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Asymptotic properties of the loc&Vhittle estimator in the nonstationary
case(d > %) are explored. For% < d < 1, the estimator is shown to be
consistent, and its limit distribution and the rate of convergence depend on
the value ofd. Ford = 1, the limit distribution is mixed normal. Fef > 1
and when the process has a polynomial trend of omder%, the estimator is
shown to be inconsistent and to converge in probability to unity.

1. Introduction. Semiparametric estimation of the memory parameigr (
in fractionally integrated [(d)] time series has attracted much recent study and
is attractive in empirical applications because of its general treatment of the
short memory component. Two commonlged semiparametric estimators are
log periodogram (LP) regression and local Whittle estimation. LP regression is
popular mainly because of the simplicity of its construction as a linear regression
estimator. Local Whittle estimation involves numerical methods but is more
efficient than LP regression. The local Whittle estimator was proposed by Kiinsch
(1987) and Robinson (1995) showed its consistency and asymptotic normality
for d e (—%, %). Velasco (1999) extended Robinson’s results to show that the
estimator is consistent faf € (—%, 1) and asymptotically normally distributed
ford e (—3,3).

The present paper studies the asymptotic properties of the local Whittle
estimator in the nonstationary case fér> % including the unit root case
and the case where the process has a polynomial time trend. These cases are
of high importance in empirical work especially with economic time series,
which commonly exhibit nonstationary behavior and show some evidence of
deterministic trends as well as long range dependence. The asymptotic properties
of the local Whittle estimator in the nonstationary case over the I’egbl(]%, 1)
were explored in Velasco (1999). Velasco also showed that, upon adequate tapering
of the observations, the region of consistent estimatiod ohay be extended
but with corresponding increases in the variance of the limit distribution. For the
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NONSTATIONARY LOCAL WHITTLE ESTIMATION 657

regiond > 1, there is presently no theory for the untapered Whittle estimator
and, for the regionl (%, 1), no limit distribution theory. The unit root case is

of particular interest because it stands as an important special casel@fl)an
process withd = 1 and it has played a central role in the study of nonstationary
economic time series. It is also now known to be the borderline that separates
cases of consistent and inconsistent estimation by LP regression [Kim and Phillips
(1999)] and, as we shall show here, local Whittle estimation.

This paper demonstrates that the local Whittle estimator (i) is consistent for
d e (3, 1], (ii) is asymptotically normally distributed fat € (3, 3), (iii) has a non-
normal limit distribution ford € [%, 1), (iv) has a mixed normal limit distribution
for d = 1, (v) converges to unity in probability faf > 1 and (vi) converges to
unity in probability when the procesaé a polynomial time trend of order> %

The present paper, therefore, complements the earlier work of Robinson (1995)
and Velasco (1999) and largely completes the study of the asymptotic properties
of the local Whittle estimator for regions dfthat are empirically relevant in most
applications. The paper also serves as a counterpart to Phillips (1999b) and Kim
and Phillips (1999), which analyze the asymptotics of LP regressim‘leﬁxr%, 2).

The approach in the present paper draws on an exact representation and
approximation theory for the discrete Fourier transform (d.f.t.) of nonstationary
fractionally integrated processes. The theory, developed by Phillips (1999a),
employs a model for nonstationary fractionally integrated processes that is valid
for all values ofd and provides a uniform apparatus for analyzing the asymptotic
behavior of their d.f.t.’s.

The remainder of the paper is organized as follows. Section 2 introduces
the model. Consistency of the local Whittle estimator &be (%,1] and its
inconsistency for/ > 1 are demonstrated in Section 3. Section 4 derives the limit
distributions. Results for fractionally integrated processes with a polynomial time
trend are given in Section 5. Section 6 reports some simulation results and gives an
empirical application using economic data. Section 7 makes some brief remarks on
the important practical issue of finding a good general purpose estimatoviodén
nonstationarity in the data is suspected. Some technical results are collected in
Appendix A. Proofs are given in Appendix B.

2. Preliminaries. We consider the fractional proced§ generated by the
model

1) 1-LD%X, —Xo)=u;, t=0,1,2,...,

whereXg is a random variable with a certain fixed distribution. Our interest is in
the case wher¢, is nonstationary and > % so in (1) we work from a given
initial dater = 0, setu, = 0 for all t < 0 and assume that, ¢ > 1, is stationary
with zero mean and spectral densiy(1). Expanding the binomial in (1) gives
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the form
t
—d

(2) Z ( k')k (Xi—k — Xo) = uy,

k=0 °
where

_— 71_‘ (d + k) _— o« .. J—
(d)r = NI Dd+1)---d+k—-1

is Pochhammer’s symbol for the forward factorial function &g is the gamma
function. Wherd is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of the differences and higher order differences
of X,. An alternate form forX, is obtained by inversion of (1), giving a valid
representation for all values af

_,,, o @k
3 X, =1-1L) Mt+XO:Z—'ut—k+XO-
=0 k!
Define the discrete Fourier transform and the periodogram of a time sgries
evaluated at the fundamental frequencies as

n

; 2ms
wa(}&s): Zal‘e”)\s7 )\'S=—7s=15~~-5n7

1
4) v2rn .23 n
Li(hg) = |wa (Ag)]2.

The model (1) is not the only model of nonstationary fractional integration.
Another model that is used in the literature forms a procéswith d e [%, %)
from the partial sum of a stationary long-range dependent process, as in

) %)a

t
(%) Xz=ZUk+Xo, de[
k=1

NIl

whereU; has spectral densitf(1) ~ Gor~2@~D asx — 0. Model (5) applies for

the specific range of valuebke [%, %) and this can be extended by repeated use of
partial summation in the definition. Model (1) directly provides a valid model for
all values ofd. Some interest in (1) has already been shown in the literature [e.qg.,
Marinucci and Robinson (2000) and Robinson and Marinucci (2001)].

3. Local Whittle estimation: consistency for d <1 and inconsistency for
d > 1. Local Whittle (Gaussian semiparametric) estimation was developed by
Kinsch (1987) and Robinson (1995). Specifically, it starts with the following
Gaussian objective function, defined in terms of the parandeted G :

1& og M
(©) O0n(G.d) = ]Zzl[log(m’ )+ 10)),
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wherem is some integer less tham. The local Whittle procedure estimates
G andd by minimizing Q,, (G, d), so that

(G,dy=  argmin  0,(G,d),
Ge(0,00),de[A1,A2]

where A1 and A, are numbers such tha%% < A1 < Ao < oo. It will be
convenient in what follows to distinguish the true values of the parameters by the
notationGo = f,(0) anddp. Concentrating (6) with respect @ as in Robinson
(1995) gives

d = argmin R(d),
de[A1,A7]

where

. 1
R(d)=109G(d) —2d—= ) loga;,
m
1

. 12
Gd) =~ > A3 L ().
1
We now introduce the assumptionsmrand the stationary componentin (1).

ASSUMPTION1.

Jut) ~ fu(0) € (0,00)  asi—0+.

ASSUMPTION2. Inaneighborhoo(, §) of the origin, f,, (1) is differentiable
and

% log f,(x) =031  asr—0+.

ASSUMPTION 3.

o0 o0
(7) MZ‘=C(L)8[=ch8[—j7 ZC?<OO,
=0 =0
where E (g,|F,—1) = 0, E(¢?|F,_1) =1 a.s.,t =0,£1,..., in which F, is the

o-field generated by,, s < ¢, and there exists a random varialklesuch that
E&? < oo and for ally > 0 and some& > 0, PKg;| > 1) < K Pr(|¢| > n).

ASSUMPTIONA4.

1 m
—+——=0 asn — o0o.
m n
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Assumptions 1-3 are analogous to Assumptions A1-A3 of Robinson (1995).
However, we impose them in terms@frather thanX,. Assumption 4 is the same
as Assumption A4 of Robinson (1995).

