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STOCHASTIC STRATONOVICH CALCULUS fBm FOR FRACTIONAL

BROWNIAN MOTION WITH HURST PARAMETER LESS THAN 1/2

E. Alòs, J. A. León∗ and D. Nualart†

Abstract. In this paper we introduce a Stratonovich type stochastic integral

with respect to the fractional Brownian motion with Hurst parameter less than

1/2. Using the techniques of the Malliavin calculus, we provide sufficient

conditions for a process to be integrable. We deduce an Itô formula and

we apply these results to study stochastic differential equations driven by a

fractional Brownian motion with Hurst parameter less than 1/2.

1. INTRODUCTION

The fractional Brownian motion of Hurst parameter H ∈ (0, 1) is a centered
Gaussian process BH = {BH

t , t ≥ 0} with the covariance function (see [16])

E(BH
t BH

s ) =
1
2
(
s2H + t2H − |t − s|2H

)
.(1)

The purpose of this paper is to study stochastic integrals with respect to the process

BH in the case H < 1/2. In [16], the authors derive the integral representation

BH
t = aH

∫ t

0
(t − s)H− 1

2 dWs + Zt,(2)

whereW is a standard Wiener process and Z is a process with absolutely continuous

paths. Different approaches have been recently used to define stochastic integrals

with respect to BH in the case H < 1/2:
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(i) Using the representation (2), we defined in [1] a stochastic integral
∫ T
0 usdBH

s

as the limit as ε tends to zero of the integrals with respect to the regularized

process aH

∫ t
0(t − s + ε)H− 1

2 dWs + Zt. This integral requires the trace

condition

∫ T

0

∫ r

0
|Dsur|(r − s)H− 3

2 ds dr < ∞(3)

almost surely, whereD denotes the derivative in the sense of Malliavin calcu-

lus with respect to the Wiener process W . This condition is very strong and

it is not satisfied in simple cases like ut = Wt or ut = BH
t . Moreover, under

a suitable Hölder condition on the process u, this integral coincides with the
limit of the forward Riemann sums

n∑

i=1

uti−1(B
H
ti − BH

ti−1
),

where ti = iT/n.

(ii) Since the fractional Brownian motion is a Gaussian process, one can apply

the stochastic calculus of variations (see [18]) and introduce the stochastic

integral as the divergence operator with respect to BH , that is, the adjoint of

the derivative operator. This idea has been developed by Decreusefond and

Üstünel [6, 7], Carmona and Coutin [3] and Alòs, Mazet and Nualart [2].

The integral constructed by this method has zero mean, and can be obtained

as the limit of Riemann sums defined using Wick products. The forward

integral defined in [1] can be expressed as the sum of the divergence with

respect to BH and the trace term (3).

(iii) Using the notions of fractional integral and derivative, Zähle has introduced

in [23] a pathwise stochastic integral with respect to BH , H ∈ (0, 1). If the
integrator has λ -Hölder continuous paths with λ > 1−H , then this integral
can be interpreted as a Riemann-Stieltjes integral.

As we pointed out before, the forward integral
∫ T
0 BH

t dBH
t does not exist.

Actually, a simple argument shows that the expectation of the Riemann sums

n∑

i=1

BH
ti−1

(BH
ti − BH

ti−1
)

diverges. In fact, if ti = iT/n, then

E

n∑

i=1

BH
ti−1

(BH
ti − BH

ti−1
)=

1
2

n∑

i=1

[
t2H
i − t2H

i−1 − (ti − ti−1)2H
]

=
1
2
T 2H

(
1 − n1−2H

)
.
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Notice, however, that the expectation of symmetric Riemann sums is constant:

1
2
E

n∑

i=1

(BH
ti + BH

ti−1
)(BH

ti − BH
ti−1

) =
1
2

n∑

i=1

[
t2H
i − t2H

i−1

]
=

T 2H

2
.

Taking into account this remark, and following the approach by Russo and

Vallois [20], in this paper we define a stochastic integral of Stratonovich type∫ T
0 us ◦ dBH

s as the limit in probability as ε tends to zero of

(2ε)−1

∫ T

0
us

(
BH

(s+ε)∧T − BH
(s−ε)∨0

)
ds.

Our main result is Theorem 2 which provides sufficient conditions for the

Stratonovich integral to exist, and yields a decomposition of this integral as the

sum of the divergence operator and a trace term. These conditions are fulfilled, for

instance, in the particular case us = F (BH
s ), for some regular function F . Section

5 is devoted to establish an Itô’s formula for the indefinite Stratonovich integral. Fi-

nally, in Section 6 we solve one-dimensional stochastic differential equations in the

Stratonovich sense driven by the fractional Brownian motion with Hurst parameter

less than 1/2.

2. PRELIMINARIES

Let B = {Bt, t ∈ [0, T ]} be a zero-mean Gaussian process of the form

Bt =
∫ t

0
K(t, s)dWs,

where W = {Wt, t ∈ [0, T ]} is a Wiener process, and K(t, s), 0 < s < t < T , is a

kernel satisfying ‖K‖ = supt∈[0,T ]

∫ t
0 K(t, s)2ds < ∞. The covariance R(t, s) of

B has the form

R(t, s) =
∫ t∧s

0

K(t, r)K(s, r)dr.

We will assume that the Gaussian subspaces generated by B and W coincide.

