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ON GENERALIZED FRACTIONAL INTEGRALS
Eiichi Nakai

Dedicated to Professor K6z Yabuta on his sixtieth birthday

Abstract. It is known that the fractional integral I, (0 < o < n) is bounded
from L?(R™) to LY(R™) when p > 1 and n/p — o = n/q > 0, from LP(R™)
to BMO(R™) when p > 1 and n/p —a = 0, from LP(R") to Lipz(R") when
p>1land -1 < n/p—a = —p <0, from BMO(R") to Lip, (R"™) when
0 < a < 1, and from Lipg(R™) to Lip, (R") when 0 < o + 3 =7 < 1. We
introduce generalized fractional integrals and extend the above boundedness
to the Orlicz spaces and BMO,.

1. INTRODUCTION

The fractional integral I, (0 < a < n) is defined by

Iocf(x) - /R f(y) dy.

n |z =yl

It is known that I, is bounded from LP(R") to L(R"™) whenp > 1 and n/p—a =
n/q > 0 as the Hardy-Littlewood-Sobolev theorem. The fractional integral was
studied by many authors (see, for example, Rubin [5] or Chapter 5 in Stein [6]). The
Hardy-Littlewood-Sobolev theorem is an important result in the fractional integral
theory and the potential theory. We introduce generalized fractional integrals and
extend the Hardy-Littlewood-Sobolev theorem to the Orlicz spaces. We show that,
for example, a generalized fractional integral is bounded from exp LP to exp L9.
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Let B(a,r) be the ball {x € R™ : |[x — a| < r} with center a and of radius
r >0, and By = ~B(O, 1) with center the origin and of radius 1. The modified
fractional integral I, (0 < o < n + 1) is defined by

i@ = [ 10 (s - ) an

where Xp, is the characteristic function of By. It is also known that the modified
fractional integral I, is bounded from LP(R") to BMO(R™) when p > 1 and
n/p —a = 0, from LP(R") to Lipg(R") when p > 1 and -1 < n/p —a =
—B3 < 0, from BMO(R") to Lip,(R") when 0 < a < 1, and from Lipgz(R") to
Lip, (R") when 0 < a+ 3 = v < 1. We also investigate the boundedness of
generalized fractional integrals from the Orlicz space L®(R™) to BMO4(R™) and
from BMO4(R") to BMOy,(R™), where BMO,(R™) is the function space defined
by using the mean oscillation and a weight function ¢ : (0, +o00) — (0, +00).
If ¢(r) = 1, then BMO4(R") = BMO(R"). If ¢(r) = r* (0 < a < 1), then
BMO4(R™) = Lip, (R™).

Though we state our results on the Euclidean space R"”, these hold on spaces of
homogeneous type with appropriate conditions.

2. NOTATIONS AND DEFINITIONS

For a function p : (0, +00) — (0, +00), let

i) = [ o=l

|z —y|"

We consider the following conditions on p:

1
t
(2.1) / ? dt < +o0,
0
1 1
(2.2) —Sﬁéfh for = <><2
1~ p(r) 2~ r
(2.3) Pr) o 4,28 o s <o
rn s

where Ay, A2 > 0 are independent of r, s > 0. If p(r) =r®, 0 < a <n, then I,
is the fractional integral or the Riesz potential denoted by I,.
We define the modified version of I, as follows:

oo = [ st (2a= ) Al

|z —y|" ly[™
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We consider the following conditions on p: (2.1), (2.2) and

2.4) quﬁ < Aggn(—ﬁ for s<r,
oo H(t T
s [ ot
1
(2.6) ARG RN () R A Y
rn s prtl 2 " r

where A}, A, A3 > 0 are independent of 7, s > 0. If p(r)r® is increasing for some
« > 0 and p(r)/r” is decreasing for some 3 > 0, then p satisfies (2.2) and (2.6).
If p(r) =74 0 < a <n+ 1, then fp =1, If fpf and I,f are well-defined, then
fpf —1I,f is a constant.