Lemma A.1(a) in Appendix A gives the following expression f@r(i,):

D, (e 0)
we () = =~ wa ()
(8) , ~
e X, — Xo 1 Upn(9)
1—e*s orn  1—e* foun

Neglecting the third term of (8) as a remainder, (i;) is seen to comprise
two terms—a function of the d.f.t. of, and a function ofX,,. As the value
of d changes, the stochastic magnitude of the two components changes, and
this influences the asymptotic behavior af.(1;). When d < 1, the first
term dominates the second term amd(i,) behaves Iikeks—dwu(ks), being
asymptotically uncorrelated for different frequencies. Wihien 1, the second
term becomes dominant and, (A;) behaves IikeA;l(Xn — Xo)/~/27n, being
perfectly correlated across all. This switching behavior ofv, (A;) atd =1is a
key determinant of the asymptotic properties of the local Whittle estimator, as well
as other procedures like LP regression. Whiea 1, the two terms have the same
stochastic order and this leads to a form of asymptotic behavior that is particular
to this case. R

Theorem 3.1 below establishes thafs consistent fowly (%, 1] and hence

consistency carries over to the unit root case. Wailis consistent fotg € (%, 1),
however, it is inconsistent and tends to a random quantity whenl.

THEOREM 3.1. SupposeX, is generated by1) with dp € [A1, A2] and
Assumptiond—4hold. Then for do € (3, 11, d L dyasn — oo, and

1
& )_d> Go, , fordoe (3.1),
Go(1+ xD), for dg = 1.

When dp > 1, d manifests very different behavior. It converges to unity in
probability and the local Whittle estimator becomes inconsistent. So the local
Whittle estimator is biased downward even in very large samples whenever the
true value ofd is greater than unity. Kim and Phillips (1999) showed that the LP
regression estimator also converges to unity wies 1.

THEOREM 3.2. Under the same conditions as Theor8r, for dg € (1, M]
Withl<M<oo,Zl\—p> lasn — oo.

REMARK 3.3. Velasco (1999) showed thdtis consistent fordg € (%, 1)
using the model (5). We conjecture that our consistency and inconsistency results
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for the local Whittle estimator forly = 1 anddp € (1, %) continue to hold
under (5).

4. Local Whittle estimation: asymptotic distribution. We introduce some
further assumptions that are used in the results of this section.

AssuMPTION1'. Forsomes € (0, 2],

fu) = f,0(1+0@1P)),  £,(0) € (0,00) asi — 0+.

ASSUMPTION2'. In a neighborhood0, §) of the origin, C(¢'*) is differen-
tiable and

d .
d—/\C(e”) =001 asA—0+.

AssUMPTION3'. Assumption 3 holds and also
E(&}|F-1) = p3,
E@ENF_1)=ps as.,;=041,...,

for finite constantg.z and 4.

ASSUMPTION4'. Asn — oo,

1 mt2(logm)?

m n2p
ASSUMPTIONS'. Uniformlyink=0,1, ...,

> yi=0(logk + ). Y e;=o0((logtk + 1)),

jzk jzk
Vi = EMtMH_j.

ASSUMPTION 6’. For the same8 € (0, 2] as in Assumption land i, )\’ €
(—6,9),

IC(e*) — C(e™)| < Cla — A/ |MMAL - € e (0, ).

Assumptions 14’ are analogous to Assumptions’AA4’ of Robinson (1995),
except that our assumptions are in terms ofather thanX,. Whendg € (%, 1),
we need an additional assumption, Assumptiontbat controls the behavior
of the tail sum ofc; and y;. This assumption seems to be fairly mild. For
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instance, consider the stationary Gegenbauer process proposed by Gray, Zhang
and Woodward (1989):

up=(1—2aL + L% e, =C(L)s,,
t=0,+1,42, ...,

with |a| < 1 andb € (O, %). Its spectral density ig, (1) = {4(cosi — a)2}~?/2x,
which has a fractional pole afy = cos 1a. The asymptotic approximations for
cj andy; are given by [Gray, Zhang and Woodward (1989), pages 236-238]

¢j ~ A1(a, b) cog(j + b)ro — b /2} "L,

9)
yj ~ Aa(a, b)j?~Lsin(b — jhro),

as j — oo, whereA1(a, b) and Az(a, b) do not depend orj. Sincec; andp;
satisfy Assumption 5[Zygmund (1959), Theorem 2.2, page 3], Assumptién 5
allows for a pole and discontinuity ifi, (1) atA # 0. However, Assumption’5s
not satisfied ify, = (k + 1)~ 1(log(k + 1))~*. Whendg = 1, Assumption 5

is not necessary, but instead we need Assumptiont @equiresC(e*) to be
Lip(min{B, 1}) in the neighborhood of the origin.

The following theorems establish the asymptotic distribution of the local
Whittle estimator fordo € (3, 11. Whendo € (3, 3), d is asymptotically normally
distributed, but/ has a nonnormal limit distribution and slower rate of convergence
when dg € [%,1). This phenomenon occurs because, whignis large, the
stochastic magnitude oX,, in the representation (8) becomes so large that it
dominates the behavior af

THEOREM 4.1. SupposeX; is generated by(1) with dg € (A1, A) and
Assumptiong’-5 hold. Then

mY2d - do) & U fordoe (3, 3),
mY2(d —do) 5 YU + J(doyW?  fordo=2,
m2=20(J — do) % J(do)W? for doe (3,1),

whereJ (dg) = (277)2%2T (dg) ~2(2dg — 1) ~3(1 — dg) andU and W are mutually
independeniV (0, 1) random variables

When dp = 1 the two main components ab, (), that is, w,(x;) and
X, /+/2mn, have the same stochastic magnitude, and the limit distribution of
the local Whittle estimator turns out to be mixed normal (denoted as MN).
Intriguingly, the variance off becomes smaller than the case whége< 1, as
was found in the corresponding case for LP regression [Phillips (1999b)].
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THEOREM 4.2. SupposeX; is generated byl) with dg = 1 € (A1, Ap) and
Assumptiong’—4' and 6’ hold. Then

mY2(d — do) 5 MN(0, s2(W))

—/ N(0, o%(h)$ (h) dh,
whereW is N(0, 1), ¢ (-) is standard normal gl.f. and
1 142
414 2h2 + h*
REMARK 4.3. (a) Whendy = 1, the variance of the limit distribution of

mY/2(d — do) is less thar} sinceo?(h) <  almost surely. Numerical evaluation
gives

o?(h) =

s / 1+2n%2 1 hz)dh

O’ R —

d7 4 oo1+2h2+h4./_ 2
—0.2028

Thus, the limit distribution of the local Whittle estimator has less dispersion when
do =1 than it does in the stationary adgl < (%, %) cases. A similar phenomenon
applies in the limit theory for LP regression, where again the limit distribution is
mixed normal whemlg = 1 [Phillips (1999b)].

(b) Velasco (1999) shows asymptotic normality of the estlmatodd@r(
using the model (5). We conjecture that the estimator has the same asymptotlc
distributions as those given above #y< (4, 1] under (5), possibly with different

J (do), although the limit distribution fodp = 7 mlght be difficult to derive.

