ON REGULAR $Q B$-IDEALS

Huanyin Chen

Abstract

Let I be a regular ideal of a ring R. It is shown that I is a $Q B$ ideal if and only if for all finitely generated projective right R-module A with $A I=A$, if B_{1} and B_{2} are any right R-modules such that $A \oplus B_{1} \cong A \oplus B_{2}$, then there exists a pair of orthogonal ideals I_{1} and I_{2} and $B_{1} \oplus C_{1} \cong B_{2} \oplus C_{2}$ such that $C_{1} I_{1} \cong C_{1}$ and $C I_{2} \cong C_{2}$.

1. Introduction

The theory of $Q B$-rings has been developed by Ara, Pedersen and Perera to provide an infinite analogue of rings with stable range one. Following Ara et al. [2], we say that a ring R is a $Q B$-ring when $a R+b R=R$ with $a, b \in R$ implies that $a+b y \in R_{q}^{-1}$ for a $y \in R$. Let I be an ideal of a ring R. I is a $Q B$-ideal of R if and only if whenever $x a-x-a+b=0$ for x, a and b in I, there exists $y \in I$ such that $1-(a-y b) \in R_{q}^{-1}$ (see [2] and [11]). Clearly, every ideal of a $Q B$-ring R is a $Q B$-ideal. An element $x \in R$ is regular in case there exists $y \in R$ such that $x=x y x$. We say that an ideal I of a ring R is regular if every element in I is regular. Let $M(R)=\{x \in R \mid R x R$ be a regular ideal $\}$. In view of [5, Theorem 1], $M(R)$ is the maximal regular ideal of R.

So far, most of investigation of the $Q B$-ideals is only in an exchange ring. In this paper, we obtain a new characterization of a regular $Q B$-ideal for an arbitrary ring. It is shown that a regular ideal I of a ring R is a $Q B$-ideal if and only if for all finitely generated projective right R-module A with $A I=A$, if B_{1} and B_{2} are any right R-modules such that $A \oplus B_{1} \cong A \oplus B_{2}$, then there exists a pair of orthogonal ideals I_{1} and I_{2} and $B_{1} \oplus C_{1} \cong B_{2} \oplus C_{2}$ such that $C_{1} I_{1} \cong C_{1}$ and $C I_{2} \cong C_{2}$.

Throughout the paper, all rings are associative with identity. We say that $x, y \in$ R are centrally orthogonal, in symbols $x \perp y$, if $x R y=0$ and $y R x=0$. We use

[^0]R_{q}^{-1} to denote the set $\{u \in R \mid \exists a, b \in R$ such that $(1-u a) \perp(1-b u)\}$. If I_{1} and I_{2} are ideals of R, then $I_{1} \perp I_{2}$ means that $x \perp y$ for all $x \in I_{1}, y \in I_{2}$, and we say that I_{1} and I_{2} are orthogonal ideals. The notation $M \lesssim \oplus N$ means that M is isomorphic to a direct summand of N.

Lemma 1. Let I be a regular ideal of R. Then the following are equivalent:
(1) I is a QB-ideal.
(2) e Re is a $Q B$-ring for all idempotents $e \in I$.

Proof. (1) \Rightarrow (2) Given $a x+b=e$ with $a, x, b \in e R e, e \in I$, then $(a+$ $1-e)(x+1-e)+b=1$ in R. As $a+1-e \in 1+I$, we have $y \in R$ such that $a+1-e+b y \in R_{q}^{-1}$. By [2,Proposition 2.2], there exists $u \in R$ such that $(1-(a+1-e+b y) u) \perp(1-(a+1-e+b y) u)$. That is, $(1-(a+1-e+$ by) $u) R(1-u(a+1-e+b y))=0$ and $(1-u(a+1-e+b y)) R(1-(a+1-$ $e+b y) u)=0$; hence, $(e-(a+b y)(u e))(e R e)(e-(e u e)(a+b(e y e))=0$ and $(e-(e u e)(a+b(e y e)))(e R e)(e-(a+b y)(u e))=0$. Furthermore, we get

$$
\begin{aligned}
& (e-(a+b y)(u e))(e R e)(e-(e u e)(a+b(e y e)) \\
= & (e-(a+b y)(e u e+(1-e) u e))(e R e)(e-(e u e)(a+b(e y e)) \\
= & (e-(a+b y)(e u e)-(a+b y)(1-e) u e))(e R e)(e-(e u e)(a+b(e y e)) \\
= & 0 .
\end{aligned}
$$

