TAIWANESE JOURNAL OF MATHEMATICS Vol. 5, No. 3, pp. 587-602, September 2001 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON GENERALIZED FRACTIONAL INTEGRALS

Eiichi Nakai

Dedicated to Professor Kôzô Yabuta on his sixtieth birthday

Abstract. It is known that the fractional integral I_{α} $(0 < \alpha < n)$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ when p > 1 and $n/p - \alpha = n/q > 0$, from $L^p(\mathbb{R}^n)$ to $\mathrm{BMO}(\mathbb{R}^n)$ when p > 1 and $n/p - \alpha = 0$, from $L^p(\mathbb{R}^n)$ to $\mathrm{Lip}_{\beta}(\mathbb{R}^n)$ when p > 1 and $-1 < n/p - \alpha = -\beta < 0$, from $\mathrm{BMO}(\mathbb{R}^n)$ to $\mathrm{Lip}_{\alpha}(\mathbb{R}^n)$ when $0 < \alpha < 1$, and from $\mathrm{Lip}_{\beta}(\mathbb{R}^n)$ to $\mathrm{Lip}_{\gamma}(\mathbb{R}^n)$ when $0 < \alpha + \beta = \gamma < 1$. We introduce generalized fractional integrals and extend the above boundedness to the Orlicz spaces and BMO_{ϕ} .

1. Introduction

The fractional integral I_{α} (0 < α < n) is defined by

$$I_{\alpha}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \alpha}} \, dy.$$

It is known that I_{α} is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ when p>1 and $n/p-\alpha=n/q>0$ as the Hardy-Littlewood-Sobolev theorem. The fractional integral was studied by many authors (see, for example, Rubin [5] or Chapter 5 in Stein [6]). The Hardy-Littlewood-Sobolev theorem is an important result in the fractional integral theory and the potential theory. We introduce generalized fractional integrals and extend the Hardy-Littlewood-Sobolev theorem to the Orlicz spaces. We show that, for example, a generalized fractional integral is bounded from $\exp L^p$ to $\exp L^q$.

Received June 1, 2000; revised July 28, 2000.

Communicated by M.-H. Shih.

2000 Mathematics Subject Classification: 26A33, 46E30, 42B35, 46E15.

Key words and phrases: Fractional integtal, Riesz potential, Orlicz space, BMO, Lipschitz space. This research was partially supported by the Grant-in-Aid for Scientific Research (C), No. 11640165, 1999, the Ministry of Education, Science, Sports and Culture, Japan.

Let B(a,r) be the ball $\{x \in \mathbb{R}^n : |x-a| < r\}$ with center a and of radius r > 0, and $B_0 = B(0,1)$ with center the origin and of radius 1. The modified fractional integral \tilde{I}_{α} $(0 < \alpha < n+1)$ is defined by

$$\tilde{I}_{\alpha}f(x) = \int_{\mathbb{R}^n} f(y) \left(\frac{1}{|x - y|^{n - \alpha}} - \frac{1 - \chi_{B_0}(y)}{|y|^{n - \alpha}} \right) dy,$$

where χ_{B_0} is the characteristic function of B_0 . It is also known that the modified fractional integral \tilde{I}_{α} is bounded from $L^p(\mathbb{R}^n)$ to $\mathrm{BMO}(\mathbb{R}^n)$ when p>1 and $n/p-\alpha=0$, from $L^p(\mathbb{R}^n)$ to $\mathrm{Lip}_{\beta}(\mathbb{R}^n)$ when p>1 and $-1< n/p-\alpha=-\beta<0$, from $\mathrm{BMO}(\mathbb{R}^n)$ to $\mathrm{Lip}_{\alpha}(\mathbb{R}^n)$ when $0<\alpha<1$, and from $\mathrm{Lip}_{\beta}(\mathbb{R}^n)$ to $\mathrm{Lip}_{\gamma}(\mathbb{R}^n)$ when $0<\alpha+\beta=\gamma<1$. We also investigate the boundedness of generalized fractional integrals from the Orlicz space $L^{\Phi}(\mathbb{R}^n)$ to $\mathrm{BMO}_{\phi}(\mathbb{R}^n)$ and from $\mathrm{BMO}_{\phi}(\mathbb{R}^n)$ to $\mathrm{BMO}_{\psi}(\mathbb{R}^n)$, where $\mathrm{BMO}_{\phi}(\mathbb{R}^n)$ is the function space defined by using the mean oscillation and a weight function $\phi:(0,+\infty)\to(0,+\infty)$. If $\phi(r)\equiv 1$, then $\mathrm{BMO}_{\phi}(\mathbb{R}^n)=\mathrm{BMO}(\mathbb{R}^n)$. If $\phi(r)=r^{\alpha}$ $(0<\alpha\leq 1)$, then $\mathrm{BMO}_{\phi}(\mathbb{R}^n)=\mathrm{Lip}_{\alpha}(\mathbb{R}^n)$.

Though we state our results on the Euclidean space \mathbb{R}^n , these hold on spaces of homogeneous type with appropriate conditions.

2. NOTATIONS AND DEFINITIONS

For a function $\rho:(0,+\infty)\to(0,+\infty)$, let

$$I_{\rho}f(x) = \int_{\mathbb{D}^n} f(y) \frac{\rho(|x-y|)}{|x-y|^n} dy.$$

We consider the following conditions on ρ :

(2.1)
$$\int_0^1 \frac{\rho(t)}{t} dt < +\infty,$$

(2.2)
$$\frac{1}{A_1} \le \frac{\rho(s)}{\rho(r)} \le A_1 \quad \text{for} \quad \frac{1}{2} \le \frac{s}{r} \le 2,$$

(2.3)
$$\frac{\rho(r)}{r^n} \le A_2 \frac{\rho(s)}{s^n} \quad \text{for} \quad s \le r,$$

where $A_1, A_2 > 0$ are independent of r, s > 0. If $\rho(r) = r^{\alpha}$, $0 < \alpha < n$, then I_{ρ} is the fractional integral or the Riesz potential denoted by I_{α} .

