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CONCAVITY OF CERTAIN MATRIX TRACE FUNCTIONS

Fumio Hiai

Abstract. We demonstrate how Epstein’s method using theory of Pick func-

tions improves the existing results and also proves new ones on the joint con-

cavity of trace functions of the formTr (F (A1, . . . , Ak)), whereF (A1, . . . , Ak)
is a matrix-valued function of positive semidefinite matrices A1, . . . , Ak.

INTRODUCTION

We are concerned with the joint concavity of a trace functionTr (F (A1, . . . , Ak)),
where F (A1, . . . , Ak) is a certain matrix-valued function of positive semidefi-
nite matrices A1, . . . , Ak. It sometimes happens that even though the function

F (A1, . . . , Ak) is not at all operator concave in the order of positive semidefinite-
ness, its trace function Tr (F (A1, . . . , Ak)) is jointly concave, i.e.,

Tr (F (λA1 + (1 − λ)B1, . . . , λAk + (1 − λ)Bk))

≥ λTr (F (A1, . . . , Ak)) + (1 − λ)Tr (F (B1, . . . , Bk))

for positive semidefinite matrices Aj , Bj and 0 < λ < 1. For instance, the (joint)
concavity of Tr (F (·)) is known when the function F (·) is any of the following:
( i ) F (A) = (CApC∗)1/p, where 0 < p ≤ 1 (see [6]),

( ii ) F (A1, . . . , Ak) =
(∑k

j=1 Ap
j

)1/p
, where 0 < p ≤ 1 (see [4]),

(iii) F (A, B) = Aα/2CBβC∗Aα/2, where α, β > 0 and α + β ≤ 1 (see [8, 6]),

(iv) F (A1, . . . , Ak) = exp
(
L+

∑k
j=1 pj log Aj

)
, where p1, . . . , pk > 0,

∑k
j=1 pj

≤ 1 and L is a Hermitian matrix (see [8, 6]).
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In particular, the joint concavity of Tr (F (A, B)) = Tr (AαCBβC∗) in the
case (iii) is known as the Lieb concavity in [8] (also see [1]). In [6], Epstein

developed a powerful method using the integral representation of Pick functions

to prove the concavity of the trace function of the above (i) (as well as those of

the single-variable cases of (iii) and (iv)). In this paper, the same method will be

systematically exemplified to improve the known joint concavity results for (i)–(iv)

and also to prove new ones for some trace functions involving Hadamard products

and operator means.

The general form of trace functions treated in this paper is

Tr
(
{F (Ap

1, . . . , A
p
k)}

1/p
)

with 0 < p ≤ 1(0.1)

or

Tr
(
exp{F (log A1, . . . , logAk)}

)
,(0.2)

and the function F (·) is allowed to contain several linear maps on matrix spaces.
The joint concavity of such trace functions is strongly related to the fact that the

functions xp (0 < p ≤ 1) and logx in x > 0 are operator monotone. When xp

and log x are analytically continued to the domain C \ (−∞, 0], their images of
the upper-half plane C+ = {z : Im z > 0} are rather simple; in fact, the image
of zp is the sector {reiθ : r > 0, 0 < θ < pπ} and that of log z is the strip
{x + iy : 0 < y < π}. These facts are essential in Epstein’s method, so it does not
seem easy to deal with trace functions involving more general operator monotone

functions beyond the forms (0.1) and (0.2).

It may be worthwhile to mention the following remark about the joint “con-

vexity” problem in the case where F (A1, . . . , Ak) = A1 + · · ·+ Ak . In this case,

one may expect that the trace function (0.1) would become jointly convex when

the condition on p is converted to p > 1. However, it was shown in [2, 4] that
the function (A, B) 7→ Tr

(
(Ap + Bp)1/p

)
when p > 2 is not jointly convex (not

even separately) while it is jointly convex when p = 2. Its joint convexity when
1 < p < 2 is a conjecture of Carlen and Lieb [4] and it is still open. So the
convexity problem of Tr

(
(Ap

1 + · · ·+ Ap
k)1/p

)
when p > 1 is more subtle than its

concavity part when 0 < p < 1.
This paper is organized as follows. Section 1 is a preparation mostly taken from

[6]. The above mentioned joint concavity results are improved in Section 2. Next,

other types of trace functions are proved to be jointly concave; in Section 3 we

consider trace functions involving tensor products and Hadamard products, and in

Section 4 those involving operator means.
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1. PRELIMINARIES

LetMn be the algebra of n×n complex matrices andM+
n the set of all positive

semidefinite A ∈ Mn. We write A > 0 when A ∈ Mn is positive definite, that is,

A ∈ M+
n and A is invertible; also A < 0 when −A > 0. Let M++

n denote the set

of all A > 0 inMn. The identity matrix inMn is denoted by I (sometimes In to be

precise). Let Im X be the imaginary part of X ∈ Mn, i.e., Im X := (X −X∗)/2i.

The trace of X ∈ Mn is denoted by TrX , and σ(X) stands for the set of all
eigenvalues of X .

We often use the following notations

C+ := {z ∈ C : Im z > 0} , C− := {z ∈ C : Im z < 0} ,

I+
n := {X ∈ Mn : Im X > 0} , I−

n := {X ∈ Mn : Im X < 0} ,

and for 0 < p ≤ 1,

Γpπ := {reiθ : r > 0, 0 < θ < pπ} , Γ−pπ := {reiθ : r > 0, 0 > θ > −pπ} .

The assertions in the next lemma were given in [6]; in fact, if X = A + iB

with selfadjoint A and B > 0, then the inverse of X is

X−1 = B−1/2(B−1/2AB−1/2 + iI)−1B−1/2 .