5. Fractional integration with a polynomial time trend. In many appli-
cations, a nonstationary process is accompanied by a deterministic time trend.
Accordingly, this section extends the analysis above to fractional processes with
anc-order ¢ > 0) polynomial deterministic time trend. Specifically, the process
X; is generated by the model

X; = X2+ Xo+ put* = (1— L) u, + Xo+ ut®
(10) d
_Zﬂu, x + Xo+ ur%, t=0,1,2,..., u#0,

where Xg andu, are defined as above. As shown in Appendix A, the d.f.t. of a
time trend takes the following form, uniformly fords <m with m = o(n):

wye (hs) = Zf“ s

1 n%
=1 1I.
R i
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[See also Corbae, Ouliaris and Phillips (2002), who give exact formulae for d.f.t.s
of a time trend whem is a positive integer.] Therefore, neglecting the remainder
term andU,,, (), we obtain the following expression af; (A;):

po o n%  Dy(es;0)

wx()‘s) ~ _1—61.)‘-9 27'[]/1 1—81.)‘-9 wu()\s)
et X% — Xo
(11) 1—ei*s /omn
~ Cuks_ln“_l/z

+ 0,051 + 0,047,

When o > % the second term in (11) is dominated by either the first term

(if @ > d — 3) or the third term (if} < « < d — 3), and thenw, (%,) behaves

like C(n)ks—l, whereC (n) does not depend an As a resultﬁconverges to unity

in probability, and the local Whittle estimator is inconsistent except when the true
valuedp = 1. SinceX? = 0, (n~Y/2), this result might be regarded as an instance

of a deterministic trend dominating a stochastic trend whien d — % In the
present case, because the d.f.t. of a deterministic trend is governed by the final
observationn®, the outcome for unfiltered, untapered data is the inconsistency
of d. In consequence, some caution is needed in applying the Whittle estimator
to investigate the degree of long range dependence when a time series exhibits
trending behavior involving a deterministic trend of uncertain order. The same
result holds if the deterministic trerid is fractionally integrated in the sense that
(1— L)%k, = I{t > 1}, because thek, ~ I'(« + 1) "1n®, as shown in Appendix A.

THEOREM5.1. SupposeX; is generated by10) with dg € [A1, A2], a > %

and Assumptiond—4 hold. Then for dg € (%,M] with 1 < M <00, d 21
asn — o0o.

6. Simulations and an empirical application. First we report simulations
that were conducted to examine the finite sample performance of the local Whittle
estimator using (1) withe, ~ i.i.d. N(0O, 1). All the results are based on 10,000
replications.

Table 1 shows the simulation results the= 0.7 andd = 1.0. The sample size
andm were chosen to be= 200, 500, 1000 ana = [n°%°]. The estimator is seen
to have smaller standard deviation whén= 1.0, corroborating the asymptotic
theory.

Figure 1 plots the empirical distribution of the estimator fo= 0.7, 0.9, 10,

1.5 whenn = 500 andm = [n%°]. The estimator appears to have a symmetric
distribution wheni < 1, and the positive bias and skewness of the limit distribution
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TABLE 1
Simulation results forl = 0.7 andd = 1.0

d=0.7 d=1.0

n bias s.d. t.sd.* bias s.d. t.s.d.

200 0.0002 0.1977 0.1336 —0.0235 0.1779 0.1204
500 0.0093 0.1451 0.1066 —0.0129 0.1280 0.0960
1000 0.0101 0.1162 0.0898 —0.0102 0.1019 0.0809

*t.s.d. denotes theoretical standard deviation.

for d = 0.9 are not evident for this sample size. Whes- 1, distribution of the
estimator is concentrated around unity, again corroborating the asymptotic result.
As an empirical illustration, the local Whittle estimator was applied to the
historical economic time series considered in Nelson and Plosser (1982) and
extended by Schotman and van Dijk (1991). We also estiridtg first taking
differences of the data, estimating— 1 and adding unity to the estimade— 1.
This procedure is consistent fér< d < 2 and invariant to a linear trend. Table 2
shows the estimates based on batk= n°° andm = n%®. These series produce
long memory estimates over a wide interval that ranges from arotmtbdthe
unemployment rate t0.38 for the bond yield. For the unemployment rate, the
local Whittle estimate from the raw datd (v) and the local Whittle estimate from
the differenced datai(yp) are very close together, both indicating only marginal
nonstationarity in the data. For the bond yiaYQIWD is very different fromdyy .
Especially for the GNP measures, industrial production and employment, the
presence of a linear trend component in the data [which is supported by much of
the empirical work with this data set following Nelson and Plosser (1982)] appears

TTTE
- =00
oo

I’

0 e T L L =1 -
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fic. 1. Densities of the local Whittle estimater = 500,m = n0->.
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TABLE 2
Estimates off for US economic data

m = n0-5 m = n0-8

n ziLW ziLWD 2LW 2LWD

Real GNP 62 0990 0.626 0.946 0.719
Nominal GNP 62 0983 0.901 0.930 0.909
Real per capita GNP 62 0976 0.631 0.912 0.728
Industrial production 111 0.918 0.516 0.968 0.593

Employment 81 1.001 0.660 0.977 0.713

Unemployment rate 81 0507 0527 0.705 0.741
GNP deflator 82 1.143 0.973 1.049 1.099
CPI 111 1.020 1.227 0.828 1.176

Nominal wage 71 1.080 1.026 1.015 0.983
Real wage 71 1105 0.785 1.030 0.822
Money stock 82 1.042 0913 0.993 1.232
Velocity of money 102 1.055 0.932 0.970 0.782
Bond yield 71 0.676 1261 0.740 1.370

Stock prices 100 0914 0.860 0.984 0.755

to biasdyw heavily toward unity. These particular results indicate that, although
the local Whittle estimator is consistent fér< d <1, the use of differenced
data or even data tapering [Velasco (1999) and Hurvich and Chen (2000)] may
be preferable, unless the time series clearly does not involve a deterministic trend
and values off > 1 are not suspected.

7. Concluding remarks. The results of the present paper have a negative
character, revealing that the local Whittle estimator is not a good general purpose
estimator when the value af may take on values in the nonstationary zone
beyond%. The asymptotic theory is discontinuousdat % and again at/ =1,
it is awkward to use and the estimator is inconsistent beyond unity.

This paper has not explicitly addressed the issue of what semiparametric esti-
mation procedure is a good general purpose procedure for possibly nonstationary
cases. Data differencing and data tapering have been explored [Velasco (1999) and
Hurvich and Chen (2000)], are easy to implement and have been shown to extend
the range of applicability of the local Whittle estimator. However, these approaches
do have some disadvantages, such as the need to determine the appropriate order
of differencing and the effects of tapering on variance. Another approach is to use
the exact form of the local Whittle estimator suggested in Phillips (1999a), which
does not rely on differencing or tapering. This estimator has recently been shown
by the authors [Shimotsu and Phillips (2002)] to be consistent and to have the
sameN (0, %1) limit distribution for all values ofd. While it is still too early for
a definitive answer to the question of what is a good general purpose semipara-
metric estimator ofl that allows for nonstationarity, these approaches offer some



NONSTATIONARY LOCAL WHITTLE ESTIMATION 667

useful alternatives for applied researchers, and the present paper is at least a cau-
tionary tale about performance characteristics of the local Whittle estimator in the
nonstationary environment.

APPENDIX A

Technical lemmas. In this and the following sections; denotes the complex
conjugate ofr, and|x |4+ denotes mafe, 1}.

