TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 2, pp. 389-400, April 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

INTEGRAL OPERATORS ON A SUBSPACE OF HOLOMORPHIC FUNCTIONS ON THE DISC

Takahiko Nakazi

Abstract. Let H(D) be an algebra of all holomorphic functions on the open unit disc D and X a subspace of H(D). When g is a function in H(D), put

$$J_g(f)(z) = \int_0^z f(\zeta)g'(\zeta)d\zeta \text{ and } I_g(f)(z) = \int_0^z f'(\zeta)g(\zeta)d\zeta \quad (z \in D)$$

for f in X. In this paper, we study $J[X] = \{g \in H(D) ; J_g(f) \in X \text{ for all } f \text{ in } X\}$ and $I[X] = \{g \in H(D) ; I_g(f) \in X \text{ for all } f \text{ in } X\}$. We apply the results to concrete spaces. For example, we study J[X] and I[X] when X is a weighted Bloch space, a Hardy space or a Privalov space.

1. INTRODUCTION

Let D denote the open unit disc in the complex plane \mathcal{C} and H = H(D) the set of all holomorphic functions on D. For a given g in H, define three operators :

$$(M_g f)(z) = g(z)f(z) \qquad (f \in H, \ z \in D)$$

$$(J_g f)(z) = \int_0^z f(\zeta)g'(\zeta)d\zeta \quad (f \in H, \ z \in D)$$

and

$$(I_g f)(z) = \int_0^z f'(\zeta)g(\zeta)d\zeta \quad (f \in H, \ z \in D).$$

Then $(J_g f)(z) + (I_g f)(z) = (M_g f)(z) - g(0)f(0)$. If g(z) = z then J_g is the Voltera integral operator and if $g(z) = \log 1/(1-z)$ then J_g is the Cesáro operator.

Received November 14, 2005, accepted April 14, 2006.

Communicated by H. M. Srivastava.

2000 Mathematics Subject Classification: Primary 30D45, 30D55; Scondary 47B38.

Key words and phrases: Integration operator, Nevanlinna type space, Bloch space, Open unit disc. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Takahiko Nakazi

In this paper we assume that X is a subspace of H which contains constants. X_1 denotes the set $\{f \in H ; f' \in X\}$. For each subspace X put

$$M[X] = \{g \in H ; M_g(X) \subseteq X\},$$
$$J[X] = \{g \in H ; J_g(X) \subseteq X\}$$

and

$$I[X] = \{g \in H \ ; \ I_g(X) \subseteq X\}.$$

We define that $J^{n+1}[X] = J[J^n[X]]$ and $I^{n+1}[X] = I[I^n[X]]$ for $n \ge 1$ where $J^1[X] = J[X]$ and $I^1[X] = I[X]$. For X and Y which are subspaces of H, XY denotes a subspace of H which is generated by a product of a function in X and one in Y. Let Y^n be a subspace of H which is generated by finite n products of functions in a subspace Y of H. For a subspace X of H, B(X) denotes the set of all bounded linear operators on X.

Now we give a lot of examples of X. For $0 , <math>H^p$ is the usual Hardy space on D, N is the Nevanlinna class and N_+ is the Smirnov class on D. These are F-spaces, and N and N_+ are algebras. It is known that $J[H^p] = BMOA$ (see [2], [1]), $z \notin J[N]$ [5] and $z \notin J[N_+]$ [7]. The Bloch space \mathcal{B} is defined to be a Banach space in H with the norm

$$||f|| = \sup_{z \in D} (1 - |z|^2) |f'(z)| + |f(0)|.$$

Then \mathcal{B} contains H^{∞} properly. Recently, R.Yoneda [8] described $J[\mathcal{B}]$ and he [9] also proved that $I[\mathcal{B}] = H^{\infty}$. It is well known that $M[H^p] = H^{\infty}$.

In Section 2, we assume only that X is a subspace of H. Theorem 1 implies that $J[X]^n \subset X$ for any $n \ge 1$. In Section 3, we study J[X] and I[X] when X is an invariant subspace of H or a subalgebra of H. Theorem 2 implies that if $H^{\infty}X \subset X$ and J[X] contains z then $J[X] \supseteq H_1^{\infty}$. In Section 4, assuming that X is an F-space we show that J[X] is contained in some weighted Bloch space and $I[X] \subset H^{\infty}$. In Section 5, we define a weighted Bloch space \mathcal{B}_{ω} and we describe $J[\mathcal{B}_{\omega}]$. In Section 6, we study $J\left[\bigcap_{t < p} H^t\right]$ and $I\left[\bigcap_{t < p} H^t\right]$. In Section 7, we show that $J[N^p]$ is a subalgebra of N^p which contains N_1^p , where N^p is a Privalov space.

