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SELECTING OPTIMAL MULTISTEP PREDICTORS FOR
AUTOREGRESSIVE PROCESSES OF UNKNOWN ORDER

BY CHING-KANG ING

Academia Sinica and National Taiwan University

We consider the problem of choosing the optimal (in the sense of
mean-squared prediction error) multistep predictor for an autoregressive
(AR) process of finite but unknown order. If a working AR model (which
is possibly misspecified) is adopted for multistep predictions, then two
competing types of multistep predictors (i.e., plug-in and direct predictors)
can be obtained from this model. We provide some interesting examples to
show that when both plug-in and direct predictors are considered, the optimal
multistep prediction results cannot beguaranteed by correctly identifying
the underlying model’s order. This finding challenges the traditional model
(order) selection criteria, which usually aim to choose the order of the
true model. A new prediction selection criterion, which attempts to seek
the best combination of the prediction order and the prediction method, is
proposed to rectify this difficulty. When the underlying model is stationary,
the validity of the proposed criterion is justified theoretically. To obtain this
result, asymptotic properties of accumulated squares of multistep prediction
errors are investigated. In addition to overcoming the above difficulty, some
other advantages of the proposed criterion are also mentioned.

1. Introduction and overview. In recent years there has been growing
interest in the study of multistep prediction in various time series models [e.g.,
Findley (1984), Tiao and Xu (1993), Bhansali (1996, 1997), Haywood and
Tunnicliffe-Wilson (1997), Hurvich and Tsai (1997), Findley, Pötscher and Wei
(2001, 2003) and Ing (2003), among others]. Through these previous efforts, some
new parameter estimation, prediction and model selection theories related to this
research topic have been established. However, the problem of how to choose
models to minimize multistep mean-squared prediction error (MSPE) has still not
been clarified even for autoregressive (AR) processes. This motivated our study.

To fix ideas, let us assume that observationsx1, . . . , xn are generated from the
stationary AR model

xt+1 =
p1∑
i=1

aixt+1−i + εt+1,(1.1)

where 1≤ p1 < ∞ is unknown,ap1 �= 0, theεt ’s are (unobservable) uncorrelated
random noises with zero mean and common varianceσ 2, and the characteristic
polynomialA(z) = 1−a1z−· · ·−ap1z

p1 has no zeros inside or on the unit circle.
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This last assumption implies thatxt+1 has a one-sided infinite moving-average
representation

xt+1 =
∞∑
i=0

biεt+1−i ,

where bi = 1 for i = 0 and |bi| ≤ c0e
−c1i for i ≥ 1 and some positive

numbersc0 and c1. For later reference we also define the parameter space of
interest:

� = {
(d1, . . . , dp1)

′ :−∞ < di < ∞ for 1 ≤ i ≤ p1 and

1− d1z − · · · − dp1z
p1 �= 0 for any complex number|z| ≤ 1

}
.

To predict xn+h, h ≥ 1, under the situation wherep1 is unknown, it is
common to use a working AR model, which is possibly misspecified, to replace
the true underlying AR(p1) model. Then a natural predictor ofxn+h can be
obtained by repeatedly using the fitted (by least squares) working model with
the unknown future values replaced by their own forecasts. In the following
discussion this predictor is referred to as the plug-in predictor. More specifically,
let the order of the working AR model be denoted byk and let the least-squares
estimator of the coefficient vector in the working model be denoted byân(1, k) =
(â1,n(k), . . . , âk,n(k))′, whereân(1, k) satisfies

�̂n(1, k)ân(1, k) = 1

n − k

n−1∑
j=k

xj (k)xj+1

with x(k) = (xj . . . , xj−k+1)
′ and

�̂n(h, k) = 1

n − h − k + 1

n−h∑
j=k

xj (k)x′
j (k).

Then, forh ≥ 1 the plug-in predictor can be expressed by

x̂n+h(k) = x′
n(k)ân(h, k),(1.2)

whereân(h, k) = Âh−1
n (k)ân(1, k), and withIm and0m, respectively, denoting an

identity matrix and a vector of zeros of dimensionm,

Ân(k) =
(

ân(1, k)
∣∣∣ Ik−1

0′
k−1

)
.

(Note that Â0
n(k) = Ik .) On the other hand, the direct predictor ofxn+h,

x̌n+h(k), suggested by Findley (1984), is also frequently used as an alternative,
where x̌n+h(k) is obtained through a linear least-squares regression ofxt+h on
xt , . . . , xt−k+1, that is,

x̌n+h(k) = x′
n(k)ǎn(h, k),(1.3)
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whereǎn(h, k) satisfies

�̂n(h, k)ǎn(h, k) = 1

n − h − k + 1

n−h∑
j=k

xj (k)xj+h.

Viewing (1.2) and (1.3), it is obvious that the plug-in and direct predictors
are identical whenh = 1. For h ≥ 2 Ing [(2003), Theorems 1 and 2] showed
that the plug-in predictor has an advantage over the direct predictor in situations
where the order of the working model,k, is not less thanp1. More specifically,
ash ≥ 2 andk ≥ p1, the MSPE of the plug-in predictor,

MSPEPn,h(k) = E
(
xn+h − x̂n+h(k)

)2
,

and that of the direct predictor,

MSPEDn,h(k) = E
(
xn+h − x̌n+h(k)

)2
,

have the property

lim
n→∞

MSPEDn,h(k) − σ 2
h

MSPEPn,h(k) − σ 2
h

> 1,(1.4)

whereσ 2
h = σ 2 ∑h−1

j=0 b2
j . Therefore,̂xn+h(k) is asymptotically more efficient than

x̌n+h(k) whenk ≥ p1 andh ≥ 2. For more details, see (2.2)–(2.4) of Section 2.
Ing (2003) also compared the prediction efficiencies ofx̂n+h(k) andx̂n+h(k + 1)

and those of̌xn+h(k) andx̌n+h(k + 1) for k ≥ p1. Under certain conditions it was
shown in Theorem 3 of Ing (2003) (see also Theorem 2.3 of Section 2) that

lim
n→∞

MSPEPn,h(k + 1) − σ 2
h

MSPEPn,h(k) − σ 2
h

> 1(1.5)

and

lim
n→∞

MSPEDn,h(k + 1) − σ 2
h

MSPEDn,h(k) − σ 2
h

> 1(1.6)

hold for h ≥ 1 andk ≥ p1. Inequalities (1.4)–(1.6) suggest that from the MSPE
point of view, x̂n+h(p1) seems to be the optimal choice among two competing
families of candidate predictors,

family I = {x̂n+h(1), . . . , x̂n+h(K)}
and

family II = {x̌n+h(1), . . . , x̌n+h(K)},
whereK is known to satisfyK ≥ p1. [Note that we sometimes use(k,1) to
denotex̂n+h(k) and use(k,2) to denotex̌n+h(k).] Surprisingly, whenh ≥ 2 this
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conjecture is not true, provided(a1, . . . , ap1)
′ falls into some nonempty subset

of �.
To see this, let us begin with the linear predictor ofxt+h,h ≥ 1, based on the

infinite past,xt−j , j ≥ 0, with the smallest MSPE. Let this predictor be denoted
by x̃t+h. Then we have

x̃t+h =
ph∑

j=1

aj (h,ph)xt+1−j ,

whereaph
(h,ph) �= 0 and(

a1(h,ph), . . . , aph
(h,ph)

)′ = aD(h,ph)

with aD(h, k) = �−1(k)(γh, . . . , γh+k−1)
′, �(k) = E(x1(k)x′

1(k)) and γj =
E(xtxt−j ). We also have

xt+h = x̃t+h + ηt,h,(1.7)

whereηt,h = ∑h−1
j=0 bjεt+h−j . Model (1.7) is referred to as theh-step prediction

model that corresponds to model (1.1) [note that whenh = 1, aj (1,p1) = aj for
j = 1, . . . , p1]. One notable but often disregarded feature of model (1.7) is that
whenh > 1,ph can be strictly less thanp1 and vary withh. For example, ifp1 = 2,
then the corresponding two-step prediction model is

xt+2 = (a2
1 + a2)xt + a2a1xt−1 + εt+2 + a1εt+1.

