1) can be regarded as a
particular case of a multiple index model and can serve as afirst step in a dimension
reduction process.

Two important aspects of optimality in estimating (1.1) are:

O1. Parsimonious selection of theX{X;, ..., X,} covariates that avoids both
underfitting and overfitting.
02. Asymptotic normality of theelected estimator ofs.

Let Ip C {1,...,q} be the index set of the nonzero componentg ot et I be
an estimator ofy. We interpretP (I = Ip) — 1 as O1. The asymptotic hormality
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of Bf, the estimator off corresponding to the selected index Bgis our O2.

Model (1.1) was originally studied under the assumption fgat {1, ..., g}
anda are known. We shall refer to this situation as Case 0. In this case, one
can construct estimators gf and 8 using the knowledge a& and I, so there
is no need for a model selection procedure. Wahba (1984), Green, Jennison and
Seheult (1985) and Heckman (1986) suggested a least squares approach combined
with spline smoothing for the nonlinear component; Chen (1988) proposed
simultaneous least squares estimation of the parametric and nonparametric parts.
The subsequent literature is vast, and we refer to Bickel, Klaassen, Ritov and
Wellner (1993) and to the monograph by Héardle, Liang and Gao (2000) for
an extensive bibliography. All suggested methods lead to asymptotically normal
estimators o8, provided that the estimators gfsatisfy the minimum requirement

(1.2) If = fI5, =op(™/?),

for « > 1/2, where || - ||, is the Lo(ur) norm andur is the probability
distribution of T'; see, for instance, Lemma 11.2, page 202, in van der Geer
(2000), or Chen (1988). Throughout this paper we shall use (1.2) as a prerequisite
for O2 and assess it over functions in t{p, Lo(ur)), with o« > 1/2, defined

in Section 2.1. We will compare the rate in (1.2) with the minimax rate in
Corollary 3.1.

In this paper we use model selection based on penalized least squares minimiza-
tion as an estimation procedure. We construct a sequence of finite-dimensional
approximating spaces farand find the least squares estimator corresponding to
each space. We compute the residual sum of squares corresponding to each esti-
mator and then add a penalty term. Our final estimator is the one with the smallest
penalized residual sum of squares. This yields estimators,féy and f simulta-
neously.

The aim of this paper is to study the performance of such estimators when we
relax the conditions of Case 0. We consider the following cases:

e Case 21y unknown andv known,« > 1/2.
e Case 3y anda unknown,u > 1/2.

We show in Sections 3.2 and 4 that O1 (the consistency of the selected index) and
02 (the asymptotic normality of the selected estimator) hold in both cases. We note
that in Case 3 we need O1 and O2 to hohiformly over the range o#. Notice
further that the smoothness classes are nested, in the sensag thab implies
Lip*(a1, L2(ur)) C Lip*™ (a2, L2(er)). Then, to establish the uniformity result it
is enough to show that O1 and O2 hold for the smallest allowablel/2. This is
the approach we adopt in the sequel.

We point out that our strategy of showing O2, in either case, involves two steps.
The first one is to show thdtstabilizes asymptotically, that is, that O1 holds. The
second one requires that the estimatos of fixed dimensiony be asymptotically
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normal. This could be done by quoting directly the result obtained in Case 0 by
Chen (1988), whose method of estimation is the closest to ours. However, the result
of Chen (1988) holds over times continuously differentiable functiorfs(cf. his
Condition 2, page 138), so it is not direcdpplicable to our context, which covers
nondifferentiable functions. We therefore address this situation here, and in fact
we prove that the asymptotic normality ffof fixed dimension holds in the more
general case:

e Case 11y known andx unknownx > 1/2.

02 was not studied in any of these three cases.

Partial results on O1 were obtained in Case 3. Hardle, Liang and Gao (2000),
for a time series version of model (1.1), used a kernel method to estifaiel
cross validation to seledp and the bandwidth simultaneously. They show O1 in
Theorem 6.3.1, page 137, but the construction of their estimator depends on the
unknownlp, as their Assumption 6.6.7, page 158, imposes lower and upper bound
restrictions on the bandwidth that depend/gn

Chen and Chen (1991) us@dsplines to approximate the nonlinear component
and an Akaike type technique for simultaneous estimatiodgofind f. They
discuss O1 in their Proposition 2, page 334, under a condition on a random
criterion that depends on the unknodgand f. Remark 3 verifies this condition
only for | Ip] = 1 and under their Condition 4, page 326, which entails the existence
of a lower bound ory’; the further study of O1 is left as an open problem. We do
not use any of these conditions here.

The remainder of the paper is organized as follows. Section 2.1 contains the
assumptions under which our results hold. In Section 2.2 we give the construction
of our estimators. In Section 2.3 we derive upper-bound oracle inequalities for the
risk of our estimators, and obtain rates of convergence as a consequence. Sections
3 and 4 are central to our paper. In Section 3.1 we discuss penalty choices and
their impact on the rates of convergence derived in Section 2.3. We prove O1
in Section 3.2. In Section 4 we show that the estimatorg afe asymptotically
normal for the three cases under consideration, therefore establishing O2. Section 5
provides conclusions. The proofs of intermediate results are given in the Appendix.

2. A penalized least squares estimator. In this section we devise estimators
for 8 and f and establish their consistency.

2.1. Preliminaries. We begin by giving a list of assumptions under which the
results of this paper hold.

Let u be the joint probability distribution of XandT'. Let ux andur denote
the probability distributions of XandT, respectively. Let Lip(«, L2(ur)) denote
a generalized Lipschitz space, for some smoothness parameted, and let
|- |lo.2 be the seminorm in this space [see, e.g., DeVore and Lorentz (1993),
page 51, for definition and properties]. For some positive congtantO define
Dy 2(A) = (g € Lip*(ar, La(17)), Igla.2 < A).
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ASSUMPTION 2.1. The support ojx is [0, 1] x K, for some compact set
K C R?, and on its support admits a density with respect to the Lebesgue
measure\ that is bounded from below bk > 0 and from above byi1 < oco.

In addition,u7([0, 1)) =1 andux (KX) = 1.

ASSUMPTION 2.2. There exists/ > 0 such thatr, = E(|W1|”) < oo for
p>4+d.

ASSUMPTION2.3. Forany e R?\ {0}, Var('X|T =r) > 0 forallz € [0, 1].
ASSUMPTION2.4. s e Lo(K x[0,1],1).

ASSUMPTION 2.5. 6; = E(X;|T =1) € D, 2(A) for somey > b/4 and
some fixed constamt> 3, forall j € {1, ..., g}.

Note that Assumption 2.3 ensures that model (1.1) is identifiable; see, for
example, Lemma 11.2 of van der Geer (2000) or Lemma 3 of Chen (1988).
Assumption 2.5 is a sufficient condition on the smoothnessof € {1, ..., ¢},
which ensures that can be estimated at the optimat/2 convergence rate. See
also Chen (1988), Heckman (1986), Speckman (1988) and van der Geer (2000)
for other types of smoothness conditions, typically requiring the existence of a
prespecified number of derivatives .

