STRONGLY APPROXIMATIVE SIMILARITY OF OPERATORS

You Qing Ji and Jue Xian Li

Abstract

For the bounded linear operators acting on a complex separable Hilbert space \mathcal{H}, we introduce a binary relation $\sim_{\text {sas }}$ called strongly approximative similarity. It lies between the similarity and the essential similarity. For a class of biquasitriangular operators and a class of quasitriangular operators, this relation is characterized respectively. As a result, the relation $\sim_{\text {sas }}$ is an equivalent relation in this two cases.

1. Introduction

Let $\mathcal{L}(\mathcal{H})$ denote the algebra of the bounded linear operators acting on a complex separable Hilbert space \mathcal{H} and $\mathcal{K}(\mathcal{H})$ the ideal of the compact operators on \mathcal{H}. If dim $\mathcal{H}<\infty$, the Jordan canonical form provides a complete set of similarity invariants of operators. Certainly, one also hopes to obtain a complete set of similarity invariants of operators on infinite-dimensional spaces. For the normal operators, a complete set of similarity invariants has been given in terms of measure theory by Hellinger's multiplicity theory and R. G. Douglas' work (see [4]).

To continue our discussion, let us briefly mention some notations and terminologies (see [10]).

Recall that $T \in \mathcal{L}(\mathcal{H})$ is called a semi-Fredholm operator if $\operatorname{ran} T$ is closed and either nul $T<\infty$ or nul $T^{*}<\infty$, where nul $T=\operatorname{dim} \operatorname{ker} T$; in this case, we define the index of T by

$$
\operatorname{ind} T=\operatorname{nul} T-\operatorname{nul} T^{*} .
$$

[^0]For $T \in \mathcal{L}(\mathcal{H}), \rho_{s F}(T):=\{\lambda \in \mathbb{C}: T-\lambda$ is semi-Fredholm operator $\}$ is called the semi-Fredholm domain of $T . \sigma(T), \sigma_{r}(T), \sigma_{e}(T)$ and $\sigma_{\text {lre }}(T)$ denote the spectrum, the right spectrum, the essential spectrum and the Wolf spectrum of T, respectively. It is known that $\rho_{s F}(T)=\mathbb{C} \backslash \sigma_{l r e}(T)$. We also write $\sigma_{W}(T)$ for the Weyl spectrum of T, i.e.,

$$
\sigma_{W}(T)=\sigma_{l r e}(T) \cup\left\{\lambda \in \rho_{s F}: \operatorname{ind}(T-\lambda) \neq 0\right\}
$$

The spectral picture of $T \in \mathcal{L}(\mathcal{H})$, denoted by $\Lambda(T)$, is the compact set $\sigma_{\text {lre }}(T)$, plus the data corresponding to the indices of $T-\lambda$ for λ in the holes of $\sigma_{\text {lre }}(T)$. The set $\sigma_{0}(T)$ will be used for the normal eigenvalues of T; that is, any isolated point λ of $\sigma(T)$ for which the corresponding Riesz spectral subspace $\mathcal{H}(\lambda ; T)$ is finite dimensional.

An operator $T \in \mathcal{L}(\mathcal{H})$ is called strongly irreducible if it does not commute with any nontrivial idempotents (see [6,13]). Z. J. Jiang [13] conjectured that the strongly irreducible operator is a suitable analogue of the Jordan block acting on finite-dimensional space. Hence, we should first describe a complete set of similarity invariants of strongly irreducible operators. Let us consider the following example.

Example 1.1. Let $S_{i}(i=1,2)$ be the unilateral weighted shift with weight sequence $\left\{\left(\frac{n+2}{n+1}\right)^{i}\right\}_{n=0}^{+\infty}$, that is, $S_{i} e_{n}=\left(\frac{n+2}{n+1}\right)^{i} e_{n+1}$, where $\left\{e_{n}\right\}_{n=0}^{+\infty}$ is an orthonormal basis (abb. ONB) of \mathcal{H}. Then we have the followings:
(i) S_{i} is strongly irreducible [16, p.63, Cor. 2];
(ii) $\sigma\left(S_{1}\right)=\sigma\left(S_{2}\right)=\overline{\mathbb{D}}$, the closure of the open unit disk $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$;
(iii) $\Lambda\left(S_{1}\right)=\Lambda\left(S_{2}\right)$ and $\sigma_{0}\left(S_{1}\right)=\sigma_{0}\left(S_{2}\right)=\emptyset$;
(iv) $S_{i}^{*} \in \mathcal{B}_{1}(\mathbb{D})$, where S_{i}^{*} is the adjoint of S_{i} and $\mathcal{B}_{1}(\mathbb{D})$ denotes the set of Cowen-Douglas operators of index 1 in \mathbb{D} (see [5]);
(v) $\mathcal{A}^{\prime}\left(S_{i}\right)$, the commutant of S_{i}, coincides with the WOT-closed subalgebra generated by S_{i} and the identity operator I. Hence, $\mathcal{A}^{\prime}\left(S_{i}\right)$ is strongly strictly cyclic [16, p.99, Example 1];
(vi) S_{i} is reflexive [15, Prop. 37];
(vii) S_{i} is essentially normal, i.e., $S_{i}^{*} S_{i}-S_{i} S_{i}^{*} \in \mathcal{K}(\mathcal{H})$.

By Brown-Douglas-Fillmore Theorem [3], S_{1} unitarily equivalent to some compact perturbation of S_{2}. However, S_{1} is not similar to S_{2}. In fact, if there is an operator X such that $X S_{1}=S_{2} X$, then $X=0$ [16, Prop. 5].

Example 1.1 demonstrates that any complete set of similarity invariants would be so complicated that, maybe, it could not be described in terms of operator theory itself. On the other hand, for some purpose, so meticulous a classification is not
necessary. For these reasons, one should study invariants for weakened notions of similarity.

For $A, B \in \mathcal{L}(\mathcal{H}), A$ and B are said to be approximately similar, denoted by $A \sim_{a} B$, if $\overline{\mathcal{S}(A)}=\overline{\mathcal{S}(B)}$, where $\mathcal{S}(\bar{A})=\left\{X A X^{-1}: X \in \mathcal{L}(\mathcal{H})\right.$ invertible $\}$ denotes the similarity orbit of A and $\overline{\mathcal{S}(A)}$ is the norm closure of $\mathcal{S}(A)$. The similarity orbit theorem [1, Thm. 9.2] provides a complete set of this weakened similarity invariants. But, it emploies much complicated terminologies. We may also consider another weakened similarity. $A \sim_{a w} B$ means that, for given $\epsilon>0$, there exist $A_{1}, B_{1} \in \mathcal{L}(\mathcal{H})$ with $\left\|A_{1}\right\|<\epsilon$ and $\left\|B_{1}\right\|<\epsilon$ such that $A+A_{1} \sim B+B_{1}$, where \sim denotes the similarity relation. However, the following example shows that this sort of weakened similarity is too extensive.