Hencep2 = 1 < p1 if a1 = 0. A similar situation also arises in the three-step
prediction case, provided thata2

1 + a2 = 0. This phenomenon can occur even if
all parameters in the one-step prediction model are large in magnitude. This also
creates some unexpected difficulties in assessing the performances of the plug-in
and direct predictors.

Note that whenph < p1 it seems more interesting to compare the performances
of x̂n+h(p1) andx̌n+h(ph) rather than those of̂xn+h(k) andx̌n+h(k). In Section 2,
some interesting examples are given to show that whenph < p1 andh ≥ 2,

lim
n→∞

MSPEDn,h(ph) − σ 2
h

MSPEPn,h(p1) − σ 2
h

< 1(1.8)

can occur. Moreover, since the value of the above limit depends on unknown
parameters, it is not possible to determine the rankings ofx̂n+h(p1) andx̌n+h(ph)

from the point of view of MSPE. This phenomenon further leads us to face
a fundamental problem while selecting multistep predictors; that is, instead of
the multistep predictor obtained by identifying the one-step prediction model’s
order, can a multistep predictor be constructed to minimize the multistep MSPE
directly? As mentioned, this problem is complicated when both families I and II
are considered. In this situation, the prediction order and the prediction method
must be taken into account simultaneously.
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This article aims to resolve the above problem. The strategy adopted herein is
to find a statistic for each MSPEPn,h(k) and MSPEPn,h(k), k = 1, . . . ,K , and
to show that the ordering of these statistics coincides with the ordering of their
corresponding multistep MSPEs. To achieve this goal, we consider the multistep
generalizations of accumulated prediction errors (APEs) based on sequential plug-
in and direct predictors, namely,

APEPn,h(k) =
n−h∑
i=mh

(
xi+h − x̂i+h(k)

)2(1.9)

and

APEDn,h(k) =
n−h∑
i=mh

(
xi+h − x̌i+h(k)

)2
,(1.10)

respectively, wheremh denotes the smallest positive number such thatâi(h,K)

andǎi (h,K) are well defined for alli ≥ mh. Note that the APE withh = 1, namely,
APEPn,1(k) = APEDn,1(k), was first proposed by Rissanen (1986) for the
purpose of determiningp1. Subsequently, the statistical properties of APEPn,1(k)

were investigated by Wei (1987, 1992) in stochastic regression models, which
included model (1.1) as a special case. However, as indicated in Section 3, Wei’s
approach cannot be directly applied to the case ofh ≥ 2. Theorems 3.1 and 3.2
(also in Section 3) are devoted to dealing with this difficulty. In particular,
the results obtained in these theorems show that the ordering of the multistep
MSPEs of the predictors in families I and II can be well preserved by their
corresponding multistep APEs whenn is sufficiently large. Based on this finding,
we propose the following predictor selection procedure (k̂n, ĵn), where 1≤ k̂n ≤ K

and 1≤ ĵn ≤ 2 (recall thatk̂n denotes the prediction order and̂jn denotes the
method of prediction):

STEP 1. Definek̂
(1)
D,n = arg min1≤k≤K APEDn,1(k).

STEP 2. Define

k̂
(h)
D,n = arg min

1≤k≤K
APEDn,h(k)

and define

k̂(1,h)
n = arg min

k̂
(1)
D,n≤k≤K

APEPn,h(k).

STEP 3. If APEDn,h(k̂
(h)
D,n) > APEPn,h(k̂

(1,h)
n ), then (k̂n, ĵn) = (k̂

(1,h)
n ,1);

otherwise(k̂n, ĵn) = (k̂
(h)
D,n,2).
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We show in Theorem 3.4 of Section 3 that with probability 1,(k̂n, ĵn) ultimately
can choose the best predictor among families I and II regardless of whether
ph < p1 or ph = p1. This property is referred to as the asymptotic efficiency;
see Section 3 for the explicit definition. Moreover,p1 can also be consistently
estimated bŷk(1)

D,n.
It is worth noting that in this article more than a treatment of the difficulty

caused by (1.8) is offered: (1) To the author’s knowledge, (k̂n, ĵn) is the first
criterion that is designed to choose the optimal multistep predictor from the
“honest” prediction point of view. By honest prediction, we mean the prediction
for the future of the observed time series; see Rissanen (1987, 1989) for details.
In the context of time series, most model selection criteria for prediction are
obtained or justified under the assumption that the processes used for estimation
and for prediction are independent; see, for example, finite prediction error [FPE;
Akaike (1969)], Akaike information criterion [AIC; Akaike (1974)] andSn(k)

[Shibata (1980)]. However, this type of prediction, which differs from Rissanen’s
idea, does not seem to be natural for time series analysis; see also Ing and Wei
(2004). Recently, Ing and Wei (2004) obtained optimality for honest predictions
of AIC (referred to as same-realization predictions in their article) in stationary
AR(∞) processes. However, because their main concern was the case of one-
step predictions, they did not deal with the problem of choosing the optimal
combination of prediction order and prediction method. (2) This article shows
that accumulated squares of sequential prediction errors can be used to choose
a good predictor even in certain nonstandard situations. The sequential prediction
error of APEPn,h(k) with h ≥ 2 involves a nonlinear transformation of the one-
step least-squares estimators. While the sequential prediction error of APEDn,h(k)

with h ≥ 2 is directly obtained from (h-step) least squares, its martingale structure
no longer exists [see the discussion after (3.6)]. These nonstandard situations,
which are not encountered with the one-step APE, challenge the validity of the
multistep generalizations of APE for model (predictor) selection. By establishing
the asymptotic efficiency of (k̂n, ĵn), we clarify this ambiguity.

This article is organized as follows. In Section 2, some preliminary results
from Ing (2003) and some examples that motivated this work are introduced.
The asymptotic efficiency of(k̂n, ĵn) is established in Section 3. In Section 4, an
extension of the proposed criterion to subset autoregressions is given. Concluding
remarks are given in Section 5. Some technical results, which are useful for
obtaining the APEPn,h(k) asymptotic expression withk ≥ p1 are provided in the
Appendix.

2. Preliminary results and motivating examples. Throughout this section,
it is assumed that in model (1.1) theεt ’s are i.i.d. random variables with mean 0
and varianceσ 2 > 0. We also assume that the distribution function ofε1, F(·), has
the property, for some positive numbersα, η andM ,

|F(x) − F(y)| ≤ M|x − y|α,(2.1)
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provided |x − y| < η. Theorems 2.1 and 2.2 provide asymptotic expressions
for MSPEPn,h(k) and MSPEDn,h(k) with k ≥ p1, respectively. Their proofs can
be found in Theorems 1 and 2 of Ing (2003).

THEOREM 2.1. Assume that {xt } satisfies model (1.1).Also assume that {εt }
satisfies (2.1)and

E
(|ε1|θh

)
< ∞,

where θh = max{8,2(h + 1)} + δ for some δ > 0. Then, for k ≥ p1 and h ≥ 1,

n
(
MSPEPn,h(k) − σ 2

h

) = f1,h(k) + O(n−1/2),(2.2)

where f1,h(k) = tr(�(k)Lh(k)�−1(k)L′
h(k))σ 2 with Lh(k) = ∑h−1

j=0 bjA
h−1−j (k),

A(k) =
(

aD(1, k)
∣∣∣ Ik−1

0′
k−1

)

and A0(k) = Ik.

THEOREM 2.2. Let the assumptions of Theorem 2.1 hold, with θh replaced
by 8+ δ for some δ > 0. Then, for k ≥ ph and h ≥ 1,

n
(
MSPEDn,h(k) − σ 2

h

) = f2,h(k) + O(n−1/2),(2.3)

where f2,h(k) = tr{�−1(k)cov(
∑h−1

j=0 bjxj (k))}σ 2 and, for a random vector y,
cov(y) = E{(y − E(y))(y − E(y))′}.