It is possible to construct a stochastic calculus of variations with respect to the

Gaussian process B, which will be related to the Malliavin calculus with respect to
the Wiener processW . We refer to [2] for a complete exposition of this subject. For

the sake of completeness, we give the basic definitions and results of this calculus.

The Reproducing Kernel Hilbert Space (RKHS) H is defined as the closure of

the linear span of the indicator functions {1[0,t], t ∈ [0, T ]} with respect to the scalar
product 〈1[0,t], 1[0,s]〉H = R(t, s).
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We denote by E the set of step functions on [0, T ]. Consider the linear operator
K∗ from E to L2([0, T ]) defined by

(K∗ϕ)(s) = ϕ(s)K(T, s)+
∫ T

s

[ϕ(t)− ϕ(s)]K(dt, s).

This operator satisfies the duality relationship (see Lemma 1 in [2])

∫ T

0
(K∗ϕ)(t)h(t)dt =

∫ T

0
ϕ(t)(Kh)(dt),

for all ϕ ∈ E and h ∈ L2([0, T ]), where (Kh)(t) =
∫ t
0 K(t, s)h(s)ds.

As a consequence, the RKHS H can be represented as the closure of E with
respect to the norm ‖ϕ‖H = ‖K∗ϕ‖L2([0,T ]), and the operator K∗ is an isometry
between H and a closed subspace of L2([0, T ]), that is,

H = (K∗)−1(L2([0, T ])).(4)

A similar relation holds for the derivative and divergence operators with respect

to the processes B and W . That is,

( i ) K∗DBF = DF , for any F ∈ D1,2 = D1,2
B , where D and DB denote the

derivative operators with respect to the processesW and B, respectively, and
D1,2 and D1,2

B are the corresponding Sobolev spaces.

(ii) Dom δB = (K∗)−1(Dom δ), and δB(u) = δ(K∗u) for any H-valued random
variable u in Dom δB, where δ and δB denote the divergence operators with

respect to the processes B and W , respectively.

Moreover, we have D1,2
B (H) = (K∗)−1(L1,2), where L1,2 = D1,2(L2([0, T ])),

and this space is included in the domain of the divergence δB. We will make use

of the notations δ(v) =
∫ T
0 vsdWs for any v ∈ Domδ, and δB(v) =

∫ T
0 vsdBs for

any v ∈ Dom δB . Hence, if u ∈ DomδB , then

∫ T

0
usdBs =

∫ T

0
(K∗u)sdWs.(5)

We will denote by c a generic constant that may be different from one formula

to another one. Moreover, by convention K(t, s) = 0 if s > t.

3. THE STRATONOVICH INTEGRAL

Suppose that the Gaussian process is the fractional Brownian motion B of Hurst

parameter H ∈ [0, 1/2). The covariance of this process is given by

R(t, s) =
1
2
(
s2H + t2H − |t − s|2H

)
.
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This process has the integral representation Bt =
∫ t
0 K(t, r)dWr, where (see [2,

6])

K(t, s) = cH(t − s)H− 1
2 + sH− 1

2 F1

(
t

s

)
(6)

and

F1(z) = cH

(
1
2
− H

)∫ z−1

0
θH− 3

2

(
1 − (θ + 1)H− 1

2

)
dθ.

The kernel K(t, s) satisfies the following conditions, where α = 1/2− H :

(i) |K(t, s)| ≤ c ((t − s)−α + s−α) ,

(ii)
∣∣∂K

∂t (t, s)
∣∣ ≤ c(t − s)−1−α.

Condition (ii) is a consequence of (see [16])

∂K

∂t
(t, s) = cH

(
H − 1

2

)(s

t

) 1
2
−H

(t − s)H− 3
2 .(7)

Consider the following seminorm on the set E of step functions on [0, T ]:

‖ϕ‖2
K =

∫ T

0

ϕ2(s)K(T, s)2ds

+
∫ T

0

(∫ T

s
|ϕ(t)− ϕ(s)|(t− s)−1−αdt

)2

ds.

We denote by HK the completion of E with respect to this seminorm ‖ · ‖K . The

space HK is the class of functions ϕ on [0, T ] such that ‖ϕ‖K < ∞, and it is
continuously included in H.

Note that if u = {ut, t ∈ [0, T ]} is a process in D1,2(HK), then there is a
sequence {ϕn} of bounded simple HK -valued processes of the form

ϕn =
n−1∑

j=0

Fj1(tj,tj+1],(8)

where Fj is a smooth random variable of the form

Fj = fj(Bs
j
1
, ..., B

s
j
m(j)

),

with fj an infinitely differentiable function with bounded derivatives, and 0 = t0 <
t1 < ... < tn = T , such that

E‖u− ϕn‖2
K + E

∫ T

0
‖Dru − Drϕn‖2

Kdr −→ 0, as n → ∞.(9)
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Moreover, if u ∈ D1,2(HK), then u ∈ Dom δB, K ∗u ∈ L1,2 and (5) holds.

For a process u = {ut, t ∈ [0, T ]}with integrable paths and ε > 0, we denote by
uε

t the integral (2ε)−1
∫ t+ε
t−ε usds, where we use the convention us = 0 for s /∈ [0, T ].

Now we introduce a stochastic integral of Stratonovich type with respect to B.

Definition 1. We say that a process u with integrable paths belongs to Dom δB
S

if

(2ε)−1

∫ T

0
us

(
B(s+ε)∧T − B(s−ε)∨0

)
ds

converges in probability as ε ↓ 0. In this case, we denote this limit by δB
S (u). We

also make use of the notation δB
S (u) =

∫ T
0 ur ◦ dBr.