2. SUBSPACE

In this section, we study M[X], J[X] and I[X] assuming only that X is a subspace of H.

Lemma 1. Let X be a subspace of H and f, g in H.

(1) $I_g I_f = I_{gf} = I_f I_g$ on X (2) $I_g J_f = J_f M_g$ on X

Proof. For
$$k \in X$$
,

$$((I_g I_f)k)(z) = \int_0^z (I_f k)'(\zeta)g(\zeta)d\zeta = \int_0^z k'(\zeta)f(\zeta)g(\zeta)d\zeta = (I_{fg}k)(z)$$

(2) For $k \in X$,

$$((I_g J_f)k)(z) = \int_0^z (J_f k)'(\zeta)g(\zeta)d\zeta = \int_0^z k(\zeta)f'(\zeta)g(\zeta)d\zeta$$
$$= (J_f(gk)(z) = ((J_f M_g)k)(z).$$

Theorem 1. Let X be a subspace of H with constants. Then J[X] is a subspace of X with constants and $J[X]^n \subset X$.

Proof. If $g \in J[X]$ then $J_g(1) = g - g(0) \in X$ and so $g \in X$ because $1 \in X$. Hence J[X] is a subspace of X with constants.

Assuming $J[X]^n \subset X$, we will show that $J[X]^{n+1} \subset X$. Suppose that $g \in J[X]$ and $\{g_j\}_{j=1}^n \subset J[X]$. In order to prove that $g\prod_{j=1}^n g_j$ belongs to X, we will use the following equalities.

$$\int_0^z g(\zeta) \left(\prod_{j=1}^n g_j\right)'(\zeta) d\zeta$$

= $g(z) \left(\prod_{j=1}^n g_j\right)(z) - g(0) \left(\prod_{j=1}^n g_j\right)(0) - \int_0^z g'(\zeta) \left(\prod_{j=1}^n g_j\right)(\zeta) d\zeta$

and

$$\int_0^z g(\zeta) \left(\prod_{j=1}^n g_j\right)'(\zeta) d\zeta = \sum_{\ell=1}^n \int_0^z (g(\zeta) \prod_{j \neq \ell} g_j(\zeta)) g'_\ell(\zeta) d\zeta.$$

By hypothesis on induction, $\prod_{j=1}^{n} g_j \in X$ and so $\int_0^z g'(\zeta) \left(\prod_{j=1}^{n} g_j\right)(\zeta) d\zeta \in X$ because $g \in J[X]$. By hypothesis on induction, for $\ell = 1, \cdots, n$ $g \prod_{j \neq \ell} g_j \in X$ and

so $\int_0^z (g(\zeta) \prod_{j \neq \ell} g_j(\zeta)) g'_\ell(\zeta) d\zeta \in X$ because $g_\ell \in J[X]$. By the above two equalities,

 $g\prod_{j=1}g_j$ belongs to X. This implies that $J[X]^{n+1} \subset X$.

Proposition 1. Let X be a subspace of H with constants. Then I[X] is a subalgebra of H.

Proof. If $k \in I[X]$ and $g \in I[X]$ then it is easy to see that $I_kI_g = I_{kg}$ (see Proposition 3). Hence $I_kI_g(X) = I_k(I_g(X)) \subseteq I_k(X) \subseteq X$ and so kg belongs to I[X]. It is clear that I[X] is a subspace of H.

Proposition 2. Suppose X is a subspace of H with constants.

- (1) M[X] is an algebra in X.
- (2) $J[X] \cap M[X] = I[X] \cap M[X].$
- (3) $J[X] \cap I[X] \subseteq M[X]$.
- (4) $J[X] \subset M[X]$ if and only if $J[X] \subset I[X]$. Similarly $I[X] \subset M[X]$ if and only if $I[X] \subset J[X]$.

Proof. (1) is clear. (2) and (3) follow from the equality : $J_g f + I_g f = M_g f - g(0)f(0)$. (4) If $J[X] \subset M[X]$ then by (2) $J[X] \subset I[X]$. Conversely if $J[X] \subset I[X]$ then by (3) $J[X] \subset M[X]$.