2.2. The sieves and the estimators. We construct now a sequence of approxi-
mating spaces forin (1.1). This mimics the construction of approximating spaces
for generalized additive models, as in Barron, Birgé and Massart (1999) or Baraud
(2000). Letl ={i1,...,i;} €I, whereJ =P ({1, ...,q}), andP(F) denotes all
subsets of a sef. Denote by[-] the integer part and by Iggthe logarithm in
base 2. Leb be a fixed constank, > 3. Define

Ay =[logy(n/logm)*"1,
(2.1) Jn = llogy(n/logn)*/?],
B, =24, N, =2'n.
Fork, € {A,, A, +1,...,J,} letK, = 2% Foreachk, € {B,, ..., N,} = X, let

Sk, be the linear space of piecewise polynomials of degree at mest, based
on a regular dyadic partition of siz¢ K,,. Thus, Sk, is the space of functions

on [0, 1] of the formuv(z) = Zﬁl Pj(t)ll({jK—_n1 <t< Kin}), wherel (V) denotes
the indicator of a seV. Note that dintSx,) = rK,. Denoting the restriction

of Ato[0,1] by A, let {¢>4,-};£"1 be an orthonormal basis ibx(A7) for Sk, . For
(I, K,) €I x X, define

S[,Kn = <xi17 e 7xi17 ¢l(t)7 MR} ¢rKn(t)),
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where(-) denotes the linear span. Note thak X,,| =27 x (J, — A,, + 1), where
| - | denotes the cardinality of a set. Notice that §inx,) = |1| +rK,,.

We recall that the approximating spagg, is known to have good approxima-
tion properties for a range of smoothness classes to whiahd¢;, j =1,...,q,
may belong; see, for example, DeVore and Lorentz (1993). However, other choices
are possible: spaces generated by piecewise polynomials based on an irregular
partition of [0, 1], wavelets or trigopnometric polynomials; see Birgé and Massart
(1998) for a detailed discussion.

Let pen(/, K,) be a penalty term associated with x,. We defer a detailed
discussion on the penalty term to Section 3.1. #H0K,) € J x X, andu € S; g,
let y, (u) = =t 004 1Y; — u(X;, TP

DEFINITION 2.1. A penalized least squares estimator relative to the collection
{Sj,Kn}(LKn)erJ(n is anys € Si g, such that

@2y +perd K= inf <ue”1‘,},, ya(ut) + perl, Kn>).

LetY = (Y1,...,Y,) . Denote byX then x g matrix with columns(Xy ;, ...,
Xn, ), 1< j <q,andbyX; then x |I| matrix obtained fronX by retaining the
columns corresponding to the index get {1, ..., ¢}. Let 8; be a vector irR!"!
and letsg, be a vector inR” Kn | LetZg, be then x r K, matrix whose'th row is

d1(Th), ..., ¢rk, (T;). Then, in matrix notation, our estimator achieves the infimum

below:

(23) inf inf {(Y—XIﬂI—ZKnSKn)'(Y—XIﬂI—ZKnSKn)+per(I, Kn)}
(I,Kn) Br,0k,

Let K, and/ be the indices for which (2.3) is attained. Then, if the minimization
problem has a unique solution, following Seber [(1977), Theorem 3.7], the least
squares estimators gf andéx, are, respectively,

(2.4) Bi=(X,(1d = Pg )X;) T "X5(1d — Pg )Y
and
(2.5) 8g, =2 23 )72 (Y =X;Bp),

wherePkn is the projection matrix on the spads; generated by the columns
of ZI%,,' ThLIS, LI%,, = {(g(T]_), ...,g(Tn))/|g € SI%,,} and Pkn = an(z/kn X
an)—lz;% . Id denotes the x n identity matrix.

For anynmeasure we denote by - ||, the Lo(v) norm. Let

T, = {|I5]l, <2explog?n)}.
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We note that, by Theorem 1.1 in Baraud (20@2)";;) — 0. For technical reasons
we consider as our final estimatorf

S(x, 1) =5(x,)1r,.

We denote byf the estimator off corresponding tékn. Hence, the estimators of
the nonlinear and linear part are, respectively,

f=fir, and p=p1ir,.

We mention here the approximating spaces used in the three cases under con-
sideration. We elaborate on this in Section 3.1. For Case 1 WéSy4sg, } k, c x,-
In Case 2 we us€S; k, ,}re7 With K, o < n¥/22*1 Here and in the sequel the
notationa =< b means that is an integer power of 2 that differs froby at most
a factor of 2. In Case 3 we u$6; x, ,} ey for K, , < n¥/2+2 with a > 0 arbi-
trarily close to zero. Notice tha(, , € X, if 1/2 <o < (b —1)/2. We shall need
later the approximation theory result given by (2.7), which holdsefar (O, r).
This motivates the choice &f> 3 and the definition of = [b;zl]. Also, note that
K, o= nt%+2 ¢ ¥, forany O<a < 1/2.

We show in Appendix A.1 that, under Assumptions 2.1-2.5, the estimators are
unique, except for a set of probability tending to zero. On this set we define our
estimators to be identically zero.

2.3. The consistency of the penalized least squares estimators. In this section
we give finite sample upper bounds on the risk of the estimatof s. As an
immediate consequence we then obtain rates of convergence for the estimators of
B and f, respectively. Oracle type inequalities for the risk of estimators obtained
via model selection in nonparametric regression have been studied extensively
over the last decade; see, for example, Barron, Birgé and Massart (1999), Baraud
(2000, 2002), Wegkamp (2003) and the references therein. The results carry over
to semiparametric regression and in this paper we adopt the approach of the second
author.

Let fk, be the Lo(ur) projection of f onto Sk,. Let C1,C2 > O denote
dominating constants independenioyiven by Theorem 2.1 in Baraud (2002).

THEOREM 2.1. Under Assumptions 2.1-2.5,for pen(/, K,) > C1(|I| +
rKn)/n;

A2 . 2
(26)  Ells=3l = Cz inf {15 = fx. 5., +pento, Ky) + 9.},
with ¢, =1/n+ (|ISI|§ +1) exp(—2|ogzn).

We note thaC; depends on; and thatC, depends othg, /1, d, p, 7).
This theorem allows us to obtain rates of convergencé foy computing the
infimum above, provided thatsnf is bounded, in which cagk, = O(n~1). Thisis
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guaranteed under Assumption 2.1fife D, 2(L) andp € K1, for some compact
set.X1 € RY. Furthermore, the next corollary shows that the rate of convergence
of § is inherited by the estimators ¢f and f. Note that if f € D, 2(L) for
someL > 0, then by Theorem 2.4, page 358, in DeVore and Lorentz (1993) and
Assumption 2.1, for ang € (0, r) there exist€ (¢, L) > 0 such that

2.7) If = fr, N2, <hiCla, LYK, .
Define
(2.8) ra =inf{h1C (o, LYK + penlo, Ky) + ).

Let | - |2 denote the Euclidean norm. For a functigrof generic argument we
denote its empirical norm byg |2 = n=13""_, ¢2(Z;). In addition, by abuse of
notation, we regard heréf as a vector inR? by adding 0’s to the necessary
positions.

COROLLARY 2.1. Under Assumptions 2.1-2.5,for penl, K,,) > C1(|I]| +
rKn)/n,if f € Dy2(L),0<a <r,wehave:

1. |1 f - f||ﬁT = Op(ry), uniformly over f € D, 2(L) and g € K.
2. ||f — f112 = Op(ry), uniformly over f € D,.2(L) and B € K.
3. |1B; — BI5= Op(ry), uniformly in g € X1.

We present the proof of these two results in Appendix A.2. We discuss in the
next section our penalty choices and the corresponding values @éfithough
f may achieve the minimax optimal rate of convergence, Corollary 2.1 gives
suboptimal rates for the estimator f We show in Section 4 that we can achieve
the expected—1/2 rate of convergence fq@i, provided thatP (I = Ig) — 1. In
the next section we discuss penalty choices for which this holds.

3. Penalty choices and the consistency of the selected index. There has
been a vast literature on the estimatiord@in the fully parametric context and we
only mention here the seminal works of Mallows (1973), Akaike (1974), Schwarz
(1978) and Shibata (1981). Typically, model selection procedures based on a
penalized criterion use penalty terms that are proportional eithéjte, where| /|
is the dimension of a fitted model, or tb| logn/n. These give rise to Akaike-type
(AIC) and Schwarz-type (BIC) methods, respectively. In AIC the selected model
is expected to include about one superfluous parameter [Woodroofe (1982)]. BIC
chooses the correct model with probability converging to 1 [Haughton (1988)].
See also Guyon and Yao (1999) for a recent survey.