A function @ : [0, +00) — [0, +00] is called a Young function if ® is convex,
lim, 1o ®(r) = ®(0) = 0 and lim,_, ;- ®(r) = +00. Any Young function is
increasing. For a Young function ®, the complementary function is defined by

O(r) =sup{rs — ®(s) : s >0}, r>0.

For example, if ®(r) = r?/p, 1 < p < oo, then &)(r) =P /p, 1 p+1/p = 1. If
®(r)=r,then ®(r) =0 (0 <r <1),and = 400 (r > 1).
For a Young function ®, let

loc

Hqu>:inf{)\>0:/n¢><@> dxgl},

(R™) = {f € L (R™) : sup ®(r) m(r, ef) < +oo for some € > 0} ,

1
o¢ >0

L®(R™) :{f e LL (R"): / O (e| f(x)]) dz < 400 for some € > 0},

L<I>

weak

| f1|@ weak = inf {)\ > 0:sup ®(r) m <r, %) < 1} ,

r>0
where m(r, f) = [{x e R" : |f(x)]| > r}|.
If a Young function ® satisfies

2.7) 0<®(r) < +oo for 0<r < +oo,

then @ is continuous and bijective from [0, +-00) to itself. The inverse function 1
is also increasing and continuous.
A function & is said to satisfy the Vy-condition, denoted & € V,, if

1
O(r) < —o >
(1) < 500k, >0,
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for some k£ > 1.
Let M f(z) be the maximal function, i.e.,

where the supremum is taken over all balls B containing x.
We assume that ® satisfies (2.7). Then M is bounded from L*(R") to L2 _, (R")
and

(2.8) [ M flloweak < Collf|lo-
If ® € V,, then M is bounded on L®(R") and
(2.9) 1M flle < Collflle-

For a function ¢ : (0, +00) — (0, +00), let

BMO¢(R”) — {f € LlOC(R”) : sup ‘B‘ / |f(x) — fpldx < —I—OO} ,

B= B(ar

Ifllwo, = sup oo / 7(@) ~ ol da,

where fB= \B\/f

If ¢(r) = 1, then BMO,(R") = BMO(R™). If ¢(r) = 7, 0 < o < 1, then it is
known that BMO4(R™) = Lip,(R"™).

For functions 6, s : (0, +00) — (0, +00), we denote §(r) ~ k(r) if there exists
a constant C' > 0 such that

C71o(r) < k(r) <CO(r), r>0.

A function 6 : (0,4+00) — (0,+00) is said to be almost increasing (almost
decreasing) if there exists a constant C' > 0 such that 0(r) < CO(s) (0(r) > CO(s))
for r < s.

The letter C' shall always denote a constant, not necessarily the same one.

3. MAIN RESULTS

Our main results are as follows:

Theorem 3.1. Let p satisfy (2.1)~(2.3). Let ® and ¥ be Young functions with
(2.7). Assume that there exist constants A, A', A” > 0 such that, for all r > 0,

oo p(t) n— /
(3.1) / @(Afo () ds (1/rn)tn)t Lar < A,
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rp(t) -1 1 1" o1—1 1
(3.2) /OTdt¢> (r—n>§A v (Fz)

where ® is the complementary function with respect to ®. Then, for any Cy > 0,
there exists a constant Oy > 0 such that, for f € L®(R"),

(3.3) v (‘é’jﬁ}ﬁ!) =@ (éﬁ;ﬁD '

Therefore 1, is bounded from L®(R™) to LY., (R™). Moreover, if ® € Vs, then
I, is bounded from L*(R") to LY (R™).

Remark 3.1. From (2.2), it follows that

(3.4) p(r)<C /07‘ @ dt.