We define the modified version of I_{ρ} as follows:

$$\tilde{I}_{\rho}f(x) = \int_{\mathbb{R}^n} f(y) \left(\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|y|)(1-\chi_{B_0}(y))}{|y|^n} \right) dy.$$

We consider the following conditions on ρ : (2.1), (2.2) and

(2.4)
$$\frac{\rho(r)}{r^{n+1}} \le A_2' \frac{\rho(s)}{s^{n+1}} \quad \text{for} \quad s \le r,$$

(2.5)
$$\int_{r}^{+\infty} \frac{\rho(t)}{t^2} dt \le A_2'' \frac{\rho(r)}{r},$$

$$\left|\frac{\rho(r)}{r^n} - \frac{\rho(s)}{s^n}\right| \le A_3 |r - s| \frac{\rho(r)}{r^{n+1}} \quad \text{for} \quad \frac{1}{2} \le \frac{s}{r} \le 2,$$

where $A_2', A_2'', A_3 > 0$ are independent of r, s > 0. If $\rho(r)r^{\alpha}$ is increasing for some $\alpha \geq 0$ and $\rho(r)/r^{\beta}$ is decreasing for some $\beta \geq 0$, then ρ satisfies (2.2) and (2.6). If $\rho(r) = r^{\alpha}$, $0 < \alpha < n+1$, then $\tilde{I}_{\rho} = \tilde{I}_{\alpha}$. If $\tilde{I}_{\rho}f$ and $I_{\rho}f$ are well-defined, then $\tilde{I}_{\rho}f - I_{\rho}f$ is a constant.

A function $\Phi:[0,+\infty)\to[0,+\infty]$ is called a Young function if Φ is convex, $\lim_{r\to+0}\Phi(r)=\Phi(0)=0$ and $\lim_{r\to+\infty}\Phi(r)=+\infty$. Any Young function is increasing. For a Young function Φ , the complementary function is defined by

$$\widetilde{\Phi}(r) = \sup\{rs - \Phi(s) : s \ge 0\}, \quad r \ge 0.$$

For example, if $\Phi(r) = r^p/p$, $1 , then <math>\widetilde{\Phi}(r) = r^{p'}/p'$, 1/p + 1/p' = 1. If $\Phi(r) = r$, then $\widetilde{\Phi}(r) = 0$ $(0 \le r \le 1)$, and $= +\infty$ (r > 1).

For a Young function Φ , let

$$\begin{split} L^{\Phi}(\mathbb{R}^n) = & \left\{ f \in L^1_{\mathrm{loc}}(\mathbb{R}^n) : \int_{\mathbb{R}^n} \Phi(\epsilon|f(x)|) \, dx < +\infty \text{ for some } \epsilon > 0 \right\}, \\ & \|f\|_{\Phi} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} \Phi\left(\frac{|f(x)|}{\lambda}\right) \, dx \leq 1 \right\}, \\ & L^{\Phi}_{\mathrm{weak}}(\mathbb{R}^n) = & \left\{ f \in L^1_{\mathrm{loc}}(\mathbb{R}^n) : \sup_{r > 0} \Phi(r) \, m(r, \epsilon f) < +\infty \text{ for some } \epsilon > 0 \right\}, \\ & \|f\|_{\Phi, \mathrm{weak}} = \inf \left\{ \lambda > 0 : \sup_{r > 0} \Phi(r) \, m\left(r, \frac{f}{\lambda}\right) \leq 1 \right\}, \\ & \text{where} \quad m(r, f) = |\{x \in \mathbb{R}^n : |f(x)| > r\}|. \end{split}$$

If a Young function Φ satisfies

$$(2.7) 0 < \Phi(r) < +\infty for 0 < r < +\infty,$$

then Φ is continuous and bijective from $[0, +\infty)$ to itself. The inverse function Φ^{-1} is also increasing and continuous.

A function Φ is said to satisfy the ∇_2 -condition, denoted $\Phi \in \nabla_2$, if

$$\Phi(r) \le \frac{1}{2k}\Phi(kr), \quad r \ge 0,$$

for some k > 1.

Let Mf(x) be the maximal function, i.e.,

$$Mf(x) = \sup_{B \ni x} \frac{1}{|B|} \int_{B} |f(y)| \, dy,$$

where the supremum is taken over all balls B containing x.

We assume that Φ satisfies (2.7). Then M is bounded from $L^{\Phi}(\mathbb{R}^n)$ to $L^{\Phi}_{\mathrm{weak}}(\mathbb{R}^n)$ and

$$(2.8) ||Mf||_{\Phi,\text{weak}} \le C_0 ||f||_{\Phi}.$$

If $\Phi \in \nabla_2$, then M is bounded on $L^\Phi(\mathbb{R}^n)$ and

$$(2.9) ||Mf||_{\Phi} \le C_0 ||f||_{\Phi}.$$

For a function $\phi:(0,+\infty)\to(0,+\infty)$, let

$$\begin{split} \mathrm{BMO}_{\phi}(\mathbb{R}^n) = & \left\{ f \in L^1_{\mathrm{loc}}(\mathbb{R}^n) : \sup_{B = B(a,r)} \frac{1}{\phi(r)} \frac{1}{|B|} \int_B |f(x) - f_B| \, dx < +\infty \right\}, \\ \|f\|_{\mathrm{BMO}_{\phi}} = \sup_{B = B(a,r)} \frac{1}{\phi(r)} \frac{1}{|B|} \int_B |f(x) - f_B| \, dx, \\ \text{where} \qquad f_B = \frac{1}{|B|} \int_B f(x) \, dx. \end{split}$$

If $\phi(r) \equiv 1$, then $\mathrm{BMO}_{\phi}(\mathbb{R}^n) = \mathrm{BMO}(\mathbb{R}^n)$. If $\phi(r) = r^{\alpha}$, $0 < \alpha \leq 1$, then it is known that $\mathrm{BMO}_{\phi}(\mathbb{R}^n) = \mathrm{Lip}_{\alpha}(\mathbb{R}^n)$.