Lemma 1.1. If X ∈ I+
n , then X is invertible and moreover σ(X) ⊂ C+. For

invertible X ∈ Mn, X ∈ I+
n if and only if X−1 ∈ I−

n .

Next, let us recall basic facts on analytic functional calculus and Pick functions,

which will be frequently used in the discussions below. Let f be an analytic

function in an open set Ω in C. For every X ∈ Mn such that σ(X) ⊂ Ω, the
analytic functional calculus f(X) is defined by

f(X) :=
1

2πi

∫

Γ
f(z)(zI − X)−1 dz ,

where Γ is a piecewise smooth curve in Ω surrounding σ(X). The spectral mapping
theorem says that σ(f(X)) = f(σ(X)). The analytic functional calculus satisfies
the composition rule g(f(X)) = (g◦f)(X)whenever f is as above and g is analytic

in an open set containing f(σ(X)). Moreover, the map X 7→ f(X) has the Fréchet
derivative

Df(X)(Y ) =
1

2πi

∫

Γ
f(z)(zI − X)−1Y (zI − X)−1 dz (Y ∈ Mn),
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so f(X(z)) is analytic wheneverX(z) is an analytic function satisfying σ(X(z)) ⊂
Ω. (See [10] for details on these facts.)

An analytic function ϕ in C+ ∪C− is called a Pick function if ϕ maps C+ into

itself and ϕ in C− is the reflection of ϕ in C+, i.e., ϕ(z) = ϕ(z) for all z ∈ C+.

According to Löwner’s theory (see [3, V.4]), any Pick function ϕ admits an integral

expression

ϕ(z) = a + bz +
∫ ∞

−∞

1 + tz

t − z
dν(t),(1.1)

where a ∈ R, b ≥ 0 and ν is a finite measure on R. Furthermore, a, b and ν

are uniquely determined by ϕ, and if ϕ is analytically continued across an interval
(α, β) in R (where −∞ ≤ α < β ≤ ∞), then the measure ν is supported in

R \ (α, β).
For p > 0, the function xp (x > 0) has the analytic continuation zp in C \

(−∞, 0] defined by

zp := rpeipθ (z = reiθ, r > 0, −π < θ < π).

When 0 < p < 1, it has the well-known integral expression (see [3, p. 116] for
example)

zp =
sin pπ

π

∫ ∞

0

tp−1z

t + z
dt.

For every X ∈ I+
n (resp. X ∈ I−

n ), since σ(X) ⊂ C+ (resp. σ(X) ⊂ C−), one can
define Xp via analytic functional calculus and it coincides with

Xp =
sin pπ

π

∫ ∞

0

tp−1X(tI + X)−1 dt.(1.2)

In fact, this matrix-valued integral is absolutely convergent whenever 0 < p < 1.
On the other hand, the analytic continuation log z in C \ (−∞, 0] defined by

log z = log r + iθ (z = reiθ, r > 0, −π < θ < π),

has the integral expression

log z =
∫ ∞

0

( 1
t + 1

− 1
t + z

)
dt.

For every X ∈ I+
n ∪ I−

n , one can define log X via analytic functional calculus and

it admits the integral expression

logX =
∫ ∞

0

( 1
t + 1

I − (tI + X)−1
)

dt.(1.3)
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In fact, this integral is absolutely convergent because ‖(t+1)−1I − (tI +X)−1‖ =
O(t−2) as t → ∞.

The following two lemmas are taken from [6]. One can easily show the first

lemma from the expressions (1.2) and (e−ipπXp)−1 = (−X−1)p for X ∈ I+
n ; the

latter is seen from the analytic functional calculus of (e−ipπzp)−1 = (−z−1)p for

z ∈ C+. The second lemma is seen from (1.3) and log(−X) = logX − iπIn for

X ∈ I+
n .

Lemma 1.2. Let 0 < p ≤ 1. If X ∈ I+
n , then Xp ∈ I+

n and e−ipπXp ∈ I−
n .

Also, If X ∈ I−
n , then Xp ∈ I−

n and eipπXp ∈ I+
n .

Lemma 1.3. If X ∈ I+
n , then logX ∈ I+

n and 0 < Im (logX) < πI . Also, if
X ∈ I−

n , then logX ∈ I−
n and 0 > Im (logX) > −πI .

2. IMPROVEMENTS OF EXISTING RESULTS

In this section, we prove three theorems on the joint concavity of trace functions,

thus improving the known results for the cases (i)–(iv) listed in the introduction.

The first theorem (also Corollary 2.2) is a generalization of both cases (i) and

(ii). The proof of the theorem is an adaptation of Epstein’s method in [6] based on

theory of Pick functions to our generalized setting. But we give it in detail because

the same method will be repeatedly used in the paper.

Theorem 2.1. Let m, n1, . . . , nk ∈ N, and for j = 1, . . . , k let Φj be a positive

linear map from Mnj to Mm. If 0 < p ≤ 1, then the function

(A1, . . . , Ak) ∈
k∏

j=1

M+
nj

7→ Tr
({ k∑

j=1

Φj(A
p
j )

}1/p
)

is jointly concave.

