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PERTURBATIONS AND APPROXIMATE MINIMUM
IN CONSTRAINED OPTIMIZATION

B. D. Craven

Abstract. An approximate minimum, for the minimization of a function f over
a feasible set S, is a point £ such that f(z) > f(£) — e for all feasible x near
the minimum point p of f on S. This concept is relevant when the problem
data, or the computation, are approximate. Under regularity assumptions,
an approximate minimum is a local minimum of a perturbation of the given
problem. This depends on the property of a strict local minimum, that a small
perturbation moves the minimum point only by a small amount.

1. INTRODUCTION AND DEFINITIONS

Suppose that the constrained minimization problem:
(1) MIN J(z) subject to g(z) < 0,

reaches a local minimum at x = Z, where f : R — R and g : R® — R™
are continuous functions. If the data for the problem, of the computation, are
approximate, one may wish to consider approximate minima, namely, those points
¢ in a neighbourhood of z for which f(§) < f(Z) + €. Since Z is a minimum,
(@) < f(©).

Note that an unconstrained approximate minimum point is not necessarily one
where the gradient is small; there are counterexamples [1, 2].

These approximate minima may be related to exact minima of suitably perturbed
problems. Consider the perturbed problem:

() MIN,, f(z, q) subject to g(z, q) <0,
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in which ¢ is a perturbation parameter, and f(z,0) = f(x), g(x,0) = g(z), and in
particular the linearly perturbed problem:

3) MIN,, f(x) + bT (z — Z) subject to g(x) < r,

in which the vectors b and r comprise the perturbation parameter g, with ||¢||
assumed to be sufficiently small. In (3), the gradient of the objective and the level
of the constraint are each perturbed by a small amount. If (3) is minimized at a
point Z(q), denote ®(q) := f(Z(q), ¢). Under some regularity conditions (see, e.g.,
Craven [5]),

4) CI’/(O) = fq(fv 0) + ng(af, 0),

where )\ is the Lagrange multiplier for the minimum of (1), and fq and g4 denote
partial derivatives with respect to q. However, the linear approximation:

e > f(§) — f(z) = (q) — ©(0) = '(0)q

may not be sufficient; quadratic terms may be needed.
The results depend on the following definitions and theorem.

Definition 1. A local minimum of (1) is a strict local minimum if for all
sufficiently small p > 0, there exists positive £ such that f(z) > f(z)+¢£ whenever
x is feasible and ||z — Z|| = p.

Theorem 1. Perturbation of strict local minimum (Craven [6, Theorem 4.7.1]).
For problem (2), assume that

(i) the unperturbed problem (with q = 0) reaches a strict local minimum at
xr =1z,
(i) for each q, (%, q) = g(2),
(iii) the functions f(.,.) and g(.,.) are uniformly continuous on bounded sets,

(iv) when q # 0, f(.,q) reaches a minimum on each closed bounded set.

Then, whenever ||q|| is sufficiently small, the perturbed problem (2) reaches a
local minimum at a point z(q), where Z(q) — 0 as ¢ — 0.

Remarks. If T is a strict minimum, then there is no feasible curve x =
w(a)(a > 0) starting at Z, with f constant along the curve. In the proof of Theorem
1, the strong feasibility assumption (ii) is used only to ensure that g(z,q) < 0, so
the latter may be assumed instead. Assumption (iii) follows from continuity in finite
dimensions. A strict minimum is not enough to ensure that the Lagrange multiplier
A corresponding to & converges to the multiplier A corresponding to &.
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Definition 2. Problem (2) (or (3)) is called locally unique if for all sufficiently
small ||g|| (or |[(b,r)|]), at most one point £ in a neighbourhood of z satisfies (for
some multiplier A) the condition:

(5) fo(&0) + AT g2(6,9) = 0,ATg(é,9) =0

(6) (or f1(&) +b" + ATg'(€) = 0,AT(g(&) —r) = 0).

Remarks. Such points will be called KKT points. Note that (4), together with
A > 0, is the necessary Karush-Kuhn-Tucker condition for a minimum of (2) at &.
Condition (4), with A > 0, is also necessary and sufficient for a quasimin of (2) at
& (see [4]), namely,

(7) f(x) = f(&) +o(||lx—&||) >0 for feasible = — &.

If f(.,q) and g(.,q) are C2, and all constraints are assumed active (thus g(z) =
0,9(&,q) = 0), then locally unique holds if the matrix

92(,0) 0
is nonsingular, for then £, (¢, q) +ATg.(&,q) = 0, g(&, ¢) = 0 can be solved locally
for £ and A. (It suffices if f,,(Z,0) is nonsingular and ¢,(Z, 0) has full rank.) Less
restrictively, it suffices, using Clarke’s implicit function theorem [3], if f,(., ¢) and
9z (., q) are Lipschitz functions, and the matrix,
A KT
©) [ P ]

is nonsingular for each A in the generalized Jacobian Jf,(z,0) and K € g,(z,0).
The matrix is nonsingular if each A is nonsingular and each K has full rank (using,
the partitioned inverse matrix theorem).

Example 0. Let f(x) = |z|, x € R. Then f reaches an unconstrained strict
minimum at 0. A linear perturbation to |z| + gz with |¢| < 1 does not move the
minimum away from 0. A perturbation (with ¢ > 0) to

(10) f(z,q) = —z(xz < q),z—2q(z > q),

moves the minimum to ¢. Note that, for 0 < z < ¢, f(z,q) — f(z,0) = —2z, but
the coefficient -2 is not sufficiently small.
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Example 1. Let f(z) := (1/2)z7 Az(z € R"), where A is a positive definite
matrix; then £ = 0, and £ is an (unconstrained) approximate minimum when

1 1
(11) §xTAx > §§TA§ — €,V
thus when (1/2)6TA¢ < e. Let f(z,q) := (1/2)aT Az + ¢Tx; then f(.,q) is
minimized at + = & : —A7'b, and f(2,q) = —(1/2)¢g" A~'q. Now # is an

approximate minimum of f(.) exactly when g lies in the ellipsoid (1/2)¢7 A~ 1q < e.