Also we have $((1-e)-(1-e) u)(e R e)(e-(e u e)(a+b(e y e))=0$; hence, $(-(a+b y)(1-e) u e)(e R e)(e-(e u e)(a+b(e y e))=0$. Clearly, we see that

$$
\begin{aligned}
& (e-(a+b y)(e u e))(e R e)(e-(e u e)(a+b(e y e)) \\
\subseteq & (e-(a+b y)(e u e)-(a+b y)(1-e) u e))(e R e)(e-(e u e)(a+b(e y e)) \\
+ & (-(a+b y)(1-e) u e)(e R e)(e-(e u e)(a+b(e y e)),
\end{aligned}
$$

so we deduce that $(e-(a+b y)(e u e))(e R e)(e-(e u e)(a+b(e y e))=0$. Likewise, $\left(e-(e u e)(a+b(e y e))(e R e)(e-(a+b y)(e u e))=0\right.$. Thus $a+b(e y e) \in(e R e)_{q}^{-1}$, as required.
(2) \Rightarrow (1) Given $a R+b R=R$ with $a \in 1+I$ and $b \in R$, since I is regular, there exists $e=e^{2} \in I$ such that $1-a=(1-a) e$; hence, $a(1-e)=1-e$. Suppose that $a r+b s=(1-a) e$ for some $r, s \in R$. Then eae $(e+e r e)+e b s e=$ $e a e(e+e r e)+e a(1-e) r e+e b s e=e$. As $e R e$ is a $Q B$-ring, we can find $z \in e R e$ such that eae $+e b s e z=u \in(e R e)_{q}^{-1}$. Set $w=(1-e) a e+(1-e) b s e z$. By [2,

Proposition 2.2], we have $v \in e R e$ such that $(e-u v) \perp(e-v u)$. Clearly,

$$
\begin{aligned}
& 1-(a+b s e z)(v-w v+1-e) \\
& =1-a(1-e)-(a+b s e z)(v-w v) \\
& =e+(a+b s e z) w v-(a+b s e z) v \\
& =e+a w v-(a+b s e z) v \\
& =e+w v-(a+b s e z) v \\
& =e+(w-(a+b s e z)) v \\
& =e+((1-e) a e+(1-e) b s e z-(a e+b s e z+a(1-e))) v \\
& =e-(e a e+e b s e z) v \\
& =e-u v
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& 1-(v-w v+1-e)(a+b s e z) \\
& =1-(v-w v+1-e)(a e+b s e z)-(v-w v+1-e) a(1-e) \\
& =e-(v-w v+1-e)(a e+b s e z) \\
& =e-w-(e-w) v(a e+b s e z) \\
& =(e-w)-(e-w) v u \\
& =(e-w)(e-v u)
\end{aligned}
$$

It follows from $(e-u v) \perp(e-v u)$ that $(1-(a+b s e z)(v-w v+1-e)) \perp(v-$ $w v+1-e)(1-(a+b s e z))$. Therefore $a+b s e z \in R_{q}^{-1}$, as desired.

Lemma 2. Let I be a regular ideal of R. Then the following are equivalent:
(1) I is a QB-ideal.
(2) For any idempotent $e \in I, M=A_{1} \oplus H=A_{2} \oplus K$ with $A_{1} \cong e R \cong A_{2}$ implies that there exists a pair of orthogonal ideals I_{1} and I_{2} and $M=$ $E \oplus B_{1} \oplus H=E \oplus B_{2} \oplus K$ such that $B_{1} I_{1}=B_{1}$ and $B_{2} I_{2}=B_{2}$.