In semiparametric models we cannot obtain the consistendyhyf a simple
extension of these methods, because a penalty term proportion@l |ta-
K,)logn/n no longer suffices. In the parametric case a penalty term essentially
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balances out the residual variance of competing models of different dimensions,
and the bias term disappears for the models that include the true one. However, in
the semiparametric case the penalty term is also required to balance out the bias
introduced by approximating within a finite-dimensional space. Since in general

f does not belong to any of the approximating spaces, this bias is not zero, and
a penalty that is proportional to the dimension of a fitted model is too small to
achieve the correct balance.

3.1. Penalty choices and rates of convergence. In this section we give
sufficient conditions on the penalty term for which the optimality criteria O1 and
02 hold.

We first discuss O1, which iB (I # Ip) — 0. Note that

(3.1) P(I#1I)=Pog )+ PoC1).

We showed in Corollary 2.1 that the estimators ffare consistent, for any

penalty term that satisfies pdnK,) > (|I| + rK,)logn/n. We will show in
Theorem 3.1 that the first term in (3.1) converges to zero, for any penalty term

that satisfies this restriction. However, we cannot use the consister}éytm‘
show that the second term converges to zero, as we can overestimate the model but
still consistently estimate 0’s. The study of the convergence to zero of the second
term in (3.1) leads to the second set of restrictions on our penalty term, namely,
pen(I, K,)—pen(lp, K,) > h1C(a)LKn—2“. This condition means that the penalty
term needs to be greater than the bias induced by approximatiguitively, if
the bias due to the nonparametric component is present, it acts as a confounder,
and the true parametric dimension cannot be recovered. Formally, as in (3.21), this
condition ensures thdp can be found asymptotically.

We show in Theorem 3.1 below that O1 holds if the two conditions below are
satisfied simultaneously:

() pen. K,) —per(lo, K,) > h1C(e) LK, **,

(3.2) )
(i) pen(I,K,) = (|I|+rKy,)logn/n.

We discuss now sufficient conditions on the penalty term under which O2 holds.
Recall that (1.2) is a prerequisite for O2. With the notation of Section 2.3, (1.2) can
be rewritten as

(3.3) Jnr,—0 forr, = inf(h1C (a. LYK% + pen(lo, K,) + 9,}.

We show in Theorems 3.1 and 4.2 that O1 and O2 are compatible if
(3.2) and (3.3) hold simultaneously. Note now the apparent contradiction between
(3.2)(i) and (3.3): the first one essentially requires that the penalty term dominate
the bias forall K,, whereas the oracle inequality of Theorem 2.1 tells us that
the best rate of convergence ﬁfis achieved fora particular K,, namely, the
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one realizing the best bias-variance trade-off. Notice further that by simply taking
pern(l, K,) = (|I| +rK,) logn/n, we would have (3.2)(i) satisfied uniformly over
a € (1/2, r) only if, up to multiplicative constant¥, > n/logn for all K, € X,
in which case the estimators would no longer be defined.

The first part of the solution is to construct a penalty term in which the
dimensiong/| andr K,, are multiplied rather than added. Thus, we first consider

(3.4) penl, K,) =2(1|+ 1rK,logn/n.

This penalty satisfies (3.2)(ii) and we show in Corollary 3.1 that it also leads to an
r, that satisfies (3.3).

However, if we use (3.4) for either Case 2 or Case 3, then (3.2)(i) holds only if,
up to multiplicative constants,, > (n/logn)/2¢*1 for all K, € X,,.

If « > 1/2 is known, then foiK,, ., < n'/2**+1 andn large enough,

(3.5) pen!, K, o) =2(1|+ DrK, qlogn/n

satisfies (3.2) by construction, and (3.3) holds by Corollaryf8rithis «. We use
the penalty term (3.5) in Case 2, for the approximating spétes, ., }7<-

If @ is not known, as in Case 3, we can no longer define a penalty term
that depends om. In this case we need to construct a penalty that satisfies
the contradictory requirements (3.2)(i) and (3.3) for &J] and uniformly over
a > 1/2. Since they cannot hold simultaneoudty all K,, the strategy we
suggest is to find théest K, for which they are met, uniformly over > 1/2.

For this, first recall that the smoothness spacesipLo(ur)) are nested: the
smaller thex, the larger the space and, also, the smallerthibe larger the bias
term I/K¢. Thus, the largest bias that needs to be dominated by the penalty term
will correspond tax = 1/2+ a for a > 0 and arbitrarily close to zero, since this is
the worst allowable case af This reduces the penalty choice to the one of Case 2,
for this particular choice of; namely, we choosg, , < n%/%*+2 and

(3.6) pent!, K, o) =2(/1| + 1)rK, .logn/n.

The corresponding approximating spaces are in this ¢ds&, ,};c7. Then,
uniformly over «, (3.2) holds by construction, and (3.3) holds by Corollary 3.1.

We remark now that in Case 1, in whidp is considered known, (3.2)(ii) is
no longer required. Only (3.2)(i), which also guarantees the consistency of the
estimator ofs, and (3.3) are needed. We shall therefore use the penalty term (3.4),
in connection with the approximating spagés, x, } ,<x, . for this case.

We conclude this section with Corollary 3.1, which is an immediate conse-
guence of Theorem 2.1. This result summarizes the rates of convergence corre-
sponding to each penalty term, and shows that (1.2) holds in each case. We give
the proof in Appendix A.2.

COROLLARY 3.1. Under Assumptions2.1-2.5jf f € Dy 2(L), we have:
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1. o unknown.
(@) If penlp, K,) =2(|Io| + 1)r K, logn/n, then
ry = O((logn/n)?/22 1),

for any o € (1/2, r) and known Iy.
(b) If penZ, K,) =2(|1| + DrK, ,logn/n, then

ry = O(Iogn/n(za+1)/(2a+2))’
forany o« € [1/2 + a, r), with a > O arbitrarily close to zero.

2. o known.
Ifpenl, K, o) =2(1|+1)rK, 4logn/nand o € (1/2,r), then

ra = O(logn/n?/22+1),

REMARK 3.1. Notice that in 1(a) of the above corollary is the minimax
adaptive rate of convergence, up to adogctor. Since /2« + 1 > 1/2 for any
a >1/2,(1.2) holds uniformly ovew € (1/2,r).

For part 2,r, is the minimax rate, up to a lagfactor, and (1.2) holds for the
particular fixedwx.

For 1(b), although the rate is suboptimal relative to minimax, we hawer
1)/(2a + 2) > 1/2 for anya > 0, and so again (1.2) holds uniformly over
a€e[l/24+a,r).

REMARK 3.2. We note that the rate of convergence in 1(a) is achieved for
K} = (n/logn)Y/2**+1 This dimension belongs to ouk, forall 1/2 < a < r =
[(b—1)/2].

3.2. The consistency of the selected index.

THEOREM3.1. If f € Dy 2(L) and Assumptions 2.1-2.5hold, then:

@) P # Ip) — Qasn — oo, for the penalty term given by (3.5) and for some
givena € (1/2,r).

(b) P(I # Ig) — 0 as n — oo, for the penalty term (3.6), uniformly over
@ €[1/2+a,r) for somea > 0, arbitrarily small.

PrROOF Notice that
(3.7) P #1I0)=PUoC D)+ PUo¢ ).

We show that each term in (3.7) converges to zero.
1.P(IpC 1) — 0asn — oo.
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(a) Notice that iflo = {1,...,q}, P(Iop & [)=0, so it is enough to consider
IoC{1,...,q}. Then

(3.8) lim P(lo ¢ 12 = lim_ S Pd=D.