Proof. By approximation, we may assume that Φj’s are strictly positive, that is,

A > 0 implies Φj(A) > 0. (We may take Φj(A)+ εTr (A)Im for ε > 0.) To show
the theorem, it suffices to prove that if Aj ∈ M++

nj
and Hj ∈ Mnj is Hermitian for

j = 1, . . . , k, then

d2

dx2
Tr

({ k∑

j=1

Φj

(
(Aj + xHj)p

)}1/p
)

≤ 0
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for all x > 0 small enough. Indeed, once this has been proved, it is immediate to
see that if Aj , Bj ∈ M++

nj
for j = 1, . . . , k, then

d2

dx2
Tr

({ k∑

j=1

Φj

(
(xAj + (1 − x)Bj)p

)}1/p
)

≤ 0

for all 0 < x < 1, which yields the result.
Now let us show that the function

ϕ(z) := Tr
({ k∑

j=1

Φj

(
(zAj + Hj)p

)}1/p
)

(z ∈ C+ ∪ C−),

is a well-defined Pick function. Set Xj(z) := zAj + Hj for z ∈ C; then clearly
Xj(z) ∈ I+

nj
(resp. Xj(z) ∈ I−

nj
) if z ∈ C+ (resp. z ∈ C−). For any z ∈ C+, since

Lemma 1.2 implies that Xj(z)p ∈ I+
nj
and e−ipπXj(z)p ∈ I−

nj
, we get

Im
( k∑

j=1

Φj(Xj(z)p)
)

=
k∑

j=1

Φj

(
Im (Xj(z)p)

)
> 0

and

Im
(

e−ipπ
k∑

j=1

Φj(Xj(z)p)
)

=
k∑

j=1

Φj

(
Im (e−ipπXj(z)p)

)
< 0 .

These imply by Lemma 1.1 that

σ

( k∑

j=1

Φj(Xj(z)p)
)
⊂ Γpπ .

Therefore,
{∑k

j=1 Φj(Xj(z)p)
}1/p

can be defined by analytic functional calculus

so that its eigenvalues are in C+. In this way, we infer that ϕ(z) = Tr
({∑k

j=1

Φj(Xj(z)p)
}1/p)

is a well-defined analytic function in C+ so that ϕ(C+) ⊂ C+.

Here the analyticity of ϕ follows from the Fréchet differentiability of analytic func-

tional calculus as remarked in Section 1. Similarly, ϕ is analytic in C− and

ϕ(C−) ⊂ C−. Moreover, since

({ k∑

j=1

Φj(Xj(z)p)
}1/p

)∗
=

{ k∑

j=1

Φj

(
(Xj(z)p)∗

)}1/p
=

{ k∑

j=1

Φj(Xj(z)p)
}1/p

,

we get ϕ(z) = ϕ(z) for z ∈ C+, and so ϕ is a Pick function.
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Consequently, ϕ has the integral representation (1.1) with a ∈ R, b ≥ 0 and a
finite measure ν on R. But since

ϕ(z) = zTr
({ k∑

j=1

Φj

(
(Aj + z−1Hj)p

)}1/p
)

,

it is clear that ϕ is analytic in C \ (−∞, R] for some R > 0 sufficiently large, and
so the measure ν must be supported in (−∞, R]. Hence, for x > 0 small enough,
we have

Tr
({ k∑

j=1

Φj

(
(Aj + xHj)p

)}1/p
)

= xϕ(x−1) = ax + b +
∫ R

−∞

x(x + t)
xt − 1

dν(t).

Since

d

dx

(x(x + t)
xt − 1

)
=

x2t − 2x − t

(xt − 1)2
,

d2

dx2

(x(x + t)
xt − 1

)
=

2(t2 + 1)
(xt − 1)3

,(2.1)

we have

d2

dx2
Tr

({ k∑

j=1

Φj

(
(Aj + xHj)p

)}1/p
)

= −2
∫ R

−∞

t2 + 1
(1 − xt)3

dν(t),

which is ≤ 0 for small x > 0, as desired. Since two functions of t ∈ (−∞, R] in
(2.1) have a uniform bound whenever the parameter x is restricted to α ≤ x ≤ β

with 0 < α < β < 1/R, one can use the dominated convergence theorem twice to
justify the interchange of the order of integral and differential in the above.

In the above proof, we showed that σ(X0) ⊂ C+ and hence TrX0 ∈ C+ for

X0 :=
{∑k

j=1 Φj(Xj(z)p)
}1/p

; however, X0 ∈ I+
m does not follow so that our

arguments are not valid when Tr is replaced by a general positive linear functional.

Corollary 2.2. Let Cj be an m × nj matrix for j = 1, . . . , k. If 0 < p ≤ 1,

then the function

(A1, . . . , Ak) ∈
k∏

j=1

M+
nj

7→ Tr
({ k∑

i=1

CjA
p
jC

∗
j

}1/p
)

is jointly concave.

The second theorem strengthens the Lieb concavity twofold; it involves the p-

and 1/p-powers as well as positive linear maps.
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Theorem 2.3. Let m, n1, n2 ∈ N, and let Φ : Mn1 → Mm and Ψ : Mn2 →
Mm be positive linear maps. If 0 < p ≤ 1 and α, β > 0 with α + β ≤ 1, then the
function

(A, B) ∈ M+
n1

× M+
n2

7→ Tr
({

Ψ(Bpβ)1/2Φ(Apα)Ψ(Bpβ)1/2
}1/p

)

is jointly concave.

Proof. First, we show that the assertion in the case α + β < 1 follows from
that in the case α + β = 1. When α + β < 1, let α′ := 1 − β so 0 < α < α′ < 1.
Let Aj , Bj ∈ M+

nj
(j = 1, 2) and 0 < λ < 1. Then, since xγ (x ≥ 0), where

0 < γ < 1, is operator concave as well as operator monotone, we get

(λA1 + (1− λ)A2)pα ≥ (λA
α/α′

1 + (1− λ)Aα/α′

2 )pα′
,

so that

Φ
(
(λA1 + (1 − λ)A2)pα

)
≥ Φ

(
(λA

α/α′

1 + (1 − λ)Aα/α′

2 )pα′)
.