In order to study the relationship between the integrals δB
S and δB, we introduce

the following notion of trace. We say that a process u ∈ D1,2(HK) belongs to the
space D1,2

C (HK) if the limit in probability

TrDu := lim
ε→0

1
2ε

∫ T

0

〈
DBus, 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

exists. We will also make use of the notation

TrDu =
∫ T

0
(∇u)sds.

The following is the main result of this section.

Theorem 2. Let u ∈ D1,2
C (HK) be a process such that

E

∫ T

0
u2

s

(
s−2α + (T − s)−2α

)
ds < ∞,(10)

E

∫ T

0

∫ T

0

(Drus)2
(
s−2α + (T − s)−2α

)
dsdr < ∞.(11)

Then u ∈ Dom δB
S and

δB
S (u) = δB(u) + TrDu.

In order to prove this theorem, we need the following technical result.

Lemma 3. Let u be a simple process of the form (8). Then uε converges to u

in D1,2(HK) as ε ↓ 0.
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Proof. Let u be given by the right-hand side of (8). Then u is a bounded process.

Hence, property (i) of the kernel K and the dominated convergence theorem imply

E

∫ T

0
(us − uε

s)
2K(T, s)2ds −→ 0 as ε ↓ 0.(12)

Fix an index i ∈ {0, 1, ..., n− 1}. Using that ut − us = 0 for s, t ∈ [ti,ti+1], we
obtain

∫ ti+1

ti

(∫ T

s
|uε

t − uε
s − (ut − us)|(t − s)−1−αdt

)2

ds

≤ 2
∫ ti+1

ti

(∫ ti+1

s
|uε

t − uε
s|(t− s)−1−αdt

)2

ds

+2
∫ ti+1

ti

(∫ T

ti+1

|uε
t − uε

s − (ut − us)|(t − s)−1−αdt

)2

ds

=2A1(i, ε) + 2A2(i, ε).

(13)

The convergence of the term A2(i, ε) to 0, as ε ↓ 0, follows from the dominated
convergence theorem, the fact that u is a bounded process and that for a.a. 0 ≤ s <
t ≤ T,

|uε
t − uε

s − (ut − us)|(t− s)−1−α −→ 0 as ε ↓ 0.

Suppose that ε < (1/4) min0≤i≤n−1 |ti+1− ti|. Then uε
t −uε

s = 0 if s and t belong
to [ti + 2ε, ti+1 − 2ε]. We can make the following decomposition

E(A1(i, ε))

≤8
∫ ti+2ε

ti

(∫ ti+2ε

s
|uε

t − uε
s|(t− s)−1−αdt

)2

ds

+8
∫ ti+1

ti+1−2ε

(∫ ti+1

s
|uε

t − uε
s|(t − s)−1−αdt

)2

ds

+8
∫ ti+2ε

ti

(∫ ti+1

ti+2ε

|uε
t − uε

s|(t− s)−1−αdt

)2

ds

+8
∫ ti+1−2ε

ti

(∫ ti+1

ti+1−2ε
|uε

t − uε
s|(t − s)−1−αdt

)2

ds.

The first and second integrals converge to zero, due to the estimate

|uε
t − uε

s| ≤
c

ε
|t − s|.
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On the other hand, the third and fourth term of the above expression converge to

zero because uε
t is bounded. Therefore, we have proved that

E‖u− uε‖2
K −→ 0 as ε → 0.

Finally, it is easy to see by the same arguments that we also have

E

∫ T

0
‖Dru − Dru

ε‖2
Kdr −→ 0 as ε → 0.

Thus the proof is complete.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. From the properties of the divergence operator, applying

Fubini’s theorem we have

(2ε)−1

∫ T

0
us

(
B(s+ε)∧T − B(s−ε)∨0

)
ds

=(2ε)−1

∫ T

0
δB
(
us1[(s−ε)∨0,(s+ε)∧T ](·)

)
ds

+(2ε)−1

∫ T

0

〈
DB

· us, 1[(s−ε)∨0,(s+ε)∧T ](·)
〉
H ds

=(2ε)−1

∫ T

0

(∫ (r+ε)∧T

(r−ε)∨0
usds

)
dBr

+(2ε)−1

∫ T

0

〈
DB

· us, 1[(s−ε)∨0,(s+ε)∧T ](·)
〉
H ds

=
∫ T

0
uε

rdBr + Bε .

Using u ∈ D1,2
C (HK), we get that Bε converges to TrDu in probability as ε ↓ 0.

In order to see that
∫ T
0 uε

rdBr converges to δB(u) in L2(Ω) as ε tends to zero,
we will show that uε converges to u in the norm of D1,2(HK). Fix δ > 0. We
have already noted that the definition of the space D1,2(HK) implies that there is a
bounded simple HK-valued processes ϕ as in (8) such that

E‖u− ϕ‖2
K + E

∫ T

0
‖Dru − Drϕ‖2

Kdr ≤ δ.(14)
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Therefore, Lemma 3 implies that for ε small enough,

E‖u− uε‖2
K + E

∫ T

0
‖Dr(u − uε)‖2

Kdr

≤ cE‖u− ϕ‖2
K + cE

∫ T

0
‖Dr(u − ϕ)‖2

Kdr

+cE‖ϕ− ϕε‖2
K + cE

∫ T

0
‖Dr(ϕ− ϕε)‖2

Kdr

+cE‖ϕε − uε‖2
K + cE

∫ T

0

‖Dr(ϕε − uε)‖2
Kdr

≤ 2cδ + cE‖ϕε − uε‖2
K + cE

∫ T

0
‖Dr(ϕε − uε)‖2

Kdr.