1Dy
ForI D Ip and re-denoting,, = K, o = n¥/?**1, define
(3.9) fnl, Kp) = inf {y,(v) +pen, K,)}.
VESI K,
Recall that fx, is the La(ur) projection of f onto Sk,. Define s, (X, ) =
BiX+ fx, (), with 81, regarded as a vector i®?, by adding zero to the necessary

positions. Notice that, € Sy, x, and sos, € Sy k, for all I O Ip. Also, by (3.9)
note that

fnlo, Kn) < yn(sy) + pentlo, Ky).
Then, by the definition of the estimator, we have
P(I=0=P(f,.K,)— fu(I'.K.) <O, forall I' #1)
(3.10) < P(ful, Kn) — fu(lo, K») <0)

< P( SUP (¥ (5n) — ya(0)) = per(l, o) — pertio, Kn>).

VESI K,

For any functiong of generic argumenZ we denoteg = (g(Zl) .., 8(Zy).
ForanyU = (Uy, ..., U,) welet|U|2 =2 Y7, U2, (U,9), = 237, Uig(Z)).
Notice then that, by the definition ¢, andsn, we have

yn(sn) - Vn(v) = <W f— > - “f fKn “rzz
+2(W,V = 8) — 5= VI +2Jf — fx, |
Leta, = pen(l, K,) — pen(lp, K,,). Then, by (3.10) we obtain

P(f=I)§P< sup (2<W,V—S>n—IIS—VIIEZan/3))

VESI K,
(311) PRW.T~f,), — |f —fx, | > a,/3)
+ P(||f ~fx, |7 = an/6).
Recall thatPg, is the projection matrix onto
Lk, ={(g(T0), ..., g(Ty)) |g € Sk, } CR".
Define byP; k, the projection matrix onto

Lig,={(h(X4, T0), ..., h(X,, T)) |heSrk,} CR".
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Then

2(W,v—9), —[Is— V|2
vV — P[ﬁ[(nS

=2|P S—vV <W,—
IPr.,s=Vl, IPrx,S— Vi,

) = IPrks VI
n

P[KS—S 2
+2 P[,KnS—S <W,+> — P[,KnS—S
Prs— o, (W, 225 ) e s’
V—P; ks \? P, x.5—sS \2
gt o g
”PI,K,,S_V”n n ||P1,Kns_sl|n n
v—Prx,s \2
:<W — Pk, W, #>
”PI,K,,S_V”n n
vV—Pk,s \? Prk,S—s \2
+<P1,1<,1W,—[’K" > <W,—1’Kn >
||PI,KnS_V||n n ||PI,KnS_S||n n
2
2 PI’KnS—S
< |Prx,W|? +<w, —> ,
IPrk,S—Sllnln

using 2xy| < x2+ y2 for the first inequality and Cauchy—Schwarz for the last one.
Using an identical reasoning, we also obtain that

2 2 Pk, f—f \?

2. £~ Fi ), = I~ i, |2 = [P, WIS+ (W, =)
IPk,f—fllx

All ratios introduced above are defined to be zero if the denominator is zero, in
which case the first two probabilities in (3.11) are identically zero. Then, for the
first two terms in (3.11),

n

P( sup <2(W,v—s)n—||s—v||2>a—">)

veSy k, B
(3.12) P 2
5 an I1.K S—S an

< P P W = " P W’ o > — .

< (H AL e 6)+ (< ||P1’Kn5—s||n>n - 6)
Similarly,

a
p(z(W,f—fKn)n — |f —fx, 2 > 3)

3.13
o < P(IPe =)+ p((w MF@)

= n n= g ’||Pan—f||n n 6/

We shall use Rosenthal’'s inequality, stated in Appendix A.4, to bound the
second term in both (3.12) and (3.13). The application of this inequality, as in
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the proof of Theorem 3.1, page 484, of Baraud (2000), leads to
P;k.s—s 2 a —_p/2( n —p/2
3.14 P(<W,+> Z—)SC( YE|Wy|Pn—P/ (_) ’
(349 Prrs—sinl, - 6)=CPEM 6
for any p > 2 and a constar@(p) that depends only op.
Recall that by the definition (3.5), peh K,,) = 2(|1| + 1)r K, logn/n, and so
(3.15) a, = penl, K,) — penlo, K,) > 2K, logn/n,

by the definitian of the penalty term3.5). Recall that, by Assumption 2.2, we have
E|W1|P < oo for any p > d + 4, for somed > 0. Then, by (3.14) and defining
B =3P/2C(p)E|W4|?, we obtain

P;xks—s 2 ay B
3.16 Pl(W, ——"— ) >~ )| <———>—0,
(3.16) (< IPr.x,S— SIIn>n ~ 6 ) = (K, logn)yr’2
and, using an identical argument,

Pxf—f \2 a, B
3.17 P({W,—) >— ) <—— 0
(317) ({w. ||Pan—f||n>n %)= % iogmr7z @

sincek, =< n1/2¢+1 _ o forall o > 0.

We will now invoke Corollary 5.1, page 478, in Baraud (2000) to bound the first
term in either (3.12) or (3.13). We discuss first (3.12). Notice g, W2 =
aztr(PKn)/n =o0?rK,/n, using the standard properties of the projection operator.
Then, by Corollary 5.1 of Baraud (2000), for apy> 2 such thatE|W]? < oo
and for anym > 0,

K
(3.18) P(n]| PKnW“i > ro?K, + 20%\/rKym + azm) < C/(p)ﬁprﬁ,
m
for some constant’(p) > 0 depending only o and fory, = E|W1|? /o ? and
o?=EW?2.

We shall use (3.18) witm = K,?/A'Iogn. Recall now (3.15) and notice that, for

n large enough,

na,/6 > ro’K, + 202\/ rKnK,:;’/4 logn + 02K3/4logn,

for all K, € KX,. We mention that other choices af are possible, but at the price
of additional technicalities and with very little gain in terms of the overall result.
Then, withB’ = rC’(4)14 and using (3.18), we obtain

(3.19) P(n”P WH2>%)< B’ N
. Ky n= g — K,(13p_8)/8(|ogl’l)p/2

07

since, by Assumption 2.23 > 4+ d > 8/3 for anyd > 0.
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For (3.13) we first notice thak||P; x, W|? = o?(|I| + rK,)/n. Then, if we
replace abovek, by |I| + rK,, we also obtain

na,,) B”

< — 0,
6 /7 k398 (1ogn)r/2

(3.20) P(nIIPI,KnWHi >

for an appropriately modified constaBt .
We bound now the last term in (3.11). Recall the approximation error bound
of (2.7). By Markov’s inequality and (3.15) we have, with= 3C?%(a) L?h1,

2
_EIf — fx,IZ,
< -

- C n - C
X
~ K2 " K,logn ~ logn

P(If-tx 122 %)
(3.21)

— 0,

by the choice ofk,, < n1/2¢+1,

Notice now that the number of terms in (3.8) is boundethywhereA; > 0,
independent ofz, is the number of models the linear part of which includes the
Ip variables. Then, by (3.8), (3.11), (3.16), (3.17) and (3.19)—(3.21), we obtain
P(Ip C I) — 0, which is the desired result.