3. INVARIANT SUBSPACE AND SUBALGEBRA

In this section, we study J[X] and I[X] when X is an invariant subspace or a subalgebra of H.

Theorem 2. Suppose that X is a subspace of H with constants and $kX \subset X$ for any k in H^{∞} .

- (1) If g_0 is an arbitrary function in J[X], then J[X] contains $\{g \in H ; |g'(z)| \le |g'_0(z)|(z \in D)\}$.
- (2) If J[X] contains z then it contains H_1^{∞} .
- (3) Suppose J[X] contains z. If $\{g_n\}$ is in J[X] and $g'_n \to g'$ uniformly on D then g belongs to J[X].
- (4) $zJ[X] \subset J[X]$ if and only if $J_z(J[X]X) \subset X$.
- (5) $J[X] \cap H^{\infty} \subset I[X]$ and hence I[X] contains H_1^{∞} if $z \in J[X]$.

Proof.

(1) If $g \in H$ and $|g'(\zeta)| \leq |g'_0(\zeta)|(\zeta \in D)$, then $g'(g'_0)^{-1} \in H^{\infty}$ and so $fg'(g'_0)^{-1} \in X$ for any $f \in X$. Hence for any $f \in X$

$$\int_{0}^{z} f(\zeta)g'(\zeta)d\zeta = \int_{0}^{z} f(\zeta)g'(\zeta)g'_{0}(\zeta)^{-1}g'_{0}(\zeta)d\zeta$$

belongs to X because $fg'(g'_0)^{-1} \in X$ and $g_0 \in J[X]$. This implies that g belongs to J[X].

- (2) Since $z \in J[X]$, by (1) and the definition of H_1^{∞} , H_1^{∞} is contained in J[X].
- (3) If $g'_n \to g'$ uniformly on D, then $(g g_n)' \in H^{\infty}$. Hence $f(g g_n)' \in X$ for any $f \in X$. Therefore g belongs to J[X] because $z \in J[X]$ and

$$\int_0^z f(\zeta)g'(\zeta)d\zeta = \int_0^z f(\zeta)(g(\zeta) - g_n(\zeta))'d\zeta + \int_0^z f(\zeta)g'_n(\zeta)d\zeta.$$

(4) Follows trivially from the following equality :

$$\int_0^z f(\zeta)(\zeta g(\zeta))' d\zeta = \int_0^z f(\zeta)g(\zeta)d\zeta + \int_0^z f(\zeta)\zeta g'(\zeta)d\zeta$$

for $f \in X$ and $g \in J[X]$.

J

(5) By the equality : $I_g(f) = fg - (fg)(0) - J_g(f)$, if $g \in J[X] \cap H^{\infty}$ and $f \in X$ then $I_g(f)$ belongs to X because $gX \subset X$.

Proposition 3. If X is a subalgebra of H which contains constants then M[X] = X, J[X] is also a subalgebra of X and $J[X] = I[X] \cap X$.

Proof. M[X] = X is clear. If both g and h are in J[X], then by Theorem 1 both fh and fg belongs to X for any $f \in X$ because X is an algebra. Hence gh belongs to J[X] by the following equality : $J_{gh}(f) = J_g(fh) + J_h(fg)$ for any $f \in X$. This implies that J[X] is a subalgebra of X by Theorem 1. From (2) of Proposition 2 $J[X] = I[X] \cap X$ follows.

4. F-SPACE

Let X be an F-space in H with an invariant metric d. For each a in D, put for f in X

$$\mathcal{E}_a f = f(a)$$
 and $\mathcal{D}_a f = f'(a)$.

In this section we assume that both \mathcal{E}_a and \mathcal{D}_a are bounded on X. Put

$$S(a) = \sup\{|\mathcal{E}_a(f)| \; ; \; f \in X, \; d(f,0) \le 1\}$$

and

$$s(a) = \sup\{|\mathcal{D}_a(f)| ; f \in X, d(f,0) \le 1\},\$$

then $S(a) < \infty$ and $s(a) < \infty$ if $a \in D$. Suppose v is a nonnegative function on D. For a function f in H put

$$||f||_{\omega} = \sup_{z \in D} \omega(z) |f'(z)| + |f(0)|$$

and

$$\mathcal{B}_{\omega} = \{ f \in H ; \|f\|_{\omega} < \infty \}.$$

If ω is bounded, \mathcal{B}_{ω} contains all holomorphic functions on the closed unit disc D.