For functions $\theta, \kappa: (0, +\infty) \to (0, +\infty)$, we denote $\theta(r) \sim \kappa(r)$ if there exists a constant C>0 such that

$$C^{-1}\theta(r) \le \kappa(r) \le C\theta(r), \quad r > 0.$$

A function $\theta:(0,+\infty)\to (0,+\infty)$ is said to be almost increasing (almost decreasing) if there exists a constant C>0 such that $\theta(r)\leq C\theta(s)$ ($\theta(r)\geq C\theta(s)$) for $r\leq s$.

The letter C shall always denote a constant, not necessarily the same one.

3. Main Results

Our main results are as follows:

Theorem 3.1. Let ρ satisfy (2.1) \sim (2.3). Let Φ and Ψ be Young functions with (2.7). Assume that there exist constants A, A', A'' > 0 such that, for all r > 0,

(3.1)
$$\int_{r}^{+\infty} \widetilde{\Phi}\left(\frac{\rho(t)}{A \int_{0}^{r} (\rho(s)/s) ds \, \Phi^{-1}(1/r^{n}) t^{n}}\right) t^{n-1} dt \le A',$$

(3.2)
$$\int_0^r \frac{\rho(t)}{t} dt \; \Phi^{-1}\left(\frac{1}{r^n}\right) \le A'' \; \Psi^{-1}\left(\frac{1}{r^n}\right),$$

where $\widetilde{\Phi}$ is the complementary function with respect to Φ . Then, for any $C_0 > 0$, there exists a constant $C_1 > 0$ such that, for $f \in L^{\Phi}(\mathbb{R}^n)$,

(3.3)
$$\Psi\left(\frac{|I_{\rho}f(x)|}{C_1\|f\|_{\Phi}}\right) \leq \Phi\left(\frac{Mf(x)}{C_0\|f\|_{\Phi}}\right).$$

Therefore I_{ρ} is bounded from $L^{\Phi}(\mathbb{R}^n)$ to $L^{\Psi}_{\text{weak}}(\mathbb{R}^n)$. Moreover, if $\Phi \in \nabla_2$, then I_{ρ} is bounded from $L^{\Phi}(\mathbb{R}^n)$ to $L^{\Psi}(\mathbb{R}^n)$.

Remark 3.1. From (2.2), it follows that

(3.4)
$$\rho(r) \le C \int_0^r \frac{\rho(t)}{t} dt.$$

If $\rho(r)/r^{\varepsilon}$ is almost increasing for some $\varepsilon>0$ and $\rho(t)/t^n$ is almost decreasing, then ρ satisfies (2.1)~(2.3) and $\int_0^r (\rho(t)/t) \, dt \sim \rho(r)$. Let, for example, $\rho(r)=r^{\alpha}(\log(1/r))^{-\beta}$ for small r. If $\alpha=0$ and $\beta>1$, then $\int_0^r (\rho(t)/t) \, dt \sim (\log(1/r))^{-\beta+1}$. If $\alpha>0$ and $-\infty<\beta<+\infty$, then $\int_0^r (\rho(t)/t) \, dt \sim \rho(r)$.

Remark 3.2. In the case $\Phi(r) = r$, (3.1) is equivalent to

$$\frac{\rho(t)}{t^n} \le \frac{A \int_0^r (\rho(s)/s) \, ds}{r^n}, \quad 0 < r \le t.$$

This inequality follows from (2.3) and (3.4).

The following corollary is stated without the complementary function.

Corollary 3.2. Let ρ satisfy (2.1) \sim (2.3). Let Φ and Ψ be Young functions with (2.7). Assume that

$$\int_0^r \frac{\rho(t)}{t} dt \; \Phi^{-1}\left(\frac{1}{r^n}\right)$$

is almost decreasing and that there exist constants A, A' > 0 such that, for all r > 0,

(3.5)
$$\int_{r}^{+\infty} \frac{\rho(t)}{t} \Phi^{-1}\left(\frac{1}{t^{n}}\right) dt \leq A \int_{0}^{r} \frac{\rho(t)}{t} dt \Phi^{-1}\left(\frac{1}{r^{n}}\right),$$

(3.6)
$$\int_0^r \frac{\rho(t)}{t} dt \, \Phi^{-1}\left(\frac{1}{r^n}\right) \le A' \, \Psi^{-1}\left(\frac{1}{r^n}\right).$$

Then (3.3) holds. Therefore I_{ρ} is bounded from $L^{\Phi}(\mathbb{R}^n)$ to $L^{\Psi}_{weak}(\mathbb{R}^n)$. Moreover, if $\Phi \in \nabla_2$, then I_{ρ} is bounded from $L^{\Phi}(\mathbb{R}^n)$ to $L^{\Psi}(\mathbb{R}^n)$.

Remark 3.3. If $r^{\varepsilon}\rho(r)\Phi^{-1}(1/r^n)$ is almost decreasing for some $\varepsilon>0$, then

$$\int_{r}^{+\infty} \frac{\rho(t)}{t} \Phi^{-1}\left(\frac{1}{t^{n}}\right) dt \le C\rho(r) \Phi^{-1}\left(\frac{1}{r^{n}}\right).$$

This inequality and (3.4) yield (3.5).