Example 1.2. Let $A=M_{t}$ be the multiplication operator on $L^{2}[0,1]$ and $B=$ $-M_{t}$. Then easy to see that $\sigma(A)=\sigma_{e}(A)=[0,1]$ and $\sigma(B)=\sigma_{e}(B)=[-1,0]$. By [11], there exists a quasinilpotent operator Q such that both A and B are in $\overline{\mathcal{S}(Q)}$. Thus $A \sim_{a w} B$.

Now, we consider the third weakened similarity. $A \sim_{a k} B$ means that, for given $\epsilon>0$, there exist $K_{i} \in \mathcal{K}(\mathcal{H})$ with $\left\|K_{i}\right\|<\epsilon(i=1,2)$ such that $A+K_{1} \sim B+K_{2}$. Clearly, if $A \sim_{a k} B$ then $\Lambda(A)=\Lambda(B)$. However, we don't know, in general, whether $\sigma_{0}(A)$ coincides with $\sigma_{0}(B)$ when $A \sim_{a k} B$. First of all, the relation is not transitive.

Notation. A and B are said to be strongly approximate similar, denoted by $A \sim_{\text {sas }} B$, if
(i) $A \sim_{a k} B$,
(ii) $\sigma_{0}(A)=\sigma_{0}(B)$ and $\operatorname{dim} \mathcal{H}(\lambda ; A)=\operatorname{dim} \mathcal{H}(\lambda ; B)$ for each $\lambda \in \sigma_{0}(A)$.

If $\operatorname{dim} \mathcal{H}<\infty$, it is not hard to prove that $A \sim_{\text {sas }} B$ if and only if they have the same characteristic polynomials.

So, A and B may have different Jordan canonical forms when $A \sim_{\text {sas }} B$. Thus, $\sim_{s a s}$ is quite weak from the finite dimensional viewpoint. But, this classification is a dequate to some purpose.

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be quasitriangular if there exists an increasing sequence $\left\{P_{n}\right\}_{n}$ of finite-rank projections in $\mathcal{L}(\mathcal{H})$ such that $P_{n} \rightarrow I$ strongly and $\left\|\left(I-P_{n}\right) T P_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty . T$ is biquasitriangular if both T and T^{*} are quasitriangular. We write $(Q T)$ and $(B Q T)$ for the class of the quasitriangular operators and the class of the biquasitriangular operators respectively.

Operators A and B are essentially similar if A is similar to some compact perturbation of B.

Our main results are the following theorems.

Theorem 1. Let $A, B \in(B Q T), \sigma_{0}(A)=\sigma_{0}(B)=\emptyset$ and $\sigma_{e}(A)$ connected. Then $A \sim_{s a s} B$ if and only if A and B are essentially similar.

Theorem 2. Let $A, B \in(Q T)$ satisfy the followings:
(i) $\sigma_{0}(A)=\sigma_{0}(B)=\emptyset$,
(ii) both $\sigma_{W}(A)$ and $\Omega:=\sigma_{W}(A) \backslash \sigma_{\text {lre }}(A)$ are connected,
(iii) ind $(A-\lambda)=n<\infty$ for each $\lambda \in \Omega$ and
(iv) $\Omega=\operatorname{int} \bar{\Omega}$.

Then $A \sim_{\text {sas }} B$ if and only if A and B are essentially similar.

2. The BiQuasitriangular Case

In what follows, $P_{\mathcal{M}}$ always denotes the orthogonal projection onto a subspace \mathcal{M} of \mathcal{H}.

Proposition 2.1. Let $A, B \in \mathcal{L}(\mathcal{H})$ be such that $\sigma(A)=\sigma(B)$ containing only a single point. Then $A \sim_{\text {sas }} B$ if and only if there exist an invertible operator X and a compact operator K such that $X B X^{-1}=A+K$.

Proof. Only the sufficiency need be proved. Without loss of generality, assume that $\sigma_{\text {lre }}(A)=\sigma(A)=\{0\}$. It follows that A is quasitriangular (see [8). Thus, given $\epsilon>0$, there exists a compact operator C_{1} with $\left\|C_{1}\right\|<\frac{\epsilon}{2}$ such that

$$
A+C_{1}=\left[\begin{array}{llll}
0 & * & * & \cdots \\
& 0 & * & \cdots \\
& & 0 & \cdots \\
& & & \ddots
\end{array}\right]
$$

with respect to a suitable ONB $\left\{e_{n}\right\}_{n=1}^{+\infty}$ of \mathcal{H}.
Set $C_{2}=\sum_{n=1}^{+\infty} \lambda_{n} e_{n} \otimes e_{n}$, where $\lambda_{n}=\frac{\epsilon}{2(n+1)\|X\|\left\|X^{-1}\right\|}$, and $K_{1}=C_{1}+C_{2}$. Then K_{1} is compact, $\left\|K_{1}\right\|<\epsilon$ and $X B X^{-1}=\left(A+K_{1}\right)+\left(K-K_{1}\right)$. By the upper semicontinuity of the spectrum, there is a positive number $\delta<\frac{\epsilon}{2}$ such that $\sigma(C) \subset \sigma(B+W) \subset\left\{\lambda \in \mathbb{C}:|\lambda|<\frac{\epsilon}{8\|X\|\left\|X^{-1}\right\|}\right\}$, when $\|W\|<\delta$. Set $P_{n}=P_{\mathcal{H}_{n}}$, where $\mathcal{H}_{n}=\bigvee\left\{e_{i} ; 1 \leq i \leq n\right\}$. Then there exists a positive integer n_{0} such that

$$
\left\|P_{n_{0}}\left(K-K_{1}\right) P_{n_{0}}-\left(K-K_{1}\right)\right\|<\frac{\delta}{\|X\|\left\|X^{-1}\right\|}
$$

Write $C_{3}=X^{-1}\left[P_{n_{0}}\left(K-K_{1}\right) P_{n_{0}}-\left(K-K_{1}\right)\right] X$. Then C_{3} is compact, $\left\|C_{3}\right\|<\frac{\epsilon}{2}$ and

$$
X\left(B+C_{3}\right) X^{-1}=\left[\begin{array}{cc}
C & D \\
0 & A_{1}
\end{array}\right] \begin{aligned}
& P_{n_{0}} \mathcal{H} \\
& \left(P_{n_{0}} \mathcal{H}\right)^{\perp} .
\end{aligned}
$$

