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ON STRONGLY REVERSIBLE RINGS

Gang Yang and Zhong-Kui Liu

Abstract. A ring R is called strongly reversible, if whenever polynomials
f(x), g(x) in R[x] satisfy f(x)g(x) = 0, then g(x)f(x) = 0. It is proved
that a ring R is strongly reversible if and only if its polynomial ring R[x]
is strongly reversible if and only if its Laurent polynomial ring R[x, x−1]
is strongly reversible. We also show that for a right Ore ring R with Q its
classical right quotient ring, R is strongly reversible if and only if Q is strongly
reversible .

1. INTRODUCTION

Throughout this paper, unless stated, any ring is associative and has an identity.
In [1], Cohn introduced the notion of a reversible ring. A ring R is said to be
reversible, if whenever a, b ∈ R satisfy ab = 0, then ba = 0. Anderson-Camillo
[2] used the term ZC2 for what is called reversible. While Krempa-Niewieczerzal
[3] took the term C0 for it. In [4], Lambek called R be symmetric, if rst = 0
implies rts = 0 for all r, s, t ∈ R, while Anderson-Camillo [2] took the term ZC3

for this notion. A ring R is called semicommutative, if whenever ab = 0, then
aRb = 0 for all a, b ∈ R. Reduced rings (i.e., rings with no nonzero nilpotent
elements in R) are symmetric by [4, P. 361], symmetric rings are clearly reversible,
and reversible rings are semicommutative by [4, Prop. 1.3], but the converses are
not true. Kim and Lee showed that polynomial rings over reversible rings need not
be reversible [5, Example 2.1]. In the paper, we consider these reversible rings over
which polynomial rings are reversible and call them be strongly reversible, i.e., a
ring R is called strongly reversible, if whenever polynomials f(x), g(x) in R[x]
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satisfy f(x)g(x) = 0, then g(x)f(x) = 0. Reversible Armendariz rings are such
rings [5, Prop. 2.4], so reduced rings are strongly reversible, but the converse is
not true by Proposition 3.5. We will show that strongly reversible rings are not
necessarily symmetric and symmetric rings are not strongly reversible in general,
though they both two are generalizations of reduced rings. It is proved that a ring
R is strongly reversible if and only if its polynomial ring R[x] is strongly reversible
if and only if its Laurent polynomial ring R[x, x−1] is strongly reversible. At last,
we also show that for a right Ore ring R with Q its classical right quotient ring, R
is strongly reversible if and only if Q is strongly reversible.

2. STRONGLY REVERSIBLE RINGS AND SYMMETRIC RINGS

Definition 2.1. A ring R is called strongly reversible, if whenever polynomials
f(x), g(x) in R[x] satisfy f(x)g(x) = 0, then g(x)f(x) = 0.

Clearly, any strongly reversible ring is reversible, but the converse is not true [5,
Example 2.1], also, the class of strongly reversible rings is closed under subrings
and direct products. It is obvious that any reduced rings are both strongly reversible
and symmetric, strongly reversible rings and symmetric rings are all reversible. In
this part, we show that strongly reversible rings are not necessarily symmetric and
symmetric rings are not strongly reversible in general.

Example 2.1. See [6, Example 5] for detail. Let D be a commutative domain,
define the free algebra F = D < a, b, c >, and let

I = (FaF )2 + (FbF )2 + (FcF )2 + FabcF + FbcaF + FcabF ⊂ F.

Put R = F/I . Then R is a local ring generated as a D-module by the following
elements:

w0 = 1, w1 = a, w2 = b, w3 = c, w4 = ab, w5 = ba, w6 = ac,

w7 = ca, w8 = bc, w9 = cb, w10 = acb, w11 = cba, w12 = bac.

Obviously, R is not symmetric since acb �∈ I and abc ∈ I . Note that R[x] �
F [x]

/
I [x], where F [x] = D[x] < a, b, c > is the free algebra, and D[x] is also a

commutative domain, so R[x] is reversible, hence R is strongly reversible.

Example 2.2. We refer to the argument [7, Example 2] and [5, Example 2.1].
Let Z2 be the field of integers modulo 2 and A = Z2[a0, a1, a2, b0, b1, b2, c] be
the free algebra of polynomials with zero constant terms in noncommuting indeter-
minates a0, a1, a2, b0, b1, b2, c over Z2. Note that A is a ring without identity and
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consider an ideal of the ring Z2 + A, say I , generated by
a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2, b0a0, b0a1 +
b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2 ,(a0 +a1 +a2)r(b0 + b1 +
b2), (b0 + b1 + b2)r(a0 + a1 + a2), and r1r2r3r4. Where r, r1, r2, r3, r4 ∈ A. Then
clearly A4 ∈ I . Next let R = (Z2+A)/I and consider R[x] ∼= ((Z2+A)[x])/(I [x]).
R is not strongly reversible by [5, Example 2.1]. Next we show that R is symmetric.