Remark 3.4. We cannot replace (3.2) or (3.6) by

$$\rho(r) \Phi^{-1}\left(\frac{1}{r^n}\right) \le A \Psi^{-1}\left(\frac{1}{r^n}\right) \quad \text{for all } r > 0.$$

Theorem 3.3. Let ρ satisfy (2.1), (2.2), (2.4) and (2.6). Let Φ be Young function with (2.7), ϕ be almost increasing and $\phi(r) \sim \phi(2r)$. Assume that there exist constants A, A', A'' > 0 such that, for all r > 0,

(3.7)
$$\int_{r}^{+\infty} \widetilde{\Phi} \left(\frac{r \rho(t)}{A \int_{0}^{r} (\rho(s)/s) \, ds \, \Phi^{-1}(1/r^{n}) t^{n+1}} \right) t^{n-1} \, dt \le A',$$

(3.8)
$$\int_0^r \frac{\rho(t)}{t} dt \, \Phi^{-1}\left(\frac{1}{r^n}\right) \le A''\phi(r),$$

where $\widetilde{\Phi}$ is the complementary function with respect to Φ . Then \widetilde{I}_{ρ} is bounded from $L^{\Phi}(\mathbb{R}^n)$ to $\mathrm{BMO}_{\phi}(\mathbb{R}^n)$.

Theorem 3.4. Let ρ satisfy (2.1), (2.2), (2.5) and (2.6). Let ϕ and ψ be almost increasing, $\phi(r) \sim \phi(2r)$ and $\psi(r) \sim \psi(2r)$. Assume that there exist constants A, A' > 0 such that, for all r > 0,

(3.9)
$$\int_{r}^{+\infty} \frac{\rho(t)\phi(t)}{t^2} dt \le A \frac{\rho(r)\phi(r)}{r},$$

(3.10)
$$\int_0^r \frac{\rho(t)}{t} dt \ \phi(r) \le A' \psi(r).$$

Then \tilde{I}_{ρ} is bounded from $BMO_{\phi}(\mathbb{R}^n)$ to $BMO_{\psi}(\mathbb{R}^n)$.

Remark 3.5. From Lemma 4.2, it follows that $\tilde{I}_{\rho}1$ is a constant. Hence \tilde{I}_{ρ} is well-defined as an operator from $BMO_{\phi}(\mathbb{R}^n)$ to $BMO_{\psi}(\mathbb{R}^n)$.

The results in Figure 1 are known. Our results contain these. Moreover, we have the results in Figure 2.

Figure 1: Boundedness of fractional integrals

Figure 2: Boundedness of generalized fractional integrals

4. Proofs

Let Φ be a Young function. By the convexity and $\Phi(0) = 0$, we have

(4.1)
$$\Phi(r) \le \frac{r}{s} \Phi(s) \quad \text{for } r \le s.$$

Let $\widetilde{\Phi}$ be the complementary function with respect to Φ . Then

(4.2)
$$\widetilde{\Phi}\left(\frac{\Phi(r)}{r}\right) \le \Phi(r), \quad r > 0.$$

Actually,

$$\frac{\Phi(r)}{r}s - \Phi(s) \le \Phi(r)$$
 for $s < r$

and

$$\frac{\Phi(r)}{r}s - \Phi(s) \le 0 \quad \text{for } s \ge r.$$

We note that

(4.3)
$$\int_{\mathbb{R}^n} |f(x)g(x)| \, dx \le 2||f||_{\Phi} ||g||_{\widetilde{\Phi}}$$

(see for example [4]).

Proof of Theorem 3.1. Let

$$J_{1} = \int_{|x-y| < r} f(y) \frac{\rho(|x-y|)}{|x-y|^{n}} dy \quad \text{and}$$

$$J_{2} = \int_{|x-y| \ge r} f(y) \frac{\rho(|x-y|)}{|x-y|^{n}} dy.$$

Let

$$h(r) = \inf \left\{ \frac{\rho(s)}{s^n} : s \le r \right\}, \quad r > 0.$$

Then h is nonincreasing. It follows that

$$\int_{|x-y| < r} |f(y)| h(|x-y|) \, dy \le M f(x) \int_{|x-y| < r} h(|x-y|) \, dy$$

(see Stein [7, p.57])). Since $h(r) \sim \rho(r)/r^n$,

(4.4)
$$|J_1| \le CMf(x) \int_{|x-y| < r} \frac{\rho(|x-y|)}{|x-y|^n} \, dy \le CMf(x) \int_0^r \frac{\rho(t)}{t} \, dt.$$

Next we estimate J_2 . By (4.3) we have

$$(4.5) |J_2| \le 2 \left\| \frac{\rho(|x-\cdot|)}{|x-\cdot|^n} \chi_{B(x,r)^{\mathbb{C}}}(\cdot) \right\|_{\widetilde{\Phi}} ||f||_{\Phi},$$

where $\chi_{B(x,r)^{\mathbb{C}}}$ is the characteristic function of the complement of B(x,r). Let

(4.6)
$$F(r) = \int_0^r \frac{\rho(s)}{s} ds \, \Phi^{-1}\left(\frac{1}{r^n}\right).$$

We show

(4.7)
$$\left\| \frac{\rho(|x-\cdot|)}{|x-\cdot|^n} \chi_{B(x,r)^{\mathbb{C}}}(\cdot) \right\|_{\widetilde{\Phi}} \le CF(r).$$

From (2.2) and the increasingness of $\widetilde{\Phi}$ it follows that

$$(4.8) \qquad \int_{|x-y|>r} \widetilde{\Phi}\left(\frac{\rho(|x-y|)}{\lambda|x-y|^n}\right) dy \le C_2 \int_r^{+\infty} \widetilde{\Phi}\left(\frac{\rho(t)}{\lambda t^n}\right) t^{n-1} dt,$$

where C_2 is independent of $\lambda > 0$ and $x \in \mathbb{R}^n$. We may assume that $C_2A' \ge 1$. By (4.1) and (3.1) we have