If p(r)/r® is almost increasing for some ¢ > 0 and p(t)/t™ is almost decreas-
ing, then p satisfies (2.1)~(2.3) and [ (p(t)/t)dt ~ p(r). Let, for example,
p(r) = r®(log(1/r))=" for small 7. If o« = 0 and 8 > 1, then [ (p(t)/t)dt ~
(log(1/r)) P If a > 0 and —oo < B < +o0, then [ (p(t)/t) dt ~ p(r).

Remark 3.2. In the case ®(r) =, (3.1) is equivalent to

plt) _ AJy(p(s)/5) ds

tn rn

, O0<r<it.

This inequality follows from (2.3) and (3.4).
The following corollary is stated without the complementary function.

Corollary 3.2. Let p satisfy (2.1)~(2.3). Let ® and V be Young functions with

(2.7). Assume that
/ p(t) dt ! (i)
0 t rn

is almost decreasing and that there exist constants A, A’ > 0 such that, for all
r >0,

p(t) o1 (1 " p(t) (1
(3.5) / ra (Fn) dt < A/O Pt o (r—n>
" p(t) (1 ra—1 (1
(3.6) /0 Pt o (r—n> <A (r—n>
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Then (3.3) holds. Therefore 1, is bounded from L*(R™) to LY

weak R™). Moreover,
if ® € Vs, then 1, is bounded from L®(R") to LY (R™).

Remark 3.3. If 7p(r)®~1(1/r") is almost decreasing for some ¢ > 0, then

oo p(t 1 1
/ 1) g1 (—) dt < Cp(r) & (—) .
r t tn rm
This inequality and (3.4) yield (3.5).

Remark 3.4. We cannot replace (3.2) or (3.6) by
p(r) ® — | <AV — for all » > 0.
T T

Theorem 3.3. Let p satisfy (2.1), (2.2), (2.4) and (2.6). Let ® be Young
Sfunction with (2.7), ¢ be almost increasing and ¢(r) ~ ¢(2r). Assume that there
exist constants A, A, A” > 0 such that, for all r > 0,

oo~ rp(t) n— /
S / ¢ (A T (p(s)/5) ds @11 /rn)tn+1> "l db < A
(3.8) /0 @ dt o1 (%) < A"¢(r),

where ® is the complementary function with respect to ®. Then I p 1S bounded from
L?(R™) to BMOg4(R™).

Theorem 3.4. Let p satisfy (2.1), (2.2), (2.5) and (2.6). Let ¢ and ) be almost
increasing, ¢(r) ~ ¢(2r) and Y(r) ~ ¥(2r). Assume that there exist constants
A, A" > 0 such that, for all r > 0,

(3.9) / o % it < AP(T);?(?")’
(3.10) [ 2 dt o) < i),

Then 1, is bounded from BMOy4(R") to BMO,,(R™).

Remark 3.5. From Lemma 4.2, it follows that 7,1 is a constant. Hence I, is
well-defined as an operator from BMOy(R™) to BMO,,(R™).

The results in Figure 1 are known. Our results contain these. Moreover, we
have the results in Figure 2.
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(I1<p<qg< ) 0<pB<y<]
Lp L4 BMO Lipgs Lip,

I, I,
—n/p+a=-n/lqg | a=

I, -
—n/p+a=0 - B+a=7y

g

Y

Iy
—n/p+a=p

Figure 1: Boundedness of fractional integrals

p(r) = (log(1/r))~(@+1) for small r > 0 (a > 0)
(0<p<qg< ) (0<fB<y<o0)
exp P exp L1 BMO BMO(log(l/r))_ﬁBMO(IOg(l/T))_’Y

Iy . Iy
~1/p+a=-1/q a=

I,

Afpra=0 B+a=7y

I,

—1/p+a=p

ol

Y

Figure 2: Boundedness of generalized fractional integrals

4. PrROOFS
Let ® be a Young function. By the convexity and ®(0) = 0, we have
(4.1) O(r) < Zd(s) forr < s.
s

Let ® be the complementary function with respect to ®. Then

(4.2) o <%> <®(r), r>0.

r
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Actually,
(bir)s —P(s) < P(r) fors<r
and
(bir)s —P(s) <0 fors>r.
We note that
@3) [ 15@gta)ldz < 21 ol

(see for example [4]).