(b) The proof is almost identical for this case, in which we now re-denote
K,.. = nY/?22+2 py K, and use the penalty term (3.6) instead of (3.5). Note that
(3.16), (3.17), (3.19) and (3.20) only require thdf — oo, and thus they hold
independently of or a. The only difference is in (3.21), which now becomes

6E| f — 2
P(Hf—fKnH,fz%")S If = fx. N7,

dp
- C n - C n
X X
~ K> Kylogn ~ g2t1 " K,logn

(uniformly overa > 1/2+ a)

<
logn

-0 for K, 4 < nl/2a+2,

Then the concluding argument is identical to the one above.
2. P(Io ¢ I) — 0. The proof is the same in both cases. tetinf;c;, |8;| and

notice that, by the definition ofp, we havec > 0. Consequently,8;, — 8;,| =
18,,1, forall j, e I\ I, and

P(log 1)< P(j. ¢ I, for some;j! € Ip)
< P(Bj, — Bl =18;)) = P(1Bj, — Bjs| =) = O,

by the component-wise consistency ;fb,f implied by 3 of Corollary 2.1. This
completes the proof of this theorem]
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4. Asymptotic normality.

4.1. Asymptotic normality of 310. In this section we assume thdp C
{1,...,q}is known. Then, with the notation of Section 2.2, (1.1) becomes

(4.1) Yi = B, X100 + f(T) + W

Here X, denotes the vector of covariates corresponding to the indeksket
|Ig| = qo for some knowngg < ¢. In order to emphasize the dimension of the
parametric part, we re-dengsg, by 8,, and its estimator bﬁqo. We first consider
estimators fop,, and f within the family of approximating spacés;, x, } k,cx, -
Recall that this corresponds to our Case 1 defined in the Introduction. We show
in the following theorem that estimating adaptively preserves the asymptotic
normality of B,

Let 2, = (0kj)goxgo» With oy; = Cov(Xy, X ;) — Cov(b(T),0;(T)), for
(j, k) € Io x Io, and let VatW) = 2.

THEOREM4.1. Let qu be the estimator of 8,, based on the approximating
spaces { Sy, k, } k, e 5, - Under Assumptions 2.1-2.5jf f € D, 2(L), then

Vi(Bao = Bgo) > Noo(0, a2Z ).

Theorem 4.1 holds uniformly overe (1/2,r) andy € (b/4,r), b > 3.
Corollary 4.1 is an immediate consequence of this theorem. Recall the
definitionsk,, o = n/?**1 andk, , = n1/2+2,

COROLLARY 4.1. Let f,, be the estimator of g,, based on either S1o,Kn.o
OF Sio.Kpa- Under Assumptions2.1-2.5f f € Dy 2(L), then

Vi (Bao = Bao) > Noo(0, 02 ).

Corollary 4.1 holds uniformly ovey € (b/4,r), b > 3. Also, it holds for
any fixed a € (1/2,r) if Sy, x,, is used, and uniformly ovex € (1/2+ a,r)
for Sy, x, .- We note that the estimatof, are different in each situation; we have
used the same notation for brevity, since we are only interested in their limiting
distribution. The proofs are given in Appendix A.3.

4.2. Cases 2 and 3: asymptotic normality of Bf. Throughout this section we

regardﬁf andf?I0 as vectors iR?, by adding O’s in the necessary positions. Also,
we re-denoteg € R? by g;, € R? to emphasize that the only nonzero components
of B correspond to the index sé&j. Let VO =025 1 LetV = (Vjj)gxq, Where

Vi = V?j for (i, j) € Ip x Ig and zero otherwise.
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THEOREM4.2. If f € Dy 2(L) and Assumptions 2.1-2.5hold, then we have
the following results:
Case2. Ifpenl, K, ) =2(l1| + 1)K, o logn/n, for somegiven1/2 <a <r,
A d
then /n(B8; — B1y) = N4(0, V).

Case3. Ifpen/, K,,) = 2(/1|+1) Ky o logn/n, then /n(B; — B1y) —d>Nq(O,V),
uniformly over « € [1/2+4a,r)forO<a <r —1/2.

In both cases, the limiting distribution has all its mass concentrated on the space
generated by the Iy covariates.

PROOF We prove that, in both cases, for ang RY,

(4.2) V(B — Bi) > N(©,c'Ve)  asn— oo,
which leads to the desired result. For ang R, ¢ € R? we have
P(c'(Vn(B; — Bro)) < b)
(4.3) = P(c'(v/n( AIA — B1,)) <b, I = Io)
b

P(c'(Vn(Bry — Br,)) <b) — P(c'(Vn(Bry — B1y)) < b, I # Io)
+ P(c'(Vn(Bj — Bro)) <b.1# Io).

Since, by definition,f?I0 € R4 has nonzero elements only in the positions
corresponding tdp, then

(4.4) ' (Vn(Bry = Bio)) = co(v/'n(Bao — Bao))-

wherecy, qu andp,, are obtained frone, 310 and gy, respectively, by deleting
the coordinates corresponding to zerogjn Now, we have that

P(c(Vn(B; — Bro)) <b, 1 #1o) < P(I # Io)
and that
P(C/(‘/ﬁ(:élo - :310)) <b, I * Io) < P(i % Ip).

By Theorem 3.1,P(I # Ip) — O in both cases. Thus, from (4.3) and (4.4) we
obtain

@.5) i P(Ja(c'(B; — Bi) <b) = m_P(V/n(ch(Buy — o) <)

In both cases, the right-hand side in (4.5) converges/0, cyo?S, o), by
Corollary 4.1. Lemma A.5, in Appendix A.4, shows that the only symmetric and
semipositive definite matri¥ such that

coVoco=c'Ve  foranyc eRY,
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is given byV;; = V?j for (i, j) € Ip x Ip and zero otherwise. Then (4.2) holds and
the proof of the theorem is completel]

We discuss below the limiting covariance matrix given by Theorems 4.1 and 4.2,
under the assumption that the error distribution is Gaussian.

First note that the information bound for a regular estimatop of (4.1) is
azzq—ol, for some knownryg < ¢g; see, for example, Example 5, page 110, in Bickel,
Klaassen, Ritov and Wellner (1993). Then, Theorem 5.1 shows thatdam I,

B4, is asymptotically efficient.

However, if Iy itself is regarded as a parameter, as in our Cases 2 and 3, the
classical information bound theory no longer applies and we need to resort to other
means to assess the performance of our estimators. We thus verify whether our
method, which is not based on a priori knowledgdfleads to estimators with
the same limit behavior as of those constructed knowgd®y Theorem 4.2 and
the continuous mapping theorem, we obtain

(4.6) V1(Bao = Bao) > Noo(0. 02, 1)

and ﬁ(ﬁql - By1) LY 0, whereg,, denotes the vector of zero coefficientsdn
Then, indeedf?q0 achieves the information bound fg,, in (4.1). Notice now
that if Ip is known prior to estimation, then one can ég; to zero, whereas our
method may estimatg,, by nonzero sequences. However, they converge to zero
atann—Y? rate.

For Cases 2 and 3 a much simpler method of estimation in (1.1) is to fit
the model with all covariates included. This will reduce the computing time
considerably, since we will only fit one model. We denote By R? the
corresponding estimator; note that this estimator is different in the two cases, but
here we are only interested in its limiting distribution, so we use the same notation.
This simpler procedure of estimation is also independerig @nd, as above, we
study the performance ¢f by investigating its asymptotic properties under the
assumption thalp is known. Using the same reasoning as in Theorem A.1 and,
with B;, denoting, as above, a vectorl{ having nonzero components only in the

Ip positions, one can show thatn (8 — B4,) 4 Ng(0,022.h). Letl = 5, /02
Consider the partition of in blocks 11, 112, 121, 122, wherel11 and I, have
dimensiong;g x go andgy x g1, respectively. Then, as in Bickel, Klaassen, Ritov
and Wellner [(1993), page 28],

(4-7) \/E(B(IO - ﬂfm) _d> NCIO(O’ II]%Z)

and \/ﬁ(ﬁql — Bg1) = Ny (O, |2_§'1), wherelq112 =111 — 19l 2_21|21 andlop1 =
oo — Il Illl 12. Note that the limiting distribution in (4.7) coincides with the one
in (4.6) only if 112 = 0. Thus, although this procedure might be more appealing
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from a computational point of view, it leads to estimators with higher variance,
if the true model corresponds to a proper subset of the full collection of the X
covariates.