Bhansali [(1997), Proposition 3.2] showed that fork ≥ p1 ≥ 1 andh ≥ 2,

f2,h(k)

f1,h(k)
> 1.(2.4)

Therefore, ifk ≥ p1 ≥ 1 andh ≥ 2, thenx̂n+h(k) is asymptotically more efficient
than x̌n+h(k) in the sense of (1.4). For example, assumeh = 2 andk ≥ p1 ≥ 1.
Then

f2,2(k) = {k + (k + 2)a2
1}σ 2,(2.5)

and

f1,2(k) = {(k + 2)a2
1 + k − 1+ a2

k}σ 2.(2.6)

(Note that|ap1| < 1 andak = 0 for k ≥ p1.) Hence, fork ≥ p1,

lim
n→∞

MSPEDn,2(k) − σ 2
h

MSPEPn,2(k) − σ 2
h

− 1 = 1− a2
k

(k + 2)a2
1 + k − 1+ a2

k

> 0.

The following theorem shows thatf1,h(k) andf2,h(k) with k ≥ p1 are strictly
increasing functions ofk.
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THEOREM 2.3. (i) Assume h ≥ 1 and k ≥ p1. Then

f1,h(k + 1)

f1,h(k)
> 1,(2.7)

provided

bh−1 �= 0(2.8)

or

l∗ �= 0k+1,(2.9)

where with the convention that bj = 0 for j < 0, l∗ = (
∑h−1

i=0 bh−1−k−ibi, . . . ,∑h−1
i=0 bh−1−ibi)

′ is a (k + 1)-dimensional vector.
(ii) Assume h ≥ 1 and k ≥ p1. Then

f2,h(k + 1)

f2,h(k)
> 1.(2.10)

REMARK 1. A proof of Theorem 2.3 can be found in Ing [(2003), Theorem 3].
When 1≤ h ≤ 5, it can be shown that either (2.8) or (2.9) holds for allk ≥ p1,
and hence (2.7) holds without extra constraints on the parameter space. However,
for generalh (especially whenh � k), we are not able to establish (2.7) without
conditions (2.8) or (2.9). For more details on these conditions, see Ing [(2003),
Remark 2].

As immediate consequences of Theorems 2.1–2.3, we obtain (1.5) and (1.6).
Inequalities (1.4)–(1.6) seem to suggest that

lim
n→∞

E(xn+h − x̂n+h(p1))
2 − σ 2

h

E(xn+h − x̃n+h(k))2 − σ 2
h

≤ 1,(2.11)

where x̃n+h(k) is any predictor in family I or II. However, as indicated by
Remark 1, whenh is large, (2.7) cannot be guaranteed without (2.8) or (2.9).
Therefore, it is not clear whether (2.11) still holds in the situation where
both (2.8) and (2.9) are violated. Moreover, we will show that (2.11) can fail
whenph < p1. To see this, let us begin with a simple extension of Theorem 2.2,
which provides an asymptotic expression for MSPEDn,h(k) with k ≥ ph.

COROLLARY 2.4. Let the assumptions of Theorem 2.2hold. Then (2.3)holds
with k ≥ ph and h ≥ 1.

Since Corollary 2.4 can be shown by an argument similar to that used to show
Theorem 2.2, we omit the details. Whenph < p1, it would be more interesting to
compare

lim
n→∞

(
MSPEPn,h(p1) − σ 2

h

)
and lim

n→∞
(
MSPEDn,h(ph) − σ 2

h

)
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rather than

lim
n→∞

(
MSPEPn,h(k) − σ 2

h

)
and lim

n→∞
(
MSPEDn,h(k) − σ 2

h

)
.

The following two examples show that the advantage of the plug-in predictor can
vanish in this kind of comparison.

EXAMPLE 1. Let h = 2 andp2 < p1. Then we see thatb1 = a1 = 0 and
p2 = p1 − 1. This fact and Corollary 2.4 yield thatf2,2(p1) − f2,2(p2) = σ 2.
On the other hand, by (2.5) and (2.6) we havef2,2(p1) − f1,2(p1) = (1− a2

p1
)σ 2.

Therefore,f1,2(p1)−f2,2(p2) = a2
p1

σ 2 > 0. As a result, we have, forp1−p2 = 1,

lim
n→∞

MSPEDn,2(p2) − σ 2
2

MSPEPn,2(p1) − σ 2
2

= f2,2(p2)

f1,2(p1)
< 1

and hencěxn+2(p2) is asymptotically more efficient than̂xn+2(p1) in this case.

For generalh, the ratio off2,h(ph)/f1,h(p1) can be larger or smaller than 1, as
shown in the following example.

EXAMPLE 2. First assume thatp1 = 2 andh = 3. By (2.5), (2.6) and the fact
that whenk ≥ p1,

f2,h+1(k) − f1,h+1(k) = f2,h(k) − f1,h(k) + e′
kLh(k)�−1(k)L′

h(k)ekσ
4

[see Section 2 of Ing (2003)], wheree′
k = (1,0, . . . ,0) is ak-dimensional vector,

f2,3(2) − f1,3(2) = (1− a2
2)σ

2 + e′
2L2(2)�−1(2)L′

2(2)e2σ
4.

Some algebraic manipulations yielde′
2L2(2)�−1(2)L′

2(2)e2σ
4 = (1 + a2)(1 −

a2 − 4a2
1a2)σ

2. Therefore

f2,3(2) − f1,3(2) = 2(1+ a2)(1− a2 − 2a2
1a2)σ

2.(2.12)

Note that Bhansali [(1997), page 442] indicated thatf2,3(2) − f1,3(2) = (1 +
a2)(1 − a2 − 2a2

1a2)σ
2. However, one can see that the leading constant 2 on the

right-hand side of (2.12) is needed by examining a simple example which assumes
that−1 < a1 < 1 anda2 = 0.

Now, assumeb2 = a2
1 + a2 = 0. Thenp3 = 1 < 2 = p1 and, in view of (2.12),

f2,3(2) − f1,3(2) = 2(1+ a2)(1− a2 + 2a2
2)σ 2.(2.13)

By Corollary 2.4,

f2,3(1) = 1− 4a2 + a2
2

1− a2
σ 2,(2.14)
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and

f2,3(2) − f2,3(1) =
(

1− a2 + 2a2
2

1− a2

)
σ 2.(2.15)

According to (2.13)–(2.15),

f2,3(p3)

f1,3(p1)
= f2,3(1)

f1,3(2)
= 1− 4a2 + a2

2

−4a2 + 2a2
2 − 2a3

2 + 4a4
2

.(2.16)

Let the rational function on the right-hand side of (2.16) be denoted byg(a2) and
let the unique solution of the equationg(a2) = 1 with −1 < a2 < 0 be denoted
by T . Then it can be shown thatT ≈ −0.54977,g(a2) < 1 if −1 < a2 < T and
g(a2) > 1 if T < a2 < 0. Therefore, whenh ≥ 3 andph < p1, it is not possible to
determine the rankings of̂xn+h(p1) andx̌n+h(ph) without knowledge of the AR
parameters.

To illustrate the results obtained in Example 2, four AR(2) models,

xt = 0.9xt−1 − 0.81xt−2 + εt ,(2.17)

xt = 0.8xt−1 − 0.64xt−2 + εt ,(2.18)

xt = 0.6xt−1 − 0.36xt−2 + εt(2.19)

and

xt = 0.5xt−1 − 0.25xt−2 + εt ,(2.20)

are considered in our simulation study, whereεt ’s are independent and iden-
tically N (0,1) distributed. The empirical estimates of(MSPEDn,3(1) − σ 2

3 )/

(MSPEPn,3(2) − σ 2
3 ) for the above four models are obtained based on 20,000

replications forn = 150, 300, 500 and 1000. These empirical estimates and corre-
sponding limiting values [given by (2.16)] are summarized in Table 1. One can see
from these empirical results thatx̌n+3(1) is more efficient than̂xn+3(2) for mod-
els (2.17) and (2.18), and is less efficient thanx̂n+3(2) for the other two models.