Proof. We call each product of the indeterminates a0, a1, a2, b0, b1, b2, c a
monomial and say that α is a monomial of degree n if it is a product of exactly n

number of indeterminates. Let Hn be the set of all linear combinations of monomials
of degree n over Z2. Notice that Hn is finite for any n and that the ideal I of R is
homogeneous (i.e., if

∑s
i=1 ri ∈ I with ri ∈ Hi then every ri is in I).

Suppose f, g, h ∈ Z2 + A satisfy fgh ∈ I . We want to show fhg ∈ I . Since
R is a reversible local ring, we can assume without loss of generality that f + I ,
g + I , and h + I are non-units and hence belong to the maximal ideal A/I of R.
write f = f1 + f2 + f3 + f4, g = g1 + g2 + g3 + g4, and h = h1 + h2 + h3 + h4,
where fi, gi, hi ∈ Hi for i = 1, 2, 3, 4. Then

fgh ∈ I ⇔ f1g1h1 ∈ I

⇔ {ai, bj} ⊆ {f1, g1, h1} for i, j = 0, 2 or{a0+a1+a2, b0+b1+b2}
⊆ {f1, g1, h1}

⇔ f1h1g1 ∈ I

⇔ fhg ∈ I.

Thus we obtain that R is symmetric but not strongly reversible.

3. STRONGLY REVERSIBLE RINGS

Proposition 3.1. Let R be a ring, e a central idempotent of R, ∆ be a
multiplicative closed subset consisting central regular elements of R. Then the
following statements are equivalent:

(1) R is strongly reversible.
(2) eR and (1− e)R are strongly reversible.
(3) ∆−1R is strongly reversible.

Proof. (1)⇔(2) is straightforward since subrings and direct products of strongly
reversible rings are strongly reversible.
(3)⇒(1) is obvious.
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(1)⇒(3). Let f(x) =
∑m

i=0 u−1
i aix

i, g(x) =
∑n

j=0 v−1
j bjx

j ∈ ∆−1R[x] satisfy
f(x)g(x) = 0. Then F (x) = (umum−1 · · ·u0)f(x), G(x) = (vnvn−1 · · ·v0)g(x) ∈
R[x] and F (x)G(x) = 0, so G(x)F (x) = 0 since R is strongly reversible. Thus
we have g(x)f(x) = 0 since all ui, vj, i = 0, 1, . . . , m, j = 0, 1, . . . , n are regular
and central.

Proposition 3.2. Let R be a subdirect sum of strongly reversible rings. Then
R is strongly reversible.

Proof. Let Iλ(λ ∈ Λ) be ideals of R such that R/Iλ is strongly reversible and
∩λ∈ΛIλ = 0. Suppose that f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x] satisfy

f(x)g(x) = 0. Then g(x)f(x) = 0 in (R/Iλ)[x] for each λ ∈ Λ since R/Iλ is
strongly reversible. So

∑
i+j=k bjai ∈ Iλ for k = 0, 1, . . . , m + n and any λ ∈ Λ,

which implies that
∑

i+j=k bjai = 0 for k = 0, 1, . . . , m + n since ∩λ∈ΛIλ = 0,
and we obtain g(x)f(x) = 0.

A ring R is called Armendariz if whenever polynomials f(x) =
∑m

i=0 aix
m,

g(x) =
∑n

j=0 bjxn ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j
(see [7,8,9] for detail). D.D.Anderson [8, Theorem 2] showed that a ring R is
Armendariz if and only if R[x] is Armendariz. It is obvious that R is reduced if
and only if R[x] is reduced. We have known that R[x] may not be reversible when
R is reversible, but we are able to prove that R[x] is strongly reversible if R is
strongly reversible as following results.

Theorem 3.3. Let R be a ring, then the following statements are equivalent:

(1) R is strongly reversible.
(2) R[x] is strongly reversible.
(3) R[x, x−1] is strongly reversible.