LEMMA A.1 [Phillips (1999a), Theorems 2.2 and 2.7]. (&)X, follows (1),
then

wy (WD (L —e™) = Dy(e™; 0w, (1)

(12) oimh ol .
— ——U(0) — (e"* Xy — Xo).
V2nn N 2nn
whereD, (¢*;0) = Y5 _o S%e’**, 6 =1 —d and
Upn(©) = Dyple L O)un =Y rpe P uy_p,
(13) r=0
~ (kg
Gp= Y e
k=p+1
(b) If X; follows(1) withd = 1,then
i\ e in
14 wyM)(1—-e") =w, (L) — —— (""" X,, — X0p).
(14) x(A)( ) u() m( 0)
LEMMA A.2. Forf > —1anduniformlyins=1,2, ..., m withm = o(n),
(15) Dy(e?s:0)=1—e")? + 0m0s71).
PrROOE We have
[e.e] o
iAs. (=« ikAg (=0« ikhg
Dy(e™:0) =) —=eh =3 — e
0 n+1
(16)
i kT — 92
:2F1(—9,1;1;€ *)—Zme A-i-O Zk ,
n+1 n+1

since (=) /k! = T'(—0) "% "~1(1 + 0(k™1)) [Erdélyi (1953), page 47]. Be-
causd > —1 ands # 0, the first term in (16) converges and equalglte- ¢/*s)?
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[Erdélyi (1953), page 57]. For the second term in (16), by Theorem 2.2 of
Zygmund [(1959), page 3] we have

00
Z k—@—leikky
n+1

n+N

Z eikkY

<+’ Tmax
N n+1

=0n %Y.
The third term in (16) is necessarilp(n—%s~1) because} 3% k972 =
om~1hH. O
LEMMA A.3. (@)1 %(1—e*)? =~ /20 L (1) asr — O+.
(b) For6 > —1and uniformlyins =1,2,..., m withm = o(n),
17) Ay Dy 0) = e TP L 0(g) + 0T,
PROOF.  For (a), sincgl—e'*| = |2sin(A/2)| and argl—e'*) = (A —x)/2 for

0 < A < 7, we can write(1—¢'*)? in polar form ag2 sin(A/2)|? exdi6 (A — ) /2].
It follows that

A 01— =27 (L + 0003) [exp(—if1/2) + 0(0)]
=e—(71/2)t9i + 0(}\’)
giving the stated result. Statement (b) follows from (a) and Lemma A2.

LEMMA A.4. Uniformly in p=0,1,...,.n —1ands =12,...,m with
m =o(n):.

(@)
=0y — d-1
(18) 5, = | 0Py =00plED,  foro =0,
0(}’2_‘9) = O(nd—l)’ for 0 c (_1’ 0),
(b)
(19) Orap = O(pl* s

=0(p|T%ns7Y,  fore> -1

ProoF Observe

n n
Orp =T (=0)"L > k1™ + 0 (Z k—H).

p+1 p+1
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The required results follow from

Xn: 01— { o(ply®),  foré >0,
P+l 0™, for 0 € (—1,0),
; 62 - 0-1
PO DY S
p+l p+1
p+N
Zk 0-1 lk)\; <(P+1) —0— 1max Z elk)\'i‘
P+l p+1

=0(ply" tns™h

andy” k2= 0(p|;"™H. O

LEMMA A.5. (@) Under the assumptions of Theoresnl, we have the
following:

(a1) E|T,,,0)|? = 0 (hns(9)),
(@2) E(X,—Xo—CD)X:)?=o0m>1),

uniformly ins = 1,2, ..., m, whereX; = Y7 _5 @ke, ; and

n1—29s29—1 — nZd_lsl_Zd, foro e (_%’ %),
hus () = n1_29s29_1(log(s + 1))2
— n¥-Ig1-2% jog(s + 1))?,  for6=—3.

(b) Under the assumptions of Theordri,we haveuniformlyins =1, ..., m,

E|U3,(0) — C(1)&3,,(0)[?
=0 5% Xlogn) ™ +nt"¥s7?)  foro e (-3, 3).
PROOF (a) We prove (al) first. Whe® = 0 the stated result follows
becauseUA 2(0) = 0. When6 # 0 definea, = Gk pe—’m S0 thatUA 2(0) =

Zp Oa,,u,, »- We suppress the dependencezgfon 6 andi;. Summation by
parts gives

n—2 14 n—1
(20) U)L.yn(e) = Z(ap - ap—i—l) Z Up—j+an—1 Z Up—j.
=0 =0 =0
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Observe that

a,,—a,,.,.l
n n
=¥ ﬂei(k—pm_ 3 (_e')kei(k—p—l)ks
k=p+1 K k=p+2 k!

-1
- Xn: COk ig—pyr, _ "Z COiv1 iy,
S K L+

"X_:l [<_9)k = 9)k+l] itk=ppis 1 O —ipi,

Sl kD! n!

1
"Z A+OTE=0) ite—pirg | O pmips,
iy TEOT(k+2) n!

where the fourth line follows from
=0 (=01
k! (k+1)!
I'(k—0) A+0)I'k—0)
T(—0-Dr(k+2 T(OMk+2)

Define

n—1
Z A4+0)I'k — Q)e‘(k p)M

= 2 Tork+2)

k=

and then, since,_1 = ((=6),/n!)e "=

_ p ( e)n n—2 i 14
U)L.yn(e) Z bnp Z Up—j + Z P Z Up—j
p=0 j=0
n—1
+ (_n&e—i(n—ms St
! 20
b ( 9)n (= —iphs s .
—Z npzun it de D tnj
p=0 j=0

= U]_n + Uzn.
We proceed to show that tiié,, are of the stated order. First, foh,, we have

(21) bup = O(min{|p|7? =L, 1pI13f2ns™1))
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uniformlyin p=0,...,n —1ands =1, ..., m. Equation (21) holds because

-1 -1
1+6 o iPhs nX: k—9—26ik)\,;+0<’12: k—9—3>

np =
F( 0) k=p+1 p+1
and
Zk“’ 2=0(plz"™,
p+1
Zk“’ S =0(pli?7?,
p+1
n—1 p+N
Zk —6-2 lk)\_é <(p+1) —0— Zmax Zelk)m
p+1 p+1
= 0(Ipl7?%ns7h.
Next,
P 2
E(Zun_j)
(22) 0

P
=(P+DY (A= 1il/(p+D)y;=0(ply). v = Eutry ;.
-p
for p=0,...,n—1, and it follows from Minkowski’s inequality that

E|U?=0 <<Z|bnp||p|1/2>)

o (S £ o))

p=n/s
O(n1_29s29_1), 0 e (_% %)
_ [ Ao 1 ) 0
For Usy,, we rewrite the sum as
(=0)n "2

> _WYZ’AH j

n.po

_ = 9)n Xn: P S

n—p=1 n—j=n—p

Uz, =
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() PR,
-y e
21 g=1

l)»A (1 _ elkké)

ey
N

(On_ e (e 12, (.
= n! 1 — ei}\.s kZ: Mk - n' 1 _ ei)\.s (27Tn) wu ()"S)v

E|U2|? = 0(n1%572) follows from (22) andE|w,(A)|?2 = O(1) [Robinson
(1995), page 1637], and the stated result follows becatde 521,
We move to the proof of (a2). Definea, = (d),/p! so that

X, = ZZ %apun » + Xo. Similar to the above, summation by parts gives

X, — Xo— C()X’

n—2 n—1
—Z(ap—ap+1>2 n—j —CDen—j) +an-1)_ (un—j— C(Den_j).
p=0 j=0 j=0
Sincea, — ayiq = — =GP _ O and 0 the stated
P~ 4pHl = TTE—DT(p1D) — Ipl47?) anda, = O(|p|<™),
result follows if
p 2
(23) E[Z(un_,-—ca)en_,)} =o(p)  asp— oo.
j=0
Now
p 12 p
E[zun_,- S (e 1-liby,
j=0 - j=-p

p 12 00
E|:C(1)Z<9n—j =(p+DCD*=(p+1) > v

=0 j=—o0

14 14
E[C(l)Zun_,-Zen_z} C<1>E[Z D crén—j- rZen zi|

j=0 =0 j=0r=0

=C(1)Zzzcrl{r=l—j}

j=01=0r=0

p
—CO Y (p+1-ne.
r=0
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and it follows thatE[Yf_(uy—j — C(De,—j)1%is equal to

—(p+1 Z Vi _ZZ]V]
(24) ljl=p+1

+2C()(p+1) ) ¢ —2C1) Zrcr,
r>p+1

which is o(p) from >-% _y;, >3° ¢, < oo and Kronecker’s lemma. Therefore,
(23) and the stated result follow.