5. Conclusions. This article studies simultaneous estimatiorgoflp and f.
We showed that one can consistently estinfand obtain asymptotically normal
estimators for the selected estimatorfofThe construction of the approximating
spaces used for estimation parallels the one used in parametric or nonparametric
model selection problems, but the penalty term needs to be adjusted for the
semiparametric case. We summarize our findings in each of the cases under
consideration.

e Case 2:1p unknown anda > 1/2 known. O1 and O2 hold. For the ap-
proximating spaces$S; x, ,}1es and the penalty term péh K, o) = 2(|1| +
1rKp.ologn/n, with K, o < n¥/22+1 we showed thaP (I = Ip) — 0 and that
ﬁ(ﬁi — Bip) 4 N, (0, V) for a specified «. The rate of convergeneg of f is
of order O (logn/n?*/2¢+1) 'which is the minimax optimal rate for a given
up to a log: factor.

e Case 3:Ip anda > 1/2 unknown. O1 and O2 hold. For the approximating
spaces Sy k, . }res, With K, o < n¥/?42, a > 0 arbitrarily close to zero, and
for the penalty term pei, K, ,) = 2(|1| + DrK, 4logn/n, we showed that
P(I = Iy) — 0 and that\/ﬁ(/‘}] — By LY N4(0,V) uniformly over o > 1/2.
The rater, of f is of orderO(logn/n2a+tD/(2a+2))

We also note that in Case Iy known, @ unknown, for the approximating
spaceq Sy, k,}k,cx, and the penalty term péh K,,) = 2(|/| + 1)rK, logn/n,
5 d _

we have shown thay/n(Bj, — Biy) —> Ny, (O, 022401) for go = |Io|. Also, r, =

O ((logn/n)?*/2*+1) for any« € (1/2,r). Thus, f is minimax adaptive, up to a

logn factor.

APPENDIX

A.l. Theunicity of theleast squaresestimators. In this section we give the
proof of the asymptotic unicity of our estimators.

LEMMA A.1l. Under Assumptions 2.1 and 2.3,Z/KnZKn is invertible for any
K, € X,, except for an event whose probability tendsto zero asn — oo.

PrROOF Notice that, for anyk,, € X,

Zx,Zk, = (Z(ﬁj(ﬂ)(ﬁ}(ﬂ)

i=1 >1§j,‘/./§i’[(n
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Then Z} Zg, is invertible if and only if & = n=1z"% Zg, is invertible. Let

{{,}’K" be the eigenvalues @, and let(1/¢)max= sugl/¢, - .., 1/¢rk, }- Thus,

L] |s invertible on the set wher€l/¢)max < po < oo, for somepg > 0. By the
proof of Lemma 3.1, page 492, in Baraud (2000), smﬁp)’K” are orthogonal
in Lo(A7, [0, 1]), we have

2

(1) o M

¢ Jmax  uesg,\o} Ilull?

Notice that Assumption 2.1 implies that the density7ofwvith respect toiy is
bounded above and below liy:1 and Lkq, respectively, where & L < oo is the
Lebesgue measure of the compact KetAlso, under Assumptions 2.1 and 2.3,
Proposition A.2, adapted to the cage- 0, ensures that for some constédnt> 0
condition Heon: [|#|lco < D1/F Ny llully, for all u € Sy, of Baraud (2002) holds.
Then, by Lemma 6.2, page 21, and the proof of Proposition 5.2, page 24, in Baraud
(2002), for all pg > L—lhal and for a constanD > 0 depending orL, hg, h1
andpg, we obtain

1 )l
(B )=+ 2, - o)
¢ / max ueSk, \{oy Ilully

2
lul?,

< P( sup 5 >,oo)
uesy, \(oy Il

Dn
< rZNfexp(— - ) -0,
DiN?

where the first inequality holds because the approximating spaces are nested and
the convergence to zero holds sinde =< (n/logn)Y2, by construction. This
concludes the proof of this proposition[]

REMARK A.1. SinceKk, , =< n'/?*1 and K, , = n%/%**2 pelong to X,
by construction (see page 903) the above result implies Zhat Zg, , and

Z' Zk,, are also invertible.

LEMMA A.2. Under Assumptions 2.1-2.5,for any 7 € {1,...,¢}, X} (Ild —
P )X, and X;(Id — Pg, )X;, @ € (1/2,r), are invertible except for an event
whose probablllty tendsto zeroasn — oo.

The proof of this lemma is based on Proposition A.1, which in turn requires the
proof of Lemma A.3. We use the following notation here and in the sequel.

NOTATION A.1l. Let Zm = ((ij)mxm, with Okj = COV(Xk,Xj) —
Cov(6;(T), 0;(T)), for (j.k) € I x I, I €J. Let 8; = (0;(T).....0;(T,)),
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gij = Xij —0;(T}), €j = (e1j,...,&4j), for j € I and 1<i < n. Also, letd
ande be then x [I| matrices having column&; ande;, respectively. Letl, =
{1,...,q). Recall that for anyJ = (Uy, ..., U,)’ we denotg|U||2 = % >r U2

LEMMA A.3. Under Assumptions2.1-2.5,
(A1) |(1d =P )8;], = Or(dogn/m*'?),

forany j e l,.

PROOF Letb, = (logn/n)Y?. First notice that
In
2
A2)  P(l(1d=Pg )0 lIZ=by) < > P(|(1d—Py);]; = bn),
kn=An
with K, = 2%, Next, observe thaPg, 6 is the projection of§; onto Lk, =

{(g(Th),...,8(Tn)); g € Sk,}. For everyK, € X, let 6, x, be the Lo(ur)
projection off; onto Sk, . Then

[(1d =P, )01, <[0; —0;.x,1,

By Assumption 2.9, € D, 2(A). Thus, by (2.7)|6; — Qj,Kn”ﬁT <hiC(y,A) x
Kn_zy. Then, by Markov’s inequality and recalling, by (2.1), tht = [log,(n/
logn)¥/?], b > 3, and denoting, = [log,(n/logn)*/?], we obtain
Jn
2 2
P(J(1d=Pg )0l =ba) < D P(10; =0, =bn)
kn=An

1 nl/2

Jn
A
Z ]’llC(y’ )Ksy (IOgn)l/Z

kn=Ay

A

(Iogn)Zy/b—l/Z
n2v/b-1/2

IA

h1C(y, A)logyn
— 0,

for y > b/4, which concludes the proof of this result]

REMARK A.2. The proof of the above result also implies that (A.1) holds
with K,, replaced by ank,, € X,,. Thus, in particular, it holds fok,, , =< n/2*+1
andk, , = n%/%+2,

PROPOSITIONA.1. Under Assumptions2.1-2.5we have

(A.3) X (1d =Py )X;/n = Sy,
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PrROOF.  With the Notation A.1, each row iX; can be written aﬂ’j + e/j.
Then, for everyj, k € I, we have

(X7 (1d =P )X1) jx
= (&; +0j)/(|d — Pkn)(é‘k +0y)
= E/j(|d — Pkn)ek + E/j(|d — Plen)ak
+ 0;-(|d — Pkn)sk +0lj(|d — P[%n)ak.

(A.4)

Notice thate’ ey /n £ ok, by the law of large numbers and the definitiorogf.
Also, as in the proof of Lemma 5 of Chen (1988),

(A.5) P(n(e P ej)|=¢) < re I E(K,) -0

foranyc > 0, sinceE (K,) < N, = (n/logn)Y/2. Notice now that, by the Cauchy—
Schwarz inequality,

n e (1d —Pg )0 < llesl | (1d — Py )6, 5 0.

sincellejll, —asoj;j, Which is finite, and|(Id — Pzén)ok”n Lo by Lemma A.3.