(4.9)
$$\int_{r}^{+\infty} \widetilde{\Phi}\left(\frac{\rho(t)}{C_{2}AA'F(r)t^{n}}\right) t^{n-1} dt \\ \leq \frac{1}{C_{2}A'} \int_{r}^{+\infty} \widetilde{\Phi}\left(\frac{\rho(t)}{AF(r)t^{n}}\right) t^{n-1} dt \leq \frac{1}{C_{2}}.$$

Let $\lambda = C_2 A A' F(r)$. Then, by (4.8) and (4.9) we have

$$\int_{|x-y|>r} \widetilde{\Phi}\left(\frac{\rho(|x-y|)}{\lambda|x-y|^n}\right) dy \le 1,$$

and so (4.7) holds. By (4.4), (4.5) and (4.7), we have

$$(4.10) |I_{\rho}f(x)| = |J_1 + J_2| \le C \left(Mf(x) + ||f||_{\Phi} \Phi^{-1} \left(\frac{1}{r^n} \right) \right) \int_0^r \frac{\rho(t)}{t} dt.$$

Choose r > 0 so that

(4.11)
$$\Phi^{-1}\left(\frac{1}{r^n}\right) = \frac{Mf(x)}{C_0 \|f\|_{\Phi}}.$$

Then

(4.12)
$$\int_0^r \frac{\rho(t)}{t} dt \le A'' \frac{\Psi^{-1}\left(\frac{1}{r^n}\right)}{\Phi^{-1}\left(\frac{1}{r^n}\right)} = A'' \frac{\Psi^{-1} \circ \Phi\left(\frac{Mf(x)}{C_0||f||_{\Phi}}\right)}{\frac{Mf(x)}{C_0||f||_{\Phi}}}.$$

By (4.10), (4.11) and (4.12), we have

$$|I_{\rho}f(x)| \le C_1 ||f||_{\Phi} \Psi^{-1} \circ \Phi\left(\frac{Mf(x)}{C_0 ||f||_{\Phi}}\right).$$

Therefore we have (3.3).

Let C_0 be as in (2.8). Then

$$\begin{split} \sup_{r>0} \Psi(r) \ m\left(r, \frac{|I_{\rho}f(x)|}{C_1\|f\|_{\Phi}}\right) &= \sup_{r>0} r \ m\left(r, \Psi\left(\frac{|I_{\rho}f(x)|}{C_1\|f\|_{\Phi}}\right)\right) \\ &\leq \sup_{r>0} r \ m\left(r, \Phi\left(\frac{Mf(x)}{C_0\|f\|_{\Phi}}\right)\right) = \sup_{r>0} \Phi(r) \ m\left(r, \frac{Mf(x)}{C_0\|f\|_{\Phi}}\right) \leq 1, \end{split}$$

i.e.,

$$||I_{\rho}f||_{\Psi,weak} \leq C_1||f||_{\Phi}.$$

Let C_0 be as in (2.9). Then

$$\int_{\mathbb{R}^n} \Psi\left(\frac{|I_\rho f(x)|}{C_1 \|f\|_\Phi}\right) \, dx \leq \int_{\mathbb{R}^n} \Phi\left(\frac{M f(x)}{C_0 \|f\|_\Phi}\right) \, dx \leq 1,$$

i.e.,

$$||I_{\rho}f||_{\Psi} \le C_1 ||f||_{\Phi}.$$

Proof of Corollary 3.2. Let F(r) be as (4.6). By the almost decreasingness of F(r), we have

$$F(t) \le CF(r)$$
 for $0 < r \le t < +\infty$.

By (3.4) we have

$$\frac{1}{t^n} \ge \frac{\rho(t)}{C' \int_0^t (\rho(s)/s) \, ds \, t^n}.$$

From (4.1) and (4.2), it follows that

$$\begin{split} \widetilde{\Phi}\left(\frac{\rho(t)}{CC'F(r)t^n}\right) &\leq \frac{F(t)}{CF(r)}\widetilde{\Phi}\left(\frac{\rho(t)}{C'F(t)t^n}\right) \\ &= \frac{F(t)}{CF(r)}\widetilde{\Phi}\left(\frac{\rho(t)}{C'\int_0^t (\rho(s)/s)\,ds\,\Phi^{-1}(1/t^n)\,t^n}\right) \\ &\leq \frac{F(t)}{CF(r)}\widetilde{\Phi}\left(\frac{\frac{\rho(t)}{C'\int_0^t (\rho(s)/s)\,ds\,t^n}}{\Phi^{-1}\left(\frac{\rho(t)}{C'\int_0^t (\rho(s)/s)\,ds\,t^n}\right)}\right) \\ &\leq \frac{F(t)}{CF(r)}\frac{\rho(t)}{C'\int_0^t (\rho(s)/s)\,ds\,t^n} = \frac{1}{CC'F(r)}\frac{\rho(t)}{t^n}\Phi^{-1}\left(\frac{1}{t^n}\right). \end{split}$$

By (3.5), we have (3.1). Therefore this corollary follows from Theorem 3.1.