Proof. (1)⇒(2) Let f(y) = f0+f1y+· · ·+fpy
p, g(y) = g0+g1y+· · ·+gqy

q ∈
R[x][y] satisfy f(y)g(y) = 0, where fi =

∑mi
s=0 a

(i)
s xs, gj =

∑nj

t=0 b
(j)
t xt ∈ R[x]

for i = 0, 1, . . . , p, j = 0, 1, . . . , q. Let k = deg(f0) + deg(f1) + · · ·+ deg(fp) +
deg(g0) + deg(g1) + · · · + deg(gq), where degree is as polynomials in x and the
degree of the zero polynomial is taken to be 0. Then f(xk) = f0 + f1x

k +
· · · + fpx

pk, g(xk) = g0 + g1x
k + · · ·+ gqx

qk ∈ R[x] and the set of coefficients
of f ′

is (resp. g′js) equals the set of coefficients of f(xk) (resp. g(xk)). Since
f(y)g(y) = 0 and x commutes with elements of R, we have that f(xk)g(xk) = 0,
thus g(xk)f(xk) = 0 = g(y)f(y) since R is strongly reversible, which implies R[x]
is strongly reversible.
(2)⇒(3) Follows from Proposition 3.1.
(3)⇒(1) It is clear.
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Corollary 3.4. Let R be a strongly reversible ring and {x α} any set of com-
muting indeterminates over R. Then any subring of R[{x α}] is strongly reversible.

Proof. Let f(y), g(y) ∈ R[{xα}] with f(y)g(y) = 0. Then

f(y), g(y) ∈ R[{xα1, xα2, · · · , xαn}][y]

for some finite subset {xα1, xα2, · · · , xαn}⊆{xα}. The ring R[{xα1, xα2,· · · ,xαn}
][y], by induction, is strongly reversible, so we have that g(y)f(y) = 0. Hence
R[{xα}] is strongly reversible and thus so is any subring of R[{xα}].

Let R be a ring. Suppose that Z(R) contains an infinite subring whose nonzero
elements are regular in R, where Z(R) denotes the set of all central elements of R,
if R is reversible, then R is strongly reversible by [5, Prop. 2.3]. Another example
of a strongly reversible ring is given in the following which also shows that strongly
reversible rings are not reduced in general.

Proposition 3.5. Let R be a ring and n any positive integer. if R is reduced,
then R[x]/(xn) is strongly reversible, where (xn) is the ideal generated by xn.

Proof. It is obvious that R[x]/(xn) is strongly reversible since R[x]/(xn) is
both reversible [5, Prop. 2.5] and Armendariz [8, Theorem 5].

Given a ring R and a bimodule RMR, the trivial extension of R by M is the
ring T (R, M) = R

⊕
M with the usual addition and the following multiplication:

(r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2).

This is isomorphic to the ring of all matrices
(

r m
0 r

)
, where r ∈ R, m ∈ M

and the usual matrix operations are used.

Corollary 3.6. Let R be a ring and T = R
⊕

R be the trivial extension of R

by R. If R is reduced, then T is strongly reversible.

Proof. T ∼= R[x]/(x2) is strongly reversible by Proposition 3.5.

Considering corollary 3.6, we may conjecture that if a ring R is strongly re-
versible, then T (R, R) is strongly reversible. However, this is not true from [5,
Example 1.7] and easy check. One may still conjecture that a ring R is strongly re-
versible if for any strongly reversible nonzero proper ideal I of R, R/I is strongly
reversible, I is considered as a ring without the identity, however the following
example erases the possibility even if R is semicommutative.
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Example 3.7. Let S be a division ring and

R =





 a b c

0 a d
0 0 a




∣∣∣∣∣a, b, c, d ∈ S


 .

Then R is not strongly reversible since it is not reversible [5, Example 1.5].
First notice that R has only the following nonzero proper ideals.

I1 =


 0 S S

0 0 S

0 0 0


, I2=


 0 S S

0 0 0
0 0 0


, I3=


 0 0 S

0 0 S

0 0 0


, I4=


 0 0 S

0 0 0
0 0 0


.

I1 is not strongly reversible by [5, Example 1.5] and I′js with j = 2, 3, 4 are strongly
reversible since they are nilpotent of index 2. The following computations are based
on [2, I.3] and the condition that S is a division ring. Let ϕ! :!R/I2−→T (S, S) by

ϕ


 x 0 0

0 x y
0 0 x


 =

(
x y
0 x

)
.