Moreover, we can write

$$
A+K_{1}=\left[\begin{array}{cc}
A_{0} & D \\
0 & A_{1}
\end{array}\right] \begin{aligned}
& P_{n_{0}} \mathcal{H} \\
& \left(P_{n_{0}} \mathcal{H}\right)^{\perp}
\end{aligned}
$$

It is clear that $\sigma(C) \subset \sigma\left(B+C_{3}\right) \subset\left\{\lambda \in \mathbb{C}:|\lambda|<\frac{\epsilon}{8\|X\|\left\|X^{-1}\right\|}\right\}$. Hence, there exists an operator E acting on $P_{n_{0}} \mathcal{H}$ with $\|E\|<\frac{\epsilon^{\epsilon}}{2\|X\|\left\|X^{-1}\right\|}$ such that $C+E \sim A_{0}$. Set $C_{4}=X^{-1}(E \oplus 0) X$. Then C_{4} is compact, $\left\|C_{4}\right\|<\frac{\epsilon}{2}$ and

$$
X\left(B+C_{3}+C_{4}\right) X^{-1}=\left[\begin{array}{cc}
C+E & D \\
0 & A_{1}
\end{array}\right] \sim\left[\begin{array}{cc}
A_{0} & \bar{D} \\
0 & A_{1}
\end{array}\right] .
$$

Claim. $\sigma\left(A_{0}\right) \bigcap \sigma\left(A_{1}\right)=\emptyset$.
Since $\sigma_{\text {lre }}\left(A_{1}\right)=\sigma_{\text {lre }}\left(A+K_{1}\right)=\sigma_{\text {lre }}(A)=\{0\}$, it follows that $\lambda_{n} \in$ $r h o_{s F}\left(A_{1}\right)$ and ind $\left(A_{1}-\lambda_{n}\right)=0$ for $1 \leq n \leq n_{0}$. Since $\operatorname{nul}\left(A_{1}-\lambda_{n}\right)^{*}=0$, we have that $\lambda_{n} \notin \sigma\left(A_{1}\right)$. This proves the claim.

Now, it follows from [10, Cor. 3.22] that $\left[\begin{array}{cc}A_{0} & \bar{D} \\ 0 & A_{1}\end{array}\right] \sim A+K_{1}$. This completes the proof.

Consider a class of invertible operators on \mathcal{H}. Set
$(\mathcal{I}+\mathcal{K})(\mathcal{H})=\{X \in \mathcal{L}(\mathcal{H}): X$ is invertible and $X=I+K, K \in \mathcal{K}(\mathcal{H})\}$.
Clearly, if $X \in(\mathcal{I}+\mathcal{K})(\mathcal{H})$ then $X^{-1} \in(\mathcal{I}+\mathcal{K})(\mathcal{H})$.
The $(\mathcal{I}+\mathcal{K})$-orbit of an operator $T \in \mathcal{L}(\mathcal{H})$ is defined as

$$
(\mathcal{I}+\mathcal{K})(T)=\left\{X T X^{-1}: X \in(\mathcal{I}+\mathcal{K})(\mathcal{H})\right\}
$$

and $A \sim_{i+k} T$ means that $A \in(\mathcal{I}+\mathcal{K})(T)$. The notion of $(\mathcal{I}+\mathcal{K})$-orbit was introduced by P. S. Guinand and L. Marcoux [7], and the latter has studied it in several subsequent papers.

Lemma 2.2. Let $A, B \in \mathcal{L}(\mathcal{H})$ satisfy the followings:
(i) $B=A+K_{0}, K_{0} \in \mathcal{K}(\mathcal{H})$;
(ii) $\sigma(A)$ is a connected infinite set and $\sigma(A)=\sigma(B)$;
(iii) there exists a denumerable dense subset $\Gamma=\left\{\lambda_{n}\right\}_{n=1}^{+\infty}$ of $\sigma(A)$ such that $\Gamma \subset \sigma_{p}(A)$ (here $\sigma_{p}(A)$ denotes the set of the eigenvalues of $\left.A\right), \bigvee\{\operatorname{ker}(A-$ $\lambda) ; \lambda \in \Gamma\}=\mathcal{H}$ and nul $(A-\lambda)=1$ for all $\lambda \in \Gamma$.
Then, given $\epsilon>0$, there exists a compact operator K with $\|K\|<\epsilon$ such that $A \sim_{i+k} B+K$.

Proof. By condition (iii), A can be written as

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & & & * \\
& \ddots & & \\
& & \lambda_{n} & \\
0 & & & \ddots
\end{array}\right)
$$

with respect to a suitable ONB $\left\{e_{n}\right\}_{n=1}^{+\infty}$ of \mathcal{H}.
As in the proof of Proposition 2.1, there exists a positive integer n_{0} such that $K_{1}:=P_{n_{0}} K_{0} P_{n_{0}}-K_{0}$ is compact and $\left\|K_{1}\right\|<\frac{\epsilon}{4}$. Moreover,

$$
B+K_{1}=A+P_{n_{0}} K_{0} P_{n_{0}}=\left[\begin{array}{cc}
C & D \\
0 & A_{1}
\end{array}\right] \begin{aligned}
& P_{n_{0}} \mathcal{H} \\
& \left(P_{n_{0}} \mathcal{H}\right)^{\perp}
\end{aligned}
$$

where $A=\left[\begin{array}{cc}A_{0} & D \\ 0 & A_{1}\end{array}\right]$ and $\sigma(C) \subset \sigma(A)_{\frac{\epsilon}{4}}$. Hence, there exists an operator E on $P_{n_{0}} \mathcal{H}$ with $\|E\|<\frac{\epsilon}{4}$ such that

$$
C+E \sim\left[\begin{array}{lll}
\mu_{1} & \cdots & * \\
& \ddots & \vdots \\
& & \mu_{n_{0}}
\end{array}\right] \begin{aligned}
& e_{1} \\
& \vdots \\
& e_{n_{0}}
\end{aligned} \triangleq C_{1}
$$

and that $\mu_{i} \in \sigma(A)$ for $1 \leq i \leq n_{0}$. Thus, we can find an $X \in(\mathcal{I}+\mathcal{K})(\mathcal{H})$ and a compact K_{2} with $\left\|K_{2}\right\|<\frac{\epsilon}{4}$ such that

$$
X_{1}\left(B+K_{1}+K_{2}\right) X_{1}^{-1}=\left[\begin{array}{ll}
C_{1} & * \\
0 & A_{1}
\end{array}\right]
$$

By conditions (ii) and (iii), a subset $\left\{\lambda_{i_{j}}: 1 \leq i \leq n_{0}, 1 \leq j \leq k(i)<\infty\right\}$ of Γ can be chosen such that each of $\left|\mu_{i}-\lambda_{i_{1}}\right|,\left|\lambda_{i_{j}}-\lambda_{i_{j+1}}\right|$ and $\left|\lambda_{i_{k(i)}}-\lambda_{i}\right|$ is properly smaller than $\frac{\epsilon}{4\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|}$ for $1 \leq i \leq n_{0}$ and $1 \leq j \leq k(i)$.