Proof. (1) \Rightarrow (2) Let $e \in I$ be an idempotent. By Lemma 1, $\varphi: \operatorname{End}_{R}(e R) \cong$ $e R e$ is a regular $Q B$-ring. Given any right R-module decomposition $M=A_{1} \oplus H=$ $A_{2} \oplus K$ with $A_{1} \cong e R \cong A_{2}$. Using the decomposition $M=A_{1} \oplus H \cong e R \oplus H$, we obtain projections $p_{1}: M \rightarrow e R, p_{2}: M \rightarrow H$ and injections $q_{1}: e R \rightarrow$ $M, q_{2}: H \rightarrow M$ such that $p_{1} q_{1}=1, q_{1} p_{1}+q_{2} p_{2}=1_{M}$ and $\operatorname{Kerp} p_{1}=H$. Using the decomposition $M=A_{2} \oplus K \cong e R \oplus K$, we obtain a projection $f: M \rightarrow$ $e R$ and an injection $g: e R \rightarrow M$ such that $f g=1$ and $\operatorname{Kerf}=K$. From $\left(f q_{1}\right)\left(p_{1} g\right)+f q_{2} p_{2} g=f\left(q_{1} p_{1}+q_{2} p_{2}\right) g=f g=1$ in $E n d_{R}(e R)$, we can find
some $u \in \operatorname{End}_{R}(e R)_{q}^{-1}$ such that $f q_{1}+f q_{2} p_{2} g y=u$ for a $y \in E n d_{R}(e R)$. That is, $f\left(q_{1}+q_{2} p_{2} g y\right)=u$. Choose a quasi-inverse v for u and set $\alpha=v u, \beta=u v$. Let $\psi=q_{1}+q_{2} p_{2} g y$. Then $f \psi=u$ and $p_{1} \psi=1$. Let $D_{1}=\operatorname{ker} \alpha p_{1}, D_{2}=\operatorname{ker} \beta f$ and $E=\psi \alpha(e R)$. If $m \in E \cap D_{1}$, then $m=\psi \alpha(x)$ for some $x \in e R$. Hence $0=$ $\alpha p_{1}(m)=\alpha p_{1} \psi \alpha(x)=\operatorname{vuvu}(x)=v u(x)=\alpha(x)$, and then $m=0$. This means that $E \cap D_{1}=0$. Given any $m \in M$, we have $m=\psi \alpha p_{1}(m)+\left(m-\psi \alpha p_{1}(m)\right) \in$ $E+D_{1}$. Thus $M=E \oplus D_{1}$. Likewise, $M=E \oplus D_{2}$. Let $B_{1}=p_{1}(e-\alpha)(e R)$ and $B_{2}=f(e-\beta)(e R)$. One easily checks that $D_{1}=B_{1} \oplus H$ and $D_{2}=B_{2} \oplus K$. Thus $M=E \oplus B_{1} \oplus H=E \oplus B_{2} \oplus K$. Let $I_{1}=R(e-\varphi(\alpha)) R$ and $I_{2}=R(e-\varphi(\beta)) R$. Then I_{1} and I_{2} are ideals of R. As $(e-\varphi(\alpha)) \perp(e-\varphi(\beta))$, we deduce that $I_{1} \perp I_{2}$. Moreover, we have $B_{1} I_{1}=B_{1}$ and $B_{2} I_{2}=B_{2}$.
$(2) \Rightarrow(1)$ Let $e \in I$ be an idempotent. Suppose that $a_{1}(e R e)+a_{2}(e R e)=e R e$ with $a_{1}, a_{2} \in e R e$. Set $M=e R \oplus e R$. Then we have a split epimorphism $\psi: M \rightarrow e R$ given by $\psi(s, t)=a_{1} s+a_{2} t$ for any $s \in e R, t \in e R$; hence, $M=A_{2} \oplus K$, where $K=k e r \psi$ and $A_{2} \cong e R$. Therefore we get a pair of orthogonal ideals I_{1} and I_{2} and $M=E \oplus B_{1} \oplus e R=E \oplus B_{2} \oplus K$ such that $B_{1} I_{1}=B_{1}$ and $B_{2} I_{2}=B_{2}$. Let $\varphi: M=e R \oplus e R \rightarrow e R$ be the projection onto the first factor. Write $E_{1}=\varphi(E)$ and $B_{1}^{\prime}=\varphi\left(B_{1}\right)$. Then $e R=E_{1} \oplus B_{1}^{\prime}$. Let $h: e R=E_{1} \oplus B_{1}^{\prime} \rightarrow E_{1}$ be the projection onto E_{1}. Then $h \in \operatorname{End}_{R}(e R)$ is an idempotent. As $\alpha: \operatorname{End}_{R}(e R) \cong e R e, \alpha(h) \in e R e$ is an idempotent. In addition, $e-\alpha(h) \in I_{1}$. Write $E_{2}=\psi(E)$ and $B_{2}^{\prime}=\psi\left(B_{2}\right)$. We have $e R=E_{2} \oplus B_{2}^{\prime}$. Let $k: e R=E_{2} \oplus B_{2}^{\prime} \rightarrow E_{2}$ be the projection onto E_{2}. Then $k \in E n d_{R}(e R)$ is an idempotent, and that $e-\alpha(k) \in I_{2}$. Hence $(e-\alpha(h)) \perp(e-\alpha(k))$ because $I_{1} \perp I_{2}$.