Therefore, we have

Tr
({

Ψ((λB1 + (1 − λ)B2)pβ)1/2Φ((λA1 + (1 − λ)A2)pα)

×Ψ((λB1 + (1− λ)B2)pβ)1/2
}1/p

)

≥ Tr
({

Ψ((λB1 + (1 − λ)B2)pβ)1/2Φ((λA
α/α′

1 + (1− λ)Aα/α′

2 )pα′
)

×Ψ((λB1 + (1− λ)B2)pβ)1/2
}1/p

)

≥ λTr
({

Ψ(Bpβ
1 )1/2Φ((Aα/α′

1 )pα′
)Ψ(Bpβ

1 )1/2
}1/p

)

+(1 − λ)Tr
({

Ψ(Bpβ
2 )1/2Φ((Aα/α′

2 )pα′
)Ψ(Bpβ

2 )1/2
}1/p

)

= λTr
({

Ψ(Bpβ
1 )1/2Φ(Apα

1 )Ψ(Bpβ
1 )1/2

}1/p
)

+(1 − λ)Tr
({

Ψ(Bpβ
2 )1/2Φ(Apα

2 )Ψ(Bpβ
2 )1/2

}1/p
)
.

The latter inequality in the above is due to the assumption for the case α′ + β = 1.
In this way, we may and do assume that α + β = 1.

We may assume as in the proof of Theorem 2.1 that Φ and Ψ are strictly positive.
It suffices to prove that if A, H ∈ Mn1 and B, K ∈ Mn2 are such that A, B > 0
and H, K are Hermitian, then

d2

dx2
Tr

({
Ψ

(
(B + xK)pβ

)1/2Φ
(
(A + xH)pα

)
Ψ

(
(B + xK)pβ

)1/2}1/p
)
≤ 0



Concavity of Trace Functions 543

for all x > 0 small enough. For z ∈ C, set X(z) := zA+H and Y (z) := zB +K.

For any z ∈ C+, since X(z) ∈ I+
n1
, Y (z) ∈ I+

n2
and Lemma 1.2 implies

Im Φ(X(z)pα) = Φ(ImX(z)pα) > 0, Im Ψ(Y (z)pβ) = Ψ(Im Y (z)pβ) > 0,

we get Φ(X(z)pα), Ψ(Y (z)pβ) ∈ I+
m, and so Ψ(Y (z)pβ)1/2 ∈ I+

m is well-defined.

Now we define

F (z) := Ψ(Y (z)pβ)1/2Φ(X(z)pα)Ψ(Y (z)pβ)1/2,

and prove that

σ(F (z)) ⊂ Γpπ if z ∈ C+.(2.2)

To obtain (2.2) it suffices to show the following properties:

(a) When z = reiθ with a fixed 0 < θ < π, σ(F (z)) ⊂ Γpπ for sufficiently large

r > 0.
(b) σ(F (z))∩ [0,∞) = ∅ for all z ∈ C+.

(c) σ(F (z))∩ {reipπ : r ≥ 0} = ∅ for all z ∈ C+.

In fact, if (2.2) does not hold for some z0 = r0e
iθ0 ∈ C+, then according to (a) and

the continuity of the eigenvalues of F (z) we must have σ(F (z)) ∪ ∂Γpπ 6= ∅ for
some z ∈ {reiθ0 : r > r0}, which says that (b) or (c) must be violated.

Proof of (a). We have

F (z) = zpΨ
(
(B + z−1K)pβ

)1/2Φ
(
(A + z−1H)pα

)
Ψ

(
(B + z−1K)pβ

)1/2
.(2.3)

When z = reiθ0 with 0 < θ0 < π fixed and r → ∞, note that

σ
(
Ψ

(
(B + z−1K)pβ

)1/2Φ
(
(A + z−1H)pα

)
Ψ

(
(B + z−1K)pβ

)1/2
)

converges to σ
(
Ψ(Bpβ)1/2Φ(Apα)Ψ(Bpβ)1/2

)
⊂ (0,∞). Hence (a) follows.

Proof of (b). For any 0 ≤ r < ∞, we have

F (z) − rIm = Ψ(Y (z)pβ)1/2
(
Φ(X(z)pα) − rΨ(Y (z)pβ)−1

)
Ψ(Y (z)pβ)1/2.

Since Φ(X(z)pα), Ψ(Y (z)pβ) ∈ I+
m as already mentioned,

Φ(X(z)pα) − rΨ(Y (z)pβ)−1 ∈ I+
m

so that F (z) − rIm is invertible by Lemma 1.1.
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Proof of (c). For any 0 ≤ r < ∞, we have

F (z) − reipπIm = eipαπΨ(Y (z)pβ)1/2
(
Φ(e−ipαπX(z)pα)

−rΨ(e−ipβπY (z)pβ)−1
)
Ψ(Y (z)pβ)1/2

thanks to α + β = 1. Since Φ(e−ipαπX(z)pα) − rΨ(e−ipβπY (z)pβ)−1 ∈ I−
m by

Lemma 1.2, F (z) − reipπIm is invertible.

We have shown (2.2) and similarly

σ(F (z)) ⊂ Γ−pπ if z ∈ C−.

Then F (z)1/p can be defined for z ∈ C+ ∪ C− by analytic functional calculus so
that σ(F (z)1/p) ⊂ C+ for z ∈ C+ and σ(F (z)1/p) ⊂ C− for z ∈ C−. Since

(F (z)1/p)∗ = F (z)1/p, we can define a Pick function ϕ(z) := Tr (F (z)1/p) for
z ∈ C+ ∪ C−, which is analytic in C \ (−∞, R] for some R > 0 as clearly seen
from (2.3). Since, thanks to α + β = 1,

Tr
({

Ψ
(
(B + xK)pβ

)1/2Φ
(
(A + xH)pα

)
Ψ

(
(B + xK)pβ

)1/2}1/p
)

= xϕ(x−1)

for small x > 0, we can proceed in the same way as in the proof of Theorem 2.1.