(b) Let M be a generic finite positive constant. We collect some facts that are
used repeatedly: far € (—1, C) andg > 2,

q
(25) Z(Iogl)“1 < (log 2)‘42 +(31ogq) ™" < Mg(logg)~*,
=2 Vi
q L Zv@ o
Y 111%(log( +2))"“ < (log D2 " [I|% + (3logg) =Y " 1*
1=0 0 N
(26)

< Mq“*(logq)~?
Proceeding similarly to the proof of (al), we obtain
Upn(0) = C(DExn(0) = Ury + Uz,

where

n—2 p

Uln = Z bnp Z(un—j - C(l)gn—j),

p=0 j=0

_en ilg n
COn €7 Sy — D)

Uzn = -
| idg
n! 1—etts ar}

(—=0)n e'ts 1/2
=T G A wa ) = COwe ()]
andb,,, is defined in (21).

First, we show that, uniformly ip =0, ...,n — 1,

p 2
E [Z(“n—j - C(l)&‘n—j)}
j=0

= 0(Ipl+(log(p +2) 7).

(27)
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Whenp =0, (28) follows immediately. Whep > 1, from (24) the left-hand side
of (27) is equal to

p
—(p+1D > vi—2> jy
1

ljl=p+1

+2C((p+1) Y ¢ —2C(1) Zrcr
r>p+1

The first and third terms are bounded uniformlyzinby p(log(p + 2))~* from
Assumption 5. For the second term we have

ZZVk

J=1lk=j

P
=0 (Z(Iog(;‘ = 1))“‘)
1
= 0((p+D(log(p + 1) )
uniformly in p, where the third equality follows from (25):{ re, =0((p+1 x
(log(p + 1))~%) follows from the same argument, and (27) follows.
From Minkowski’s inequality, (21) and (27)F|U1,|%)/? is bounded by
n—2

> Iyl 1P *(l0g(p +2) 2
p=0

—0<Z|p|f Y2(log(p +2))* + Z 1pI57 %0 1(log<p+2>)‘2)

p=0 p=n/s

=0<<n/s)1/2‘9<I09<n/s>) + (logtn/9) Zns Y Il 3/2)
n/s
— O(nl/Z—GSQ—l/Z(IOgn)—Z)’
where the third line follows from (26), and the fourth line follows because
(log(n/s))~2 < (log(n/m))~2 = 0((logn)~2); E|Uz|? = 0(n*~%s~2) follows
from (27) andE |w, (As) — C(Dw,(1s)|2 = O(1) [Robinson (1995), page 1637],
giving the stated result.(]

LEMMA A.6. Under the assumptions of Theoreh2, we have for j =
1,....m,
omn=P, for g € (0, 1),

Elw,(A;))—C irj e(Aj 2=
lwy (A ;) (e we (X)) o(n—llogn), for B €[1, 2].
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PrROOF The proof essentially follows from Theorem 3.15 of Zygmund
[(1959), page 91]. An elementary calculation gives

Ew, (A j)wi(hj) — C(e™)/2n
28) Lo N
=Z/_n[C(e’ ) — (™)K (h — A;) d.,

whereK (L) = (2rn) =1 Y1 Y4 ! =9* is Fejér's kernel. From Zygmund [(1959),
page 90],/K ()| < An~1A~2 and|K (1)| < An for a finite constand. Assump-
tion 6 implies|C(e'*) — C(e™i)| < C|x — x;|™MA-U for |x — ;| < §/2 and large
enoughn. Therefore, if we split the integral (28), each part is bounded as follows:

rj—8/2 b4 1 [7 5
[P ol o)
-1 Aj+6/2 8/2

fx_i—l/n N /)\_j+8/2 _ <n—1/6/2)\min{ﬂ_2’_1} d)\)
)\j_(S/Z )‘f+l/n Ln

o, for 8 € (0, 1),
| omtlogn), forBe(l,2]

i+1 1
/ hn O(n / " minig. 1) dk)
Aj—=1/n 0

— O(n—min{ﬁ,l})'

Hence Ew, (A j)w}(x;) — C(e'*))/2r has the stated ordeEl,(x;) — f,(1;) has
the same order by a similar argument, and the order of

and

Elw,(A)) — C(e™we (1))
= E[1,(A}) — 2Rew, (» ) C* (™ we (A )]+ 27 fu (A ) I (A ))]

follows. O

LEMMA A.7. Lety, =TI{t>1}andA %y, = (1 — L) “v, witha > 0. Then
uniformly in1 < s < m with m = o(n) the following hold

ets 1 n® min{a, 1)
a —ay(Ag) = — - 1+ 0(s™ “1;
( ) WA v( 5) 1—61)‘5 F(O{+l)«/ﬁ[ + (S )]
1 n“

(b) wee (Ag) = — [1+ O(S_mm{“’l}) + O(n_ls)].

1—ei*s /27n
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PROOF For part (a), first consider the cage (0, 1]. From Lemma A.1(b)
wa-ay () = (L= ™) 7w a1, ()
— (1= ety Lt A%y, /N 27,
Fora =1, sincew,(A;) = 0 it follows that
Wa-1,(hs) = —(L— ) Lol A™Yy, /270
=—1- eiks)_leiksn/x/ﬁ.

(29)

From
dr (i1 Tk—=1+d)  (d—1x

kIl (k—-1! Td-DLk+1 &
and the fact thata — 1)g/0! = (a)o/O' 1 we obtain

—a S @—1
(1-1L) +1Ut:]§) P

Z“Zl[(a)k _ <a>k_1} L @o_ @i

k' (k—1) o0 ¢t-1
Hence, forx € (0, 1) from Lemma A.2 we have
(o)r—1 As
Waret () = Z 1 '
idg )
=7 [Dn(e’“; —a) - (a)n}
27n n!

iAs .
= —=[1-¢" +oms ™)

Then the stated result follows because
(@+1),-1 _

n—1!  T(a+1
so that the second term on the right-hand side of (29) dominates the first term. The

result fora > 1 is derived from (29) and by induction.
For part (b), observe that

l‘)\.s
WA- Otv()\ )_ «/—Z (O(+1)[ zl‘)»

A%y, = n%[14 0™,

eiks eMS

1 .
— + 1 +0 toz—l :|eltk.Y
J2rtn  N27n ;[F(a—i—l) ( )
=M T+ D) we () + 0@ Y2,
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and the required result follows from part (a)]
APPENDIX B
Proofs of theorems.

PrROOF oF THEOREM 3.1. For notational simplicity we assuni®y = 0
throughout the proof, but the result carries over for gen&gwith X, — X
replacing X,,. We follow the approach developed by Robinson (1995) for the

stationary case. Defin€(d) = Gom ™! > A?d_z‘io and S(d) = R(d) — R(dp).
For arbitrarily smallA > 0, define®; = {d:do — 3 + A <d < A} and®, =
{d:A1<d<do— % + A}, possibly empty. Without loss of generality we assume
A < %1 hereafter. In view of the arguments in Robinson (1995% dj if

suplT(@)| 20 and P<infS(d) < o) -0

01 2
asn — oo, where

T(d) = log %

~ @(d) ~ 1 m o2 / m2d—2do
95 @ Iog(m 21:] | 2a—dp+1

1 m
+(2d — MO)[Z > "logj — (logm — 1)]
1

Robinson (1995) shows that the fourth term on the right-hand sid&legym /m)
uniformly ind € ®1 and

M) ol )

m 1 m

(30) sup
O1

Thus, sup, |T(d)] 2 oif

G (do) G@)| p
(32) s(;le log Go log ) - 0.
Let
2(d —do) +1 I [ j\24~%o
A(d) = T" Z(ﬁ [23°1,(0)) — Gol.