Now, set

$$
\begin{aligned}
X_{1} K_{3} X_{1}^{-1}= & \sum_{i=1}^{n_{0}}\left[\left(\lambda_{i_{1}}-\mu_{i}\right) e_{i} \otimes e_{i}\right. \\
& \left.\left.+\sum_{j=1}^{k(i)-1}\left(\lambda_{i_{j+1}}-\lambda_{i_{j}}\right) e_{i_{j}} \otimes e_{i_{j}}+\left(\lambda_{i}-\lambda_{i_{k(i)}}\right) e_{i_{k(i)}} \otimes e_{i_{k(i)}}\right)\right]
\end{aligned}
$$

Then K_{3} is compact and $\left\|K_{3}\right\|<\frac{\epsilon}{4}$. Moreover,

$$
X_{1}\left(B+\sum_{i=1}^{3} K_{i}\right) X_{1}^{-1}=\left[\begin{array}{cc}
C_{2} & * \\
0 & A_{2}
\end{array}\right] \begin{aligned}
& P_{n_{1}} \mathcal{H} \\
& \left(P_{n_{1}} \mathcal{H}\right)^{\perp} .
\end{aligned}
$$

for some n_{1}, where $A_{2}=\left.\left(I-P_{n_{1}}\right) A\right|_{\left(P_{n_{1}} \mathcal{H}\right)^{\perp}}$.
Note that $\sigma\left(C_{2}\right)=\left\{\lambda_{i} ; 1 \leq i \leq n_{1}\right\}$. It follows that $\overline{A_{0}}:=\left(\left.A\right|_{P_{1} \mathcal{H}}\right) \sim C_{2}$. So, there exists an operator $X_{2} \in(\mathcal{I}+\mathcal{K})(\mathcal{H})$ such that

$$
X_{2} X_{1}\left(B+\sum_{i=1}^{3} K_{i}\right) X_{1}^{-1} X_{2}^{-1}=\left[\begin{array}{cc}
\overline{A_{0}} & * \\
0 & A_{2}
\end{array}\right] \begin{aligned}
& P_{n_{1}} \mathcal{H} \\
& \left(P_{n_{1}} \mathcal{H}\right)^{\perp}
\end{aligned} \stackrel{\Delta}{=} .
$$

To complete the proof, it suffices to show the following
Claim. There exists a compact operator $\overline{K_{4}}$ with $\left\|\overline{K_{4}}\right\|<\delta, \delta=\frac{\epsilon}{4\left\|X_{2} X_{1}\right\|\left\|X_{1}^{-1} X_{2}^{-1}\right\|}$, such that $\bar{A}+\overline{K_{4}} \sim_{i+k} A$.

By using induction, we prove this only for the case $n_{1}=1$. Let

$$
\bar{A}=\left[\begin{array}{cc}
\lambda_{1} & e_{1} \otimes f \\
0 & A_{2}
\end{array}\right] \begin{aligned}
& e_{1} \\
& \left\{e_{1}\right\}^{\perp}
\end{aligned} \text { and }\left[\begin{array}{cc}
\lambda_{1} & e_{1} \otimes g \\
0 & A_{2}
\end{array}\right] \begin{aligned}
& e_{1} \\
& \left\{e_{1}\right\}^{\perp}
\end{aligned} .
$$

It follows from condition (iii) that $\overline{\operatorname{ran}\left(A-\lambda_{1}\right)^{*}}=\left\{e_{1}\right\}^{\perp}$. Hence, there exists an $f_{0} \in\left\{e_{1}\right\}^{\perp}$ with $\left\|f_{0}\right\|<\frac{\delta}{2}$ such that $f+f_{0}=\left(A-\lambda_{1}\right)^{*} h$ for some h in \mathcal{H}. Let $h=\alpha e_{1}+h_{1}, h_{1} \in\left\{e_{1}\right\}^{\perp}$. Then $f+f_{0}=\alpha g+\left(A_{2}-\lambda_{1}\right)^{*} h_{1}$. Thus,

$$
\left[\begin{array}{cc}
1 & 0 \\
h_{1} & I
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
f+f_{0} & \left(A_{2}-\lambda_{1}\right)^{*}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-h_{1} & I
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
\alpha g & \left(A_{2}-\lambda_{1}\right)^{*}
\end{array}\right] .
$$

This implies that we can find an $X_{3} \in(\mathcal{I}+\mathcal{K})(\mathcal{H})$ such that

$$
X_{3}\left(\bar{A}+F_{0}\right) X_{3}^{-1}=\left[\begin{array}{cc}
\lambda_{1} & \alpha e_{1} \otimes g \\
0 & A_{2}
\end{array}\right]
$$

where $F_{0}=\left[\begin{array}{cc}0 & e_{1} \otimes f_{0} \\ 0 & 0\end{array}\right]$.
If $\alpha \neq 0$, then it is clear that

$$
\left[\begin{array}{cc}
\lambda_{1} & \alpha e_{1} \otimes g \\
0 & A_{2}
\end{array}\right] \sim_{i+k}\left[\begin{array}{cc}
\lambda_{1} & e_{1} \otimes g \\
0 & A_{2}
\end{array}\right] .
$$

If $\alpha=0$, set $F_{1}=X_{3}^{-1}\left[\begin{array}{cc}0 & \eta e_{1} \otimes g \\ 0\end{array}\right] X_{3}$ with a small $\eta>0$ such that $\left\|F_{1}\right\|<\frac{\delta}{2}$. Thus,

$$
X_{3}\left(\bar{A}+F_{0}+F_{1}\right) X_{3}^{-1}=\left[\begin{array}{cc}
\lambda_{1} & \eta e_{1} \otimes g \\
0 & A_{2}
\end{array}\right] \sim_{i+k}\left[\begin{array}{cc}
\lambda_{1} & e_{1} \otimes g \\
0 & A_{2}
\end{array}\right] .
$$

The proof is completed.