(15)

We have

∫ T

0
E(ϕε

s − uε
s)

2 K(T, s)2ds

≤
∫ T

0

E

(
1
2ε

∫ s+ε

s−ε

(ϕr − ur)dr

)2

K(T, s)2ds

≤
∫ T

0
E(ϕr − ur)2

(
1
2ε

∫ (r+ε)∧T

(r−ε)∨0
K(T, s)2ds

)
dr.

From property (i) it follows that

(2ε)−1

∫ (r+ε)∧T

(r−ε)∨0
K(T, t)2dt ≤ c

[
(T − r)−2α + r−2α

]
.

Hence, by the dominated convergence theorem and condition (10) we obtain

lim sup
ε↓0

∫ T

0
E(ϕε

s − uε
s)

2 K(T, s)2ds

≤
∫ T

0
E(ϕs − us)2 K(T, s)2ds ≤ δ.

(16)
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On the other hand,

E

∫ T

0

(∫ T

s
|ϕε

t − uε
t − ϕε

s + uε
s|(t − s)−1−αdt

)2

ds

≤ 1
4ε2

E

∫ T

0

(∫ ε

−ε

∫ T

s
|(ϕ− u)t−θ − (ϕ − u)s−θ |(t − s)−1−αdtdθ

)2

ds

=
1

4ε2
E

∫ T

0

(∫ s+ε

s−ε

∫ T+r−s

r
|(ϕ− u)t − (ϕ − u)r|(t − r)−1−αdtdr

)2

ds

≤ 1
2ε

E

∫ T

0

∫ s+ε

s−ε

(∫ T+ε

r

|(ϕ − u)t − (ϕ − u)r|(t − r)−1−αdt

)2

drds

=
1
2ε

E

∫ T+ε

−ε

∫ (r+ε)∧T

(r−ε)∨0

(∫ T+ε

r
|ϕt − ut − ϕr + ur|(t− r)−1−αdt

)2

dsdr

≤E

∫ T+ε

−ε

(∫ T+ε

r

|ϕt − ut − ϕr + ur|(t− r)−1−αdt

)2

dr.

(17)

By (16) and (17), we obtain

lim sup
ε↓0

E‖ϕε − uε‖2
K ≤ 2δ.

By a similar argument,

lim sup
ε↓0

E

∫ T

0
‖Dr(ϕε − uε)‖2

Kdr ≤ 2δ.

Since δ is arbitrary, uε converges to u in the norm of D1,2(HK) as ε ↓ 0, and, as a
consequence,

∫ T
0 uε

rdBr converges in L2(Ω) to δB(u) . Thus the proof is complete.

Remark 1.

The results of this section can be easily generalized to a centered Gaussian

process of the form Bt =
∫ t
0 K(t, s)dWs, where K(t, s) is a continuously differen-

tiable kernel in the region {0 < s < t < T} satisfying conditions (i) and (ii).

4. EXAMPLES

The purpose of this section is to analyze the existence of the Stratonovich integral

introduced in Definition 1 in some particular cases.
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We will make use of the notation

Tε(u) = (2ε)−1

∫ T

0

〈
DBut, 1[(t−ε)∨0,(t+ε)∧T ]

〉
H dt(18)

for a process u in D1,2(HK).
Let F be a continuously differentiable function satisfying the growth condition

max{|F (x)|, |F ′(x)|} ≤ ceλ|x|2 ,(19)

where c and λ are positive constants such that λ < T−2H/4.
From [2] we know that if H > 1/4, the process ut = F (Bt) belongs to the

space L2(Ω;HK). Actually, it is not difficult to show that the process ut belongs

to D1,2(HK). Let us check that the trace TrDu exists. To do this we first compute

Tε(u)= (2ε)−1

∫ T

0

F ′(Bt)〈1[0,t], 1[(t−ε)∨0,(t+ε)∧T ]〉H dt

= (2ε)−1

∫ T

0

F ′(Bt)(R(t, (t + ε) ∧ T )− R(t, (t− ε) ∨ 0)) dt

= (4ε)−1

∫ T

0
F ′(Bt)(((t + ε) ∧ T )2H − ((t− ε) ∨ 0)2H

−((t + ε) ∧ T − t)2H + (t − (t − ε) ∨ 0)2H)dt

−→ H

∫ T

0
F ′(Bt)t2H−1dt as ε ↓ 0.

As a consequence, F (Bt) belongs to the space D1,2
C (HK), and by Theorem 2, the

Stratonovich integral of F (Bt) with respect to B exists. Moreover

∫ T

0
F (Bt) ◦ dBt =

∫ T

0
F (Bt)dBt + H

∫ T

0
F ′(Bt)t2H−1dt.

Remark 1.

The forward integral of F (Bt) with respect to B defined as the limit in proba-

bility, as ε ↓ 0, of

ε−1

∫ T

0
F (Bt)

(
B(t+ε)∧T − Bt

)
dt,

does not exist in general. For instance, in the particular case F (x) = x, we would
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find a trace term of the form

ε−1

∫ T

0

〈
1[0,t], 1[t,(t+ε)∧T ]

〉
H dt

= ε−1

∫ T

0
(R(t, (t + ε) ∧ T )− R(t, t)) dt

=
1
2ε

∫ T

0

(
((t + ε) ∧ T )2H − t2H − ((t + ε) ∧ T − t)2H

)
dt

=
1
2

(
T 2H − Tε2H−1 +

2H − 1
2H + 1

ε2H

)
,

which converges to −∞ as ε tends to zero.