Obviously, $\left.\psi\right|_{E \oplus B_{2}}: E \oplus B_{2} \rightarrow e R$ is an isomorphism. Let $\theta=\left(\left.\psi\right|_{E \oplus B_{2}}\right)^{-1}$, and let $i: E \oplus B_{2} \rightarrow M=e R \oplus e R$ be the injection. Since $\alpha(k) \in e R e$ is an idempotent, we may assume that $i \theta(\alpha(k))=\left(x_{1}, x_{2}\right)$ with $x_{1} \in e R \alpha(k)$ and $x_{2} \in e R \alpha(k)$. Then $\alpha(k)=\psi i \theta(\alpha(k))=\psi\left(x_{1}, x_{2}\right)=a_{1} x_{1}+a_{2} x_{2}$. Inasmuch as $E_{1}=\varphi(E)$ and $E_{2}=\psi(E)$, we get an isomorphism $\varphi \theta: E_{2} \rightarrow E_{1}$. Evidently, $E_{2}=k(e R)=k(e) e R=\alpha(k) R$. Likewise, $E_{1}=\alpha(h) R$. So we have $r \in R$ such that $\alpha(h)=\varphi \theta(\alpha(k) r)=\alpha(h) \varphi \theta(\alpha(k)) \alpha(k) r \alpha(h)$. Clearly, $x_{1}=\varphi i \theta(\alpha(k))=\varphi \theta(\alpha(k))=\alpha(h) \varphi \theta(\alpha(k)) \alpha(k)$. Set $y_{1}=\alpha(k) r \alpha(h)$. Then $\alpha(h)=x_{1} y_{1}$. Moreover, $y_{1} x_{1}=\alpha(k) r \alpha(h) \varphi \theta(\alpha(k))=(\varphi \theta)^{-1}(\alpha(h)) \varphi \theta(\alpha(k))$ $=(\varphi \theta)^{-1}(\alpha(h) \varphi \theta(\alpha(k)))=(\varphi \theta)^{-1}(\varphi \theta(\alpha(k)))=\alpha(k)$. Hence $\left(e-y_{1} x_{1}\right) \perp(e-$ $\left.x_{1} y_{1}\right)$. That is, $x_{1} \in(e R e)_{q}^{-1}$. In addition, $\left(a+b x_{2} y_{1}\right) x_{1}=a x_{1}+b x_{2} \alpha(k)=$ $\alpha(h)=y_{1} x_{1}$. So $x_{1}\left(a+b x_{2} y_{1}\right) x_{1}=x_{1} y_{1} x_{1}=x_{1} \alpha(h)=x_{1}$. As $x_{1} \in(e R e)_{q}^{-1}$, we deduce that $a+b x_{2} y_{1} \in(e R e)_{q}^{-1}$ from [2, Remark 2.10]. It follows by Lemma 1 that I is a $Q B$-ideal.

We use $\mathcal{V}(R)$ to denote the monoid of isomorphism classes of finitely generated projective right R-modules. An order-ideal in $\mathcal{V}(R)$ is a submonoid S of $\mathcal{V}(R)$ that is order-hereditary. If I is an ideal of R, we denote by $\mathcal{V}(I)$ the monoid of
isomorphism classes of finitely generated projective right R-modules A such that $A I=A$. Following P. Ara et al.[2], we say that two order-ideals S_{1} and S_{2} of $\mathcal{V}(R)$ are orthogonal provided that $S_{1} \cap S_{2}=0$. We denote it by $S_{1} \perp S_{2}$.

Lemma 3. Let I be a regular ideal of a ring R, and let $e \in I$ an idempotent. For any right R-modules A, B_{1} and B_{2}, if $e R \oplus B_{1} \cong A \oplus B_{2}$ then we have a refinement matrix

$$
\begin{gathered}
\\
A \\
B_{2}
\end{gathered} \quad\left(\begin{array}{cc}
e R & B_{1} \\
A^{\prime} & B_{1}^{\prime} \\
B_{2}^{\prime} & C^{\prime}
\end{array}\right)
$$

That is, $A \cong A^{\prime} \oplus B_{1}^{\prime}, e R \cong A^{\prime} \oplus B_{2}^{\prime}, B_{1} \cong B_{1}^{\prime} \oplus C^{\prime}$ and $B_{2} \cong B_{2}^{\prime} \oplus C^{\prime}$.
Proof. Suppose that $\psi: e R \oplus B_{1} \cong A \oplus B_{2}$. Given decompositions $N:=e R \oplus B_{1}=$ $\psi^{-1}(A) \oplus \psi^{-1}\left(B_{2}\right)$. Since I is a regular ideal and $e=e^{2} \in I, e R e$ is a regular ring; hence $e R$ as a right R-module has the finite exchange property. Thus we can find some $B_{1}^{\prime} \lesssim{ }^{\oplus} \psi^{-1}(A)$ and $C^{\prime} \lesssim{ }^{\oplus} \psi^{-1}\left(B_{2}\right)$ such that $N=e R \oplus B_{1}^{\prime} \oplus C^{\prime}$. So $A \cong \psi^{-1}(A)=A^{\prime} \oplus B_{1}^{\prime}$ and $B_{2} \cong \psi^{-1}\left(B_{2}\right)=B_{2}^{\prime} \oplus C^{\prime}$ for some right R-modules A^{\prime} and B_{2}^{\prime}. It follows from $N=\psi^{-1}(A) \oplus \psi^{-1}\left(B_{2}\right)=A^{\prime} \oplus B_{1}^{\prime} \oplus B_{2}^{\prime} \oplus C^{\prime}=$ $e R \oplus B_{1}^{\prime} \oplus C^{\prime}$ that $e R \cong A^{\prime} \oplus B_{2}^{\prime}$. In addition, we claim that $B_{1} \cong B_{1}^{\prime} \oplus C^{\prime}$ because $N=e R \oplus B_{1}=e R \oplus B_{1}^{\prime} \oplus C^{\prime}$.