Proposition 4. If X is an F-space such that $S(a) < \infty$ and $s(a) < \infty$ for each $a \in D$, then M[X], J[X] and I[X] belongs to B[X].

Proof. We will prove only that $J[X] \subset B[X]$ because the other statements are similar. By the closed graph theorem, it is enough to prove that for $\phi \in J[X]$ if $f_n \to f$ in X and $J_{\phi}(f_n) \to F$ then $J_{\phi}(f) = F$. Since $S(a) < \infty$, $f_n(a) \to f(a)$ $(a \in D)$. Since $s(a) < \infty$, $f_n(a)\phi'(a) \to F'(a)$ $(a \in D)$. Thus $f(a)\phi'(a) = F'(a)$ and so $J_{\phi}(f) = F$ because F(0) = 0.

Theorem 3. Let X be an F-space in H with an invariant metric d. Suppose that $\sup_{|a|\leq 1-\varepsilon} S(a) < \infty$ for any $\varepsilon > 0$. Then $J[X] \subset \mathcal{B}_{\omega_0} \cap X$ and $I[X] \subset H^{\infty}$, where $\omega_0 = 1/sS$.

Proof. If $g \in J[X]$ then by Proposition 4, for any $f \in X$ $d(J_g f, 0) \leq ||J_g||d(f, 0)$. Since $J_g f \in X$, by definition of $\mathcal{D}_z |\mathcal{D}_z(J_g f)| \leq s(z)d(J_g f, 0)(z \in D)$. Hence

$$|s(z)^{-1}|f(z)||g'(z)| \le ||J_g||d(f,0) \quad (z \in D)$$

and so

$$s^{-1}(z)S^{-1}(z)|g'(z)| \le ||J_g|| \quad (z \in D).$$

By Theorem 1 g belongs to $\mathcal{B}_{\omega_0} \cap X$ where $\omega_0 = 1/sS$. If $g \in I[X]$ then by Proposition 4, for any $f \in X \ d(I_g f, 0) \leq ||I_g|| d(f, 0)$. Since $I_g f \in X$, by definition of $\mathcal{D}_z \ |\mathcal{D}_z(I_g f)| \leq s(z) d(I_g f, 0) \quad (z \in D)$. Hence

$$s(z)^{-1}|f'(z)||g(z)| \le ||I_g||d(f,0) \quad (z \in D)$$

and so

$$|g(z)| \le ||I_g|| \quad (z \in D).$$

Proposition 5. Let X be a subspace of H with constants which is of finite dimension. Then $J[X] = I[X] = M[X] = \mathcal{D}$.

Proof. Suppose $\{f_j\}_{j=1}^n$ is a basis in X with $f_1 \equiv 1$. We will show that $J[X] = \mathcal{C}$. If $g \in J[X]$ then by Theorem 1 $g^{\ell} \in X$ for any $\ell \geq 0$ and so there exist $\{\alpha_j^{\ell}\}_1^n \subset \mathcal{C}$ such that $g^{\ell} = \sum_{j=1}^n \alpha_j^{\ell} f_j$. Hence there exist $\{b_\ell\}_{\ell=0}^n \subset \mathcal{C}$ such that $\sum_{\ell=0}^n b_\ell g^\ell = 0$. This implies that g is just constant because g is analytic. Therefore $J[X] = \mathcal{C}$. We will show that $I[X] = \mathcal{C}$. Put $X_1 = \{f' ; f \in X\}$. If $g \in I[X]$ then by Proposition 1 $g^{\ell} X_1 \subset X_1$ for any $\ell \geq 1$ and so there exist $\{\alpha_j^{\ell}\}_1^n \subset \mathcal{C}$ such that $g^{\ell} f_2' = \sum_{j=2}^n \alpha_j^{\ell} f_j'$. By the same argument above gf_2' is constant. Similarly it follows that $\{gf_j'\}_2^n$ are constants and so g is constant because $\{f_j'\}_{\ell}^n$ is a basis in X_1 . Therefore $I[X] = \mathcal{C}$.