Lemma 2.3 [14]. Let $\sigma(A)=\sigma_{\text {lre }}(A)$ be perfect and $\epsilon>0$. Then there exists a compact operator K with $\|K\|<\epsilon$ such that
(i) $\Gamma:=\sigma_{p}(A+K)=\left(\sigma_{p}\left(A^{*}+K^{*}\right)\right)^{*}$ is a denumerable dense subset of $\sigma(A)$,
(ii) $\operatorname{nul}(A+K-\lambda)=\operatorname{nul}(A+K-\lambda)^{*}=1$ for each $\lambda \in \Gamma$, and
(iii) $\bigvee\{\operatorname{ker}(A+K-\lambda) ; \lambda \in \Gamma\}=\bigvee\left\{\operatorname{ker}(A+K-\lambda)^{*} ; \lambda \in \Gamma\right\}=\mathcal{H}$.

Now, we can prove Theorem 1.

Proof of Theorem 1. If $A \sim_{s a s} B$, then there exist two compact operators K_{1} and K_{2} and an invertible operator X such that $A+K_{1}=X\left(B+K_{2}\right) X^{-1}$. Write $K=K_{2}-X^{-1} K_{1} X$; then K is compact and $A=X(B+K) X^{-1}$. So A and B are essentially similar. Now we are going to prove the sufficiency. By [10, Thm. 3.48] and Proposition 2.1, we may assume that $\sigma(A)=\sigma_{\text {lre }}(A)=\sigma(B)=\sigma_{\text {lre }}(B)$ and that they contain more than one point. Given $\epsilon>0$, it follows from Lemma 2.3 that there exists a compact K with $\|K\|<\epsilon$ such that $A+K$ satisfies (i), (ii) and (iii) of Lemma 2.3. Write $X B X^{-1}=A+K_{0}, X$ invertible and $K_{0} \in \mathcal{K}(\mathcal{H})$. Then $X B X^{-1}=A+K+K_{0}-K$. By Weyl's Theorem [9, Problem 143], $\sigma(A+K) \subset$ $\sigma(A) \bigcup \sigma_{p}(A+K)=\sigma(A) \bigcup \Gamma=\sigma(A)$. Thus, $\sigma(A+K)=\sigma(A)=\sigma(B)$. It follows from Lemma 2.2 that there exists a compact $\overline{K_{1}}$ with $\left\|\overline{K_{1}}\right\|<\frac{\epsilon}{\|X\|\left\|X^{-1}\right\|}$ such that $X B X^{-1}+\overline{K_{1}} \sim A+K$. Set $K_{1}=X^{-1} \overline{K_{1}} X$. We obtain that $\left\|K_{1}\right\|<\epsilon$ and $B+K_{1} \sim A+K$.

3. The Quasitriangular Case

Proposition 3.1. Let $B \in \mathcal{B}_{1}(\Omega)$ and let $A=K_{0}+\bigoplus_{i=1}^{n} B, K_{0}$ compact and $\sigma(A)=\sigma(B)=\bar{\Omega}$. Then, for given $\epsilon>0$, there exist an $X \in(\mathcal{I}+\mathcal{K})(\mathcal{H})$ and a compact K with $\|K\|<\epsilon$ such that $X(A+K) X^{-1}=\bigoplus_{i=1}^{n} B$.

Proof. Without loss of generality, assume that $0 \in \Omega$. We shall proceed by induction on the positive number n. Thus, begin with considering the case $n=1$. This is an immediate consequence of Lemma 2.2. Now, asumme that the conclusion is true for $n-1$. Set $P_{k}=\bigoplus_{i=1}^{n} P_{\text {ker } B^{k}}$. Then there exists a natural number k_{0} such
that $K_{1}=P_{k_{0}} K_{0} P_{k_{0}}-K_{0}$ is compact and $\left\|K_{1}\right\|<\frac{\epsilon}{5}$. Thus,

$$
\begin{aligned}
A+K_{1} & =\left(\bigoplus_{i=1}^{n} B\right)+P_{k_{0}} K_{0} P_{k_{0}} \\
& \left.=\left[\begin{array}{cc}
C_{0} & * \\
0 & \bigoplus_{i=1}^{n} B_{1}
\end{array}\right] \begin{array}{l}
\operatorname{ran} P_{k_{0}} \\
\left(\operatorname{ran} P_{k_{0}}\right)^{\perp}
\end{array}=\left[\begin{array}{cc}
C_{0} & * \\
0 & B_{1}
\end{array}\right] \begin{array}{c}
* \\
0 \\
0
\end{array} \begin{array}{|c}
\bigoplus_{i=1}^{n-1} B_{1}
\end{array}\right]
\end{aligned}
$$

where $B=\left[\begin{array}{cc}B_{0} & * \\ 0 & B_{1}\end{array}\right] \begin{aligned} & \operatorname{ker} B^{k_{0}} \\ & \left(\operatorname{ker} B^{k_{0}}\right)^{\perp}\end{aligned} \quad$ and C_{0} is a compact perturbation of $\bigoplus_{i=1}^{n} B_{0}$.
By the upper semicontinuity of the spectrum, using the technique used in Lemma 2.2, we may assume that $\sigma\left(C_{0}\right) \subset \Omega$. Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{(n-1) k_{0}}$ be pairwise distinct numbers in Ω. Let C be an operator on $\mathbb{C}^{l} \oplus \mathcal{H}$ whose adjoint can be written as

$$
C^{*}=\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
\overline{\lambda_{1}} & & 0 \\
& \ddots & \\
0 & & \overline{\lambda_{l}}
\end{array}\right]} & 0 \\
f_{1} & \cdots & f_{l}
\end{array} B^{*}\right]
$$

where $l=(n-1) k_{0}$ and $f_{i} \notin \operatorname{ran}\left(B-\lambda_{i}\right)^{*}$ for $1 \leq i \leq l$.
Claim. $C \sim B$.
Consider $C_{l}^{*}:=\left[\begin{array}{cc}\overline{\lambda_{l}} & 0 \\ f_{l} & B^{*}\end{array}\right]$. We may assume that $\lambda_{l}=0$. It is not hard to prove that $0 \notin \sigma_{r}\left(C_{l}\right)$ and $\mathbb{C} \oplus\{0\}=\operatorname{ker} C_{l}$. Define $X \in \mathcal{L}(\mathbb{C} \oplus \mathcal{H}, \mathcal{H})$ by $X y=C_{l}^{*} y, y \in \mathbb{C} \oplus \mathcal{H}$. Then X is invertible and $X^{-1} B^{*} X=C_{l}^{*}$. That is, $C_{l} \sim B$.

