TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 5, pp. 1261-1269, September 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON REGULAR *QB***-IDEALS**

Huanyin Chen

Abstract. Let *I* be a regular ideal of a ring *R*. It is shown that *I* is a *QB*-ideal if and only if for all finitely generated projective right *R*-module *A* with AI = A, if B_1 and B_2 are any right *R*-modules such that $A \oplus B_1 \cong A \oplus B_2$, then there exists a pair of orthogonal ideals I_1 and I_2 and $B_1 \oplus C_1 \cong B_2 \oplus C_2$ such that $C_1I_1 \cong C_1$ and $CI_2 \cong C_2$.

1. INTRODUCTION

The theory of QB-rings has been developed by Ara, Pedersen and Perera to provide an infinite analogue of rings with stable range one. Following Ara et al. [2], we say that a ring R is a QB-ring when aR + bR = R with $a, b \in R$ implies that $a + by \in R_q^{-1}$ for a $y \in R$. Let I be an ideal of a ring R. I is a QB-ideal of R if and only if whenever xa - x - a + b = 0 for x, a and b in I, there exists $y \in I$ such that $1 - (a - yb) \in R_q^{-1}$ (see [2] and [11]). Clearly, every ideal of a QB-ring R is a QB-ideal. An element $x \in R$ is regular in case there exists $y \in R$ such that x = xyx. We say that an ideal I of a ring R is regular if every element in Iis regular. Let $M(R) = \{x \in R | RxR$ be a regular ideal $\}$. In view of [5, Theorem 1], M(R) is the maximal regular ideal of R.

So far, most of investigation of the QB-ideals is only in an exchange ring. In this paper, we obtain a new characterization of a regular QB-ideal for an arbitrary ring. It is shown that a regular ideal I of a ring R is a QB-ideal if and only if for all finitely generated projective right R-module A with AI = A, if B_1 and B_2 are any right R-modules such that $A \oplus B_1 \cong A \oplus B_2$, then there exists a pair of orthogonal ideals I_1 and I_2 and $B_1 \oplus C_1 \cong B_2 \oplus C_2$ such that $C_1I_1 \cong C_1$ and $CI_2 \cong C_2$.

Throughout the paper, all rings are associative with identity. We say that $x, y \in R$ are centrally orthogonal, in symbols $x \perp y$, if xRy = 0 and yRx = 0. We use

Received October 1, 2004; accepted February 24, 2005.

Communicated by Shun-Jen Cheng.

2000 Mathematics Subject Classification: 16E50, 19B10.

Key words and phrases: Regular Ideal, QB-Ideal, Order-ideal.

Huanyin Chen

 R_q^{-1} to denote the set $\{u \in R \mid \exists a, b \in R \text{ such that } (1 - ua) \perp (1 - bu)\}$. If I_1 and I_2 are ideals of R, then $I_1 \perp I_2$ means that $x \perp y$ for all $x \in I_1, y \in I_2$, and we say that I_1 and I_2 are orthogonal ideals. The notation $M \leq^{\oplus} N$ means that M is isomorphic to a direct summand of N.

Lemma 1. Let I be a regular ideal of R. Then the following are equivalent:

- (1) I is a QB-ideal.
- (2) eRe is a QB-ring for all idempotents $e \in I$.

Proof. (1) \Rightarrow (2) Given ax + b = e with $a, x, b \in eRe, e \in I$, then (a + 1 - e)(x + 1 - e) + b = 1 in R. As $a + 1 - e \in 1 + I$, we have $y \in R$ such that $a + 1 - e + by \in R_q^{-1}$. By [2,Proposition 2.2], there exists $u \in R$ such that $(1 - (a + 1 - e + by)u) \perp (1 - (a + 1 - e + by)u)$. That is, $(1 - (a + 1 - e + by)u) \perp (1 - (a + 1 - e + by)u)$. That is, (1 - (a + 1 - e + by)u) R(1 - u(a + 1 - e + by)) = 0 and (1 - u(a + 1 - e + by))R(1 - (a + 1 - e + by)u) = 0; hence, (e - (a + by)(ue))(eRe)(e - (eue)(a + b(eye))) = 0 and (e - (eue)(a + b(eye)))(eRe)(e - (a + by)(ue)) = 0. Furthermore, we get

$$(e - (a + by)(ue))(eRe)(e - (eue)(a + b(eye))$$

= $(e - (a + by)(eue + (1 - e)ue))(eRe)(e - (eue)(a + b(eye))$
= $(e - (a + by)(eue) - (a + by)(1 - e)ue))(eRe)(e - (eue)(a + b(eye))$
= $0.$