TABLE 1
Simulation results for (MSPEDn,3(1) − σ2

3 )/(MSPEPn,3(2) − σ2
3 )

Model

n (2.17) (2.18) (2.19) (2.20)

150 0.700 0.891 1.398 1.719
300 0.688 0.843 1.365 1.782
500 0.649 0.879 1.365 1.762

1000 0.673 0.872 1.379 1.761

f2,3(1)/f1,3(2) 0.667 0.868 1.382 1.76
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This conclusion coincides with that obtained from (2.16). In addition, the empir-
ical estimates of(MSPEDn,3(1) − σ 2

3 )/(MSPEPn,3(2) − σ 2
3 ) are rather close to

their corresponding limiting values even forn = 150.
As a conclusion, we note that when both the plug-in and direct predictors

are taken into account, the optimal multistep prediction results cannot be
guaranteed by correctly identifyingp1 or ph. Hence, a predictor selection criterion
that directly aims at the minimal MSPE (among those of the predictors in
families I and II) is called for.

3. Main results. Since we attempt to choose a candidate predictor among
families I and II that has having the minimal MSPE (at least for largen), the loss
functions of the candidate plug-in and direct predictors are defined as

L1,h(k) =
{

lim
n→∞n

(
MSPEPn,h(k) − σ 2

h

)
, if p1 ≤ k ≤ K,

∞, if k < p1

(3.1)

and

L2,h(k) =
{

lim
n→∞n

(
MSPEDn,h(k) − σ 2

h

)
, if ph ≤ k ≤ K,

∞, if k < ph,
(3.2)

respectively, where the existence of the above limits is ensured by Theo-
rems 2.1 and 2.2. To ensure the prediction loss due to underspecification is much
larger than the loss due to overspecification, the loss function values of(k,1) with
k < p1 and of (k,2) with k < ph are set to∞. A predictor selection criterion,
(k̃n, j̃n) with 1 ≤ k̃n ≤ K and 1≤ j̃n ≤ 2, is said to be asymptotically efficient if

P
(
(k̃n, j̃n) ∈ Ch,K eventually

) = 1,(3.3)

where

Ch,K =
{
(k, j) : 1 ≤ k ≤ K,1≤ j ≤ 2 and

Lj,h(k) = min
1≤k0≤K,1≤j0≤2

Lj0,h(k0)

}
.

Therefore, with probability 1(k̃n, j̃n) can ultimately choose a predictor having the
minimal loss function value.

REMARK 2. Note thatCh,K can contain more than one element. To see this,
assume thath = 3, p1 = 2, a2

1 + a2 = 0, a2 = T ≈ −0.54977 andK ≥ 2. (Recall
that p3 = 1 < p1 in this case.) By Theorems 2.1 and 2.3, Corollary 2.4 and
Remark 1, we havef1,3(k) < f1,3(k + 1), f2,3(k) < f2,3(k + 1) andf1,3(k) <

f2,3(k) for k ≥ 2. Moreover, by Example 2,f1,3(2) = f2,3(1). As a result there are
two elements, namely (1, 2) and (2, 1), inC3,K .
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The goal of this section is to show that (3.3) is fulfilled by (k̂n, ĵn). We assume
in this section that{εt} in model (1.1) is a martingale difference sequence with
respect to an increasing sequence ofσ -fields {Ft }, that is,εt is Ft -measurable,
andE(εt |Ft−1) = 0 a.s. for allt . We also assume that for someα > 2,

E(ε2
t |Ft−1) = σ 2 and sup

t
E(|εt |α|Ft−1) < ∞ a.s.(3.4)

Note that fork ≥ p1,

APEPn,h(k) =
n−h∑
i=mh

{
ηi,h − x′

i (k)L̂i,h(k)
(
âi(1, k) − aD(1, k)

)}2(3.5)

and fork ≥ ph,

APEDn,h(k) =
n−h∑
i=mh

{
ηi,h − x′

i(k)
(
ǎi(h, k) − aD(h, k)

)}2
,(3.6)

whereηi,h is defined in (1.7) and̂Li,h(k) = ∑h−1
j=0 bj Â

h−1−j
i (k), with Â

h−1−j
i (k)

defined below (1.2). The asymptotic properties of APEPn,h(k) = APEDn,h(k)

with h = 1 were investigated by Wei (1987, 1992) in stochastic regression models.
One of the key steps in Wei’s analysis is to express the (second-order) residual sum
of squares of the fitted (by least squares) model in a recursive form. His approach,
however, cannot be directly applied to the situation considered in this article. This
is because for APEPn,h(k) with h ≥ 2 there is a random matrix̂Li,h(k) that lies
betweenx′

i(k) and (âi(1, k) − aD(1, k)), and for APEDn,h(k) with h ≥ 2 the
rightmost component

∑n−h
j=k xj (k)ηj,h of the centered estimator

ǎi(h, k) − aD(h, k) = 1

i − k − h + 1
�̂−1

i (h, k)

n−h∑
j=k

xj (k)ηj,h

is no longer a martingale transformation. Therefore, some new technical tools are
needed to overcome these difficulties.

Theorems 3.1 and 3.2 describe the asymptotic behavior of APEPn,h(k) and
APEDn,h(k) in the correctly specified case.

THEOREM 3.1. Assume that {xt} satisfies model (1.1). Also assume condi-
tion (3.4).Then for k ≥ p1 and h ≥ 1,

APEPn,h(k) −
n−h∑
i=mh

η2
i,h = σ 2f1,h(k) logn + o(logn) a.s.(3.7)
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PROOF. Rewrite the right-hand side of (3.5) as
n−h∑
i=mh

(ηi,h)2 − 2
n−h∑
i=mh

{
x′
i(k)L̂i,h(k)

(
âi (1, k) − aD(1, k)

)}
ηi,h

+
n−h∑
i=mh

{
x′
i(k)L̂i,h(k)

(
âi(1, k) − aD(1, k)

)}2
.

This and Chow (1965) yield that

APEPn,h(k) −
n−h∑
i=mh

(ηi,h)2

(3.8)

=
n−h∑
i=mh

{
x′
i(k)L̂i,h(k)

(
âi(1, k) − aD(1, k)

)}2(1+ o(1)
) + O(1) a.s.

To deal with the right-hand side of (3.8), we first introduceQ∗
n(h, k), where

Q∗
n(h, k) =

(
n−h∑
j=k

xj (k)εj+1

)′
S′Vn−hS

(
n−h∑
j=k

xj (k)εj+1

)
(3.9)

with S = �(k)Lh(k)�−1(k) andVi = (
∑i

j=k xj (k)x′
j (k))−1.

Following Lai and Wei [(1982), equation (2.16)], we obtain a recursive
expression forQ∗

n(h, k),

Q∗
n(h, k) +

n−h∑
i=mh

{
x′
i(k)Vi−1S

(
i−1∑
j=k

xj (k)εj+1

)}2

c−1
i

= Q∗
mh+h−1(h, k) +

n−h∑
i=mh

x′
i (k)S′Vi−1Sxi(k)ε2

i+1

+ I + II + III ,

(3.10)

where

I = 2
n−h∑
i=mh

x′
i (k)S′Vi−1S

(
i−1∑
j=k

xj (k)εj+1

)
εi+1,

II = −2
n−h∑
i=mh

(
x′
i (k)S′Vi−1xi (k)

)
x′
i(k)Vi−1S

(
i−1∑
j=k

xj (k)εj+1

)
εi+1c

−1
i

and

III = −
n−h∑
i=mh

(
x′
i(k)S′Vi−1xi(k)

)2
ε2
i+1c

−1
i
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with ci = (1 + x′
i(k)Vi−1xi(k)). By (3.4), Theorem 2 of Lai and Wei (1985) and

the martingale strong law of Lai and Wei (1982), we have

lim
n→∞

1

n
V −1

n = �(k) a.s.,(3.11)

which together with (3.4) and an analogy with (2.31) of Wei (1987) yields

Q∗
n(h, k) = o(logn) a.s.(3.12)

Sincecn = (1 − x′
n(k)Vnxn(k))−1, by Theorem 4 of Lai and Wei (1983) [which

ensures that limn→∞ x′
n(k)Vnxn(k) = 0 a.s.], we have

lim
n→∞ cn = 1 a.s.(3.13)

Now, by (3.4), (3.12), (3.13) and Chow (1965), we can rewrite (3.10) as

(
1+ o(1)

) n−h∑
i=mh

{
x′
i (k)Vi−1S

(
i−1∑
j=k

xj (k)εj+1

)}2

= o(logn) + O(1) + (
1+ o(1)

)
σ 2

n−h∑
i=mh

x′
i(k)S′Vi−1Sxi (k)(3.14)

+ I + II + III a.s.