By symmetry, we also have‘la/j(ld — P e £ 0. For the last term in (A.4),
by the Cauchy—Schwarz inequality and by Lemma A.3, and sidce Pz is
idempotent, we have

n0'(1d — Py )04]
=n"*|((1d— P )6,)'((1d — P )61)]
<[(d—Pg )6l 1(1d—Pg )ox],

£o. 0

(A.6)

REMARK A.3. By Remark A.2 and the proof above, we can conclude that
(A.3) holds with K,, replaced by anykK, € X,. Thus, as before, it holds for
K, o =< nY22+l andK, , = nl/2a+2,

PROOF OFLEMMA A.2. LetP denote any of the two projection matrices.
We show that, for any; € RI'\ {0} the sequence)X’(Id — P)X,c, tends
in probability to co, which implies that the corresponding matfXis positive
definite, hence invertible, except for a set of probability tending to zero.

By Proposition A.1 and Reark A.3, we have thaX’,(Id — P)X; /n £ % for
any of the two projection matrices. Then, by the continuous mapping theorem, for
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anyc; € RT\ {0} we have that, X (Id — P)X;c;/n £ ¢ 2 icr. If we denote
¥ =%y, then, by Assumption 2.3, for any nonzére R?,

I'Sl=Var(l'(X — E(X|T)))
_ / Var(’X|1) dur () > O.
[0.1)

Thus X is positive definite, and so i&;, for any I € J. Hencec, X/ (1d —
P)X;cr £ 0o, which completes the proof of this lemmad

A.2. The consistency of the penalized least squares estimators and rates
of convergence. We first establish Theorem 2.1. This theorem is a direct
consequence of Theorem 2.1 of Baraud (2002). The next proposition verifies that
its condition(Hcon) holds.

PROPOSITION A.2. If Assumptions 2.1 and 2.3 hold, then there exists a
constant K > 1 suchthat, for any g € Sy, ,,

glloc < Kv'g +rNaullgll,

where [ gllco = SUR 5 |g(2)]. Also note that, by Assumption 2.1 and by construc-
tion, g € Lo(K x [0, 1], A). Here we recall that S1,.N, is the largest of the ap-
proximating spaces introduced in Section 2.2, with I, = {1,...,q} and N, given
in(2.1).

PrOOE Recall that{q’)j};]l”l is an orthonormal basis (A7, [0, 1]) for
the linear spacey, defined in Section 2.2. Then we can write any Sy, v,
asg(x,t) = Z’]I.Zlajxj + Z;Z'llqubj(t). By Lemma 1, page 337, in Birgé and
Massart (1998), we have that map 1 Z;’l”ldbf(t) < (2r — 1)2N,,. Also, by
Assumption 2.1, there exists ad > 0 such thatX|, < M with probability 1.

Hence, applying the Cauchy—Schwarz inequality, we obtain

q q rN, rNy
2 2 2 2 2
lgli% =23 ajmaxd xj+23 b7 max > ¢7()

j=1 j=1 j=1 j=1

(A.7) . N,

<207+ = 1)+ | S+ 307
j=1 j=1
Next, we show that there existskq > 1 such that

q r Ny
(A.8) > a?+ Y v? < Kigll?.
j=1 j=1
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Recalltha®;(t) = E(X;|T =t), j=1,...,q.SinceE{(X; —0;(T))¢x(T)} =0
for all j andk, we obtain

rNy
ZaJX +Zb b, (T)}

gl =
(A.9)

q 2 rN, 2

= {Za, (X; —0;(T) } +E{Za]9 (T)+Zb ¢;(T)
j=1

Recall thatX = (0ij)gxq, With o;; = Cov(X;, X;) — Cow6;(T),0;(T)), is
positive definite and so its smallest eigenvalyg, > 0, by Assumption 2.3. Also,
recall that, under Assumption 2.4,has on its support a density with respeckto
that is bounded below bko > 0 and above byi1 < co. Then, from (A.9) and
under Assumption 2.1, with= (ay, ..., a,), it follows that

q 2 q
halgl2 > ligll? = E{ D aj(X; - 9,~<T>)} =d¥a> imny_ d.
j=1

j=1

Let Ax denote the restriction ¢f to the compact sek’. Then

rN, rN,
be: Zb qb, [smce{qb,}’N" is orthonormal inL> (A7, [0, 1])]
j=1 AT
rN, 2
< bid; multiplying and dividing by y (K
_KX(K)J;‘,%A [multiplying g byrx (K)]
2 / 2
< kX(K)(IIgHA + hoE (a'X)?),

(adding and subtracting X and by Assumption 2.1)

1+ hoh1tM?1—1y[gl?  [by Assumption 2.1 and (A.10)]

S }\'X(K) min
From the last two displays above we conclude that (A.8) holds, \Kith=
T (K)(l—i-hoth 2) k) 4+ haa k. This, together with (A.7), concludes the proof
of this proposition. [

PROOF OFTHEOREM2.1. Letsy g, be theLo(u) projection ofs onto Sy k, .
The previous propositio and Assumptions 2.1-2.4 verify that Theorem 2.1 of
Baraud (2002) can be invoked. Then

Ells =31 < C2,inf {[s = s1.x, |12 + pent. Ky) + 9u).
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Recall now thats(x,1) = 8’x + f(t). For any K, € K,, lets,(x,t) = B'x +
fk, (1) € Siy,k,, where we recall thafk, is theLo(ur) projection of f onto Sk, .
Then we have

Ells = 8|7, < C2 inf {lls — sull§; +pentio, Ky) + )
0,8n

. 2
= C2it{[[f = fx, I}, + Pento, Kn) + 9 }. 0

PROOF OFCOROLLARY 2.1. As an immediate consequence of Theorem 2.1
and the definition of,, (2.8), we havé{s — §[|% = Op(r,). Letnow(X*, T*) ~ p,
with (X*, T*) independent of X4, T1), ..., (X,,, T,). Write E* for integration
with respect ta X*, T*) only. Notice thatE*((X* — E*(X*|T*))m(T*)) = 0 for
all bounded measurable functioms Then

Is = §112 = E*(s = HA(X*, T%)
= E*{(f — (T + (B — B) EX(X*|T)?
+ E*{(B - B (X* — EX(X*IT))%.
Since|ls — 5|2 = Op(ra), then
(A.10) E*[(B - B) (X* — E(X*ITH)]* = Op(ra).
Since(X*, T*) is independent of, by construction we also have
(A11) E*[(B - ) (X* — ECX*IT*) = (B — BB — B) = hminl B — BI3.

Thus, from (A.10) and (A.11), and sinégyin > 0, we have that for ang € X,

B = Bla=0p(ra'?. )
If we let f1(x) = B'%, then we also haviefy — fill,i, = Op(ra’®). Thus

If = Fllar = I1Cf = )+ (fr— f0) — (fr— Dl
<5 = sl + 1A= filluy = Op(rY?

forany f € Dy 2(L).
For the empirical norm counterpart of this result, recall that we defined

T, ={|I5]x < 2explog?n)}.

From Baraud [(2002), proof of Theorem 1.1, page 19] we find for some constants
c1, c2 > 0 that

(A.12) P(T¢) < ci{exp(—2log? n) + n®exp(—czlog®n)} — 0.
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Thus, it is enough to study the convergence rat¢ ©f 7|, onT,. Notice that
onTl', we haves =5, 8 =g andf = f. Thus

. A 2.0 .
I/ — fl21r, < 2|15 — s|1r, + - > (B - BYX¥r,
i=1

23 .
<205 —slz + =3B = BYXi}2 = 0p(ra),
i=1

becausep — B)'n 1 Y7_; X; X[ (B — Bo) = Op(ry), sincelf — Bl5 = Op(ry), as

above, andz—lzyzlg,.g; converges in probability. Alsgs — s||2 = Op(r,), by

Corollary 3.2, page 474, in Baraud (2000), the conditions of which are verified by

our assumptions and Proposition A.2. This completes the proof of this corollary.
O

PROOF OFCOROLLARY 3.1. We evaluate now (2.8) for each penalty choice.