The forward integral with respect to the fractional Brownian motion of index

H < 1/2 has been studied in [1]. Notice that the process F (Bt) does not satisfy
the sufficient conditions introduced in this paper, for the forward integral to exist.

Remark 2.

The process u = W does not belong to the space D1,2
C (HK), and we cannot

apply Theorem 2 to deduce the existence of the Stratonovich integral
∫ T
0 Wt ◦ dBt.

In fact, as a consequence of (7),

1
2ε

∫ T

0

〈
K((t + ε) ∧ T, ·)− K((t − ε) ∨ 0, ·), 1[0,t]

〉
L2([0,T ])

dt

= cH

(
H − 1

2

)
1
2ε

∫ T

0

∫ t

0

∫ (t+ε)∧T

(t−ε)∨0

(r

s

) 1
2
−H

(s − r)
H− 3

2
+ dsdrdt

= cH

(
H − 1

2

)∫ T

0

∫ s

0

(s + ε) ∧ T − (s − ε) ∨ r

2ε

(r

s

) 1
2
−H

(s − r)
H− 3

2
+ drds,

which by Fatou’s lemma, tends to −∞ as ε tends to zero.

Remark 3.

The fact that F (Bt) is Stratonovich integrable with respect to Bt is still true for

kernels satisfying conditions (i) and (ii) other than the fractional Brownian motion

case. For instance, consider the Gaussian process Bt =
∫ t
0 (t − s)−αdWt, with

α ∈ [0, 1/2). That is, K(t, s) = (t− s)−α. The covariance function of this process

is given by

R(t, s)=
∫ s

0
(t − r)−α(s − r)−αdr =

∫ s

0
(t − s + r)−αr−αdr

= s−2α

∫ s

0

(
t − s + r

s

)−α (r

s

)−α
dr = s1−2αG

(
t − s

s

)
,
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with

G(t) =
∫ 1

0

(t + r)−αr−αdr.

As in the case of the fractional Brownian motion, the process ut = F (Bt) be-
longs to the space D1,2(HK) if F is a continuously differentiable function satisfying

condition (19) and α < 1/4. Let us show that the process ut = F (Bt) belongs to
the space D1,2

C (HK). We have

Tε(u)= (2ε)−1

∫ T

0
F ′(Bt)(R((t + ε) ∧ T, t)− R(t, (t− ε) ∨ 0))dt

= (2ε)−1

∫ T−ε

ε
F ′(Bt)

(
t1−2α − (t − ε)1−2α

)
G
(ε

t

)
dt

+(2ε)−1

∫ T−ε

ε
F ′(Bt)(t − ε)1−2α

(
G
(ε

t

)
− G

(
ε

t − ε

))
dt

+(2ε)−1

(∫ ε

0
F ′(Bt)R(t + ε, t)dt

+
∫ T

T−ε
F ′(Bt)(R(T, t)− R(t, t− ε))dt

)

= I1,ε + I2,ε + I3,ε.

The term I3,ε tends to zero as ε goes to zero. By the dominated convergence
theorem, the term I1,ε converges to

(
1
2
− α

)
G(0)

∫ T

0
F ′(Bt)t−2α dt.

On the other hand, for s, r > 0, we have

d

dr

(
s−α(s + r)−α

)
= −αs−α(s + r)−1−α.

Thus, for δ > 0 such that 2α + δ < 1, we obtain
∣∣∣∣

d

dr

(
s−α(s + r)−α

)∣∣∣∣ ≤ αs−1+δr−2α−δ.

Therefore,

G
′
(r) ≤ αr−2α−δ

∫ 1

0
s−1+δds = cδr

−2α−δ.

Hence we have that for t ∈ [ε, T − ε], there is θt,ε ∈ (ε/t, ε/(t − ε)) such that

(2ε)−1(t − ε)1−2α

∣∣∣∣G
(ε

t

)
− G

(
ε

t − ε

)∣∣∣∣

≤ cδεt
−1(t − ε)−2α(θt,ε)−2α−δ
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≤ cδ(t − ε)−2α
(ε

t

)1−2α−δ
(21)

≤ cδ(t − ε)−2α.(22)

Note that (21) implies

(2ε)−1(t − ε)1−2α

∣∣∣∣G
(ε

t

)
− G

(
ε

t − ε

)∣∣∣∣ 1[ε,T−ε](t)

−→ 0 as ε ↓ 0

and (22) gives

I2,ε −→ 0 as ε ↓ 0.

Observe that as in the case of the fractional Brownian motion, the process

u = W does not belong to the space D1,2
C (HK). In fact, (18) implies

Tε(u)=
1
2ε

(∫ T

0

∫ t

0
((t + ε) ∧ T − s)−αdsdt

−
∫ T

0

∫ (t−ε)∨0

0
((t− ε)+ − s)−αdsdt

)

=
1
2ε

(1 − α)−1(2 − α)−1
(
T 2−α − 2ε2−α − (T − ε)2−α

)

− 1
2ε

(1− α)−1ε1−α(T − ε) +
1
2
(1 − α)−1T 1−α,

which does not converge as ε ↓ 0.