Proof of Theorem 3.1. Let

T —
n= [ sty
|lz—y|<r ‘(L‘ - y‘

_ Pz —yl)
R /|a:—y|2r f@) PR

h(r):inf{@:s<r}, r>0.

STL

Let

Then h is nonincreasing. It follows that

[ ey < arse [ ey

lz—y|<r

(see Stein [7, p.57])). Since h(r) ~ p(r)/r",

@44) || < CMf(x) / Pz =D g < cnrfia) /0 ' @ dt.

|lz—y|<r ‘(L‘ - y‘n

Next we estimate J5. By (4.3) we have

@) ) < 2| T e

A e,
P

where xp(,,)c 1s the characteristic function of the complement of B(z,r). Let

(4.6) F(r) = /0 @ ds ®! (%) .
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We show

pll =)
o=

(4.7) '

XB(J:,T)C(') ~ < CF(T)

P

From (2.2) and the increasingness of & it follows that

= (pllz—y \)) +°°~<@>
(4.8) /Im—yIZT(I)(i)“x_y‘ dy<C/ )t dt,

where C5 is independent of A > 0 and 2z € R"™. We may assume that Co A’ > 1.
By (4.1) and (3.1) we have

+oo
= p(t) n—1
(I) N7
/r (CQAA’F(r)t”> et
1 e~ p(t) 1 1
< o ——— )" < —
= G / (AF(r)t”) s E

Let A = Co AA’F(r). Then, by (4.8) and (4.9) we have

[ a(es)ge
|lz—y|>r )\‘x_y‘n -

and so (4.7) holds. By (4.4), (4.5) and (4.7), we have

(4.9)

@10 sl =1h+al < (p@ + e (5)) [ 2
rr o ¢

Choose r > 0 so that

L1 M)
) (=)= )
1 () Collflls
Then
f(z)
" p(t) S () e (FHE)
(4.12) dt<A7 A - .
Jo Ay = A
By (4.10), (4.11) and (4.12), we have
M
s < Gillslow oo (ST,

Therefore we have (3.3).
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Let Cp be as in (2.8). Then

sup U (r) m (r, L@ /()] —supr m (r, ¥ (Lol
Cillflle C
r>0 r>0

<su rm(r,@ (—Mf(m)>> = sup ®(r m(r —Mf(m)> <1,
r>%) COHqu) r>%) ( )

1.e.,
HIpr‘If,weak < Cl”f”¢-

Let Cp be as in (2.9). Then
\Ipf(w)\> ( Mf(x) )
/Rn v (CleHq> do = / ®\Gollfls) =t

1 flle < Cill flle- -

1.e.,

Proof of Corollary 3.2. Let F(r) be as (4.6). By the almost decreasingness of
F(r), we have
F(t) <CF(r) for0<r<t< +oo.

By (3.4) we have
1o p(t)
n — t :
7O [Hp(s)/s) ds i

From (4.1) and (4.2), it follows that
= p(t) Ft) =~ ( p@)
¢ (CC’F(r)t”) <corm® (C’F(t)t”)

_ P 5( 0 )
CE(r) \ " [T(p(s)/s)ds ®=1(1/tn) tm

p(t)
F(t) ~ o fot(p(s)/s) ds t"
< d
=~ CF(r) o < p(t) >
C" fo(p(s)/s) ds t"
A0 p(t) _ b () g (i
~CF(r) ¢ [Lp(s)/s)dstn  CC'F(r) t tn