2. APPROXIMATE UNCONSTRAINED MINIMUM

Proposition 1. Let the C' function f : R™ — R reach a strict local minimum
at x. Let the linearly perturbed problem,

(12) MIN, f(z) := f(z) + ¢" (z — Z),

be locally unique. Then, for sufficiently small e > 0, £ is an approximate minimum
of f(.) exactly when & is a local minimum of [ for some constant vector q.

Proof. Choose an approximate minimum ¢ satisfying f(£) = f(Z) + € for some
€ > 0; then ||¢ — || is small if € is small. Now ¢ is a stationary point of f(.) if ¢
is chosen as —f/(£)T. Since f is C', ¢ — 0 as € — 0. From Theorem 1, if ||q||
is sufficiently small, f(.) reaches a local minimum at a point &, where & — 0 as
q — 0, and thus f'(2) = —¢”. By the locally unique assumption, & = £; thus & is
a local minimum of f(.).

Remarks. If, in particular, f is C2, and f”(Z) is nonsingular, and b is
given, then f/(Z) = 0 and f'(¢) = —¢* give, for each component 4, that —¢; =
(f’);(éi)(f—f) for intermediate points ¢;. Construct a matrix A with rows (f’)}({;);
then M is nonsingular since f” () is, for ||g|| small, so & is determined uniquely.
Less stringently, suppose that f/(.) is Lipschitz, and every element of the Clarke
generalized Jacobian 0 f’(Z) is nonsingular; then & is determined uniquely.

The conclusion of Proposition 1 does not hold if f is not differentiable (see

Example 0).

3. APPROXIMATE CONSTRAINED MINIMUM
This linear-quadratic example serves to approximate smooth problems.

Example 2.

1
(13) MIN f(z) := §xTAx + aTx subject to K, < k,
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where now the matrix A need not be positive definite. The Karush-Kuhn-Tucker
conditions require that AZ + a + K7 X =0, A > 0. If the origin is shifted to make
the solution z = 0, f(Z) = 0, then the approximate minimum points £ must satisfy
f(&) < e+ f(x) whenever Kz < k, and hence f(&) < e.

Consider a perturbed problem:

1
(14) MIN §xTAx + aTz + b1z subject to K, < k +r,

where b and r are small (vector) parameters. If inactive constraints are omitted
for the unconstrained problem, and if the perturbation does not change the list of
active constraints, and (14) reaches a minimum at z, then KKT requires, for some
multiplier ), that

A KT T—x —b
& e IS
So the optimum £ is a linear function of b and r, and is unique under conditions
stated above for (9). B
To each (z, A) in a neighbourhood of (Z, \) there correspond perturbation pa-
rameters (b, 7). Conversely, assume that A is nonsingular and K has full rank;

then the matrix in (15) is nonsingular, and (15) determines (&, \) uniquely as a
continuous function of (b, ); thus locally unique holds.

Proposition 2. Let f : R" — R and g : R® — R™ be C' functions; let f(x)
reach a strict local minimum, subject to g(x) < 0, at x = T; and let a constraint
qualification hold. Assume that the perturbed problem (3) is locally unique, and
that the list of active constraints does not change with a small perturbation. Assume
that the constraint g(Z) = r is feasible, for sufficiently small ||r||, and f(z)+b'x
reaches a minimum on each closed bounded set. Then, when € > 0 is sufficiently
small, & is an approximate minimum of the given problem exactly when & is a local
minimum of the perturbed problem, for some suitable b and r of sufficiently small
norm.

Proof. Inactive constraints have no effect; therefore omit them, thus assuming
g(Z) = 0. Choose an approximate minimum & of the given problem, satisfying,
for some € > 0, f(§) = f(z) +r. Choose r = g(§). Now ¢ will satisfy the
Karush-Kuhn-Tucker conditions for (3) if b is chosen as —[f/(£) +AT¢’(¢)]T. Here
A is chosen with ||\ — A|| sufficiently small, so that ||b|| and ||7|| are sufficiently
small that Theorem 1 applies.

Given this b and r, Theorem 1, applied to the strict minimum, shows that the
perturbed problem has a local minimum at x = &, where £ — z as ||b]| — O,
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|r|| — 0. Denote by \ the Lagrange multiplier corresponding to #. Thus KKT
conditions (6) hold, with the same (b, ), both for (¢, A) and for (2, A). From the
locally unique hypothesis, = £, hence also A = . ]

4. DISCUSSION AND APPLICATIONS

If the data for the given optimization problem (1) are somewhat fuzzy, then a
more descriptive formulation might replace (1) by a family of perturbed problems (2)
or (3), with the perturbation parameters required to be small, in some sense. There
is then the possibility of a second optimization, over the perturbation parameters in
a specified region. The objective for the second optimization could be the original
objective, or a different secondary objetive. Many optimization problems are by
nature multi-objective, and a choice of a single objective is then rather arbitrary.

Consider, in particular, the auxiliary objective ¢! g, with ¢ = ¢/(0) from 4), and
a constraint ¢7 Qg < 4, specifying a small region for ¢. Then c¢’q is bounded by
i((ScTQ_lc)l/ 2, giving a tolerance for the objective value for the given problem

(D).
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