Theorem 4. Let I be a regular ideal of R. Then the following are equivalent:
(1) I is a QB-ideal.
(2) For any idempotent $e \in I,[e R]+b_{1}=[e R]+b_{2}$ in $\mathcal{V}(R)$ implies that there exist orthogonal order-ideal S_{1} and S_{2} in $\mathcal{V}(R)$ and elements c_{1}, c_{2}, such that $c_{1} \in S_{1}, c_{2} \in S_{2}$ and $b_{1}+c_{1}=b_{2}+c_{2}$.
(3) For all idempotents $e \in I$, if B_{1} and B_{2} are any right R-modules such that $e R \oplus B_{1} \cong e R \oplus B_{2}$ then there exists a pair of orthogonal ideals I_{1} and I_{2} and $B_{1} \oplus C_{1} \cong B_{2} \oplus C_{2}$ such that $C_{1} I_{1}=C_{1}$ and $C I_{2}=C_{2}$.

Proof. (1) $\Rightarrow(2)$ Choose representations B_{1} and B_{2} for b_{1} and b_{2} such that $M:=A_{1} \oplus B_{1}=A_{1} \oplus B_{2}$ with $A_{1} \cong e R \cong A_{2}$. By Lemma 2, there exists a pair of orthogonal ideals I_{1} and I_{2} and $M=E \oplus C_{1} \oplus B_{1}=E \oplus C_{2} \oplus B_{2}$ such that $C_{1} I_{1}=C_{1}$ and $C_{2} I_{2}=C_{2}$. Since $A_{1}, B_{1} \in \mathcal{V}(R)$, we have $M \in \mathcal{V}(R)$; hence, $E, C_{1}, C_{2} \in \mathcal{V}(R)$. Let $c_{1}=\left[C_{1}\right]$ and $c_{2}=\left[C_{2}\right]$. We get $b_{1}+c_{1}=b_{2}+c_{2}$. Let $S_{i}=$ $\mathcal{V}\left(I_{i}\right)$. Then $\mathcal{V}\left(I_{1}\right)$ and $\mathcal{V}\left(I_{2}\right)$ are orthogonal order-ideals of $\mathcal{V}(R)$. Furthermore, we have $c_{i} \in S_{i}$ for $i=1,2$.
$(2) \Rightarrow(3)$ Let $e \in I$ be an idempotent. Suppose that B_{1} and B_{2} are any right R-modules such that $e R \oplus B_{1} \cong e R \oplus B_{2}$. By virtue of Lemma 3, we get a refinement matrix

$$
\left.\begin{array}{c}
\\
e R \\
B_{2}
\end{array} \quad \begin{array}{cc}
e R & B_{1} \\
A^{\prime} & B_{1}^{\prime} \\
B_{2}^{\prime} & C^{\prime}
\end{array}\right) .
$$

Hence $e R \cong A^{\prime} \oplus B_{1}^{\prime} \cong A^{\prime} \oplus B_{2}^{\prime}$ with $A^{\prime}, B_{1}^{\prime}, B_{2}^{\prime} \in \mathcal{V}(R)$. Clearly, we have an idempotent $g \in e R e \subseteq I$ such that $A^{\prime} \cong g R$. So $g R \oplus B_{1}^{\prime} \cong g R \oplus B_{2}^{\prime}$ in $\mathcal{V}(R)$, and then we have orthogonal order-ideals S_{1} and S_{2} in $\mathcal{V}(R)$ and elements $c_{1}^{\prime}=\left[C_{1}^{\prime}\right], c_{2}^{\prime}=\left[C_{2}^{\prime}\right]$, such that $c_{1}^{\prime} \in S_{1}, c_{2}^{\prime} \in S_{2}$ and $\left[B_{1}^{\prime}\right]+c_{1}^{\prime}=\left[B_{2}^{\prime}\right]+c_{2}^{\prime}$. That is, $B_{1}^{\prime} \oplus C_{1}^{\prime} \cong B_{2}^{\prime} \oplus C_{2}^{\prime}$. This infers that $e R \oplus C_{1}^{\prime} \cong A^{\prime} \oplus\left(B_{1}^{\prime} \oplus C_{1}^{\prime}\right) \cong A^{\prime} \oplus\left(B_{2}^{\prime} \oplus C_{2}^{\prime}\right) \cong$ $e R \oplus C_{2}^{\prime}$. By Lemma 3 again, we have a refinement matrix

$$
\begin{gathered}
\\
e R \\
C_{2}^{\prime}
\end{gathered} \quad\left(\begin{array}{cc}
e R & C_{1}^{\prime} \\
A^{\prime \prime} & C_{1} \\
C_{2} & C^{\prime \prime}
\end{array}\right) .
$$