By (3.5), we have (3.1). Therefore this corollary follows from Theorem 3.1. ]
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Lemma 4.1. Let ® be a Young function with (2.7) and ® be the complementary
function with respect to ®. Then there exists a constant C' > 0 such that, for all
a € R"™ and r > 0,

a1\ 4

ol < co 7t () "
Proof. Let A\ = ®~1(1/|B(a,r)|)|B(a,)|. Then we have, by (4.2),

4 X a,r)(x 4
/ @(-ﬂ;ll>mpi/ ®<l>dx
" A B(a,r) A
1

[Bar]] <1

Proof of Theorem 3.3. First we note that there exists a constant C' > 0 such

that, for all « € R™ and r > 0,
1
< o= / —=dt < ) .
rn

We have this inequality (4.13) by (3.7) in a way similar to the proof of (4.7),
For any ball B = B(a,r), let B = B(a, 2r) and

EB@F:/;f@)CMw—yD_fﬂa—wﬂl—xgwﬁ>d%

= |B(a,r)|®

(4.13)

C

[

|z — y[" la —y["
B plla—yDA=Xz) oy~ x5,(v))
C@‘/‘“”< a— g PR )d%

/f wy .
i (S5

Then

If(z) — Op = Ep(z) = Eg'(z) + Eg*(x) forz € B.

By (2.6) we have

mm—ym1—xaw>_mw00—X%@»l<{61 ly| < 2lal,

ja—y|* [ Cla| 2, |y| > 2la].
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From (4.3) and (4.13), it follows that C'p is well-defined. By (4.3), Lemma 4.1 and
(3.8), we have

/ ( / \f(y)\%c@ i [ 7wl ( / (yﬁﬂ%m) dy

p(t)
< [itiay [ 2 i

" p(t)
< Clleligll | 22

< O a0 (rin) [ 20 g
< Co(r)r”|| fle-

From Fubini’s theorem, it follows that Epg' is well-defined and that

(4.14) /B B (2)] dz < Co(r)r™|| .
By (2.6) we have

pllz—yl)  plla—yl)

- - Sc\a—x\p(\a—y\)j z € Bandy e B°.
El la —y|

‘a _ y‘n—i—l

From (4.3), (4.13) and (3.8), it follows that Ez? is well-defined and

(4.15) |Eg*(z)| < Co(r)| fllo-

By (4.14) and (4.15), we have

% /B |, f(z) — Cp|dz < Co(r)] e

and )
1, fllBmo, < C| fll@- -

Lemma 4.2. If p satisfies (2.1), (2.2), (2.5) and (2.6), then

4.16) plzr —yl)  p(lz2 —yl)
|z — y|” |xe — y|™

is integrable on R™ as a function of y and the value is equal to O for every choice
of x1 and xo.
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Proof. Letr = |x1 — xo|. For large R > 0, let

g = / p(lz1 — yn\) dy / Pl — yn\) dy.
B(z1,R) lz1 — B(z2,R) |22 — Y

7, :/ Pz —yn\) p _/ P2 —yn\) dy.
B(x1,R+r)\B(z1,R) lz1 =y B(x1,R+r)\B(z2,R) |22 — |
Ty = / (p(\wl - yn\) _ p(|ze — yﬂ\)) p
B(z1,R+7)C lz1 — |22 — y
Then

J1+J2+J3:/n (p(\wl—y\) B P(\@—ZA)) dy.

|z1 —y[™ |zy —y[™
From (2.1), it follows that f]('l‘zy'n (i=1,2) are in L. (R™) and that .J; = 0. By
(2.6) we have

L(ml R+7’

plzr —yl) _ plz2 —yl)

|z — y|" |z — y|™
+o0
t
g/ agr LB VD g o [T 20 gy
B(z1,R+r)¢ ‘1‘1 ‘ R+r

From (2.5) it follows that (4.16) is integrable and that |.J3] — 0 as R — +o00. By
(2.2) and (2.5), we have

x1 — T —
\Jz\s/ (p(\ 1 yn\)+p(\ 2 yﬂ\)) p
B(z1,R+r)\B(z1,R—T) ‘1‘1 - y‘ ‘xQ - y‘
p(R) p(R)
e <R
Lemma 4.3. Under the assumption in Theorem 3.4, there exists a constant
C > 0 such that, for all a € R™ and r > 0,