1

2(d —do)+1 . Iy j\2d%o
B(d)z%(;oz(]) ’
1

m
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from which it follows that

G(d)—G(d) A

G(d) B’
G (do) G(d) (B B(do) + A(do)
96y 9@ Iog<B(do)> +'°g< B(d) + A@) )

By the factthat RijlogY| > ¢) < 2PK|Y — 1| > ¢/2) for any nonnegative random
variableY ande < 1, (31) holds if

B(d) — B(do) 20 and
01 B(dp)
(32)
B(do) — B(d) + A(dp) — A(d) 2o
01 B(d) + A(d) '

Fordp (%, 1), from the arguments in Robinson [(1995), page 1636]sud(d)|
is bounded by

> (L) | Xudene) - G
(33) r=1 o j=1
2d
+— jgl[x,. °1:(xj) — Gol|.

DefineD,;(d) = (1 — e’*.f)—lk;?Dn(e’*.f; 6). Then from Lemmas A.2 and A.3 we
have

Dyj(d)=e™P% L 00;) + 0773,

(34)
1Dy )P =1+ 005 + 0(j7?)

uniformlyinj=1,..., m. Hereafter letl,; denotel, (%), letw,; denotew, (1),
and similarly for other d.f.t.’s and periodograms. Now

k?dolxj —Go
(35) = )‘?dolxj - |Dnj(d0)|21uj + [anj(dO)lz - fu(o)/fu()‘j)]luj

+ [Lj — 1CE ) L] £ 0/ fu 0 j) + £u(0) 2 I — D).
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From Lemma A.1(a), the fact thgtd |2 — | B|?| < |A + B||A — B| and the Cauchy—
Schwarz inequality we have

2d
E[15°1L; — |Dyj(do)* 1|

do

~ . 1/2
29 Ty (00) + € X, 2
< | E|12Dyj(doywyj — — L ‘
(36) _< ‘ nj (G0 u; 1—el*i 27n
}‘(J{O ﬁ)‘jn(@O) + et X, ? b2
X E‘l—e”‘f > ,
: TN

with 6p = 1 — do. From (34), Lemma A.5(a) and],; = O(1) [Robinson (1995),
page 1637] the right-hand sideds j%—1), giving

m—1 2A
r 1
E — -
BO
For anyn > 0, (34) and Assumption 1 imply thatcan be chosen so that

1Dy do)? = fuO/fuip| <+ 00H+ 0>, j=1...m
and from Robinson [(1995), page 1637], we have

)
S [A3®1; — 1Dy (do) 1]
1

= O0(mP~t 4,22 logm).

E|Lj = 1C@*) Pl = 0(2(ogj + D)%), j=1....m.
It follows that

m 2A 1
(%) 2Z| DO~ fulO)/Fu 0]l

1
+ [yj — |CE™ ) PIej1 £ (0) ) fu ()|

=0,(n+ m?n=2 4+ m=% logm).
Robinson (1995) shows ' (r/m)?r=2| Y5 (2x I,; — 1)| 5 0. Using the same
technique, we can show that the second term in (33)oj$l), giving
sup,, |A(d)| 5 0.
Fordgy = 1 first observe that
X2 2(d —do) +1 & >2d 2do

A(d) — Z(—

2nn m 1 m
2(d —do) +1 & 2d—2d X2
= AN (L) T en — Go- 5 2.

m T \m 2nn
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From Lemma A.1(b) we have

2
p2dop . Xa
i T opn
(37) .
kz ,. X2 X, )\52 Ree™*iw,;]
=+ 003 —
|1 —e'| 2mn 2rn |1 —e'M|

The results in Robinson [(1995), page 1637] imply that
(38)  Elwy —Ce™weP=0(j"og(j + 1),  j=1....m

Using a similar decomposition as (35) and the results thereafter, with (37) and (38),
we obtain

E[Z(Af"%j — 21 fu(0)Isj — X,?/(Znn))}

j=1
3 -2

39
(39) =0(rn+rn

+ r1/2 logr),
for 1 <r <m. In view of (30) it follows that

SUplA(d) — X2/(2nn)| = 0, (1 +m?n=? + m=?2logm) + 0, (1).

01

Finally, observe that (30) gives syp| B(d) — G0| 0 (m~22) and (32) follows.

Now we conside®, ={d: A1 <d < do— 5+ A}. Inaway similar to Robinson
[(1995), pages 1638 and 1639] we have

Pr(ing S(d) < 0) < Pr( Z(a] — 1)/\2d°I < O)

wherep = expim 1Y % log j) ~ m/e asm — oo and

{ G/p)*A1, fori<j<p,
aj =

(j/p)~2=1  forp<j<m,

m
Y aj=0(m),
1
m
Zajz — 0(m2—4A)’
1

m
> a;jo7t = 0m* =2 logm +m®),
1

m
Zajj—l/z — O(ml_ZA).
1
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Applying (35) and (37) and proceeding as above in conjunction with the fact above
andm—1 Yh(a; =2l —1) 20 [Robinson (1995), page 1639], we obtain

1 X2
=Y (a; — 1)@"01&,- = (Go +
mi3 27n

1 m
I{do= ”)Z Y (aj—1) +0,().
1

ChooseA < 1/(2¢) < 1/4 with no loss of generality. Then for sufficiently large
we haven1Y%(a; — 1) > § > 0 and hence

1 24,
Pr(; le(aj — DAL, < o) -0

asn — oo. Thereforeﬁ—’l do, giving the stated result.
For the limit of G(d), recall G(d) = G(d) + A(d)G(d)/B(d), d 5> do,
G(d) 2 G andB(d) 2 Go. The required result follows because

X2 »
sup|A(d) — 2—I{d0 =150,

01 an

andX2/(2wn) = Go(X£)2+0,(1) LS Gox?# from a standard martingale CLTC]

PROOF OF THEOREM 3.2. DefineG(d) = Gom™1 Y7 2572 and S(d) =
R(d) — R(1). For 0< A < % define®1 = {d:3 + A <d < Ap} and @, =
{d:A1<d < % + A}, possibly empty. Then, by the same line of arguments as
aboved 3 1 if

sup|T (d)| 20 and P<infS(d) < O) -0
01 ©2

asn — 0o, where

0B B (18
Td)=log =5~ ~109Ga) IOg(le:J /za-D+1

1 m
+(2a’—2)[ZZIogj — (Iogm—l)};
1

supy, IT(@)| > 0fif

log @ —log —G(d)

Go G(d)

(40) sup £o.

O1
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Let

m 2d—-2
Ald) = Z( ) I,
1

B(d) = —GOZ() .

Then a little algebra show& (d)/ G (d)] = (2 /n)2~20[A(d)/B(d)], giving

G(1) Gd) (B A@)
°9°Ge %) _'Og(G—o)_'o (m)
Therefore, (40) holds if
(41) sup AD = AD| 2§ ang suﬁ)M 2 0.
0 A(D) o Go

We proceed to approximai(d) by

2d —1 0 j\¥? 5 o X2
A1(d) = —Z( ) j220) 30011 — o | Zﬁ

= (27)%073C (1)2n1 720 (X )2 4 0,,(1) uniformly ind € ©1,
where the second equality follows from
j2_2d0)\,?d0|1 _ ei)\_j |—2 — (27_[)2d0—2n2—2d0(1 + O()\?)),

(30) and Lemma A.5(a2). Fabp € (1, %], from Lemmas A.1(a) and A.5, similarly
as in (36) we obtainlp,; (d) is defined in the proof of Theorem 3.1]

2
2) 1/2

E‘]Z 2dok2dol I 2dok2d0|1 oiti| =2 X5
2nn
< (E

x (E‘jl—"’ODn,- (do)wy; —

.1— do i
JE9025°0 Uy n(B0) + 2¢5 X,

1— et 27n

2) 1/2
=0(j'"®).