5. WEIGHTED BLOCH SPACE

Let ω be a positive bounded function on D. For a function f in H put

$$||f||_{\omega} = \sup_{z \in D} \omega(z) |f'(z)| + |f(0)|$$

and

$$\mathcal{B}_{\omega} = \{ f \in H ; \| f \|_{\omega} < \infty \}.$$

Since ω is bounded, \mathcal{B}_{ω} contains all holomorphic functions on the closed unit disc \overline{D} . \mathcal{B}_{ω} is called a weighted Bloch space. A weight ω is called measurable when $\omega(at)$ is measurable on [0,1] for each a in D. Put $\varepsilon(r) = \inf\{\omega(z) ; |z| \le r\}$ and r < 1.

Lemma 2. If $\varepsilon(r) > 0$ for $0 \le r < 1$ then \mathcal{B}_{ω} is a Banach space with norm $\|\cdot\|_{\omega}$.

Proof. Suppose that $\{f_n\}$ is a Cauchy sequence in \mathcal{B}_{ω} . For any $\varepsilon > 0$, there exist a positive integer n_0 such that $||f_n - f_m||_{\omega} < \varepsilon$ if $n, m \ge n_0$. Hence if r < 1 and $z \in D_r = \{z ; |z| < r\}$ then

$$|f'_n(z) - f'_m(z)| \le \frac{\varepsilon}{\omega(z)} \le \frac{\varepsilon}{\varepsilon(r)}$$

By the normal family argument, there exists a function $f' \in H(D_r)$ such that $f'_n \to f'$ uniformly on D_r . Hence as $n \to \infty$,

$$|f'(z) - f'_m(z)| \le \frac{\varepsilon}{\omega(z)} \le \frac{\varepsilon}{\varepsilon(r)} \quad (z \in D_r).$$

Takahiko Nakazi

Since r is arbitrary, f belongs to H(D) and

$$\omega(z)|f'(z) - f'_m(z)| \le \varepsilon \quad (z \in D)$$

if $m \ge n_0$. Since $f_m(0) \to f(0), ||f - f_m||_{\omega} \to 0$.

Theorem 4. Let ω be a measurable, $\varepsilon(r) > 0$ for $0 \le r < 1$ and $X = \mathcal{B}_{\omega}$. Then

$$\mathcal{B}_{\omega S} = J[\mathcal{B}_{\omega}] \text{ and } I[\mathcal{B}_{\omega}] \subset H^{\infty}$$

where $S(z) = \sup\{|f(z)|; f \in \mathcal{B}_{\omega}, ||f||_{\omega} \le 1\}$. Moreover $||J_g|| = ||g||_{\omega S}$ for each g in $J[\mathcal{B}_{\omega}]$ with g(0) = 0.

Proof. By Theorem 1, $J[\mathcal{B}_{\omega}] \subseteq \mathcal{B}_{\omega}$. If $g \in J[\mathcal{B}_{\omega}]$ then $||J_g f||_{\omega} \leq ||J_g|| ||f||_{\omega}$ $(f \in \mathcal{B}_{\omega})$ and so $\omega(z) | f(z) | \cdot | g'(z) | \leq ||J_g|| \cdot ||f||_{\omega}$. Hence

$$\omega(z)S(z) \mid g'(z) \mid \cdot \frac{\mid f(z) \mid}{S(z)} \leq \parallel J_g \parallel \cdot \parallel f \parallel_{\omega}$$

and so

$$\omega(z)S(z) \mid g'(z) \mid \leq \parallel J_g \parallel.$$

Therefore g belongs to $\mathcal{B}_{\omega S}$ and $||g||_{\omega S} \leq ||J_g|| + |g(0)|$. Thus $J[\mathcal{B}_{\omega}] \subseteq \mathcal{B}_{\omega S}$. Note that $\mathcal{B}_{\omega S} \subseteq \mathcal{B}_{\omega}$ because $S(z) \geq 1$ $(z \in D)$. Conversely if $g \in \mathcal{B}_{\omega S}$ then

$$\omega(z)|J_g(f)'(z)| = \omega(z)S(z) | g'(z) | \frac{|f(z)|}{S(z)} \le ||g||_{\omega S} ||f||_{\omega}$$

and so g belongs to $J[\mathcal{B}_{\omega}]$. Thus

$$||g||_{\omega S} \le ||J_g|| + |g(0)| \le ||g||_{\omega S} + |g(0)|.$$

In Theorem 4, if ω is an absolute value of some analytic function and a radial function, R.Yoneda ([8],[9]) showed those under some special technical conditions on ω .