Note that $C-\left[\begin{array}{cc}C_{0} & * \\ 0 & B_{1}\end{array}\right]$ is compact. It follows from Lemma 2.2 that there exists a compact $\overline{K_{2}}$ with $\left\|\overline{K_{2}}\right\|<\frac{\epsilon}{5}$ such that

$$
\left[\begin{array}{cc}
C_{0} & * \\
0 & B_{1}
\end{array}\right] \sim_{i+k} C
$$

Thus, we can find an $X_{1} \in(\mathcal{I}+\mathcal{K})$ and a compact K_{2} with $\left\|K_{2}\right\|<\frac{\epsilon}{5}$ such that

$$
X_{1}\left(A+K_{1}+K_{2}\right) X_{1}^{-1}=\left[\begin{array}{cc}
C & E_{1} \\
0 & \bigoplus_{i=1}^{n-1} B_{1}
\end{array}\right]
$$

where E_{1} is compact.

Since $B_{1} \sim B$ and $C \sim B$, it follows from [5] that there are no nonzero compact operators K satisfying $\left(\bigoplus_{i=1}^{n-1} B_{1}\right) K-K C=0$. Thus, by [15, Lem.1.10], there exist compact operators E_{2} and E_{3} with $\left\|E_{3}\right\|<\frac{\epsilon}{5\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|}$ such that $E_{1}+E_{3}=$ $C E_{2}-E_{2}\left(\bigoplus_{i=1}^{n-1} B_{1}\right)$. As a result, $X_{2}=\left[\begin{array}{cc}I & E_{2} \\ 0 & I\end{array}\right] \in(\mathcal{I}+\mathcal{K}), K_{3}=\left[\begin{array}{cc}0 & E_{3} \\ 0 & 0\end{array}\right]$ is compact and

$$
\begin{aligned}
X_{2} X_{1}\left(A+\sum_{i=1}^{3} K_{i}\right) X_{1}^{-1} X_{2}^{-1} & =X_{2}\left[\begin{array}{cc}
C & E_{1}+E_{3} \\
0 & \bigoplus_{i=1}^{n-1} B_{1}
\end{array}\right] X_{2}^{-1} \\
& =\left[\begin{array}{cc}
C & 0 \\
0 & \bigoplus_{i=1}^{n-1} B_{1}
\end{array}\right]=\left[\begin{array}{cc}
\bigoplus_{i=1}^{n-1} \overline{B_{i}} & E_{4} \\
0 & B
\end{array}\right]
\end{aligned}
$$

where

$$
\overline{B_{i}}=\left[\begin{array}{cccc}
\lambda_{(i-1) k_{0}+1} & & & 0 \\
& \ddots & & \\
& & \lambda_{i k_{0}} & \\
0 & & & B_{1}
\end{array}\right]
$$

and E_{4} is compact.
Since $\bigoplus_{i=1}^{n-1} \overline{B_{i}}$ is a compact perturbation of $\bigoplus_{i=1}^{n-1} B$, it follows from our induction assumption that there exist an $X_{3} \in(\mathcal{I}+\mathcal{K})$ and a compact K_{4} with $\left\|K_{4}\right\|<\frac{\epsilon}{5}$ such that

$$
X_{3} X_{2} X_{1}\left(A+\sum_{i=1}^{4} K_{i}\right) X_{1}^{-1} X_{2}^{-1} X_{3}^{-1}=\left[\begin{array}{cc}
\bigoplus_{i=1}^{n-1} B & E_{5} \\
0 & B
\end{array}\right]
$$

and still, E_{5} is compact.
By using a similar method as above, we conclude that there exist an $X_{4} \in$ $(\mathcal{I}+\mathcal{K})$ and a compact K_{5} with $\left\|K_{5}\right\|<\frac{\epsilon}{5}$ such that

$$
X_{4} X_{3} X_{2} X_{1}\left(A+\sum_{i=1}^{5} K_{i}\right) X_{1}^{-1} X_{2}^{-1} X_{3}^{-1} X_{4}^{-1}=\left[\begin{array}{cc}
\bigoplus_{i=1}^{n-1} B & 0 \\
0 & B
\end{array}\right]=\bigoplus_{i=1}^{n} B
$$

That completes the proof.
Lemma 3.2. Let $B \in \mathcal{B}_{1}(\Omega), \sigma(B)=\bar{\Omega}$ and $\sigma_{p}(B)=\Omega$, and let

$$
S=\left[\begin{array}{cc}
A & R \\
0 & \bigoplus_{i=1}^{n} B
\end{array}\right] \begin{gathered}
\mathcal{K} \\
\bigoplus_{i=1}^{n} \mathcal{H}
\end{gathered}
$$

satisfy the following conditions:
(i) $\Gamma:=\sigma_{p}(A)=\left(\sigma_{p}\left(A^{*}\right)\right)^{*}$ is a denumerable dense subset of $\sigma(A)$;
(ii) $\operatorname{nul}(A-\lambda)=\operatorname{nul}(A-\lambda)^{*}=1$ for each $\lambda \in \Gamma$;
(iii) $\bigvee\{\operatorname{ker}(A-\lambda) ; \lambda \in \Gamma\}=\mathcal{K}$;
(iv) $\sigma(A)=\sigma_{\text {lre }}(A)=\sigma_{\text {lre }}(S)=\sigma(S) \backslash \Omega$ perfect;
(v) $\sigma(S)=\sigma_{W}(S)$ is connected and $\Omega \subset \sigma(S)$.

If T is a compact perturbation of S and $\sigma_{0}(T)=\emptyset$, then, given $\epsilon>0$, there exists a compact K with $\|K\|<\epsilon$ such that $S \sim_{i+k} T+K$.

Proof. By [10, Thm.3.48], we may assume that $\sigma(T)=\sigma_{W}(T)(=\sigma(S))$. Without loss of generality, we may also assume that $0 \in \Omega$.

Set $P_{k}=I_{\mathcal{K}} \bigoplus\left(\bigoplus_{i=1}^{n} P_{\text {ker } B^{k}}\right)$, as in the proof of Proposition 3.1, there exist a positive integer k_{0} and a compact K_{1} with $\left\|K_{1}\right\|<\frac{\epsilon}{4}$ such that B can be writen as

$$
B=\left[\begin{array}{cc}
B_{0} & * \\
0 & B_{1}
\end{array}\right] \begin{aligned}
& P_{\mathrm{ker} B^{k_{0}}} \\
& \left(P_{\mathrm{ker} B^{k_{0}}}\right)^{\perp}
\end{aligned}
$$

and

$$
\left.T+K_{1}=\left[\begin{array}{cc}
C & * \\
0 & \bigoplus_{i=1}^{n} B_{1}
\end{array}\right]=\left[\begin{array}{cc}
C & F \\
0 & B_{1}
\end{array}\right] \underset{c}{*} \begin{array}{c}
n-1 \\
0
\end{array} \underset{i=1}{\oplus} B_{1}\right]
$$

where C is a compact perturbation of $\left[\begin{array}{cc}A & E \\ 0 & \bigoplus_{i=1}^{n} B_{0}\end{array}\right]$ and $\sigma\left(\left[\begin{array}{cc}C & F \\ 0 & B_{1}\end{array}\right]\right) \subset$ $(\sigma(S))_{\frac{\epsilon}{8}}$.