~/B(ar p(i‘n—}—l |f fB(a,r)| dy < CMHf”BMO¢'

la

~(R+7r)"—=(R-=7)") —0 as R — +oo0. n

Proof. By (2.2) we have
1
‘fB(a,ri) fB(a,Z’“‘Hr)‘ > \B(a, ri)‘ Bla.2%r) ‘f(y) fB(a,2k+1r)‘ Yy
< 1
= |B(a, 257)] JB(a2r+ir)
< 2”¢(2’“+17“)HfHBM0¢
2k+1

<c / ) ) v

|f(y) — fB(a,2k+1r)‘ dy
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for k=0,1,---,5—1, and so

1

|B(a, 277)| B(a,27r)
1
<
‘B(a,QJT)‘ B(a,29r)

27r
<o [ s flav,.

‘f(y) - fB(a,r)‘ dy

‘f(y) - fB(a,2jr)‘ dy + ‘fB(a,r) - fB(a,2jr)‘

Hence, using (2.5) and (3.9), we have

p(la
L(ar) ‘ ‘n—l—l ’f fB(a,r)’ dy

B 2/2] Lr<|a—y|<29r \a— \”‘H ’f fB(‘”)’ dy

p(277)
< CZ (277 )t /B(a 2ir) [F () = fBam]| dy
<o P /2] (s ) (% 6(s)
Z ds || fllsmo, ~ / weR s ds | dt | fllemo,

_ /+oo (/“’Oﬁdt) MdSHfHBMO(b
r /2 t2

<0 [T DD 4, < oL

1 fllBMO,, - m

Proof of Theorem 3.4. For any ball B = B(a,r), let B = B(a, 2r) and

Ep(z) = /n(f(y) ) (p(\w—y\) _ plla—yp( —xg(y))> dy.

|z —y[" la —y["
Ol — / () — 12) (p(\a—ﬂ)flyTan(y)) B p(\y\)(l‘y—‘ano(y))> a.
- (plz—=y) ey = Xp, ()
Cs"= / /s ( z —y| ly| ) a

B )= [ (1)~ 1) 2=

|z —y|™

Ep?(x) = /Bc (F) - ) (p(\w—y\) ~ p(\a—y\)) dy

|z — y|" la —y|"
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Then
fpf(x) — (CBl + CB2) = EB(x) = EBI(x) + EB2(1‘) for x € B.
By (2.6) we have

‘p(\a —yD = x3@) _ p(yD(A = x5, () ‘

‘a _ y‘n ‘y‘n
C, la — y| < max(2]al, 2r),
Clal oz, la—y| > max(2lal, 2.

From Lemma 4.3, it follows that Cg' is well-defined. By Lemma 4.2 and (2.1),

we have
/ (l,(\x—y\) B p(\y\)(l—XBow))) dy

|z —y|" ly[™

[ () [

By (3.10) we have
i (0 = it ac) a
i oz~ )
< [ 110~ 1s ( [, e dx) y
3r
< [ 1) - sglay [ “a

< Ol lmo,r6(r) /0 o) g

t
< O fllsmo, ™ (r)-

From Fubini’s theorem it follows that Eg' is well-defined and that

@.17) [ 1E5!@)|ds < Co)m o,
B
From (2.6), Lemma 4.3 and (3.10), it follows that E? is well-defined and

(4.18) |Eg*(2)| < C(r)]| fllBmoO, -
By (4.17) and (4.18), we have

57 V@)= (5" + o) do < Co0)] v,
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and 3
1, fllBmo,, < C|| fllBMO,, - "
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