Reasoning as in the proof of Lemma 2.1 of Wei (1992), we obtain

lim
n→∞

σ 2

logn

n−h∑
i=mh

x′
i(k)S′Vi−1Sxi (k) = f1,h(k) a.s.(3.15)

It is shown in the Appendix that

I = o(logn) a.s. and II= o(logn) a.s.(3.16)

Moreover, by (3.11), Theorem 3 of Lai and Wei (1983), (2.10) and (2.12) of Lai
and Wei (1982), and an analogy with Lemma 2.1 of Wei (1992),

III = O(1) + o

(
n−h∑
i=mh

∣∣x′
i (k)S′Vi−1x′

i (k)
∣∣ε2

i+1

)
a.s.

= o(logn) a.s.

This, together with (3.14)–(3.16), yields

n−h∑
i=mh

{
x′
i (k)Vi−1S

(
i−1∑
j=k

xj (k)εj+1

)}2

= σ 2f1,h(k) logn + o(logn) a.s.

(3.17)
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In view of (3.8) and (3.17) this proof is completed if we can show that

n−h∑
i=mh

{
x′
i(k)L̂i,h(k)

(
âi (1, k) − aD(1, k)

)}2

=
n−h∑
i=mh

{
x′
i(k)Vi−1Ŝi

(
i−1∑
j=k

xj (k)εj+1

)}2

=
n−h∑
i=mh

{
x′
i(k)Vi−1S

(
i−1∑
j=k

xj (k)εj+1

)}2

+ o(logn) a.s.,

(3.18)

where Ŝi = V −1
i−1L̂i,h(k)Vi−1. Since by (3.11) and Theorem 1 of Lai and Wei

(1983) limn→∞ Ŝn = S a.s., this fact and (A.1) imply that

n−h∑
i=mh

{
x′
i(k)Vi−1(Ŝi − S)

(
i−1∑
j=k

xj (k)εj+1

)}2

= o(logn) a.s.(3.19)

Consequently, (3.18) follows from (3.17), (3.19) and the Cauchy–Schwarz
inequality. �

THEOREM 3.2. Let the assumptions of Theorem 3.1 hold. Then for k ≥ ph

and h ≥ 1,

APEDn,h(k) −
n−h∑
i=mh

η2
i,h = σ 2f2,h(k) logn + o(logn) a.s.(3.20)

PROOF. We only show (3.20) forh = 2, because the result forh ≥ 3 can be
obtained similarly and that forh = 1 was verified in Wei (1992). Reasoning as
for (3.8), we have, fork ≥ ph,

APEDn,2(k) −
n−2∑
i=mh

(ηi,2)
2

= (
1+ o(1)

) n−2∑
i=mh

{
x′
i (k)Vi−2

(
i−2∑
j=k

xj (k)ηj,2

)}2

+ O(1) a.s.

(3.21)

Now consider

Q̄n(2, k) =
(

n−2∑
i=k

xi (k)ηi,2

)′
Vn−2

(
n−2∑
i=k

xi(k)ηi,2

)
.
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Following Theorem 1 of Wei (1987) and (3.14), we have(
1+ o(1)

)
T (k) = Q̄mh+1(2, k) − Q̄n(2, k) + B(k) + C(k),(3.22)

where

T (k) =
n−2∑
i=mh

{
x′
i(k)Vi−1

(
i−1∑
j=k

xj (k)ηj,2

)}2

,

B(k) =
n−2∑
i=mh

x′
i(k)Vixi(k)η2

i,2

and

C(k) = 2
n−2∑
i=mh

x′
i(k)Vi−1

(
i−1∑
j=k

xj (k)ηj,2

)
c−1
i ηi,2.

[Notice that by Theorem 3 of Lai and Wei(1983) and (3.11), (3.13) still holds with
ph ≤ k < p1.]

In what follows we deal withQ̄n(2, k), B(k) andC(k) separately. For̄Qn(2, k),
by an analogy with Theorem 3 of Wei (1987),

Q̄n(2, k) = o

(
log

(
n−2∑

i=k−1

‖xi (k)‖2 + ‖a1xi+1(k)‖2

))
a.s.

= o(logn) a.s.,

(3.23)

where the second equality is ensured by (3.11).
ForB(k) we have

B(k) =
n−2∑
i=mh

x′
i (k)Vixi (k)ε2

i+2 + a2
1

n−2∑
i=mh

x′
i(k)Vixi(k)ε2

i+1

+2a1

n−2∑
i=mh

x′
i (k)Vixi (k)εi+1εi+2.

(3.24)

According to Theorem 1 of Wei (1987), (3.11), (3.13) and Chow (1965), the right-
hand side of (3.24) can be further expressed as

σ 2(1+ a2
1)k logn + o

(
n−2∑
i=mh

(
x′
i(k)Vixi(k)

)2
ε2
i+2

)
+ o(logn) a.s.

= σ 2(1+ a2
1)k logn + o(logn) a.s.

(3.25)

Therefore

B(k) = σ 2(1+ a2
1)k logn + o(logn) a.s.(3.26)
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To deal withC(k), we have

1
2C(k) = D(k) + E(k) + F(k) + G(k) + H(k),(3.27)

where

D(k) =
n−2∑
i=mh

x′
i(k)Vi−1

(
i−2∑
j=k

xj (k)ηj,2

)
c−1
i (εi+2 + a1εi+1),

E(k) = a2
1

n−2∑
i=mh

x′
i(k)Vi−1xi−1(k)c−1

i εiεi+1,

F (k) = a1

n−2∑
i=mh

x′
i(k)Vi−1xi−1(k)c−1

i ε2
i+1,

G(k) =
n−2∑
i=mh

x′
i(k)Vi−1xi−1(k)c−1

i εi+1εi+2,

H(k) = a1

n−2∑
i=mh

x′
i(k)Vi−1xi−1(k)c−1

i εiεi+2.

By (3.4), (3.13) and Lemma 2(iii) of Lai and Wei (1982), we can show that

D(k) = o

(
n−2∑
i=mh

{
x′
i(k)Vi−1

(
i−2∑
j=k

xj (k)ηj,2

)}2)
+ O(1) a.s.(3.28)

Similarly,

E(k) = o

(
n−2∑
i=mh

(
x′
i(k)Vi−1xi−1(k)

)2
ε2
i

)
+ O(1) a.s.

= o

(
n−2∑
i=mh

x′
i−1(k)Vi−1xi−1(k)ε2

i

)
+ O(1) a.s.

= o(logn) a.s.,

(3.29)

where the second equality is ensured by (3.13) and the Cauchy–Schwarz
inequality, and the last equality is guaranteed by the same argument used to obtain
Theorem 1 of Wei (1987). The same reasoning that shows (3.29) also gives

G(k) = o(logn) a.s.(3.30)

and

H(k) = o(logn) a.s.(3.31)
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We now deal withF(k). By an analogy with Lai and Wei (1982) we can show
that

n−2∑
i=mh

x′
i(k)Vi−1xi−1(k)c−1

i ε2
i+1

= σ 2
n−2∑
i=mh

x′
i(k)Vi−1xi−1(k)c−1

i

+ o

(
n−2∑
i=mh

|x′
i(k)Vi−1xi−1(k)|

)
+ O(1) a.s.

(3.32)

By an argument similar to that used for showing Lemma 2.1 of Wei (1992), the
Cauchy–Schwarz inequality and (3.13), we have

n−2∑
i=mh

x′
i(k)Vi−1xi−1(k)c−1

i = tr
(
�−1(k)E1(k)

)
logn + o(logn) a.s.,

whereE1(k) = E(xk(k)x′
k+1(k)), and

n−2∑
i=mh

|x′
i(k)Vi−1xi−1(k)| = O(logn) a.s.