5. ITÔ’S FORMULA FOR FRACTIONAL BROWNIAN MOTION INTEGRALS

Our purpose in this section is to prove a change-of-variable formula for the

Stratonovich integral defined in Section 3.

We will assume the following condition on the integrand process u.
(C) u and Dru are λ-Hölder continuous in the norm of the space D1,4 for some

λ > α, and the function

γr = sup
0≤s≤T

‖Drus‖1,4 + sup
0≤s≤T

‖Drut − Drus‖1,4

|t − s|λ

satisfies
∫ T
0 γp

rdr < ∞ for some p > 2/(1− 4α).
Then we can prove the following result.
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Theorem 4. Suppose α < 1/4. Let u be an adapted process in D2,2(HK)
satisfying (10), (11) and condition (C) and such that the following limit exists in

probability,

∫ T

0

∣∣∣∣(∇u)s −
1
2ε

〈
DBus, 1[(s−ε)∨0,(s+ε)∧T ]

〉
H

∣∣∣∣ ds → 0,

for some process (∇u)s in L1,2. Define Xt =
∫ t
0 us◦dBs. Then, for all F ∈ C2

b (R)
the process F

′
(Xs)us is Stratonovich integrable with respect to B and

F (Xt) = F (0) +
∫ t

0

F
′
(Xs)us ◦ dBs.

Proof. We can write, by Theorem 2,

Xt =
∫ t

0
usdBs +

∫ t

0
(∇u)sds.

Then, by a straightforward extension of Theorem 3 in [2], we obtain that F ′(Xs)us

is Skorohod integrable with respect to B, and

F (Xt) =F (0) +
∫ t

0
F ′(Xs)usdBs

+
∫ t

0
F

′′
(Xs)us

(∫ s

0

∂K

∂s
(s, r)

(∫ s

0
Dr(K∗

su)θdWθ

)
dr

)
ds

+
1
2

∫ t

0
F

′′
(Xs)

∂

∂s

(∫ s

0
(K∗

s u)2rdr

)
ds

+
∫ t

0
F

′
(Xs)(∇u)sds

+
∫ t

0

F
′′
(Xs)us

∫ s

0

(∫ s

r

Dr(∇u)θdθ

)
∂K

∂s
(s, r)drds.

Then we only need to check that the following limit in probability exists:

lim
ε↓0

1
2ε

∫ t

0

〈
DB

(
F

′
(Xs)us

)
, 1[(s−ε)∨0,(s+ε)∧T ]

〉
H

ds,
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and that it is equal to

∫ t

0
F

′′
(Xs)us

(∫ s

0

∂K

∂s
(s, r)

(∫ s

0
Dr(K∗

s u)θdWθ

)
dr

)
ds

+
1
2

∫ t

0
F

′′
(Xs)

∂

∂s

(∫ s

0
(K∗

su)2rdr

)
ds

+
∫ t

0

F
′
(Xs)(∇u)sds

+
∫ t

0

F
′′
(Xs)us

∫ s

0

(∫ s

0

Dr(∇u)θdθ

)
∂K

∂s
(s, r)drds.

We can write

1
2ε

∫ t

0

〈
DB(F

′
(Xs)us), 1[(s−ε)∨0,(s+ε)∧T ]

〉
H

ds

=
1
2ε

∫ t

0
F

′
(Xs)

〈
DBus, 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

+
1
2ε

∫ t

0
F

′′
(Xs)us

〈
DBXs, 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

=
1
2ε

∫ t

0

F
′
(Xs)

〈
DBus, 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

+
1
2ε

∫ t

0

F
′′
(Xs)us

〈
DB

(∫ s

0

urdBr

)
, 1[(s−ε)∨0,(s+ε)∧T ]

〉

H
ds

+
1
2ε

∫ t

0
F

′′
(Xs)us

〈
DB

(∫ s

0
(∇u)rdr

)
, 1[(s−ε)∨0,(s+ε)∧T ]

〉

H
ds

=T ε
1 + T ε

2 + T ε
3 .

Easily, the first term converges to
∫ t
0 F

′
(Xs)(∇u)sds in probability.

On the other hand, by the relationship between the derivative operators with

respect to B and with respect to W , it follows that

T ε
2 =

1
2ε

∫ t

0
F

′′
(Xs)us

[∫ s+ε

0
Dθ

(∫ s

0
(K∗

s u)rdWr

)
K(s + ε, θ)dθ

−
∫ s−ε

0
Dθ

(∫ s

0
(K∗

su)rdWr

)
K(s − ε, θ)dθ

]
ds
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=
1
2ε

∫ t

0
F

′′
(Xs)us

[∫ s

0
(K∗

su)θK(s + ε, θ)dθ

−
∫ s−ε

0

(K∗
su)θK(s − ε, θ)dθ

]
ds

+
1
2ε

∫ t

0

F
′′
(Xs)us

[∫ s+ε

0

(∫ s

0

Dθ(K∗
s u)rdWr

)
K(s + ε, θ)dθ

−
∫ s−ε

0

(∫ s

0
Dθ(K∗

s u)rdWr

)
K(s − ε, θ)dθ

]
ds

=T ε
2,1 + T ε

2,2.