It follows that sup), |A(d) — A1(d)| = O, (m*~% + m=24), and uniformly in®;
we have

JY D, (doyw,j —

1 do ~
JE 000 Ts i (Bo)

1—el*i 27n

Ad)—AQQ) 0p(1)
A (2m)%0=3C(1)2n1-2do(XE)2 + 0, (1)
Op(l)

T (2m)2-3C(D2A(TE )2 +0,(1)
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wherey, = n1/2=(dg),_,&, /(n — t)!. Assumption 3 implies

n
Y E(2Fi—1) — ®1=T(do) %(2do — D)™,
1

Y EGI{ly|>8)—0  foralls>o0.
1

Therefore, from a standard martingale CLT we ha\}éz—doxg —d> N, ®q).
Thus,

p

’

A(d) — A(D)
A(D)

O1

and sup, |[B(d) — Gol/Gol — 0 as before, thereby establishing (41).
Next, conside®; ={d: A1 <d < % + A}. Let p = exp(m 1 Y1 logj). Then
S(d) =log{D(d)/D(1)}, whereD(d) = m~1 Y1 (j/ p)?~2?I;. It follows that

—~ 1
inf D(d) > — 2T
1 ()_mil:a]] Xj

where
L [ /PPt forl<js<p,
T lamTs, forp<j<m.
Then
1 m
(42) Pr(i(g;‘ Sd) < o) < Pr(; Y (aj -1 jz—%xf"wx}- < o).
1

In view of the fact thaf"} a; = O(m), Y7 a; j1% = O0(m'=22 logm + m=4),
Sha;j~Y2=0(m'22), we obtain similarly to before

m

1 224, 2d
— D (aj = DAL
1

m

1 224y, 2do a2 X2
= =) (a; = 1)j750r5011 = ™72 0, (1)
m 7 2mn

1 m
= (2m) 20317200 X2 = N (a; — 1) + 0,(D).
m
1
Sincem™1 Y 1'(a; — 1) > 6 > O for sufficiently largen by choosingA < 1/(2e),
we obtain Pen=1Y 1 (a; — 1)j2—2d0A5d°Ixj <0) —» 0 asn — oo and hence
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d 5 1, giving the stated result. Fdp < (3, 3], from Lemma A.1(b) we have
1- ei)‘f)wxj = WAx; — nd_lnl/z_aner/«/ 2.

BecauseE |way, > = 0(n?*~2571) from AX, ~ I(d — 1) andn/?>~4X, con-
verges to a Gaussian random variable, the stochastic behavigf & dominated

by X,,. Hence, the required result follows from the same line of argument as above,
and the results for largel are derived similarly. [J

PROOF OFTHEOREM4.1. We follow the same line of approach as the proof
of Theorem 2 of Robinson (1995). Theorem 3.1 holds under the current conditions
and implies that with probability approaching 1,as> oo, d satisfies

(43) 0= R'(d) = R'(do) + R"(d*)(d — do),

where|d* — do| < |d — dg|. Now

A Fa(d)Fo(d) — F2(d)] _ 4[E2(d)Eo(d) — E2(d)]
F2(d) B E§(@)

’

R//(d) —

. 1 m . 1 m
F(d) =~ Y dogYr# Ly,  Ex(d) = — Y og j)* 2 I;.
1 1

As pointed out by Andrews and Sun [(2001), page 21], sifGedo) =
0,((logm)*) as shown below, we need to shok(d*) — Ei(do) =
0, (n?*(logm)~*) rather thano,(n) as in (4.4) in Robinson. Fix > 0 and
chooser sothat 2 < (logm)2. LetM = {d : (logm)®|d —do| < ¢}. As in Robinson
[(1995), page 1642] we have
) Pr(|Ex(d*) — Ex(do)| > (2/n)"**(logm)~*)
44 R

< Pr(G(do) > (logm)®=%*/(2¢¢)) 4 Pr((logm)®|d* — do| > ¢).

The first probability tendsto O becauGedo) 2 Go. The second probability tends
to O if

B(do) — B(d) + A(do) — A(d)
B(d) + A(d)

B(d) — B(do) 4
B(do) 01

= op((logm)_lz).

Using (35) and Assumption’ lwe obtain, for 1< r < m,

u
(45) (CIY

r

200~ fu<0>2n18,-)} = 0+ 17 7F),
1
and Robinson [(1995), (4.9)] shows tha (27 I.; — 1) = 0,(r1/?). In conjunc-
tion with sup,, [B(d) — Gol = 0 (m—22) they give (45). It follows that

E

R"(d*) = 4] Fa(do) Fo(do) — F2(do)|[F&(do)] ™" +0,(1) = 4+ 0, (1),
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where the second equality follows fronk, (dg) = Gom—lzT(Iogj)k +

op((logm)—3), obtained similarly asi(dp) 2 0. Next we consider the first term
on the right-hand side of (43). Now

m
mY2R'(do) = 2m™ 2y " v;[35°1,; — Go][Go+ 0, (DI,
1

wherev; =logj —m 1y "log;j and Y} v; =0. From Lemmas A.1 and A.5,
(34) and (38), we have

m m m
S viad 0L =3 vy + @en) X2y vjaZ011 - 172 + 2RET, ] + Ry,
1 1 1
where
T, = Zv D} (do) C* (¢ w25 (1 — 1)~ C (D)8 (B0) (2mm) /2

and
R, = 0,((logm)(m®=Y2logm +mY?(logn)=2 + (logm)? + m3n=?))
=0,(m*?).
Rewrite7,,/C (1) as
i v; D} (do)C* (™A1 — )7L 2mn) ™2
(46) '

X ZQA e Phig, Ze’qklen —q-

Sinceg, is a martingale difference sequenﬁk}Tﬂ2 is bounded by

n—l
(47) ZZZIvJIIkaXdO DS 8, 0|
p=0

j=1lk=1

n—l
(48) Zi vjage Z 18:.,»] Z el ALY [0y
q=0

j=1 p=0
1 &« 1, do-1
;ZZW, el 29070
=1k=1
(49) ! n—1

n—1
Z =) ,

q=0

2 Z |§A_;p||§—kkp|
p=0,p#q
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and (47) and (48) are bounded by, respectively,
m m n—1
(logm)® Y3~ j k=120 37 | p|3072 = O (n 'm0 (logm)?),
11 0

n/j

m n—1 2
|:|09m Zjdo—ln—do (Z |p|‘j_0_1 + Z pdo—an—l>i| — 0((Iogm)4)
1 0

n/j

In view of the fact thaf_f /4 =) = nI{j = k}, (49) is bounded by
" o2 2de—2
(logm)?n 1325772 3" |pl°7" = 0(m*®~*(logm)?),
1 0

giving T, = Op(n_l/zmdO logm + (logm)2 + m%~12logm) = op(ml/z).
From Lemma A5 and the fact thafj v;j2%~2 = (2dg — 1)=?(2dp —
2)m?h—1 1 0(logm), we obtain

m
@) X2 v A 201 - o172 = EGom 0 [n 20 (X5)2 + 0, (D).
1

wherez = (27)2%-2(2dq — 1)=2(2do — 2). Robinson [(1995), page 1644] shows
thaty"7 v;1,; = Go Y7 v;Isj + 0,(m*?). Therefore,

m
m2R'(do) = 2m™ Y2y "v;[2n I, — 1]
1

— 2Em20=3/2[p1=20(x£)2 1 o (1)] +0,(1).