6. HARDY SPACE

For $0 , <math>H^{p-}$ denotes $\bigcap_{t < p} H^t$ and $H^{\infty-}$ is written as H^{ω} . For 0

 ∞ , when $W = |h|^p$ for an outer function h in H^p , $H^p(W)$ denotes a weighted Hardy space that is, the closure of H^{∞} in $L^p(Wd\theta/2\pi)$.

Lemma 3 is well known (cf. [3, Theorem 5.12]). In Proposition 6 it is known ([1],[2]) that $J[H^p] = BMOA$. Hence our result is weaker than that. However if $J[H^p] = BMOA$ then our result shows that $I[H^p] = H^{\infty}$.

Integral Operators on a Subspace of Holomorphic Functions on the Disc

Lemma 3. (1) For 0 , if <math>f is a function in H^p then $\int_0^z f(\zeta) d\zeta$ beongs to $H^{p/1-p}$. (2) If f is a function in H^1 then $\int_0^z f(\zeta) d\zeta$ belongs to H^∞ .

Proposition 6. For $0 , <math>H_1^{\infty} \subset J[H^p] \subset H^{\omega}$ and $zJ[H^p] \subset J[H^p]$. Moreover $M[H^p] = H^{\infty}$ and $I[H^p] = J[H^p] \cap H^{\infty}$.

Proof. By Lemma 3, $z \in J[H^p]$ and so by (2) of Theorem 2 $H_1^{\infty} \subset J[H^p]$. Theorem 1 implies that $J[H^p] \subset H^{\omega}$. By (5) of Theorem 2, $J[H^p] \cap H^{\infty} \subset I[H^p]$. Theorem 3 implies that $I[H^p] \subset H^{\infty}$. Hence $I[H^p] H^p \subset H^p$ and so (4) of Proposition 2 $I[H^p] \subset J[H^p]$. It is well known that $M[H^p] = H^{\infty}$. By (2) of Proposition 2 $I[H^p] = J[H^p] \cap H^{\infty}$. By (4) of Theorem 2, to prove that $zJ[H^p] \subset$ $J[H^p]$ it is sufficient to show that $J_z(J[H^p]H^p) \subset H^p$. Since $J[H^p]H^p \subset H^{p-}$, by Lemma 2, $J_z(J[H^p]H^p) \subset H^p$.

Theorem 5. For $0 , <math>\bigcap_{t < 1} H^t \subset J[H^{p-}] \subset H^{\omega}$ and so $\log(1 - z)^{-1}$ belongs to $J[H^{p-}]$. Moreover $zJ[H^{p-}] \subset J[H^{p-}]$, $M[H^{p-}] = H^{\infty}$ and so $J[H^{p-}] \cap H^{\infty} = I[H^{p-}] \cap H^{\infty}$. When $p = \infty$, $J[H^{\omega}] = I[H^{\omega}] \cap H^{\omega}$ and $J[H^{\omega}]$ is a subalgebra of H^{ω} which contains H_1^{∞} .

Proof. By Theorem 1, $J[H^{p-}] \subset H^{\omega}$. We will show that $\bigcap_{t<1} H_1^t \subset J[H^{p-}]$. If $g \in \bigcap_{t<1} H_1^t$ then g' belongs to H^{1-} . If $f \in H^{p-}$ then f belongs to H^t for any 0 < t < p. If 0 < s < t/(t+1) then t/s > 1 and 1/(t/s) + 1/(t/t-s) = 1. By the Hölder inequality,

$$\int_{0}^{2\pi} |f(e^{i\theta})g'(e^{i\theta})|^{s} d\theta/2\pi$$

$$\leq \left(\int_{0}^{2\pi} |f(e^{i\theta})|^{t} d\theta/2\pi\right)^{\frac{s}{t}} \left(\int_{0}^{2\pi} |g'(e^{i\theta})|^{\frac{st}{t-s}} d\theta/2\pi\right)^{\frac{s-t}{t}}$$

and so fg' belongs to $\bigcap_{s < t/(t+1)} H^s$. By Lemma 3, $\int_0^z f(\zeta)g'(\zeta)d\zeta$ belongs to $H^{\frac{s}{1-s}}$.