Using the definition of K∗
su, we can write

1
2ε

[∫ s

0
(K∗

su)θ K(s + ε, θ)dθ −
∫ s−ε

0
(K∗

su)θK(s − ε, θ)dθ

]

=
1
2ε

[∫ s

0
K(s, θ)uθK(s + ε, θ)dθ −

∫ s−ε

0
K(s, θ)uθK(s − ε, θ)dθ

]

+
1
2ε

[∫ s

0

(∫ s

θ

∂K

∂r
(r, θ)(ur − uθ)dr

)
K(s + ε, θ)dθ

−
∫ s−ε

0

(∫ s

θ

∂K

∂r
(r, θ)(ur − uθ)dr

)
K(s − ε, θ)dθ

]
.

We add and substract us in the first two integrals of the above expression and obtain

us

2ε
[R(s, s + ε) − R(s, s− ε)]

+
1
2ε

[∫ T

0

K(s, θ)(uθ − us)[K(s + ε, θ)− K(s − ε, θ)]dθ

]

+
1
2ε

∫ T

0

(∫ s

θ

∂K

∂r
(r, θ)(ur − uθ)dr

)
[K(s + ε, θ) − K(s − ε, θ)]dθ.

Substituting the above expression into T ε
2,1, it is easy to see that this term converges

in L1 (Ω) to

H

∫ t

0
F

′′
(Xs)u2

s s2H−1ds

+
1
2

∫ t

0
F

′′
(Xs)us

(∫ s

0
(uθ − us)

∂K2

∂s
(s, θ)dθ

)
ds

+
∫ t

0
F

′′
(Xs)us

∫ s

0

(∫ s

θ

∂K

∂r
(r, θ)(ur − uθ)dr

)
∂K

∂s
(s, θ)dθds

=
1
2

∫ t

0
F

′′
(Xs)

∂

∂s

∫ s

0
(K∗

s u)2θdθ.
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The term T ε
2,2 converges in L1(Ω) to
∫ t

0
F

′′
(Xs)us

(∫ s

0

∂K

∂s
(s, θ)

(∫ s

0
Dθ(K∗

su)rdWr

)
dθ

)
ds.

It remains now to prove the convergence of the term T ε
3 . Using again the relationship

between the derivative operators with respect to B and with respect to W , we can

write

T ε
3 =

1
2ε

∫ t

0
F

′′
(Xs)us

[∫ s+ε

0

(∫ s

0
Dθ(∇u)rdr

)
K(s + ε, θ)dθ

−
∫ s−ε

0

(∫ s

0
Dθ(∇u)rdr

)
K(s − ε, θ)dθ

]
ds,

from which we deduce that T ε
3 converges in L1(Ω) to

∫ t

0

F
′′
(Xs)us

∫ s

0

(∫ s

0

Dr(∇u)θdθ

)
∂K

∂s
(s, r)drds.

Now the proof is complete.

6. APPLICATION TO STOCHASTIC DIFFERENTIAL EQUATIONS

Let B = {Bt, t ∈ [0, T ]} the fractional Brownian motion with parameter H ∈
(1/4, 1/2). Consider the equation

Xt = x +
∫ t

0
a(Xs) ◦ dBs +

∫ t

0
b(Xs)ds,(23)

where x ∈ R and a, b are measurable functions.

Definition 5. We will say that a process X = {Xt, t ∈ [0, T ]} is a solution
to (23) if the integrals of the right-hand side of this equation are well defined and

(23) holds.

Then, using the pathwise representation result for one-dimensional stochastic

differential equations due to Doss [8], we have the following result:

Proposition 6. Assume that a ∈ C2
b (R) and b ∈ C1

b (R). Then the unique
solution of (23) is given by

Xt = α(Bt, Yt),

where Yt is the solution of

Yt = x +
∫ t

0

(
∂α

∂y
(Bs, Ys)

)−1

b(α(Bs, Ys))ds
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and α(x, y) is the solution of

{
∂α
∂x (x, y) = a(α(x, y))

α(0, y) = y.

Proof. For any ε > 0, set

Bε
t =

1
2ε

∫ t

0
(B(s+ε)∧T − B(s−ε)∨0)ds

and

Xε
t = α(Bε

t , Yt).

Using the usual rules of the deterministic integral calculus, it follows that

Xε
t = α(Bε

t , Yt)

= x +
1
2ε

∫ t

0
a(α(Bε

s , Ys))(B(s+ε)∧T − B(s−ε)∨0)ds

+
∫ t

0

(
∂α

∂y
(Bε

s , Ys)
)(

∂α

∂y
(Bs, Ys)

)−1

b(α(Bs, Ys))ds

= x +
1
2ε

∫ t

0
a(α(Bs, Ys))(B(s+ε)∧T − B(s−ε)∨0)ds

+
1
2ε

∫ t

0
[a(α(Bε

s , Ys))− a(α(Bs, Ys))](B(s+ε)∧T − B(s−ε)∨0)ds

+
∫ t

0

(
∂α

∂y
(Bε

s , Ys)
)(

∂α

∂y
(Bs, Ys)

)−1

b(α(Bs, Ys))ds.

(24)

Now the proof will be decomposed into several steps.