These results, (3.32) and the fact that tr(�−1(k)E1(k)) = a1(1, k) [note that
a1(1, k) = a1 ask ≥ p1; see Section 1 for the definition ofaj (h, k)] together imply
that

F(k) = a1a1(1, k)σ 2 logn + o(logn) a.s.(3.33)

In view of (3.27)–(3.31) and (3.33) we have

C(k) = 2a1a1(1, k)σ 2 logn

+ o

(
n−2∑
i=mh

{
x′
i(k)Vi−1

(
i−2∑
j=k

xj (k)ηj,2

)}2)
+ o(logn) a.s.

(3.34)

Since

n−2∑
i=mh

{
x′
i(k)Vi−1

(
i−2∑
j=k

xj (k)ηj,2

)}2

=
n−2∑
i=mh

{
x′
i(k)Vi−1

(
i−1∑
j=k

xj (k)ηj,2 − xi−1(k)ηi−1,2

)}2

,

(3.35)



SELECTING OPTIMAL MULTISTEP PREDICTORS 711

by the Cauchy–Schwarz inequality and an argument similar to that used to show
(3.29), the right-hand side of (3.35) equals(

1+ o(1)
)
T (k) + o(logn) a.s.(3.36)

This fact, (3.22), (3.23), (3.26) and (3.34) yield(
1+ o(1)

)
T (k) = {(1+ a2

1)k + 2a1a1(1, k)}σ 2 logn + o(logn) a.s.(3.37)

According to (2.3), (3.21) and (3.37), (3.20) is obtained if we can show that

n−2∑
i=mh

{
x′
i (k)Vi−2

(
i−2∑
j=k

xj (k)ηj,2

)}2

= T (k) + o(logn) a.s.(3.38)

To show (3.38), first observe that

x′
i (k)Vi−1

(
i−1∑
j=1

xj (k)ηj,2

)

= x′
i (k)Vi−2

i−2∑
j=k

xj (k)ηj,2 + x′
i(k)Vi−2xi−1(k)ηi−1,2

− x′
i(k)Vi−2xi−1(k)

1+ x′
i−1(k)Vi−2xi−1(k)

x′
i−1(k)Vi−2

i−2∑
j=k

xj (k)ηj,2

− x′
i(k)Vi−2xi−1(k)

1+ x′
i−1(k)Vi−1xi−1(k)

x′
i−1(k)Vi−2xi−1(k)ηi−1,2.

This fact, Theorem 4 of Lai and Wei (1983), and an argument similar to that used
to show (3.36) yield

T (k) = (
1+ o(1)

) n−2∑
i=mh

(
x′
i (k)Vi−2

i−2∑
j=k

xj (k)ηj,2

)2

+ o(logn) a.s.,

as asserted.�

REMARK 3. Interestingly, it can be seen from Corollary 2.4 and Theo-
rems 2.1, 2.2, 3.1 and 3.2 that the constant associated with the 1/n term of
MSPEPn,h(k), f1,h(k), appears in the logn term of APEPn,h(k) and that asso-
ciated with the 1/n term of MSPEDn,h(k), f2,h(k), appears in the logn term of
APEDn,h(k). Whenp1 andph are known, these special features allow determina-
tion of the sign off1,h(p1) − f2,h(ph) by comparing the values of APEPn,h(p1)

and APEDn,h(ph). This is because, according to (3.7) and (3.20), iff1,h(p1) >

f2,h(ph), then

P
(
APEPn,h(p1) > APEDn,h(ph) eventually

) = 1(3.39)
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and iff1,h(p1) < f2,h(ph), then

P
(
APEPn,h(p1) < APEDn,h(ph) eventually

) = 1.(3.40)

Equalities (3.39) and (3.40) show that iff1,h(p1) �= f2,h(ph), then with prob-
ability 1 the sign of APEPn,h(p1) − APEDn,h(ph) ultimately equals the sign
of f1,h(p1) − f2,h(ph).

Theorem 3.3 below deals with the asymptotic performances of APEPn,h(k) and
APEDn,h(k) in underspecified cases.

THEOREM 3.3. Let the assumptions of Theorem 3.1 hold. Then for
1 ≤ k < p1 and h ≥ 1,

1

n

(
APEPn,h(k) −

n−h∑
i=mh

η2
i,h

)

= (
aD(h,p1) − aD(h, k)

)′
�(p1)

(
aD(h,p1) − aD(h, k)

)
+ (

a(h, k) − aD(h, k)
)′
�(k)

(
a(h, k) − aD(h, k)

)
+ o(1) a.s.,

(3.41)

where a(h, k) = Ah−1(k)aD(1, k) with A(k) defined after (2.2)and aD(h, k) in the
first term of the right-hand side viewed as a p1-dimensional vector with undefined
entries set to zero, and for 1≤ k < ph and h ≥ 1,

1

n

(
APEDn,h(k) −

n−h∑
i=mh

η2
i,h

)

= (
aD(h,ph) − aD(h, k)

)′
�(ph)

(
aD(h,ph) − aD(h, k)

)
+ o(1) a.s.,

(3.42)

where aD(h, k) in the right-hand side is viewed as a ph-dimensional vector with
undefined entries set to zero.

PROOF. Following Hemerly and Davis (1989) [which deals with APEPn,h(k)

with h = 1], we have

APEPn,h(k) =
n−h∑
i=mh

{
ηi,h + x′

i(p1)
(
aD(h,p1) − âi (h, k)

)}2

=
n−h∑
i=mh

η2
i,h + (

1+ o(1)
) n−h∑
i=mh

{
x′
i (p1)

(
aD(h,p1) − âi(h, k)

)}2(3.43)

+ O(1) a.s.,
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whereâi (h, k) is now viewed as ap1-dimensional vector with undefined entries set
to zero and the second equality is ensured by Chow (1965). Since (3.11) ensures
that limn→∞ ân(h, k) = a(h, k) a.s., we can rewrite (3.43) as

APEPn,h(k) = (
1+ o(1)

)(
aD(h,p1) − a(h, k)

)′
×

n−h∑
i=mh

xi(p1)x′
i(p1)

(
aD(h,p1) − a(h, k)

)

+
n−h∑
i=mh

η2
i,h + o

(
n−h∑
i=mh

x′
i (p1)xi(p1)

)
+ O(1) a.s.

Consequently, (3.41) follows from (3.11) and the fact that(
aD(h,p1) − aD(h, k)

)′
�(p1)

(
aD(h, k) − a(h, k)

) = 0,

whereaD(h, k) anda(h, k) are viewed asp1-dimensional vectors with undefined
entries set to zero.

Since the proof for (3.42) is similar to that for (3.41), to save space we omit the
details. �

Armed with the previous results, we are now in a position to show the
asymptotic efficiency of(k̂n, ĵn).

THEOREM 3.4. Let the assumptions of Theorem 3.1 hold. Then, for K ≥ p1
(k̂nĵn) is asymptotically efficient in the sense of (3.3).

PROOF. First note that fork ≥ p1, f2,1(k) = k. Hence Theorem 3.2 yields
that for k > p1, P (APEDn,1(p1) < APEDn,1(k) eventually) = 1. Since the first
term on the right-hand side of (3.42) is positive, by Theorems 3.2 and 3.3 we
have fork < p1, P (APEDn,1(p1) < APEDn,1(k) eventually) = 1. As a result,
k̂
(1)
D,n = p1 + o(1) a.s. This fact and Theorems 3.1–3.3 further ensure that

P
(
(k̂n, ĵn) ∈ Ch,K eventually

) = 1,

as asserted.�

REMARK 4. In this remark, we consider the problem of choosingph, h ≥ 1,
under model (1.1). Forh = 1 we have shown in the proof of Theorem 3.4 that

k̂
(h)
D,n = ph + o(1) a.s.(3.44)

This motivated us to ask whether (3.44) still holds withh ≥ 2. To investigate this
question first assumeph = p1 (or, equivalently,bh−1 �= 0). By (ii) of Theorem 2.3
and Theorems 3.2 and 3.3, this assumption guarantees that (3.44) holds withh ≥ 2.
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[In fact, by (i) of Theorem 2.3 and Theorems 3.1 and 3.3, this assumption also
ensures that forh ≥ 2,

lim
n→∞ k̂

(h)
P ,n = p1 = ph a.s.,

where k̂
(h)
P ,n = argmin1≤k≤K APEPn,h(k).] However, whenh is large andph ≤

k < p1 it is very difficult to verify f2,h(k) < f2,h(k + 1), which is an essential
property for (3.44) withh ≥ 2 to be true. [Note that (2.10) only ensures that
f2,h(k) < f2,h(k + 1) holds withk ≥ p1.] Consequently, with arguments used in
the present article, (3.44) cannot be guaranteed without extra constraints on the
parameter space.