Since $\left[C_{1}^{\prime}\right] \in S_{1}$ and $\left[C^{\prime \prime}\right] \leq\left[C_{1}^{\prime}\right]$, we have $\left[C^{\prime \prime}\right] \in S_{1}$. Likewise, we have $\left[C^{\prime \prime}\right] \in S_{2}$. It follows from $S_{1} \cap S_{2}=0$ that $C^{\prime \prime}=0$. Therefore there exist some idempotents $h_{1}, h_{2}, k_{1}, k_{2} \in e R e$ such that $h_{1}+k_{1}=e=h_{2}+k_{2}, h_{1} R \cong h_{2} R, k_{1} R \cong C_{1}$ and $k_{2} R \cong C_{2}$. For $i=1,2$ let $I_{i}=\left\{\sum R p R \mid p=p^{2}, p R \in S_{i}\right\}$, respectively. Then $I_{1} \cap I_{2}=0$; hence, $I_{1} \perp I_{2}=0$. Furthermore, we have $k_{1} \in I_{1}$ and $k_{2} \in I_{2}$. Clearly, $C_{1} I_{1}=C_{1}$ and $C_{2} I_{1}=C_{2}$. Moreover, we get $B_{1}^{\prime} \oplus C_{1} \cong B_{1}^{\prime} \oplus C_{1}^{\prime} \cong B_{2}^{\prime} \oplus C_{2}^{\prime} \cong$ $B_{2}^{\prime} \oplus C_{2}$, and then $B_{1} \oplus C_{1} \cong\left(B_{1}^{\prime} \oplus C^{\prime}\right) \oplus C_{1} \cong C^{\prime} \oplus\left(B_{2}^{\prime} \oplus C_{2}\right) \cong B_{2} \oplus C_{2}$, as required.
$(3) \Rightarrow(1)$ Let $e \in I$ be an idempotent. Then $e R e$ is a regular ring. Let $a \in e R e$. There exists $b \in e R e$ such that $a=a b a$ and $b=b a b$. Set $p=a b$ and $q=b a$. As in the proof of [2, Theorem 8.7], we see that $e R \oplus(e-p) R \cong$ $q R \oplus(e-q) R \oplus(e-p) R \cong p R \oplus(e-q) R \oplus(e-p) R \cong e R \oplus(e-q) R$. So we have right R-modules C_{1} and C_{2} such that $(e-p) R \oplus C_{1} \cong(e-q) R \oplus C_{2}$ and a pair of orthogonal ideals I_{1} and I_{2} such that $C_{1} I_{1}=C_{1}$ and $C_{2} I_{2}=C_{2}$. As $e-p=(e-p)^{2} \in I$, by Lemma 3, we get a refinement matrix

$$
\begin{gathered}
(e-q) R \\
C_{2}
\end{gathered} \quad\left(\begin{array}{cc}
(e-p) R & C_{1} \\
A^{\prime} & C_{1}^{\prime} \\
C_{2}^{\prime} & C^{\prime}
\end{array}\right) .
$$

Inasmuch as $C^{\prime} I_{1}=C^{\prime}=C^{\prime} I_{2}, C^{\prime}=C^{\prime} I_{1}=\left(C^{\prime} I_{1}\right) I_{1}=\left(C^{\prime} I_{2}\right) I_{1}=0$. Hence we have idempotents $e_{1}, f_{1} \in(e-p) R(e-p), e_{2}, f_{2} \in(e-q) R(e-q)$ such that $e-p=e_{1}+f_{1}, e-q=e_{2}+f_{2}, e_{1} R \cong A^{\prime} \cong e_{2} R$, and $f_{1} R \cong C_{1}^{\prime}$ and $f_{2} R \cong C_{2}^{\prime}$. As $e_{1} R \cong e_{2} R$, we can find $c \in e_{1} R e_{2}$ and $d \in e_{2} R e_{1}$ such that $e_{1}=c d$ and $e_{2}=d c$. Clearly, $a \in p(e R e) q$ and $c \in(e-p)(e R e)(e-q)$ are both regular in e Re. By [2, Lemma 2.7], $a \leq a+c$. Furthermore, it follows from $b \in q R p, d \in(e-q) R(e-p)$ that $e-(a+c)(b+d)=e-a b-c d=(e-p)-e_{1}=f_{1}$. Likewise, $e-(b+d)(a+c)=f_{2}$. Obviously, $C_{1}^{\prime} I_{1}=C_{1}^{\prime}$ and $C_{2}^{\prime} I_{2}=C_{2}$. From
this, we deduce that $f_{1} R I_{1}=f_{1} R$ and $f_{2} R I_{2}=f_{2} R$; hence, $f_{1} \in I_{1}$ and $f_{2} \in I_{2}$. From $I_{1} \perp I_{2}$, it follows that $(e-(a+c)(b+d)) R(e-(b+d)(a+c))=0$ and $\left(e-(b+d)(a+c) R(e-(a+c)(b+d))=0\right.$. So $a+c \in(e R e)_{q}^{-1}$. Therefore we complete the proof by [2, Theorem 8.4] and Lemma 1.