It is easy to check thatϕ is a ring isomorphism, then R/I2
∼= T (S, S) is strongly re-

versible by Corollary 3.6. The case ofR/I3 is similar to the preceding one. Next let

f(x) =
m∑

i=0


 ai bi 0

0 ai ci

0 0 ai


xi, f(x) =

n∑
j=0


 uj vj 0

0 uj wj

0 0 uj


 xj ∈ R/I4[x]

satisfy f(x)g(x) = 0,then we have that



m∑
i=0

aix
i

m∑
i=0

bix
i 0

0
m∑

i=0

aix
i

m∑
i=0

cix
i

0 0
m∑

i=0

aix
i







n∑
j=0

ujx
j

n∑
j=0

vjx
j 0

0
n∑

j=0

ujx
j

n∑
j=0

wjx
j

0 0
n∑

j=0

ujx
j




= 0.

Which implies that (
∑m

i=0 aix
i)(

∑n
j=0 ujx

j) = 0, hence
∑m

i=0 aix
i = 0 or

∑n
j=0

ujx
j = 0 since S is a division ring, and it is easy to prove that g(x)f(x) = 0.

Thereby we get that for any strongly reversible nonzero proper ideal I of R , R/I
is strongly reversible.

But we have an affirmative answer if we take a stronger condition as in the
following.
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Proposition 3.8. Suppose that R/I is strongly reversible for some ideal I of a
ring R. If I is reduced, then R is strongly reversible.

Proof. Let f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then we have g(x)f(x) ∈
I [x]. Hence (g(x)f(x))2 = 0 implies g(x)f(x) = 0 since polynomial rings over
reduced rings are reduced, therefore R is strongly reversible.

A ring R is called right Ore, if given a, b ∈ R with b regular, there exist
a1, b1 ∈ R with b1 regular such that ab1 = ba1. It is a well-known fact that R is
right Ore if and only if the classical right quotient ring Q of R exists. It was shown
in [10, Theorem 16] and [5, Theorem 2.6] that R is reduced (resp. reversible) if
and only if Q is reduced (resp. reversible). In the following argument, we extend
the result to strongly reversible rings .

Theorem 3.9. Suppose that there exists the classical right quotient ring Q of
a ring R. Then R is strongly reversible if and only if Q is strongly reversible.

Proof. It is enough to show that if R is strongly reversible, then Q is strongly
reversible. Consider f(x) =

∑m
i=0 αix

i, g(x) =
∑n

j=0 βjx
j ∈ Q[x] such that

f(x)g(x) = 0. By [11, Prop.2.1.16], we may assume that αi = aiu
−1, βj = bjv

−1

with ai, bj ∈ R for i = 0, 1, . . . , m, j = 0, 1, . . . , n and regular u, v ∈ R. Also
by [11, Prop.2.1.16], for each j, there exists cj ∈ R and regular s ∈ R such
that u−1bj = cjs

−1. Put f1(x) =
∑m

i=0 aix
i, g1(x) =

∑n
j=0 bjx

j, g2(x) =∑n
j=0 cjx

j ∈ R[x], then we have that 0 = f(x)g(x) =
∑m

i=0

∑n
j=0 αiβjx

i+j =∑m
i=0

∑n
j=0 ai(u−1bj)v−1xi+j =

∑m
i=0

∑n
j=0 aicj(vs)−1xi+j = f1(x)g2(x)(vs)−1,

hence f1(x)g2(x) =
∑m

i=0

∑n
j=0 aicjx

i+j = 0 in R[x]. R[x] is semicommutative
since reversible rings are semicommutative, so 0 = f1(x)ug2(x) =

∑
i+j=k aiucjx

i+j

=
∑

i+j=k aibjsx
i+j = f1(x)g1(x)s, hence f1(x)g1(x) = 0 in R[x]. Use [11,

Prop.2.1.16] again, for each i there exist di ∈ R and regular element t ∈ R such
that v−1ai = dit

−1. Put f2(x) =
∑m

i=0 dix
i, then we have that 0 = f1(x)tg1(x) =∑

i+j=k aitbjx
i+j =

∑
i+j=k vdibjx

i+j = vf2(x)g1(x), thus f2(x)g1(x) = 0
in R[x], so g1(x)f2(x) = 0 since R is strongly reversible. Now we have that
g(x)f(x) = (

∑n
j=0 bjv

−1xj)(
∑m

i=0 aiu
−1xi) =

∑
i+j=k bj(v−1ai)u−1xi+j =∑

i+j=k bjdi(ut)−1xi+j = g1(x)f2(x)(ut)−1 = 0. We prove that Q is strongly
reversible.
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