Lemma 4.1. Let Φ be a Young function with (2.7) and $\widetilde{\Phi}$ be the complementary function with respect to Φ . Then there exists a constant C > 0 such that, for all $a \in \mathbb{R}^n$ and r > 0,

$$\|\chi_{B(a,r)}\|_{\widetilde{\Phi}} \le C\Phi^{-1}\left(\frac{1}{r^n}\right)r^n.$$

Proof. Let $\lambda = \Phi^{-1}(1/|B(a,r)|)|B(a,r)|$. Then we have, by (4.2),

$$\int_{\mathbb{R}^n} \widetilde{\Phi}\left(\frac{\chi_{B(a,r)(x)}}{\lambda}\right) dx = \int_{B(a,r)} \widetilde{\Phi}\left(\frac{1}{\lambda}\right) dx$$

$$= |B(a,r)|\widetilde{\Phi}\left(\frac{\frac{1}{|B(a,r)|}}{\Phi^{-1}\left(\frac{1}{|B(a,r)|}\right)}\right) \le 1.$$

Proof of Theorem 3.3. First we note that there exists a constant C > 0 such that, for all $a \in \mathbb{R}^n$ and r > 0,

$$(4.13) \qquad \left\| \frac{\rho(|a-\cdot|)}{|a-\cdot|^{n+1}} \chi_{B(a,r)^C}(\cdot) \right\|_{\widetilde{\Phi}} \le C \frac{1}{r} \int_0^r \frac{\rho(t)}{t} dt \; \Phi^{-1}\left(\frac{1}{r^n}\right).$$

We have this inequality (4.13) by (3.7) in a way similar to the proof of (4.7), For any ball B = B(a, r), let $\tilde{B} = B(a, 2r)$ and

$$E_{B}(x) = \int_{\mathbb{R}^{n}} f(y) \left(\frac{\rho(|x-y|)}{|x-y|^{n}} - \frac{\rho(|a-y|)(1-\chi_{\tilde{B}}(y))}{|a-y|^{n}} \right) dy,$$

$$C_{B} = \int_{\mathbb{R}^{n}} f(y) \left(\frac{\rho(|a-y|)(1-\chi_{\tilde{B}}(y))}{|a-y|^{n}} - \frac{\rho(|y|)(1-\chi_{B_{0}}(y))}{|y|^{n}} \right) dy,$$

$$E_{B}^{1}(x) = \int_{\tilde{B}} f(y) \frac{\rho(|x-y|)}{|x-y|^{n}} dy,$$

$$E_{B}^{2}(x) = \int_{\tilde{B}^{C}} f(y) \left(\frac{\rho(|x-y|)}{|x-y|^{n}} - \frac{\rho(|a-y|)}{|a-y|^{n}} \right) dy.$$

Then

$$\tilde{I}_{o}f(x) - C_{B} = E_{B}(x) = E_{B}^{1}(x) + E_{B}^{2}(x)$$
 for $x \in B$.

By (2.6) we have

$$\left| \frac{\rho(|a-y|)(1-\chi_{\tilde{B}}(y))}{|a-y|^n} - \frac{\rho(|y|)(1-\chi_{B_0}(y))}{|y|^n} \right| \le \begin{cases} C, & |y| \le 2|a|, \\ C|a| \frac{\rho(|y|)}{|y|^{n+1}}, & |y| \ge 2|a|. \end{cases}$$

From (4.3) and (4.13), it follows that C_B is well-defined. By (4.3), Lemma 4.1 and (3.8), we have

$$\int_{\tilde{B}} \left(\int_{B} |f(y)| \frac{\rho(|x-y|)}{|x-y|^n} dx \right) dy \leq \int_{\tilde{B}} |f(y)| \left(\int_{B(y,3r)} \frac{\rho(|x-y|)}{|x-y|^n} dx \right) dy$$

$$\leq \int_{\tilde{B}} |f(y)| dy \int_{0}^{3r} \frac{\rho(t)}{t} dt$$

$$\leq C \|f\|_{\Phi} \|\chi_{\tilde{B}}\|_{\tilde{\Phi}} \int_{0}^{r} \frac{\rho(t)}{t} dt$$

$$\leq C \|f\|_{\Phi} \Phi^{-1} \left(\frac{1}{r^n} \right) r^n \int_{0}^{r} \frac{\rho(t)}{t} dt$$

$$\leq C \phi(r) r^n \|f\|_{\Phi}.$$

From Fubini's theorem, it follows that E_B^{-1} is well-defined and that

(4.14)
$$\int_{B} |E_{B}^{1}(x)| dx \le C\phi(r)r^{n} ||f||_{\Phi}.$$

By (2.6) we have

$$\left|\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|a-y|)}{|a-y|^n}\right| \le C\frac{|a-x|\rho(|a-y|)}{|a-y|^{n+1}}, \quad x \in B \text{ and } y \in \tilde{B}^C.$$

From (4.3), (4.13) and (3.8), it follows that E_B^2 is well-defined and

$$(4.15) |E_B^2(x)| \le C\phi(r)||f||_{\Phi}.$$

By (4.14) and (4.15), we have

$$\frac{1}{|B|} \int_{B} |\tilde{I}_{\rho}f(x) - C_B| \, dx \le C\phi(r) \|f\|_{\Phi},$$

and

$$\|\tilde{I}_{\rho}f\|_{\mathrm{BMO}_{\phi}} \le C\|f\|_{\Phi}.$$

Lemma 4.2. If ρ satisfies (2.1), (2.2), (2.5) and (2.6), then

(4.16)
$$\frac{\rho(|x_1 - y|)}{|x_1 - y|^n} - \frac{\rho(|x_2 - y|)}{|x_2 - y|^n}$$

is integrable on \mathbb{R}^n as a function of y and the value is equal to 0 for every choice of x_1 and x_2 .

$$Proof. \text{ Let } r = |x_1 - x_2|. \text{ For large } R > 0, \text{ let}$$

$$J_1 = \int_{B(x_1, R)} \frac{\rho(|x_1 - y|)}{|x_1 - y|^n} dy - \int_{B(x_2, R)} \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} dy,$$

$$J_2 = \int_{B(x_1, R+r) \setminus B(x_1, R)} \frac{\rho(|x_1 - y|)}{|x_1 - y|^n} dy - \int_{B(x_1, R+r) \setminus B(x_2, R)} \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} dy,$$

$$J_3 = \int_{B(x_1, R+r)^C} \left(\frac{\rho(|x_1 - y|)}{|x_1 - y|^n} - \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} \right) dy.$$