To establish a strongly consistent estimator ofph without constraints on
the parameter space, we consider the multistep generalization of the Bayesian
information criterion (BIC),

BICn,h(k) = logσ̂ 2
Dh,n(k) + kcn

n
,

where h ≥ 1, cn → ∞, cn = o(n), lim infn→∞ cn/(logn) > 0 and σ̂ 2
Dh,n(k) =

(1/n)
∑n−h

i=k (xi+h − x′
i(k)ǎn(h, k))2. When the assumptions of Theorem 3.2 hold,

then arguments similar to those used to show Theorem 3.2 of the present study and
Theorem 3.6 of Wei (1992) yield that

k̂
(h)
B,n = ph + o(1) a.s.,

where k̂
(h)
B,n = arg min1≤k≤K BICn,h(k). Therefore, the difficulty encountered

with k̂
(h)
D,n does not exist for̂k(h)

B,n.

4. An extension to subset autoregressions. When someai ’s with 1 ≤ i ≤
p1 − 1 in model (1.1) or someai(h,ph)’s with 1 ≤ i ≤ ph − 1 in model (1.7)
are zero, a multistep predictor, which isobtained without estimating these zero
coefficients, can be more efficient than the best predictor among families I and II.
This motivated us to consider the selection of subset autoregressive models.
Several different algorithms are available for choosing the one-step prediction
model under this more general setting [e.g., McClave (1975) and Haggan and
Oyetunji (1984)]. While these algorithms have their own advantages, no algorithm
has been shown to possess optimal properties from the (multistep) MSPE point of
view. An algorithm which is modified from (k̂n, ĵn) is therefore proposed in this
section as a remedy.

To begin with, letθi = 1 if xt+1−i is included as a regressor variable for
predictingxt+h and letθi = 0 if xt+1−i is not included. Then the family of all
(nontrivial) subset autoregressions can be expressed as


 = {
θ = (θ1, . . . , θK) : θi = 0 or 1 for 1≤ i ≤ K, andθi = 1 for at least onei

}
,



SELECTING OPTIMAL MULTISTEP PREDICTORS 715

where K is as defined in Section 1. When modelθ ∈ 
 is adopted, the
corresponding plug-in and direct predictors ofxn+h are denoted bŷxn+h(θ)

[or (θ,1)] and x̌n+h(θ) [or (θ,2)], respectively, and the multistep MSPEs
of x̂n+h(θ) and x̌n+h(θ) are denoted by MSPEPn,h(θ) and MSPEDn,h(θ),
respectively. In addition, we also use APEPn,h(θ) and APEDn,h(θ), respectively,
to denote the multistep APEs based on sequential plug-in and direct predictors
when θ ∈ 
 is used. Letθ(1) = (θ

(1)
1 , . . . , θ

(1)
K ) and θ(2) = (θ

(2)
1 , . . . , θ

(2)
K ) be

members of
. Then we sayθ(1) ≤ θ(2) if θ
(1)
i ≤ θ

(2)
i for all 1 ≤ i ≤ K and

θ(1) � θ(2) if θ
(1)
i > θ

(2)
i for at least onei. Now the modified model selection

procedure (̂θn ĵn) with θ̂n ∈ 
 and 1≤ ĵn ≤ 2, is given as follows.

STEP 1. Defineθ̂
(1)
D,n = arg minθ∈
 APEDn,1(θ).

STEP 2. Define

θ̂
(h)
D,n = arg min

θ∈

APEDn,h(θ)

and define

θ̂ (1,h)
n = arg min

θ∈
1
APEPn,h(θ),

where
1 = {θ : θ ∈ 
 andθ̂
(1)
D,n ≤ θ}.

STEP 3. If APEDn,h(θ̂
(h)
D,n) > APEPn,h(θ̂

(1,h)
n ), then (θ̂n, ĵn) = (θ̂

(1,h)
n ,1);

otherwise(θ̂n, ĵn) = (k̂
(h)
D,n,2).

To show the validity of (̂θn, ĵn), let us recall models (1.1) and (1.7)
again, and defineθ∗ = (θ∗

1 , . . . , θ∗
K) and θ∗∗ = (θ∗∗

1 , . . . , θ∗∗
K ), where θ∗

i = 1
if ai �= 0 and θ∗

i = 0 if ai = 0 or i > p1, and θ∗∗
i = 1 if ai(h,ph) �= 0 and

θ∗∗
i = 0 if ai(h,ph) = 0 or i > ph. Therefore,θ∗ and θ∗∗, respectively, are

the most parsimonious correct models for the plug-in and direct predictors.
Following (3.1) and (3.2), the loss functions ofx̂n+h(θ) andx̌n+h(θ) are defined as

E1,h(θ) =



lim
n→∞n

(
MSPEPn,h(θ) − σ 2

h

)
, if θ∗ ≤ θ ,

∞, if θ∗ � θ ,
(4.1)

and

E2,h(k) =



lim
n→∞n

(
MSPEDn,h(θ) − σ 2

h

)
, if θ∗∗ ≤ θ ,

∞, if θ∗∗ � θ ,
(4.2)

respectively, where the existence of the above limits is guaranteed by arguments
similar to those used to obtain Theorems 2.1 and 2.2. [Note that we also obtain
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expressions for the above limits like those on the right-hand sides of (2.2) and (2.3).
However, these expressions are not presented here, since they are not needed
in the following analysis.] A model selection criterion(θ̃n, j̃n) with θ̃n ∈ 
 and
1 ≤ j̃n ≤ 2 is said to be asymptotically efficient if

P
(
(θ̃n, j̃n) ∈ Bh,K eventually

) = 1,(4.3)

where

Bh,K =
{
(θ, j) : θ ∈ 
, 1 ≤ j ≤ 2 andEj,h(θ) = min

θ0∈
,1≤j0≤2
Ej0,h(θ0)

}
.

The main result of this section is stated as follows.

THEOREM 4.1. Let the assumptions of Theorem 3.1 hold. Then (θ̂n, ĵn) is
asymptotically efficient in the sense of (4.3).

Theorem 4.1 can be shown by arguments similar to those used to show
Theorems 3.1–3.4. To save space, the details are omitted. Theorems 3.4 and 4.1
yield that for sufficiently largen, the predictor selected by(θ̂n, ĵn) is at least as
efficient as the one selected by(k̂n, ĵn). Before leaving this section, we note that
the main disadvantage of(θ̂n, ĵn) is its time-consuming nature, since it needs to
compute the multistep APEs for all possible subset autoregressive models and for
two different prediction methods. However, with the availability of fast computers
and efficient recursive formulas the computer time needed to complete this task is
not expensive, providedK is not too large.

5. Concluding remarks. One of the main purposes of this article was to find
the optimal multistep predictor in finite-order AR models from the honest MSPE
point of view. Since both the plug-in and the direct predictors are considered, it
is not possible to achieve this goal by identifying the order of the smallest correct
model, as discussed in Section 2. To resolve this problem, a new predictor selection
procedure,(k̂n, ĵn) is proposed. We show that for sufficiently largen, (k̂n, ĵn) can
achieve the above goal by choosing the best combination of the prediction order
and the prediction method. In Section 4 this procedure is extended to the situation
where all possible subset autoregressions are included as candidate models. On the
other hand, the parameter set where (1.8) occurs has Lebesgue measure zero. So
one may argue that this is unlikely to occur in practice and, hence, the necessity to
construct(k̂n, ĵn) may be questioned. In contrast to this criticism, it is worth noting
that(k̂n, ĵn) asymptotically dominates traditional multistep prediction procedures,
which select the one-step prediction order by certain consistent order selection
criteria and then forecastxn+h through the plug-in (or direct) method. More
precisely, the predictor selected by(k̂n, ĵn) has at least the same asymptotic
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efficiency as those predictors selected by the traditional procedures for all points
of � and is asymptotically more efficient than the latter for some nonempty subset
of � [since the set where (1.8) occurs is nonempty forh ≥ 2]. Moreover, some
other advantages of(k̂n, ĵn), besides offering a treatment of the case where (1.8)
occurs, are also emphasized at the end of Section 1.