It should be noted that (2.2) is a consequence of [6, Lemma 2]; however, we

prefer a direct proof because the proof of [6, Lemma 2] is not easily accessible.

Corollary 2.4. If 0 < p ≤ 1 and α, β > 0 with α + β ≤ 1 and if C is an

m × n matrix, then the function

(A, B) ∈ M+
n × M+

m 7→ Tr
(
(Bpβ/2CApαC∗Bpβ/2)1/p

)

is jointly concave.

Even the particular case p = 1 of Theorem 2.3 yields some operator concavity
for tensor products and Hadamard products as we will mention in the next section

(see Corollaries 3.4 and 3.5).

In the third theorem we show the joint concavity of exponential-logarithmic

trace functions extending the case (iv).

Theorem 2.5. Let m, n1, . . . , nk ∈ N, and for j = 1, . . . , k let Φj be a

positive linear map from Mnj to Mm. Let L ∈ Mm be any Hermitian matrix. If∑k
j=1 Φj(Inj ) ≤ Im, then the function

(A1, . . . , Ak) ∈
k∏

j=1

M++
nj

7→ Tr
(

exp
{
L +

k∑

j=1

Φj(logAj)
})
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is jointly concave.

Proof. We prove that if Aj ∈ M++
nj

and Hj ∈ Mnj is Hermitian for j =
1, . . . , k, then

d2

dx2
Tr

(
exp

{
L +

k∑

j=1

Φj

(
log(Aj + xHj)

)})
≤ 0

for any sufficiently small x > 0. To do so, we define

F (z) := L + (log z)
(
Im −

k∑

j=1

Φj(Inj)
)

+
k∑

j=1

Φj

(
log(zAj + Hj)

)
,

and show that the function

ϕ(z) := Tr (expF (z)) (z ∈ C+ ∪ C−)

is a Pick function. When z ∈ C+, since 0 < Im (log z) < π and Lemma 1.3 implies

0 < Im (log(zAj + Hj)) < πInj (j = 1, . . . , k),

we get

Im F (z) = (Im (log z))
(
Im −

k∑

j=1

Φj(Inj)
)

+
k∑

j=1

Φj

(
Im (log(zAj + Hj))

)
> 0

and

ImF (z) < π
(
Im −

k∑

j=1

Φj(Inj)
)

+
k∑

j=1

πΦj(Inj) = πIm.

Therefore, it follows that

σ(F (z)) ⊂ {x + iy : x ∈ R, 0 < y < π}

so that σ(expF (z)) ⊂ C+, implying ϕ(z) ∈ C+. Thus, ϕ(z) ∈ C+ if z ∈ C+,

and similarly ϕ(z) ∈ C− if z ∈ C−. Moreover, ϕ is analytic in C+ ∪ C−, and
ϕ(z) = ϕ(z) for z ∈ C+ because F (z)∗ = F (z), so ϕ is a Pick function. Since

Tr
(

exp
{

L +
k∑

j=1

Φj

(
log(Aj + xHj)

)})

= Tr
(

exp
{

L + (logx)
k∑

j=1

Φj(Inj) +
k∑

j=1

Φj

(
log(x−1Aj + Hj)

)})

= Tr
(
exp

{
(logx)Im + F (x−1)

})
= xϕ(x−1)
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for small x > 0, the remaining proof is the same as before.

Corollary 2.6. Let Cj be an m × nj matrix for j = 1, . . . , k, and L ∈ Mm

be Hermitian. If
∑k

j=1 CjC
∗
j ≤ Im, then the function

(A1, . . . , Ak) ∈
k∏

j=1

M++
nj

7→ Tr
(

exp
{
L +

k∑

j=1

Cj(logAj)C∗
j

})

is jointly concave.

The assumption
∑k

j=1 CiC
∗
j ≤ Im in the above corollary as well as

∑k
j=1 Φj(Inj)

≤ Im in Theorem 2.5 is essential. In fact, in the scalar case, if p > 1 then
a > 0 7→ exp(p1/2(loga)p1/2) = exp(p loga) = ap is convex.

3. TRACE FUNCTIONS INVOLVING TENSOR PRODUCTS AND HADAMARD PRODUCTS

Let X ⊗Y be the tensor product of X ∈ Mm1 and Y ∈ Mm2 . We write X ◦Y
for the Hadamard product of X, Y ∈ Mm, that is, X ◦ Y is the entrywise product

of X and Y . It is well-known that the k-fold Hadamard product X1 ◦X2 ◦ · · ·◦Xk

of X1, . . . , Xk ∈ Mm is a compression of X1 ⊗ X2 ⊗ · · ·⊗ Xk; so one can write

X1 ◦X2 ◦ · · · ◦ Xk = E(X1 ⊗ X2 ⊗ · · · ⊗ Xk)E(3.1)

with some orthogonal projection E in
⊗k

1 Mm
∼= Mmk (more precisely, the above

right-hand side should be restricted to the range of E).

In this section, we prove the joint concavity of trace functions involving tensor

products and Hadamard products. We first give a lemma.

Lemma 3.1. Let X1, . . . , Xk ∈ Mm be mutually doubly commuting, i.e.,

XjXj′ = Xj′Xj and XjX
∗
j′ = X∗

j′Xj for all j 6= j ′. Let p1, . . . , pk > 0 with∑k
j=1 pj ≤ 1. If Xj ∈ I+

m and e−ipjπXj ∈ I−
m for j = 1, . . . , k, then X1 · · ·Xk ∈

I+
m and e−i(p1+···+pk)X1 · · ·Xk ∈ I−

m.