The first term on the right-hand side converges tv @, 4) random variable by
Robinson (1995). Faio € (3, 3), the second term on the right-hand side jg1),

and the required result follows. Fag € (%, 1), we have
n 2
m?~20 R (dg) = 2En*"20(X£)? 4 0,,(1) = 2E (Z y,> +0,(D),
1

where y, = n'/?=%(dy),_,e;/(n — 1)!, suppressing reference ioin y,. Since
SPEW?|F_1) — ®1=T(do)"?(dp — 1)~ and 3% Ey* = O(n™Y), from a
standard martingale CLT we obta}i} y, 4 N, ®1), giving m2=24 R’ (dg) %
2801x? and the required result. Whedo = 3, mY2R'(do) = 2Y}z +
28X )2+ 0p(1), wherey;, is defined above;; =0 and, forr > 2,

t—1 m
2t =8;Z£SC,_S, Cs =2n_1m_1/22vj COS(sAj),
s=1 1
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and&; = (z;, y;)' form a zero-mean martingale difference array; hentje, 4
N (O, diag 1, ®y)) if, for any nonrandon{2 x 1) vector,

(50) 3 E[(@'&)? F—1] - o diagl, dp)a 5 0,
1

(51) S E[(@'E)?1(jo'g| >8] —0  foralls > 0.
1

Robinson show§ % E (z?|F,—1) — 1 ) andy} Ez — 0. In conjunction with
1 Ey*— 0, (51) is satisfied. Sincg’] E(y?|F;_1) — ®1, (50) holds if

d -1
ZE[ytzAFt 11 =n"?" "OZ (0 > egerg > 0.
(n —! o
The term in the middle has mean zero and variance bounded by

min{r—1,u—1}

n n
PN — (T - Y ey
=2 u=2

s=1

n t—1
1-2d, 2do—2 2
S 3
2 1
n p 1t—l u—1
2n1—2do Z In— 1|2 Z(n — y)d-1 Z Ct—rCu—r-
3 2 1

Robinson [(1995), page 1646] shows= c,_s, |cs| = O(m~Y2s~Llogm) for
1<s<n/2,lcs| = 0OmY?n=tlogm), andY i ¢ = O(n~1(logm)?). Therefore,
the first term on the right-hand side is boundednby (logm)2, and the second
term on the right-hand side is bounded by

n 1/2 n t—1 t—1 1/2
(5) st S ¥ )
3 2

1 t—u+1

((Iogm)z ~1/2,,1/2—2dg

n
x Y ln— 1|7 Zm uylo~t u>—1/2+|n—r|;1/2))
3

= 0(m~"?(logm)?),
giving (50), thereby completing the proof of the theorerl
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PrROOF OFTHEOREM4.2. We follow the approach and notation of the proof
of Theorem 4.1. First, from Assumption (B9) is strengthened to

E [Z(x?dwxj — 21 fu(0)Isj — X%/Znn)j|
1
=0@Pn P 4+ rl/zlogr),

(52)

for 1 <r <m. It follows that

SUp|A(d) — X2/2mn| = 0,(mPn=F + m=2*logm),
O1
and thus (45) holds. Sind&(dg) = Go + X,%/(Znn) + 0,(1), the first probability
in (44) tends to 0 an&” (d*) = 4[Fa(do) Fo(do) — F2(do)1[Fo(do)1 ™2 + 0,(1).
Using (52) and the fact that; (27 I,; — 1) = 0, (r/?), we obtain
R X2 1 m
Fi(do) — (Go + )[Z Z(Iogj)k}
1

2nn

=0, (mﬁn_ﬁ (logm)? + m_l/z(logm)B),
giving R”(d*) % 4. Now
2m—1/2 ZT l)j)u?dolxj
G (do)
. 2m—1/2 ZT Uj)x?dolxj
Go(1+n=1(X5)?) +o0p(1)

m*/2R'(do) =

The numerator is equal to

m
2m™Y2 30 (14 003)) wyj — €™ X, /N2
1

m m
—2m Y2 1, — Zm_l/z(Xn/\/Zﬂ”)z[Z vje ww}
1 1
+ 0, (m*?n"?logm)

m
=2m Y2Go Y v;[2n I, — 1]
1

m
_ zm—l/ZGon_l/ZX"i Z ])/2 Rq:\/ 27Tw(;j ] + Op(l)’
1
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where the third line follows from Robinson [(1995), (4.8)], Lemma A.6 and
Assumptions 1and 6. It follows that

230z =2 1y Y1 x +op(D)
1+ F )2 +0p(0) '

where y, = n=Y2¢,, x, = n%%¢,¢;, and z; and ¢, are defined in the proof of
Theorem 4.1. Therefordy, = > (z;, yr. x1) 4 W ~ N(0, diag1, 1, 2)) if

m*/2R'(do) =

n
(53) Z E[(ze, yi, 1) 21, Yoo X0 Fr—1] X diag1, 1, 2),
1
n n n
(54) ZEzf+ZEyf+ZExf—>0.
1 1 1

We have already shown; Ez}+Y"1 Ey# — 0in the proof of Theorem 4.1. Since
n n
Z Ext4 = n? Z cf
1 1

n/m 00
=0 (n_z Z mz(logm)4 +n? Z m_zs_4(|0g m)4>
1 n/m

= O0(n"tm(logm)®),

(54) holds. To show (53)y°% E[(zs, y1)'(zs, ye)| Fr—1] £ diag(1, 1) has already
been shown above, and

Y E(x?|Fi—1)
1
n m 2
=dp Iyt Z (Z vj CO&SM))
1 1
=dn~tmt Z v]2 Z cosz(skj)
1 1
+207tm Y S Twjue Y [eoss (g + A} + coss (b — A)}]
Jj#k 1

m n
=2n"tm Y 7Y (14 cos2sh)]
1 1

— 2,
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since}_ 7 v] ~ m. Furthermore ] E (x;y;|F;—1) = Y7 ¢; =0 and

n n t—1

p
S E(izilFmn) =Y n'2c Y eei—s >0,
1 t=2 =

because the right-hand side has mean zero and variance

min{r—1,u—1}

n n
n Z Cy Z Cy Z Ct—sCy—s
=2 u=2 s=1

n t—1 n t—1 u-1
:an?thz_s + Zan,Zcu th_scu_s.
2 1 3 2 1

The first term isO (n~1(logm)#), and the second term is bounded by

(g (£9)

n/2 2
=0 ((Iogm)2<m‘1/zlogm +m~Y?logm Z s_l) )

n/m
= 0(m~Y(logm)®).
Thus (53) holds andV,, 4w, Therefore, from the continuous mapping theorem

4 2W1— 2WaWs ( 4[1+2<W2>2]>
14 (Wo)? T 1+ (W2)?]?
conditional onW,, and unconditionally

mY2(d — do) /OO N(O, 21+ 20®) (1 + h?)"2)p(h) dh,

whereg (+) is the standard normal p.d.f., giving the stated resui.

PROOF OFTHEOREM 5.1. The argument follows the approach of the proof
of Theorem 3.2. First we consider the case do — 3. Sincea > 3, do > 1 must
hold. Let

Zd 1 m < >2d 2]2 2d0)\2d0

iA;iv0,2
A1(d) = —Z mzmlun + e X, |

2dg— - 2 2—dy 072
= (27)% [,Wla dot+1/2 4 1/ doXn]
+0,(1) (uniformly for ®1)

4 [Cln“_d0+l/2 + C2N (O, 1)]2,
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for generic nonzero constants; and C,, where the second equality and
convergence in distribution follow by the same argument as before. Define the
other quaitities as in he proof of Theorem 3.2. Because

E|]2 2d0)\‘2d01 2 2d0k2d0|1 l')\jl—Z(Znn)—lana +ei)LjXrOl|2|
= 004 jTY2 om0,

Supy, 1A(d) — A1(d)| 20 follows, giving (41); P¢infe,S(d) <0) — 0 is

obtained similarly and we establigh> 1.
Next consider the case> dg — 1. Define

2d -1

22
Ald) = Z( ) al- 2%21”’

B(d) = T_GOZ

mo o\ 2d-2
i = Q)
— (27)"'u?  uniformly for ©1,
and define the other quantities as in the proof of Theorem 3.2. Then it follows that
G(d)/G(d)=n*"tAd)/B(d),
and sup, |7 (d)| 5 0 follows if supy, [[A(d) — A(D)]/A(D)| 5 0. Since
E|n1‘2“kflxj _ Kfll— 41722y 2| = 0 (Y2 4 jnL 4 plo-1/2-ay,

SUpy, |A(d) — Ax(d)| 5 0 follows, giving (41); Pfinfe, S(d) < 0) — 0 is
obtained similarly, and we establigh 1. O
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