As $s \to t/(t+1)$, $s/(1-s) \to t$ and so $\int_0^z f(\zeta)g'(\zeta)d\zeta$ belongs to H^{t-} . As $t \to p$, $\int_0^z f(\zeta)g'(\zeta)d\zeta$ belongs to H^{p-} . Thus $J_g[H^{p-}] \subseteq H^{p-}$ and so $\bigcap_{t<1} H_1^t \subset J[H^{p-}]$. By (4) of Theorem 2, if we show that $J_z(J[H^{p-}]H^{p-}) \subset H^{p-}$ then

it follows that $zJ[H^{p-}] \subset J[H^{p-}]$. Since $J[H^{p-}]H^{p-} \subset H^{p-}$, by Lemma 4 $J_z(J[H^{p-}]H^{p-}) \subset H^{p-}$. It is known that $M[H^{p-}] = H^{\infty}$. The last statement is a result of (2) of Proposition 2.

When $p = \infty$, by Proposition 3 $J[H^{\omega}] = I[H^{\omega}] \cap H^{\omega}$ and $J[H^{\omega}]$ is a subalgebra of H^{ω} . Theorem 2 implies $J[H^{\omega}] \supset H_1^{\infty}$.

Theorem 6. Let $1 \leq p < \infty$ and $W = |h|^p$ for some outer function h in H^p . Then $\{g \in H; g(z) = \int_0^z h(\zeta)k(\zeta)d\zeta$ and $k \in H^{\frac{p}{p-1}}\} \subset J[H^p(W)] \subset H^{\omega}(W)$. $M[H^p(W)] = H^{\infty}$ and $J[H^p(W)] \cap H^{\infty} = I[H^p(W)]$. There exists a weight W such that z does not belong to $J[H^p(W)]$.

Proof. If
$$g(z) = \int_0^z h(\zeta)k(\zeta)d\zeta$$
 and $k \in H^{\frac{p}{p-1}}$, then
$$h(z)\{J_g(h^{-1}f)\}(z) = h(z)\int_0^z f(\zeta)k(\zeta)d\zeta$$

and so $hJ_gh^{-1}f$ belongs to H^p for all $f \in H^p$ by Lemma 3 because $fk \in H^1$. Therefore $\{g \in H; g(z) = \int_0^z h(\zeta)k(\zeta)d\zeta$ and $k \in H^{\frac{p}{p-1}}\} \subset J[H^p(W)]$. By Theorem 1, $J[H^p(W)] \subset \bigcap_{p < \infty} H^p(W)$. In fact, since $g^nh \in H^p$ for any $n \ge 1$, $gh^{1/n} \in I$.

 H^{np} and so g belongs to $H^{np}(W)$. If $\phi \in M(H^p(W))$ then $\phi(h^{-1}H^p) \subset h^{-1}H^p$ and so $\phi H^p \subset H^p$. Hence $\phi \in M(H^p) = H^\infty$. Therefore $M(H^p(W)) = H^\infty$ and so by (2) of Proposition 2 $J[H^p(W)] \cap H^\infty = I[H^p(W)] \cap H^\infty$. For $a \in D$ it is easy to see that

$$\sup\{|f(a)|; f \in H^p(W) \text{ and } \|f\|_{W,p} \le 1\} = (1 - |a|^2)^{-1/p} |h(a)|^{-p} < \infty$$

and so by Theorem 3 $I[H^p(W)] \subset H^{\infty}$. Thus $J[H^p(W)] \cap H^{\infty} = I[H^p(W)]$. If $J_z(H^p(W)) \subseteq H^p(W)$ for any W with $\log W \in L^1(d\theta/2\pi)$ then $J_z(N_+) \subseteq N_+$. For by a theorem of H.Helson [6] N_+ is the union of all $H^p(W)$ as W ranges over the set of weights with sumable $\log W$. Hence there exists a weight W such that $z \notin J[H^p(W))$]. Because it is known that $J_z(N_+) \not\subset N_+$ [7].

7. PRIVALOV SPACE

We denote by N^p , for $1 \le p < \infty$, the set of all functions f in H which satisfy

$$\sup_{0< r<1}\int_0^{2\pi} (\log^+\mid f(re^{i\theta})\mid)^p d\theta <\infty.$$

When p = 1, N^p is just N. Then

$$\bigcup_{p>0} H^p \subset \bigcap_{p>1} N^p \text{ and } \bigcup_{p>1} N^p \subset N_+ \subset N^1 = N.$$

Proposition 7. Let $X = N_+$ or N. Then J[X] is a subalgebra of X and $J[X] = I[X] \cap X$. If $(f')^{-1}$ is in H^{∞} then f does not belong to J[X].