Theorem 5. Let I be a regular ideal of R. Then the following are equivalent:
(1) I is a $Q B$-ideal.
(2) For all finitely generated projective right R-module A with $A I=A$, if B_{1} and B_{2} are any right R-modules such that $A \oplus B_{1} \cong A \oplus B_{2}$, then there exists a pair of orthogonal ideals I_{1} and I_{2} and $B_{1} \oplus C_{1} \cong B_{2} \oplus C_{2}$ such that $C_{1} I_{1}=C_{1}$ and $C I_{2}=C_{2}$.

Proof. (2) \Rightarrow (1) Given any idempotent $e \in I$, then we have a finitely generated projective right R-module $e R$ such that $e R I=e R$. In view of Theorem $4, I$ is a $Q B$-ideal of R.
$(1) \Rightarrow(2)$ Let A be a finitely generated projective right R-module A with $A I=A$. Suppose that $A \oplus B_{1} \cong A \oplus B_{2}$. By virtue of [9, Lemma 6], there exist idempotents $e_{1}, \cdots, e_{n} \in I$ such that $A \cong e_{1} R \oplus \cdots \oplus e_{n} R$. So $\operatorname{diag}\left(e_{1}, \cdots, e_{n}\right) R^{n \times 1} \oplus B_{1} \cong \operatorname{diag}\left(e_{1}, \cdots, e_{n}\right) R^{n \times 1} \oplus B_{2}$, and then $\operatorname{diag}\left(e_{1}, \cdots\right.$, $\left.e_{n}\right) M_{n}(R) \oplus B_{1} \bigotimes_{R} R^{1 \times n} \cong \operatorname{diag}\left(e_{1}, \cdots, e_{n}\right) M_{n}(R) \oplus B_{2} \bigotimes_{R} R^{1 \times n}$. Clearly, $\operatorname{diag}\left(e_{1}\right.$, $\left.\cdots, e_{n}\right) \in M_{n}(I)$. By [5, Lemma 2] and [2, Remark 6.5], $M_{n}(I)$ is a regular $Q B$ ideal of $M_{n}(R)$. It follows from Theorem 4 that there exists a pair of orthogonal ideals $M_{n}\left(I_{1}\right)$ and $M_{n}\left(I_{2}\right)$ of $M_{n}(R)$ and $B_{1} \bigotimes_{R} R^{1 \times n} \oplus C_{1}^{\prime} \cong B_{2} \bigotimes_{R} R^{1 \times n} \oplus C_{2}^{\prime}$ such that $C_{1}^{\prime} M_{n}\left(I_{1}\right)=C_{1}^{\prime}$ and $C_{2}^{\prime} M_{n}\left(I_{2}\right)=C_{2}^{\prime}$. Obviously, $I_{1} \perp I_{2}$. Set $C_{i}=$ $C_{i}^{\prime} \otimes R^{n \times 1}(i=1,2)$. Then $B_{1} \oplus C_{1} \cong B_{2} \oplus C_{2}$. As $R^{n \times 1} I \cong M_{n}(I) R^{n \times 1}$, $M_{n}(R)$ we deduce that $C_{1} I=C_{1}$ and $C_{2} I=C_{2}$, as required.

As a result, we prove that a regular ring R is a $Q B$-ring if and only for all finitely generated projective right R-module A, if B_{1} and B_{2} are any right R-modules such that $A \oplus B_{1} \cong A \oplus B_{2}$, then there exists a pair of orthogonal ideals I_{1} and I_{2} and $B_{1} \oplus C_{1} \cong B_{2} \oplus C_{2}$ such that $C_{1} I_{1}=C_{1}$ and $C I_{2}=C_{2}$, which extend [2, Theorem 8.7] and gives a new characterization of regular $Q B$-rings.

Corollary 6. Let I be a purely infinite simple regular ideal of a ring R, and let A be a finitely generated projective right R-module such that $A=A I$. If B_{1} and B_{2} are any right R-modules such that $A \oplus B_{1} \cong A \oplus B_{2}$, then there exists a pair of orthogonal ideals I_{1} and I_{2} and $B_{1} \oplus C_{1} \cong B_{2} \oplus C_{2}$ such that $C_{1} I_{1}=C_{1}$ and $C I_{2}=C_{2}$.

Proof. According to [4, Corollary 1.11], I is a $Q B$-ideal of R. So the result follows by Theorem 5.

Following P. Ara et al. (cf. [3] and [11]), we say that R is a separative ring if the following condition holds for all finitely generated projective right R-modules $A, B: A \oplus A \cong A \oplus B \cong B \oplus B \Longrightarrow A \cong B$. A ring R is said to be one-sided unit-regular in case for any $x \in R$ there exists a right or left invertible $u \in R$ such that $x=$ xux (cf. [7-8]). A simple ring R is said to be purely infinite if R is not a division ring, but for any non-zero element $x \in R$ there are $s, t \in R$ such that $s x t=1$ (see [3]). The class of purely infinite simple regular rings is rather large (cf.[1]). We claim that every purely infinite simple regular ring is separative.