Then

$$J_1 + J_2 + J_3 = \int_{\mathbb{R}^n} \left(\frac{\rho(|x_1 - y|)}{|x_1 - y|^n} - \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} \right) dy.$$

From (2.1), it follows that $\frac{\rho(|x_i-y|)}{|x_i-y|^n}$ (i=1,2) are in $L^1_{loc}(\mathbb{R}^n)$ and that $J_1=0$. By (2.6) we have

$$\int_{B(x_1,R+r)^C} \left| \frac{\rho(|x_1-y|)}{|x_1-y|^n} - \frac{\rho(|x_2-y|)}{|x_2-y|^n} \right| dy
\leq \int_{B(x_1,R+r)^C} A_3 r \frac{\rho(|x_1-y|)}{|x_1-y|^{n+1}} dy = Cr \int_{R+r}^{+\infty} \frac{\rho(t)}{t^2} dt.$$

From (2.5) it follows that (4.16) is integrable and that $|J_3| \to 0$ as $R \to +\infty$. By (2.2) and (2.5), we have

$$|J_2| \le \int_{B(x_1, R+r) \setminus B(x_1, R-r)} \left(\frac{\rho(|x_1 - y|)}{|x_1 - y|^n} + \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} \right) dy$$

$$\sim ((R+r)^n - (R-r)^n) \frac{\rho(R)}{R^n} \le Cr \frac{\rho(R)}{R} \to 0 \quad \text{as } R \to +\infty.$$

Lemma 4.3. Under the assumption in Theorem 3.4, there exists a constant C > 0 such that, for all $a \in \mathbb{R}^n$ and r > 0,

$$\int_{B(a,r)^C} \frac{\rho(|a-y|)}{|a-y|^{n+1}} \left| f(y) - f_{B(a,r)} \right| dy \le C \frac{\rho(r)\phi(r)}{r} \|f\|_{\text{BMO}_{\phi}}.$$

Proof. By (2.2) we have

$$|f_{B(a,2^{k}r)} - f_{B(a,2^{k+1}r)}| \leq \frac{1}{|B(a,2^{k}r)|} \int_{B(a,2^{k}r)} |f(y) - f_{B(a,2^{k+1}r)}| \, dy$$

$$\leq \frac{1}{|B(a,2^{k}r)|} \int_{B(a,2^{k+1}r)} |f(y) - f_{B(a,2^{k+1}r)}| \, dy$$

$$\leq 2^{n} \phi(2^{k+1}r) ||f||_{\text{BMO}_{\phi}}$$

$$\leq C \int_{2^{k}r}^{2^{k+1}r} \frac{\phi(s)}{s} \, ds ||f||_{\text{BMO}_{\phi}},$$

for $k = 0, 1, \dots, j - 1$, and so

$$\begin{split} &\frac{1}{|B(a,2^{j}r)|} \int_{B(a,2^{j}r)} |f(y) - f_{B(a,r)}| \, dy \\ &\leq \frac{1}{|B(a,2^{j}r)|} \int_{B(a,2^{j}r)} |f(y) - f_{B(a,2^{j}r)}| \, dy + |f_{B(a,r)} - f_{B(a,2^{j}r)}| \\ &\leq C \int_{r}^{2^{j}r} \frac{\phi(s)}{s} \, ds \|f\|_{\mathrm{BMO}_{\phi}}. \end{split}$$

Hence, using (2.5) and (3.9), we have

$$\begin{split} &\int_{B(a,r)^C} \frac{\rho(|a-y|)}{|a-y|^{n+1}} \left| f(y) - f_{B(a,r)} \right| \, dy \\ &= \sum_{j=1}^{+\infty} \int_{2^{j-1}r \leq |a-y| \leq 2^{j}r} \frac{\rho(|a-y|)}{|a-y|^{n+1}} \left| f(y) - f_{B(a,r)} \right| \, dy \\ &\leq C \sum_{j=1}^{+\infty} \frac{\rho(2^{j}r)}{(2^{j}r)^{n+1}} \int_{B(a,2^{j}r)} \left| f(y) - f_{B(a,r)} \right| \, dy \\ &\leq C \sum_{j=1}^{+\infty} \frac{\rho(2^{j}r)}{2^{j}r} \int_{r}^{2^{j}r} \frac{\phi(s)}{s} \, ds \, \|f\|_{\mathrm{BMO}_{\phi}} \sim \int_{r}^{+\infty} \frac{\rho(t)}{t^{2}} \left(\int_{r}^{2t} \frac{\phi(s)}{s} \, ds \right) \, dt \, \|f\|_{\mathrm{BMO}_{\phi}} \\ &= \int_{r}^{+\infty} \left(\int_{s/2}^{+\infty} \frac{\rho(t)}{t^{2}} \, dt \right) \frac{\phi(s)}{s} \, ds \, \|f\|_{\mathrm{BMO}_{\phi}} \\ &\leq C \int_{r}^{+\infty} \frac{\rho(s)}{s} \frac{\phi(s)}{s} \, ds \, \|f\|_{\mathrm{BMO}_{\phi}} \leq C \frac{\rho(r)\phi(r)}{r} \, \|f\|_{\mathrm{BMO}_{\phi}}. \end{split}$$