Proof. It is known that N_+ and N are subalgebras of H. Hence the first part of this proposition is a result of Theorem 1 and Proposition 3. By [5] and [7], $z \notin J[X]$ and so the second part follows from (1) of Theorem 2.

In Proposition 7, it is known ([5],[7]) that $z \notin J[X]$. Hence $I[X] \not\ni z$. We don't know whether $J[X] = \mathcal{O}$ and $I[X] = \mathcal{O}$.

Theorem 7. If $1 then <math>J[N^p]$ is a subalgebra of N^p which contains N_1^p , and $J[N^p] = I[N^p] \cap N^p$.

Proof. Suppose $1 and <math>g \in N_1^p$. If $f \in N^p$ then

$$\begin{cases} \int_{0}^{2\pi} (\log^{+} |(J_{g}f)(re^{i\theta})|)^{p} d\theta/2\pi \end{cases}^{1/p} \\ = \left\{ \int_{0}^{2\pi} \left(\log^{+} \left| \int_{0}^{r} f(te^{i\theta})g'(te^{i\theta}) \right| dt \right)^{p} d\theta/2\pi \right\}^{1/p} \\ \leq \left\{ \int_{0}^{2\pi} \left(\log^{+} \int_{0}^{1-} |f(te^{i\theta})g'(te^{i\theta})| dt \right)^{p} d\theta/2\pi \right\}^{1/p} \\ \leq \left\{ \int_{0}^{2\pi} \left(\log^{+} \sup_{0 \le t < 1} |f(te^{i\theta})| + \log^{+} \sup_{0 \le t < 1} |g'(te^{i\theta})| \right)^{p} d\theta/2\pi \right\}^{1/p} \\ \leq \left\{ \int_{0}^{2\pi} \left(\log^{+} \sup_{0 \le t < 1} |f(te^{i\theta})| \right)^{p} d\theta/2\pi \right\}^{1/p} \\ + \left\{ \int_{0}^{2\pi} \left(\log^{+} \sup_{0 \le t < 1} |g'(te^{i\theta})| \right)^{p} d\theta/2\pi \right\}^{1/p}. \end{cases}$$

Put $u(r,\theta) = \frac{1}{2\pi} \int_0^{2\pi} P_r(t-\theta) \log^+ |f(e^{it})| dt$, then $u(r,\theta) \ge \log^+ |f(re^{i\theta})|$. Since $\log^+ |f(e^{it})| \in L^p$, by a theorem of Hardy and Littlewood (cf. [3, Proposition 1.8]), $\sup_{0 \le r < 1} u(r,\theta)$ belongs to L^p and so $\log^+ \sup_{0 \le r < 1} |f(re^{i\theta})|$ belongs to L^p . Similarly we can prove that $\log^+ \sup_{0 \le r < 1} |g'(re^{i\theta})|$ belongs to L^p . Thus $J_g f$ belongs to N^p . Hence $N_1^p \subset J[N^p]$. It is known that N^p is a subalgebra of H. Hence, by Proposition 3 $J[N^p]$ is a subalgebra of N^p and $J[N^p] = I[N^p] \cap N^p$.

Takahiko Nakazi

References

- 1. A. Aleman and J. A. Cima, An integral operator on H^p and Hardy's inequality, J. *Analyse Math.*, **85** (2001), 157-176.
- 2. A. Aleman and A. G. Siskakis, An inlegral operator on H^p , *Complex Variables Theory Appl.*, 28 (1995), 149-158.
- 3. P. L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- 4. T. W. Gamelin, *Uniform Algebras*, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
- 5. W. K. Hayman, On the characterization of functions meromorphic in the unit disk and their integrals, *Acta Math.*, **112** (1964), 181-214.
- H. Helson, Large analytic functions, In: *Analysis and Partial Differential Equations*, a collection of papers dedicated to Mischa Cotlar, ed. Cora Sadosky, Dekker, 1990, pp. 217-220.
- 7. N. Yanagihara, On a class of functions and their integrals, *Proc. London Math. Soc.* (Ser. 3), 25 (1972), 550-576.
- R. Yoneda, Integration operators on weighted Bloch spaces, *Nihonkai Math. J.*, 12 (2001), 123-133.
- 9. R. Yoneda, Multiplication operators, integration operators and companion operators on weighted Bloch spaces, *Hokkaido Math. J.*, **34** (2005), 135-147.

Takahiko Nakazi Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan E-mail: nakazi@math.sci.hokudai.ac.jp