The validity of (̂kn, ĵn) is justified in the stationary case. It is also believed that
the predictor chosen by this procedure may also perform well in unstable cases.
However, since the proofs of Theorems 3.1 and 3.2 (especially Theorem 3.1)
rely highly on stationary assumptions, their extensions to unstable cases are not
straightforward. Further work is needed to overcome these technical difficulties.

This article assumes that the order of the underlying AR model is finite. Hence,
the frequently discussed AR(∞) model is excluded. When the data are known
to be generated from an AR(∞) model, it is common to use an AR model of
increasing (withn) order to predict future observations; see, for example, Shibata
(1980), Gerencsér (1992), Bhansali (1996) and Ing and Wei (2003, 2004). In
this situation, Ing and Wei (2004) showed that AIC is asymptotically efficient
for the honest one-step prediction. On the other hand, Ing and Yu (2002) showed
that the one-step APE is not asymptotically efficient in this situation. To rectify
the difficulty of using APE in AR(∞) models, Ing and Yu (2002) proposed
a modification of APE, APEδ. Instead of accumulating squares of sequential
prediction errors from stagem1 [see (1.9)], APEδ is obtained by accumulating
squares of sequential prediction errors from stagenδ, where 0< δ < 1 may
depend onn. Under certain regularity conditions, they showed that APEδ is
asymptotically efficient in AR(∞) models. Motivated by this result, it is expected
that an efficient multistep predictor selection criterion can be established in an
AR(∞) model after asymptotic behavior of APEPn,h(k) and of APEDn,h(k),
with h ≥ 2 andmh replaced bynδ, 0 < δ < 1, is clarified under this model. As
a final remark, we note that when it is a priori unknown whether the order of the
underlying AR model is finite or infinite, the choice between the original APE
and its modification (by Ing and Yu) becomes a challenging problem even for
one-step predictions. Can a modification of (k̂n, ĵn) be obtained for the optimal
multistep prediction without order assumptions? This is thesubject of ongoing
research.

APPENDIX

PROOF OF(3.16). By (3.11), Theorem 3 of Lai and Wei (1983) and Chow
(1965), (3.16) is guaranteed by showing that

n−h∑
i=mh

‖xi (k)‖2

∥∥∥∥∥ 1

i − k

i−1∑
j=k

xj (k)εj+1

∥∥∥∥∥
2

= O(logn) a.s.(A.1)
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To obtain (A.1), first observe that the term on the left-hand side of (A.1) can be
expressed as

n−h∑
i=mh

{(
k−1∑
l=0

x2
i−l

)(
1

(i − k)2

i−1∑
j1=k

i−1∑
j2=k

(
k−1∑
c=0

xj1−cxj2−c

)
εj1+1εj2+1

)}

=
k−1∑
l=0

k−1∑
c=0

{
n−h∑
i=mh

(
1

(i − k)2

i−1∑
j1=k

i−1∑
j2=k

xj1−cxj2−cεj1+1εj2+1

)
x2
i−l

}
.

(A.2)

In view of (A.2), if we can show that
n−h∑
i=mh

(
1

(i − k)2

i−1∑
j1=k

i−1∑
j2=k

xj1−cxj2−cεj1+1εj2+1

)
x2
i−l = O(logn) a.s.(A.3)

for each 0≤ l ≤ k − 1 and 0≤ c ≤ k − 1, then (A.1) follows. In what follows we
prove this property only for the case ofc = l = 0, because the results for otherc’s
andl’s can be obtained similarly.

Note that
n−h∑
i=mh

(
1

(i − k)2

i−1∑
j1=k

i−1∑
j2=k

xj1xj2εj1+1εj2+1

)
x2
i

≤ C∗
n−h∑

i=k+1

(
1

i2

i−1∑
j1=k

i−1∑
j2=k

xj1xj2εj1+1εj2+1

)
x2
i

= C∗
n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1

(
n−h∑
i=r

x2
i

i2

)
,

(A.4)

whereC∗ is some positive number andr = max{j1 + 1, j2 + 1}. Observe that

n−h∑
i=r

x2
i

i2 =
n−h∑
i=r

(
s2
i − iγ0

i2

)
−

(
s2
i−1 − (i − 1)γ0

(i − 1)2

)

+
n−h∑
i=r

(s2
i−1 − (i − 1)γ0)(2i − 1)

(i − 1)2i2 + γ0

n−h∑
i=r

1

i2

= An + Bn,r + Cn,r + Dn,r,

wheres2
i = ∑i

j=1x2
j , γ0 = E(x2

1),

An = s2
n−h − (n − h)γ0

(n − h)2
,

Bn,r = −s2
r−1 − (r − 1)γ0

(r − 1)2
,
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Cn,r =
n−h∑
i=r

(s2
i−1 − (i − 1)γ0)(2i − 1)

(i − 1)2i2

and

Dn,r = γ0

n−h∑
i=r

i−2.

This and (A.4) yield

n−h∑
i=k+1

(
1

i2

i−1∑
j1=k

i−1∑
j2=k

xj1xj2εj1+1εj2+1

)
x2
i

=
n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1(An + Bn,r + Cn,r + Dn,r).

(A.5)

Since

n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1An = o(1)
1

n

(
n−h−1∑
j=k

xjεj+1

)2

a.s.,

by Wei [(1987), equation (2.30)] and (3.11),

n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1An = o(logn) a.s.(A.6)

By (3.11), an analogy with Lemma 2.1 of Wei (1992) and Chow (1965),

n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1Bn,r

= −
{

n−h−1∑
j=k

x2
j ε2

j (s
2
j−1 − (j − 1)γ0)

(j − 1)2

+ 2
n−h−1∑
j2=k+1

(j2−1∑
j1=k

xj1εj1+1

)
s2
j2−1 − (j2 − 1)γ0

(j2 − 1)2
xj2εj2+1

}

= o(logn) + o

(
n−h−1∑
j2=k+1

(
1

j2

j2−1∑
j1=k

xj1εj1+1

)2

x2
j2

)
a.s.

(A.7)
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Exchanging the order of summation, we have

n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1Cn,r

=
n−h∑

i=k+1

(
i−1∑
j=k

xjεj+1

)2 {s2
i−1 − (i − 1)γ0}(2i − 1)

i2(i − 1)2

= o

(
n−h∑

i=k+1

(
i−1∑
j=k

xj εj+1

)2
1

i2

)
a.s.,

(A.8)

where the second equality is ensured by (3.11). Observe that

n−h∑
i=k+1

(
i−1∑
j=k

xjεj+1

)2
1

i2

=
n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1

n−h∑
i=r

1

i2

=
n−h−1∑
j=k

x2
j ε2

j+1

n−h∑
i=j+1

1

i2

+ 2
n−h−1∑
j2=k+1

(j2−1∑
j1=k

xj1εj1+1

)
xj2

(
n−h∑

i=j2+1

1

i2

)
εj2+1

= O(logn) + o

(
n−h−1∑
j2=k+1

(
1

j2

j2−1∑
j1=k

xj1εj1+1

)2

x2
j2

)
a.s.,

(A.9)

where the last equality follows from an argument similar to that used for showing
(A.7). As a result, (A.8) and (A.9) yield

n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1Cn,r

= o(logn) + o

(
n−h−1∑
j2=k+1

(
1

j2

j2−1∑
j1=k

xj1εj1+1

)2

x2
j2

)
a.s.

(A.10)
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Reasoning as for (A.9),

n−h−1∑
j1=k

n−h−1∑
j2=k

xj1xj2εj1+1εj2+1Dn,r

= o

(
n−h−1∑
j2=k+1

(
1

j2

j2−1∑
j1=k

xj1εj1+1

)2

x2
j2

)
+ O(logn) a.s.

(A.11)

Consequently, (A.3) [and hence (A.1)] follows from (A.4)–(A.7), (A.10) and
(A.11). �
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