Step 1. Using a ∈ C2
b (R) and the fact that b is bounded, it is easy to check that

the last term in (24) converges a.s. to

∫ t

0
b(α(Bs, Ys))ds

and that the left-hand side of this equality converges a.s. to Xt.
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Step 2. The process a(α(Bs, Ys)) is Stratonovich integrable. Observe that

Ys = x +
∫ s

0

(
∂α

∂y
(Bu, Yu)

)−1

b(α(Bu, Yu))du

= x +
∫ s

0
exp

(
−
∫ Bu

0
a
′
(α(z, Yu))dz

)
b(α(Bu, Yu))du

= x +
∫ s

0
F (Bu, Yu)du,

(25)

where F (x, y) = exp(−
∫ x

0
a
′
(α(z, y))dz)b(α(x, y)). Fix an integer N . Let ϕN

be an infinitely differentiable function with compact support such that ϕN(x) = x

if |x| ≤ N . Set FN (x, y) = ϕN(x)F (x, y), and let Y N be the solution to Eq. (25)

with F replaced by FN . Notice that the processes Y and Y N coincide on the set

ΩN =

{
ω ∈ Ω : sup

t≤T
|Bt| < N

}
.

Taking into account that Ω = ∪ΩN , it suffices to show that a(α(Bs, Y
N
s )) is

Stratonovich integrable for each N . It is clear that Y N belongs to D1,2(H) and we
have

DrY
N
s =

∫ s

r

∂FN

∂x
(Bu, Y N

u )K(u, r)du +
∫ s

r

∂FN

∂y
(Bu, Y N

u )(DrY
N
u )du.

From here it follows that

|DrY
N
s | ≤ CN

∫ s

r
K(u, r)du ≤ CN (s − r)1−αr−α.

Hence we obtain that a(α(B, Y N )) ∈ D1,2(H) and

Dr[a(α(Bs, Y
N
s ))] =a

′
(α(Bs, Y

N
s ))a(α(Bs, Y

N
s ))K(s, r)

+a
′
(α(Bs, Y

N
s ))

∂α

∂y
(Bs, Y

N
s )DrY

N
s .

Let us study now the trace term. Using the notation A(x, y) = a(α(x, y)) we can
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write

1
2ε

∫ T

0

〈
DBa(α(Bs, Y

N
s )), 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

=
1
2ε

∫ T

0

〈
∂A

∂x
(Bs, Y

N
s )1[0,s], 1[(s−ε)∨0,(s+ε)∧T ]

〉

H
ds

+
1
2ε

∫ T

0

〈
∂A

∂y
(Bs, Y

N
s )DBY N

s , 1[(s−ε)∨0,(s+ε)∧T ]

〉

H
ds

=
1
2ε

∫ T

0

∂A

∂x
(Bs, Y

N
s )[R((s + ε) ∧ T, s)− R((s− ε) ∨ 0, s)]ds

+
1
2ε

∫ T

0

∂A

∂y
(Bs, Y

N
s )
〈
DBY N

s , 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds.

(26)

Easily, the first term of (26) converges to

H

∫ T

0

∂A

∂x
(Bs, Y

N
s )s2H−1ds.

On the other hand, by the relationship between the derivatives with respect to B
and the derivative with respect to W , it follows that

1
2ε

∫ T

0

∂A

∂y
(Bs, Y

N
s )
〈
DBY N

s , 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

=
1
2ε

∫ T

0

∂A

∂y
(Bs, Y

N
s )

[∫ (s+ε)∧T

0

DθY
N
s K((s + ε)∧ T, θ)dθ

−
∫ (s−ε)∨0

0
DθY

N
s K((s − ε) ∨ 0, θ)dθ

]
ds.

Using the estimate |DθY
N
s | ≤ CN (s− θ)1−αθ−α, the above term converges a.s. to

∫ T

0

∂A

∂y
(Bs, Y

N
s )
(∫ s

0

DθY
N
s

∂K

∂s
(s, θ)dθ

)
ds.

Step 3. By the previous steps and taking the limit as ε tends to zero in (24),

we know that

1
2ε

∫ t

0
[a(α(Bε

s , Y
N
s ))− a(α(Bs, Y

N
s ))](B(s+ε)∧T − B(s−ε)∨0)ds(27)

converges in probability to

Xt − x −
∫ t

0
a(Xs) ◦ dBs −

∫ t

0
b(Xs)ds.
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Therefore, it suffices to check that the limit in probability of (27) is zero. Let G be

a smooth and cylindrical random variable. Then we can write

1
2ε

E

[
G

∫ t

0
[A(Bε

s , Y
N
s ) − A(Bs, Y

N
s )](B(s+ε)∧T − B(s−ε)∨0)ds

]

=
1
2ε

E

[∫ t

0

〈
DB [G(A(Bε

s , Y
N
s ) − A(Bs, Y

N
s ))], 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

]

=
1
2ε

E

[∫ t

0
[A(Bε

s , Y
N
s ) − A(Bs, Y

N
s )]

〈
DBG, 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

]

+
1
2ε

E

[
G

∫ t

0

∂A

∂x
(Bε

s , Y
N
s )
〈
DBBε

s − 1[0,s], 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

]

+
1
2ε

E

[
G

∫ t

0

(
∂A

∂x
(Bε

s , Y
N
s ) − ∂A

∂x
(Bs, Y

N
s )
)

×
〈
1[0,s], 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

]

+
1
2ε

E

[
G

∫ t

0

(
∂A

∂y
(Bε

s , Y
N
s ) − ∂A

∂y
(Bs, Y

N
s )
)

×
〈
DBY N

s , 1[(s−ε)∨0,(s+ε)∧T ]

〉
H ds

]
.

By the dominated convergence theorem it is not difficult to check that each term in

the above expression converges to zero as ε tends to zero.
The proof is now complete.
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D. Nualart
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