Let $D=\left[\begin{array}{cc}C & F \\ 0 & B_{1}\end{array}\right]$. Note that $B_{1} \sim B$, and it can be shown that $\sigma_{l r e}(D)=$ $\sigma_{\text {lre }}(S)$. If $\lambda \in \sigma_{0}(D)$, then ind $(D-\lambda)=0$. This implies that $\lambda \notin \Omega$. Thus, $\lambda \notin$ $\sigma(S)$. By [10, Thm. 3.48], we may assume that $\sigma(D)=\sigma_{W}(D)=\sigma_{\text {lre }}(S) \bigcup \Omega=$ $\sigma(S)$. Set

$$
G=\left[\begin{array}{ccc}
A & E & F_{1} \\
& J & f \otimes e \\
& & B_{1}
\end{array}\right],
$$

where $F_{1}=P_{\mathcal{K}} F, J$ is $n k_{0}$-order Jordan block, $e \in \operatorname{ker} B_{1}$ with $\|e\|=1$ and $f \in \operatorname{ker} J^{*}$ with $\|f\|=1$. Then G is a compact perturbation of D and $\sigma(G)=$ $\sigma(S)=\sigma(D)$.

Now, we can verify that G satisfies the conditions (i), (ii) and (iii) of Lemma 2.2. Thus, an $X_{1} \in(\mathcal{I}+\mathcal{K})$ and a compact K_{2} with $\left\|K_{2}\right\|<\frac{\epsilon}{4}$ can be found such that

$$
X_{1}\left(T+K_{1}+K_{2}\right) X_{1}^{-1}=\left[\begin{array}{cc}
G & * \\
0 & \bigoplus_{i=1}^{n-1} B_{1}
\end{array}\right]=\left[\begin{array}{cc}
A & * \\
0 & L
\end{array}\right]
$$

where

$$
L=\left[\begin{array}{ccc}
J & f \otimes e & * \\
& B_{1} & 0 \\
& & \bigoplus_{i=1}^{n-1} B_{1}
\end{array}\right]
$$

is a compact perturbation of ${ }_{\oplus}^{\oplus} B_{1}$.
Since $\sigma(L)=\sigma\left(B_{1}\right)=\stackrel{i=1}{\Omega}$, it follows from Proposition 3.1 that there exist an $X_{2} \in(\mathcal{I}+\mathcal{K})$ and a compact K_{3} with $\left\|K_{3}\right\|<\frac{\epsilon}{4}$ such that

$$
X_{2} X_{1}\left(T+\sum_{i=1}^{3} K_{i}\right) X_{1}^{-1} X_{2}^{-1}=\left[\begin{array}{cc}
A & R_{0} \\
0 & \bigoplus_{i=1}^{n} B
\end{array}\right]
$$

Note that $X_{1}, X_{2} \in(\mathcal{I}+\mathcal{K})$, and $R-R_{0}$ is compact. It follows from [12, Lemma 2] that if $\left(\bigoplus_{i=1}^{n} B\right) X-X A=0$ and X is compact then $X=0$. Thus, imitating the proof of Proposition 3.1, we can find an $X_{3} \in(\mathcal{I}+\mathcal{K})$ and a compact K_{4} with $\left\|K_{4}\right\|<\frac{\epsilon}{4}$ such that

$$
X_{3} X_{2} X_{1}\left(T+\sum_{i=1}^{4} K_{i}\right) X_{1}^{-1} X_{2}^{-1} X_{3}^{-1}=S
$$

Proof of Theorem 2. We need only prove that if A and B are essentially similar, then $A \sim_{\text {sas }} B$.

As in the proof of Lemma 3.2, assume that $0 \in \Omega$ and $\sigma(A)=\sigma_{W}(A)$. It follows from AFV Theorem [2] that there exists a compact K_{1} with $\left\|K_{1}\right\|<\frac{\epsilon}{3}$ such that

$$
A+K_{1}=\left[\begin{array}{cc}
A_{0} & * \\
0 & N
\end{array}\right]
$$

where N is a diagonal normal operator of uniform infinite multiplicity and $\sigma(N)=$ $\sigma_{e}(N)=\partial \Omega ; \sigma\left(A_{0}\right)=\sigma(A), \sigma_{\text {lre }}\left(A_{0}\right)=\sigma_{\text {lre }}(A)$ and ind $\left(A_{0}-\lambda\right)=\operatorname{ind}(A-\lambda)$ for each $\lambda \in \rho_{s F}(A)$.

Let $B(\Omega)$ denote the Bergmann operator on $L_{a}^{2}(\Omega)$ defined by $(B(\Omega) f)(z)=$ $z f(z)$. It follows from [10, p.105] that $B\left(\Omega^{*}\right)^{*} \in \mathcal{B}_{1}(\Omega)$, where $\Omega^{*}=\{\bar{z}: z \in \Omega\}$.

Set $B_{n}=\bigoplus_{i=1}^{n} B\left(\Omega^{*}\right)^{*}$. Then by BDF Theorem [3], we can find a unitary U_{0} and a compact K_{0} such that

$$
U_{0} N U_{0}=K_{0}+\left[\begin{array}{cc}
\bigoplus_{i=1}^{n} B(\Omega) & 0 \\
0 & B_{n}
\end{array}\right]
$$

Set $P_{m}=(\stackrel{n}{\oplus} I) \bigoplus P_{\text {ker } B_{n}^{m}}$. Then there exist a positive integer m_{0} and a compact $\overline{K_{0}}$ with $\| \frac{i=1}{\left\|K_{o}\right\|}<\frac{\epsilon}{6}$ such that

$$
U_{0}\left(N+\overline{K_{0}}\right) U_{0}^{*}=\left[\begin{array}{cc}
\overline{B_{0}} & * \\
0 & B_{1}
\end{array}\right] \begin{aligned}
& \operatorname{ran} P_{m_{0}} \\
& \left(\operatorname{ran} P_{m_{0}}\right)^{\perp}
\end{aligned}
$$

where $\sigma\left(N+\overline{K_{0}}\right) \subset \sigma(N)_{\frac{\epsilon}{12}}, \sigma_{W}\left(\overline{B_{0}}\right)=\bar{\Omega}$ and ind $\left(\overline{B_{0}}-\lambda\right)=-n$ for each $\lambda \in \Omega$. Thus $B_{1} \sim B_{n}$. This implies that $\sigma\left(\overline{B_{0}}\right) \subset(\bar{\Omega})_{\frac{\epsilon}{12}}$. By [10, Thm.3.48], there exists a compact $\overline{K_{1}}$ with $\left\|\overline{K_{1}}\right\|<\frac{\epsilon}{6}$ such that $\sigma\left(\overline{B_{0}}+\overline{K_{1}}\right)=\sigma_{W}\left(\overline{B_{0}}\right)=\bar{\Omega}$. Set $C_{0}=\overline{B_{0}}+\overline{K_{1}}$. Then we have that