Proof. Once the case k = 2 has been proved, a simple induction argument
works to get the general case. So we may concentrate to the case k = 2. Let
Xj = Aj + iBj with Hermitian Aj and Bj . The assumption Xj ∈ I+

m means

Bj > 0. Since

e−ipjπXj =
{
(cos pjπ)Aj + (sin pjπ)Bj

}
+ i

{
(sin pjπ)Aj − (cos pjπ)Bj

}

belongs to I−
m, we also get

(sin pjπ)Aj − (cos pjπ)Bj > 0,
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or Aj > (cot pjπ)Bj thanks to sin pjπ > 0. Since X1 and X2 are doubly commut-

ing, {A1, B1} and {A2, B2} are commuting so that

X1X2 = (A1A2 − B1B2) + i(A1B2 + B1A2)

with Hermitian A1A2 − B1B2 and A1B2 + B1A2. We have

A1B2 + B1A2≥ B
1/2
2 A1B

1/2
2 + B

1/2
1 A2B

1/2
1

> (cot p1π)B1/2
2 B1B

1/2
2 + (cot p2π)B1/2

1 B2B
1/2
1

= (cot p1π + cot p2π)B1/2
2 B1B

1/2
2 > 0

because of

cot p1π + cot p2π =
sin(p1 + p2)π
sin p1π sin p2π

> 0.

So X1X2 ∈ I+
m is obtained.

To show that e−i(p1+p2)πX1X2 ∈ I−
m, set X̃j := eipjπX∗

j ; then X̃j ∈ I+
m

follows from the assumption e−ipjπXj ∈ I−
m and also e−ipjπX̃j ∈ I−

m from Xj ∈
I+

m. Hence the first assertion applied to X̃1, X̃2 implies that X̃1X̃2 ∈ I+
m. This

means ei(p1+p2)π(X1X2)∗ ∈ I+
m or, equivalently, e−i(p1+p2)πX1X2 ∈ I−

m.

Theorem 3.2. For j = 1, . . . , k, let mj , nj ∈ N and Φj : Mnj → Mmj be

a positive linear map. Moreover, let l ∈ N and Ψ :
⊗k

j=1 Mmj (∼= Mm, where

m :=
∑k

j=1 mj) → Ml be a positive linear map. If 0 < p ≤ 1 and α1, . . . , αk > 0
with

∑k
j=1 αj ≤ 1, then the function

(A1, . . . , Ak) ∈
k∏

j=1

M+
nj

7→ Tr
({

Ψ
(
Φ1(A

pα1
1 ) ⊗ · · · ⊗ Φk(A

pαk
k )

)}1/p
)

is jointly concave.

Proof. First, note that the assertion in the case
∑k

j=1 αj < 1 follows from that
in the case

∑k
j=1 αj = 1. This can be seen as in the proof of Theorem 2.3, so

we omit the details. We may further assume that all Φj and Ψ are strictly positive.

What we have to prove is that if Aj ∈ M++
nj

and Hj ∈ Mnj is Hermitian for

j = 1, . . . , k, then

d2

dx2
Tr

({
Ψ

(
Φ1

(
(A1 + xH1)pα1

)
⊗ · · · ⊗ Φk

(
(Ak + xHk)pαk

))}1/p)
≤ 0(3.2)

for all x > 0 small enough. Set Yj(z) := zAj + Hj for z ∈ C. For any z ∈ C+,

since Yj(z) ∈ I+
nj
, we can define Yj(z)pαj and set

Xj := Im1 ⊗ · · · ⊗ Imj−1 ⊗ Φj(Yj(z)pαj)⊗ Imj+1 ⊗ · · · ⊗ Imk
(j = 1, . . . , k).
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Obviously, X1, . . . , Xk are mutually doubly commuting. By Lemma 1.2, we get

Im Xj = Im1 ⊗ · · · ⊗ Φj

(
Im (Yj(z)pαj)

)
⊗ · · · ⊗ Imk

> 0,

Im (e−ipαjπXj)= Im1 ⊗ · · · ⊗ Φj

(
Im (e−ipαjπYj(z)pαj)

)
⊗ · · · ⊗ Imk

< 0.

Hence by Lemma 3.1 we have X1 · · ·Xk ∈ I+
m and e−ipπX1 · · ·Xk ∈ I−

m; namely,

Φ1(Y1(z)pα1) ⊗ · · · ⊗ Φk(Yk(z)pαk)∈ I+
m,

e−ipπΦ1(Y1(z)pα1) ⊗ · · · ⊗ Φk(Yk(z)pαk)∈ I−
m .

These imply by Lemma 1.1 that

σ
(
Ψ

(
Φ1(Y1(z)pα1)⊗ · · · ⊗ Φk(Yk(z)pαk)

))
⊂ Γpπ if z ∈ C+,

while similarly

σ
(
Ψ

(
Φ1(Y1(z)pα1) ⊗ · · · ⊗ Φk(Yk(z)pαk)

))
⊂ Γ−pπ if z ∈ C−.

Thus, one can define

z ∈ C+ ∪ C− 7→
{
Ψ

(
Φ1(Y1(z)pα1) ⊗ · · · ⊗ Φk(Yk(z)pαk)

)}1/p

via analytic functional calculus so that the function

ϕ(z) := Tr
({

Ψ
(
Φ1(Y1(z)pα1)⊗ · · · ⊗ Φk(Yk(z)pαk)

)}1/p)

maps C+ (resp. C−) into itself. Furthermore, one can see as before that ϕ is a

Pick function and it is analytic in C \ (−∞, R] for some R > 0. The assumption∑k
j=1 αj = 1 guarantees that Tr

(
{· · ·}1/p

)
in (3.2) is equal to xϕ(x−1) whenever

x > 0 is sufficiently small, and so the remaining proof of (3.2) is the same as in
the proof of Theorem 2.1.