Proof of Theorem 3.4. For any ball B = B(a, r), let $\tilde{B} = B(a, 2r)$ and

$$E_{B}(x) = \int_{\mathbb{R}^{n}} (f(y) - f_{\tilde{B}}) \left(\frac{\rho(|x - y|)}{|x - y|^{n}} - \frac{\rho(|a - y|)(1 - \chi_{\tilde{B}}(y))}{|a - y|^{n}} \right) dy,$$

$$C_{B}^{1} = \int_{\mathbb{R}^{n}} \left(f(y) - f_{\tilde{B}} \right) \left(\frac{\rho(|a - y|)(1 - \chi_{\tilde{B}}(y))}{|a - y|^{n}} - \frac{\rho(|y|)(1 - \chi_{B_{0}}(y))}{|y|^{n}} \right) dy,$$

$$C_{B}^{2} = \int_{\mathbb{R}^{n}} f_{\tilde{B}} \left(\frac{\rho(|x - y|)}{|x - y|^{n}} - \frac{\rho(|y|)(1 - \chi_{B_{0}}(y))}{|y|^{n}} \right) dy,$$

$$E_{B}^{1}(x) = \int_{\tilde{B}} \left(f(y) - f_{\tilde{B}} \right) \frac{\rho(|x - y|)}{|x - y|^{n}} dy,$$

$$E_{B}^{2}(x) = \int_{\tilde{B}^{C}} \left(f(y) - f_{\tilde{B}} \right) \left(\frac{\rho(|x - y|)}{|x - y|^{n}} - \frac{\rho(|a - y|)}{|a - y|^{n}} \right) dy.$$

Then

$$\tilde{I}_{\rho}f(x) - (C_B^1 + C_B^2) = E_B(x) = E_B^1(x) + E_B^2(x)$$
 for $x \in B$.

By (2.6) we have

$$\left| \frac{\rho(|a-y|)(1-\chi_{\tilde{B}}(y))}{|a-y|^n} - \frac{\rho(|y|)(1-\chi_{B_0}(y))}{|y|^n} \right| \\
\leq \begin{cases} C, & |a-y| \leq \max(2|a|, 2r), \\ C|a|\frac{\rho(|a-y|)}{|a-y|^{n+1}}, & |a-y| \geq \max(2|a|, 2r). \end{cases}$$

From Lemma 4.3, it follows that C_B^1 is well-defined. By Lemma 4.2 and (2.1), we have

$$\int_{\mathbb{R}^n} \left(\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|y|)(1-\chi_{B_0}(y))}{|y|^n} \right) dy
= \int_{\mathbb{R}^n} \left(\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|y|)}{|y|^n} \right) dy + \int_{B_0} \frac{\rho(|y|)}{|y|^n} dy = C.$$

By (3.10) we have

$$\begin{split} &\int_{\tilde{B}} \left(\int_{B} |f(y) - f_{\tilde{B}}| \frac{\rho(|x-y|)}{|x-y|^n} \, dx \right) \, dy \\ &\leq \int_{\tilde{B}} |f(y) - f_{\tilde{B}}| \left(\int_{B(y,3r)} \frac{\rho(|x-y|)}{|x-y|^n} \, dx \right) \, dy \\ &\leq \int_{\tilde{B}} |f(y) - f_{\tilde{B}}| \, dy \int_{0}^{3r} \frac{\rho(t)}{t} \, dt \\ &\leq C \|f\|_{\mathrm{BMO}_{\phi}} r^n \phi(r) \int_{0}^{r} \frac{\rho(t)}{t} \, dt \\ &\leq C \|f\|_{\mathrm{BMO}_{\phi}} r^n \psi(r). \end{split}$$

From Fubini's theorem it follows that E_B^1 is well-defined and that

(4.17)
$$\int_{B} |E_{B}^{1}(x)| dx \le C\psi(r)r^{n} ||f||_{\mathrm{BMO}_{\phi}}.$$

From (2.6), Lemma 4.3 and (3.10), it follows that $E_{B}^{\,2}$ is well-defined and

(4.18)
$$|E_B^2(x)| \le C\psi(r)||f||_{\text{BMO}_{\phi}}.$$

By (4.17) and (4.18), we have

$$\frac{1}{|B|} \int_{B} |\tilde{I}_{\rho} f(x) - (C_B^{1} + C_B^{2})| dx \le C\psi(r) ||f||_{BMO_{\phi}},$$

and

$$\|\tilde{I}_{\rho}f\|_{\mathrm{BMO}_{\psi}} \leq C\|f\|_{\mathrm{BMO}_{\phi}}.$$

REFERENCES

- 1. I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, *Weight Theory for Integral Transforms on Spaces of Homogeneous Type*, Longman, Harlow, 1998.
- 2. A. E. Gatto and S. Vági, *Fractional integrals on spaces of homogeneous type*, in: *Analysis and Partial Differential Equations*, Cora Sadosky, ed., Marcel Dekker, New York, 1990, pp. 171-216.
- 3. V. Kokilashvili and M. Krbec, *Weighted Inequalities in Lorentz and Orlicz Spaces*, World Scientific, Singapore, New Jersey, London and Hong Kong, 1991.
- 4. M. M. Rao and Z. D. Ren, *Theory of Orlicz Spaces*, Marcel Dekker, Inc., New York, Basel and Hong Kong, 1991.
- B. Rubin, Fractional Integrals and Potentials, Addison Wesley Longman Limited, Essex, 1996.
- 6. E. M. Stein, *Singular Integrals and Differentiability Properties of Functions*, Princeton University Press, Princeton, NJ, 1970.
- 7. E. M. Stein, *Harmonic Analysis, Real-variable Methods, Orthogonality, and Oscillatory Integrals*, Princeton University Press, Princeton, NJ, 1993.
- 8. A. Torchinsky, *Interpolation of operations and Orlicz classes, Studia Math.* **59** (1976), 177-207.

Department of Mathematics, Osaka Kyoiku University Kashiwara, Osaka 582-8582, Japan

E-mail: enakai@cc.osaka-kyoiku.ac.jp