Corollary 7. Let R be a simple regular ring. Then the following are equivalent:
(1) R is a $Q B$-ring.
(2) R is a separative ring.
(3) R is one-sided unit-regular.
(4) R either has stable rank 1 or is purely infinite.

Proof. (1) \Rightarrow (2) Suppose that A, B_{1} and B_{2} are finitely generated projective right R-modules such that $A \oplus B_{1} \cong A \oplus B_{2}$. In view of Theorem 5, there exists a pair of orthogonal ideals I_{1} and I_{2} and $B_{1} \oplus C_{1} \cong B_{2} \oplus C_{2}$ such that $C_{1} I_{1}=C_{1}$ and $C I_{2}=C_{2}$. Since R is a simple ring, either I_{1} or I_{2} is zero. This infers that $C_{1}=0$ or $C_{2}=0$. So $B_{1} \lesssim^{\oplus} B_{2}$ or $B_{2} \lesssim^{\oplus} B_{1}$. By [8,Theorem 8], R is one-sided unit-regular.
$(2) \Rightarrow(3)$ Let R be a simple regular separative ring. If R is directly finite, R has stable range one from [3, Theorem 3.4]. If R is directly infinite, then $R \oplus D \cong R$ for some nonzero right R-module D. Given any right R-modules P and Q. If either P or Q is zero, then $P \lesssim^{\oplus} Q$ or $Q \lesssim^{\oplus} P$. Now we assume that P and Q are both nonzero. Since R is simple, there exists a positive integer n such that $P \lesssim \lesssim^{\oplus} n D$. Thus $P \oplus R \lesssim^{\oplus} n D \oplus R \cong R$. So $P \oplus R \lesssim^{\oplus} R \lesssim^{\oplus} Q \oplus R$, and then $R \oplus(P \oplus E) \cong R \oplus Q$ for a right R-module E. Inasmuch as $P \oplus E$ and Q are nonzero, we have $R \lesssim \lesssim^{\oplus} s(P \oplus E)$ and $R \lesssim^{\oplus} t Q$ for positive integers s and t. Applying [3,Lemma 2.1], $P \lesssim \oplus P \oplus E \cong Q$. Therefore R is one-sided unit-regular.
$(3) \Rightarrow(1)$ According to [2, Example 8.8], R is a $Q B$-ring.
$(1) \Leftrightarrow(4)$ is clear by [1, Remark 1.8] and [2, Proposition 3.10].

References

1. P. Ara, K. R. Goodearl and E. Pardo, K_{0} of purely infinite simple regular rings, K-Theory, 26 (2002), 69-100.
2. P. Ara, G. K. Pedersen and F. Perera, An infinite analogue of rings with stable range one, J. Algebra 230 (2000), 608-655.
3. P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math., 105 (1998), 105-137.
4. P. Ara, G. K. Pedersen and F. Perera, Extensions and pullbacks in $Q B$-rings, Algebra Represent Theory, 8 (2005), 75-97.
5. B. Brown, N. H. Mccoy, The maximal regular ideal of a ring, Proc. Amer. Math. Soc., 1 (1950), 165-171.
6. C. Y. Hong, N. K. Kim, Nam and Y. Lee, Exchange rings and their extensions, J. Pure Appl. Algebra, 179 (2003), 117-126.
7. H. Chen, Elements in one-sided unit-regular rings, Comm. Algebra, 25 (1997), 25172529.
8. H. Chen, On exchange $Q B$-rings, Comm. Algebra, 31 (2003), 831-841.
9. H. Chen and M. Chen, On unit-regular ideals, New York J. Math., 9 (2003), 295-302.
10. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991.
11 K. R. Goodearl, von Neumann regular rings and direct sum decomposition problems, Facchini Alberto (ed.) et al., Abelian groups and modules, Proc. Padaova Conference, Padova, Italy, 1994. Dordrecht: Kluwer Academic Publishers, Math. Appl. Dordr., 343 (1995), 249-255.
11. F. Perera, Lifting units modulo exchange ideals and C^{*}-algebras with real rank zero, J. reine. Math., 522 (2000), 51-62.
12. H.P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra, 98 (1995), 105-108.

Huanyin Chen
Department of Mathematics, Zhejiang Normal University, Jinhua 321004,
People's Republic of China
E-mail: chyzx1@@hunnu.edu.cn

[^0]: Received October 1, 2004; accepted February 24, 2005.
 Communicated by Shun-Jen Cheng.
 2000 Mathematics Subject Classification: 16E50, 19B10.
 Key words and phrases: Regular Ideal, $Q B$-Ideal, Order-ideal.