The next theorem is just an application of Theorem 3.2 to Ψ(E · E) instead of
Ψ, where E is as in (3.1).

Theorem 3.3. Let Φj : Mnj → Mm be a positive linear map for j = 1, . . . , k,

and Ψ : Mm → Ml be a positive linear map. If 0 < p ≤ 1 and α1, . . . , αk > 0
with

∑k
j=1 αj ≤ 1, then the function

(A1, . . . , Ak) ∈
k∏

j=1

M+
nj

7→ Tr
({

Ψ
(
Φ1(A

pα1
1 ) ◦ · · · ◦ Φk(A

pαk
k )

)}1/p
)
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is jointly concave. In particular,

(A1, . . . , Ak) ∈
k∏

j=1

M+
nj

7→ Tr
({

Φ1(A
pα1
1 ) ◦ · · · ◦ Φk(A

pαk
k )

}1/p
)

is jointly concave.

When all Φj are completely positive, the tensor product map Φ1 ⊗ · · · ⊗ Φk

is completely positive again (see [9]), and since the expression inside the trace in

Theorem 3.2 is equal to

{
Ψ(Φ1 ⊗ · · · ⊗ Φk)

(
(Aα1

1 ⊗ · · · ⊗ Aαk
k )p

)}1/p
,

the assertion can be also seen from Theorem 2.1 (for k = 1) and the joint operator
concavity of

(A1, . . . , Ak) ∈
k∏

j=1

M+
nj

7→ Aα1
1 ⊗ · · · ⊗ Aαk

k(3.3)

due to Ando [1].

In the rest of this section, we complement some “operator concavity” results

obtained from Theorem 2.3.

Corollary 3.4. Let Φ : Mn1 → Mm1 and Ψ : Mn2 → Mm2 be positive linear

maps. For every α, β > 0 with α + β ≤ 1, the map

(A, B) ∈ M+
n1

× M+
n2

7→ Φ(Aα) ⊗ Ψ(Bβ)

is jointly operator concave in the order of positive semidefiniteness.

Proof. First, assume m1 = m2 = m. Note that the transpose X 7→ X t is a

positive linear map on Mm. For any X ∈ Mm, if we take p = 1, X∗Φ(·)X for Φ
and (Ψ(·))t for Ψ in Theorem 2.3, then we have the joint concavity of

(A, B) ∈ M+
n1

× M+
n2

7→ Tr
(
X∗Φ(Aα)X(Ψ(Bβ))t

)
.(3.4)

Consider Mm as a Hilbert space with respect to the inner product 〈X, Y 〉 :=
Tr (Y ∗X). Then Mm ⊗Mm is faithfully represented on the Hilbert spaceMm by

the representation π(A⊗B)X := AXBt for A, B, X ∈ Mm. Since the right-hand

side of (3.4) is

〈π(Φ(Aα) ⊗ Ψ(Bβ))X, X〉,

it follows that (A, B) 7→ Φ(Aα) ⊗ Ψ(Bβ) is jointly operator concave.
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When m1 6= m2, choose m ≥ m1, m2 and set Φ̃(A) := Φ(A) ⊕ 0m−m1 and

Ψ̃(B) := Ψ(B) ⊕ 0m−m2 . Then Φ(Aα) ⊗ Ψ(Bβ) is identified with the m1m2 ×
m1m2 corner of Φ̃(Aα) ⊗ Ψ̃(Bβ). So the result follows from the above case.

The following is obvious from the above corollary because the Hadamard product

is a compression of the tensor product.

Corollary 3.5. Let Φ : Mn1 → Mm and Ψ : Mn2 → Mm be positive linear

maps. For every α, β > 0 with α + β ≤ 1, the map

(A, B) ∈ M+
n1

× M+
n2

7→ Φ(Aα) ◦ Ψ(Bβ)

is jointly operator concave.

It may be conjectured that the assertion of Corollary 3.4 holds for more than

two components, that is, the map

(A1, . . . , Ak) ∈
k∏

j=1

M+
nj

7→ Φ1(A
α1
j ) ⊗ · · · ⊗ Φk(A

αk
k )

is jointly operator concave for positive linear maps Φj : Mnj → Mmj and αj > 0
with

∑k
j=1 αj ≤ 1. A positive linear map Φ : Mn → Mn is said to be de-

composable if there exist completely positive linear maps Φ(1) and Φ(2) such that

Φ(X) = Φ(1)(X) + Φ(2)(X t). Not all positive linear maps on Mn are decompos-

able if n ≥ 3 (see [5, Appendix B]). It is easily seen from the operator concavity of
(3.3) that the above conjecture is true when all Φj are decomposable positive linear

maps.

4. TRACE FUNCTIONS INVOLVING OPERATOR MEANS

Let m be an operator mean in the sense of Kubo and Ando [7]. It admits the

integral representation

A m B = aA + bB +
∫ ∞

0

1 + t

t
{(tA) : B} dν(t),

where a, b ≥ 0 and ν is a finite measure on (0,∞). In the above representation,
the parallel sum A : B of A, B ∈ M++

n is defined by

A : B := (A−1 + B−1)−1,

and A : B := limε→+0(A + εI) : (B + εI) for general A, B ∈ M+
n .