For the penalty term (3.4), the infimum is achieved kgjy =< (n/logn)Y/2+1
and hence, = O((logn/n)%/22+1),

For (3.5),r, = O(logn/n?*/?**1y is obtained by replacing, by K, o =
nl/2+1in (2.8).

For (3.6),r, = O(logn/n(%+D/(a+2)y js obtained by replacing, by K, , =
nl/2+2in (2.8). O

A.3. The asymptotic normality of ﬁqo-

LEMMA A.4. Under Assumptions2.1-2.5f f € D, 2(L), we have

(A.13) &'(Ild—Pg )f//n >0,
(A.14) 6'(1d— Pz )W/ 5 0,
(A.15) 6'(Id— Py )f/v/n 0,
(A.16) ePg W/J/n>0  asn— oo,

The above results hold uniformly over o € (1/2,r) andy € (b/4,r),b > 3.

PROOF OF THEOREM 4.1. Letf = (f(T1),..., f(T,)) and W = (Wq,
..., W,)'. Recall Notation A.1, specialized now fo= Iy. By Lemma A.1, except
for an event with probability tending to zero,

Vi (Bag = Bao) = V1 (Xjo(1d = P )X1o) X (1d = P )f

(A.17) .
+/n(Xp(1d =Py )Xp) X (1d = Pg JW.
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SinceXQ,O =60+ ¢, then
(X, (1d - P[%n)Xlo)_lX/,o(ld —Pg )i
(A.18) =n(Xy(1d =Py )Xp) ™"
X (0'(1d = Pg Yf//n+e'(1d— P Yt/ /n),

and
VA(XGp(1d =Py )X1o) X (1d =P JW
(A.19) =n(Xo(1d =Py )Xz) ™
x (€'W//n—'PW//n+0'(Id =Py \W/J/n).
By Proposition A.1 applied té = Io, n(X/IO(I d— PIQH)XIO)—l £ Zq—ol asn — oo.
Also, notice thae’'W = }""_; D;, whereD; = W;¢; are i.i.d. vectors wittED; = 0

andE(D;D;) = oZEqO. Then it follows from the multivariate central limit theorem
that

(A.20) W/ i =Y Di//i 5 Nyy(0, 02%,,).
i=1
Then, by (A.17)—(A.20), Lemma A.4 and Slutsky’s lemma,
A d _
\/’_l(ﬁqo — Bgo) = Ngo(0, 022(101). .

PROOF OFLEMMA A.4. We begin by proving (A.13). Recall the definition
of ¢j;, j=1...,q, i =1,...,n, introduced in Appendix A.1. Then, by
Assumption 2.1, for some constafit > 0 we havels;;| < C, for all j andi,
except for a set of measure zero. Recall thatis theL,(ur) projection of f onto
Sk, and sofg, € Lg, ={(g(T1), ..., g(T,)) |g € Sk, }. Then, for every > 0, by
Markov’s inequality and (2.7),

Jn
P(|s;(|d—P1€n)f/\/ﬁ|>c)§ > P(le’;(1d = Pa, )f/v/n| > ¢)

kn=Ap
C2 Jn 5 C2 Jn 2
== 2 Elf=Paulfl=—5 > Elf—fxl,
kn=Ay kn=A,
C2 Jn 2
Y -l
kn=A,

C2 o1
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The second result of this lemma is very similar to (A.13). Ndwill play the
role ofe; andé@; the role off. To emphasize more the similarity, we shall in fact

prove thawW’(ld — P,en)o‘,-/\/ﬁ £ ofor eachj € Ip. As above, applying Markov’s
inequality and using now the independenc&ofand( X, T), we obtain

In
P(IW'(1d — P[en)oj/\/;ﬂ >c)< > P(W(ld =Py, )0/+/n| > c)
kn: n

1
= ZmCy. A Y =0,

for anyc > 0 andy > b/4, by (2.7) applied t@#; and recalling Assumption 2.5.
For the third result of this lemma notice that, by the same argument as in (A.6),
with f replaced now by, we obtain

w200 (1d — P )f| < [ (1d— Py )8, If —Pg ],
</n|(1d—=Pg )0, If —Fil..

where we recall now the definition gf from Section 2.2 and that = f1r, .

P(/n](1d =Py )0, IIf = Fll, = )
= P(Vn|(1d = Pg )8 ;] If —Fll, = ¢, T)
+ P(Vul(1d—Pg )8, ], If —Fll, = ¢, T5)

< P(Vul(ld=Pg )0, ,If =Fll, = c) + P(T) — O,

by Corollary 3.1 and Lemma A.3, and sineg€I";,) — 0 by Theorem 2.1 in Baraud
(2002).

Finally, notice that if in (A.5) we replaces; by W, we obtain, up to
constants, thaP(ln_l/ze’ijnW| > ¢) < E(K,)/cy/n — 0, sinceE (K,) < N, =

(n/logn)¥/2 by (2.1). This completes the proof of this lemmé

PROOF OFCOROLLARY 4.1. The proof of this corollary follows immediately
by replacingK,, throughout the proofs of Theorem 4.1 and Lemma A.4 by
K, andk, ,, respectively. O]

A4,

LEMMA A.5. LetV be a symmetric, semipositive definite ¢ x g matrix. Let
VO be a symmetric, positive definite gg x go matrix. Let ¢ € R? and ¢g € R,
co=(c1,...,cqy). Thentheonly V which satisfies

(A.21) cgVoo=c'Ve  foranyceRY
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0
V= ( v Oyox(g-a0) ) ,
O(q—qo)xqo O(q—qo)X(q—qo)

where the O matrices have all 0 elements.

PROOF Since we seek/ symmetric and satisfying (A.21), thevt has, in
general, the structure below:

0
V:( , v A%X(q—qo) )’
A(q —40) Xq0 B(q —40)%(¢—q0)

with arbitrary A andB. Since we require (A.21) to hold fany ¢ € R?, we show
that A and B are zero matrices of appropriate dimensions. First we note that
for any symmetric, semipositive definite mati& x'Cx = 0 for any x implies

C = 0O, with O being the zero matrix. Now lete R? be arbitrary and write it as

¢ =(cgp, c1), forcg € R9790, Then

(A.22) Ve = C6VOCO + cgAct + iAo + ¢4 Bei.
We find thenA andB such that (A.22) holds, or equivalently, such that
(A.23) 2cpAc1+c1Bc1=0  foranyc e RY.

Since we want the above display to hold for anyg R?, then it should, in
particular, hold forc = (0, ¢1). Thus, from (A.23) B must satisfy

(A.24) c¢1Bc1=0  foranyc; e R17%,

Now note that since/ is semipositive definite, so i8. This, in connection
to (A.24), implies then thaB = O, _yq)x(4—q0)- Then we have to find\ that
satisfiescyAc1 = 0, for anyco € R% andc; € R774. Thus, the equation must
be, in particular, satisfied for the canonical basi®R# andR?~40, respectively,
which implies thath = O x4 —40), Which completes the proof of this lemmal]

LEMMA A.6 (Rosenthal’s inequality). Let Uy, ..., U, be independent cen-
tered random variableswith valuesin R. For any p > 2, we have

n p n n p/2
> U SC(P)<EZ|Ui|p+<EZU,-2> )
i=1

i=1 i=1
where C(p) > 0 dependsonly on p.

E

For a proof of this inequality see, for example, Petrov (1995).
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