$$
U\left(A+K_{1}+K_{2}\right) U^{*}=\left[\begin{array}{ccc}
A_{0} & * & * \\
& C_{0} & * \\
& & B_{1}
\end{array}\right]
$$

for some unitary U and some compact K_{2} with $\left\|K_{2}\right\|<\frac{\epsilon}{3}$.
Set $C_{1}=\left[\begin{array}{cc}A_{0} & * \\ 0 & C_{0}\end{array}\right]$. It is easy to show that $\sigma_{e}\left(C_{1}\right)=\sigma(A) \backslash \Omega$ is perfect and that $\sigma\left(C_{1}\right)=\sigma(A)$. Thus, $C_{1} \in(B Q T)$. By [10, Thm.3.48], assume that $\sigma\left(C_{1}\right)=\sigma_{W}\left(C_{1}\right)=\sigma_{e}\left(C_{1}\right)$. Now, it follows from Lemma 2.3 that there exists a compact $\overline{K_{2}}$ with $\left\|\overline{K_{2}}\right\|<\frac{\epsilon}{3}$ such that $A_{1}:=C_{1}+\overline{K_{2}}$ has the following properties:
(i) $\Gamma:=\sigma_{p}\left(A_{1}\right)=\left(\sigma_{p}\left(A_{1}^{*}\right)\right)^{*}$ is a denumerable dense subset of $\sigma\left(C_{1}\right)$;
(ii) $\operatorname{nul}\left(A_{1}-\lambda\right)=\operatorname{nul}\left(A_{1}-\lambda\right)^{*}=1$ for each $\lambda \in \Gamma$;
(iii) $\bigvee\left\{\operatorname{ker}\left(A_{1}-\lambda\right) ; \lambda \in \Gamma\right\}$ coincides with the space on which A_{1} acts.

By Weyl's Theorem and (i), we can also obtain
(iv) $\sigma\left(A_{1}\right)=\sigma\left(C_{1}\right)=\sigma_{e}\left(C_{1}\right)=\sigma_{e}\left(A_{1}\right)$.

Thus, we can find a compact K_{3} with $\left\|K_{3}\right\|<\frac{\epsilon}{3}$ such that

$$
S:=U\left(A+\sum_{i=1}^{3} K_{i}\right) U^{*}=\left[\begin{array}{cc}
A_{1} & * \\
0 & B_{1}
\end{array}\right]
$$

Clearly, $\sigma_{W}(S)=\sigma_{W}(A)=\sigma(A)=\sigma\left(C_{1}\right)$. If $\lambda \notin \sigma_{W}(S)$, then it follows from (iv) that $\lambda \notin \sigma\left(A_{1}\right)$. Hence, $\lambda \notin \sigma(S)$. This implies that
(v) $\sigma(S)=\sigma_{W}(S)$ is connected.

It is also obvious that $\sigma_{\text {lre }}(S)=\sigma_{\text {lre }}(A)=\sigma(A) \backslash \Omega$ is perfect.
Note that $U X B X^{-1} U^{*}-S$ is compact. Using Lemma 3.2, we can find an invertible Y and a compact K_{4} with $\left\|K_{4}\right\|<\epsilon$ such that

$$
Y U X\left(B+K_{4}\right) X^{-1} U^{*} Y^{-1}=S=U\left(A+\sum_{i=1}^{3} K_{i}\right) U^{*}
$$

Now, we complete the proof.
Remark. Theorems 1 and 2 show that the relation $\sim_{s a s}$ is transitive for the classes of operators in the two theorems.

To conclude this paper, we pose the following
Problem. Is relation $\sim_{\text {sas }}$ always transitive?

References

1. C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu, Approximation of Hilbert Space Operators, Vol. II, Research Notes in Math., Vol. 102, Pitman, London, 1984.
2. C. Apostol, C. Foias and D. Voiculescu, Some results on nonquasitriangular operators IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487-514.
3. L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras, in: Proceedings of a Conference on Operator Theory, Halifax, Nova Scotia, 1973, Lect. Notes in Math., Vol. 345, Springer-Verlag, 1973, pp.58-128.
4. J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer-Verlag, Berlin-New York, 1990.
5. M. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), 187-261.
6. F. Gilfeather, Strongly reducibility of operators, Indiana Univ. Math. J. 22 (1972), 393-397.
7. P. S. Guinand and L. Marcoux, Between the unitary and similarity orbits of normal operators, Pacific J. Math. 159 (1993), 299-335.
8. P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged), 29 (1968), 283-293.
9. P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer-Verlag, New York, 1982.
10. D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, 2nd ed., Pitman Res. Notes Math. 224, Longman Sci. Tech., Harlow, Essex, 1989.
11. D. A. Herrero, A unicellular universal quasinilpotent weighted shift, Proc. Amer. Math. Soc. 110 (1990), 649-652.
12. D. A. Herrero and C. L. Jiang, Limits of strongly irreducible operators, and the Riesz decomposition theorem, Michigan Math. J. 37 (1990), 283-291.
13. Z. J. Jiang, A lecture on operator theory, the report in the seminar of functional analysis of Jilin University, Changchun, 1979.
14. Y. Q. Ji and C. L. Jiang, Small compact perturbation of strongly irreducible operators, to appear.
15. C. L. Jiang and Z. Y. Wang, Strongly Irreducible Operators on Hilbert Space, Pitman Res. Notes in Math., 389, Longman Sci. Tech., 1989.
16. A. L. Shields, Weighted shift operators and analytic function theory, in: Topice in Operator Theory, C. Pearcy, ed., Math. Survey, Vol. 13, Amer. Math. Soc., Providence, RI, 1974, pp.49-128.

You Qing Ji
Department of Mathematics Jilin University and Zhongshan University
Changchun 130023, China and Guangzhou 510275, China
Jue Xian Li
Department of Mathematics Liaoning University
Shenyang 110036, China

[^0]: Received June 9, 1999; revised August 17, 1999.
 Communicated by P. Y. Wu.
 1991 Mathematics Subject Classification: 47A55 47A10.
 Key words and phrases: Compact operator, spectral picture, quasitriangular operator.
 *Supported by the National Natural Science Foundation of China and NSF of Liaoning Province Education Commission.