In this section, we prove the joint concavity of trace functions involving the

operator mean m. To do so, we need to define the operator mean X m Y of
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X, Y ∈ I+
n in such a way that we get X m Y ∈ I+

n . When X, Y ∈ I+
n , since

X−1 + Y −1 ∈ I−
n by Lemma 1.1, the parallel sum

X : Y := (X−1 + Y −1)−1

is defined and belongs to I+
n . So one can define the operator meanX m Y belonging

to I+
n as

X m Y := aX + bY +
∫ ∞

0

1 + t

t
{(tX) : Y } dν(t),(4.1)

whenever the above integral is absolutely convergent. To check the absolute con-

vergence of the integral, we estimate as follows. Since

tX : Y = tX1/2(I + tX1/2Y −1X1/2)−1X1/2

= Y 1/2(I + t−1Y 1/2X−1Y 1/2)−1Y 1/2,

we get

1 + t

t
‖tX : Y ‖ ≤ (1 + t)‖X1/2‖2

1 − t‖X1/2Y −1X1/2‖
for small t > 0(4.2)

and

1 + t

t
‖tX : Y ‖ ≤ (1 + t)‖Y 1/2‖2

t − ‖Y 1/2X−1Y 1/2‖
for large t > 0.(4.3)

Hence t−1(1 + t)‖tX : Y ‖ is bounded for all 0 < t < ∞, and the operator mean
X m Y ∈ I+

n is well-defined. On the other hand, when X, Y ∈ I−
n , one can define

X m Y ∈ I−
n by the same formula (4.1). It is obvious that (X m Y )∗ = X∗ m Y ∗

if X, Y ∈ I+
n .

Lemma 4.1. If X, Y ∈ I+
n and e−ipπX, e−ipπY ∈ I−

n , then X m Y ∈ I+
n and

e−ipπ(X m Y ) ∈ I−
n .

Proof. The above discussion implies that (e−ipπX) m (e−ipπY ) ∈ I−
n as well

as X m Y ∈ I+
n . Since

(e−ipπX) : (e−ipπY ) = e−ipπ(X : Y ),

it follows immediately that (e−ipπX) m (e−ipπY ) = e−ipπ(X m Y ). Hence we
obtain the assertion.

Lemma 4.2. If X(z), Y (z) : Ω → I+
n (or I−

n ) are analytic functions in an

open set Ω in C, then the function z ∈ Ω 7→ X(z) m Y (z) is analytic in Ω.
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Proof. For any z0 ∈ Ω, it follows from the estimates (4.2) and (4.3) that the
convergence

∫

[α,β]

1 + t

t
{(tX(z)) : Y (z)} dν(t) →

∫

(0,∞)

1 + t

t
{(tX(z)) : Y (z)} dν(t)

as α → +0 and β → ∞ is uniform for z in some neighborhood of z0. So we may

show that for each 0 < α < β < ∞ the function

z ∈ Ω 7→ F (z) :=
∫

[α,β]

1 + t

t
{(tX(z)) : Y (z)} dν(t)

is analytic. When z0 ∈ Ω and z0 + u ∈ Ω as u → 0, since

(tX(z0 + u))−1

= t−1
(
X(z0) + uX ′(z0) + o(u)

)−1

= t−1X(z0)−1/2
{
I + X(z0)−1/2(uX ′(z0) + o(u))X(z0)−1/2

}−1
X(z0)−1/2

= t−1X(z0)−1 − t−1uX(z0)−1X ′(z0)X(z0)−1 + o(u)

and similarly

Y (z0 + u)−1 = Y (z0)−1 − uY (z0)−1Y ′(z0)Y (z0)−1 + o(u),

we have

(tX(z0 + u))−1 + Y (z0 + u)−1

= (tX(z0))−1 + Y (z0)−1

−u
{
t−1X(z0)−1X ′(z0)X(z0)−1 + Y (z0)−1Y ′(z0)Y (z0)−1

}
+ o(u).

Therefore, we estimate

(tX(z0 + u)) : Y (z0 + u)

=
{
(tX(z0)) : Y (z0)

}
+ u

{
(tX(z0)) : Y (z0)

}−1

×
{
t−1X(z0)−1X ′(z0)X(z0)−1 + Y (z0)−1Y ′(z0)Y (z0)−1

}

×
{
(tX(z0)) : Y (z0)

}−1 + o(u),

where o(u) as u → 0 is uniform for all t restricted to [α, β]. This estimate implies
that F (z) is differentiable at z0, completing the proof.

Theorem 4.3. Let m be any operator mean. If 0 < p ≤ 1, then the function

(A, B) ∈ M+
n ×M+

n 7→ Tr
(
(Ap m Bp)1/p

)
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is jointly concave.

Proof. It suffices to show that if A, B > 0 and H, K are Hermitian, then

d2

dx2
Tr

(
(A + xH)p m (B + xK)p

)1/p ≤ 0

for sufficiently small x > 0. Set X(z) := zA+H and Y (z) := zB +K for z ∈ C.
When z ∈ C+, since X(z)p and Y (z)p satisfy the assumptions in Lemma 4.1, we

have

σ
(
X(z)p m Y (z)p

)
⊂ Γpπ.

Hence {X(z)p m Y (z)p}1/p can be defined via analytic functional calculus and we

have

σ
(
{X(z)p m Y (z)p}1/p

)
⊂ C+ if z ∈ C+.

When z ∈ C−, we can similarly define {X(z)p m Y (z)p}1/p so that

σ
(
{X(z)p m Y (z)p}1/p

)
⊂ C− if z ∈ C−.

In this way, the function

ϕ(z) := Tr
(
{X(z)p m Y (z)p}1/p

)

maps C+ (resp. C−) into itself. It follows from Lemma 4.2 that X(z)p m Y (z)p is

analytic in C+ ∪ C− and hence so is {X(z)p m Y (z)p}1/p. Furthermore, since

(
{X(z)p m Y (z)p}1/p

)∗ =
{
(X(z)p m Y (z)p)∗

}1/p = {X(z)p m Y (z)p}1/p,

we get ϕ(z) = ϕ(z) for z ∈ C+, and so ϕ is a Pick function. Finally, it is easily
seen from Lemma 4.2 that ϕ is analytic in C \ (−∞, R] for some R > 0, and the
remaining proof is the same as before.
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