Also we have ((1 - e) - (1 - e)u)(eRe)(e - (eue)(a + b(eye)) = 0; hence, (-(a + by)(1 - e)ue)(eRe)(e - (eue)(a + b(eye)) = 0. Clearly, we see that

$$(e - (a + by)(eue))(eRe)(e - (eue)(a + b(eye))) \subseteq (e - (a + by)(eue) - (a + by)(1 - e)ue))(eRe)(e - (eue)(a + b(eye))) + (- (a + by)(1 - e)ue)(eRe)(e - (eue)(a + b(eye))),$$

so we deduce that (e - (a + by)(eue))(eRe)(e - (eue)(a + b(eye)) = 0. Likewise, (e - (eue)(a + b(eye))(eRe)(e - (a + by)(eue)) = 0. Thus $a + b(eye) \in (eRe)_q^{-1}$, as required.

 $(2)\Rightarrow(1)$ Given aR + bR = R with $a \in 1 + I$ and $b \in R$, since I is regular, there exists $e = e^2 \in I$ such that 1 - a = (1 - a)e; hence, a(1 - e) = 1 - e. Suppose that ar + bs = (1 - a)e for some $r, s \in R$. Then eae(e + ere) + ebse = eae(e + ere) + ea(1 - e)re + ebse = e. As eRe is a QB-ring, we can find $z \in eRe$ such that $eae + ebsez = u \in (eRe)_q^{-1}$. Set w = (1 - e)ae + (1 - e)bsez. By [2, Proposition 2.2], we have $v \in eRe$ such that $(e - uv) \perp (e - vu)$. Clearly,

 $\begin{aligned} 1 - (a + bsez)(v - wv + 1 - e) \\ &= 1 - a(1 - e) - (a + bsez)(v - wv) \\ &= e + (a + bsez)wv - (a + bsez)v \\ &= e + awv - (a + bsez)v \\ &= e + wv - (a + bsez)v \\ &= e + (w - (a + bsez))v \\ &= e + ((1 - e)ae + (1 - e)bsez - (ae + bsez + a(1 - e)))v \\ &= e - (eae + ebsez)v \\ &= e - uv. \end{aligned}$

On the other hand, we have

$$\begin{aligned} 1 - (v - wv + 1 - e)(a + bsez) \\ &= 1 - (v - wv + 1 - e)(ae + bsez) - (v - wv + 1 - e)a(1 - e) \\ &= e - (v - wv + 1 - e)(ae + bsez) \\ &= e - w - (e - w)v(ae + bsez) \\ &= (e - w) - (e - w)vu \\ &= (e - w)(e - vu). \end{aligned}$$

It follows from $(e - uv) \perp (e - vu)$ that $(1 - (a + bsez)(v - wv + 1 - e)) \perp (v - wv + 1 - e)(1 - (a + bsez))$. Therefore $a + bsez \in R_q^{-1}$, as desired.

Lemma 2. Let I be a regular ideal of R. Then the following are equivalent:

- (1) I is a QB-ideal.
- (2) For any idempotent $e \in I$, $M = A_1 \oplus H = A_2 \oplus K$ with $A_1 \cong eR \cong A_2$ implies that there exists a pair of orthogonal ideals I_1 and I_2 and $M = E \oplus B_1 \oplus H = E \oplus B_2 \oplus K$ such that $B_1I_1 = B_1$ and $B_2I_2 = B_2$.

Proof. $(1)\Rightarrow(2)$ Let $e \in I$ be an idempotent. By Lemma 1, $\varphi : End_R(eR) \cong eRe$ is a regular QB-ring. Given any right R-module decomposition $M = A_1 \oplus H = A_2 \oplus K$ with $A_1 \cong eR \cong A_2$. Using the decomposition $M = A_1 \oplus H \cong eR \oplus H$, we obtain projections $p_1 : M \to eR, p_2 : M \to H$ and injections $q_1 : eR \to M, q_2 : H \to M$ such that $p_1q_1 = 1, q_1p_1 + q_2p_2 = 1_M$ and $Kerp_1 = H$. Using the decomposition $M = A_2 \oplus K \cong eR \oplus K$, we obtain a projection $f : M \to eR$ and an injection $g : eR \to M$ such that fg = 1 and Kerf = K. From $(fq_1)(p_1g) + fq_2p_2g = f(q_1p_1 + q_2p_2)g = fg = 1$ in $End_R(eR)$, we can find

Huanyin Chen

some $u \in End_R(eR)_q^{-1}$ such that $fq_1 + fq_2p_2gy = u$ for a $y \in End_R(eR)$. That is, $f(q_1 + q_2p_2gy) = u$. Choose a quasi-inverse v for u and set $\alpha = vu, \beta = uv$. Let $\psi = q_1 + q_2p_2gy$. Then $f\psi = u$ and $p_1\psi = 1$. Let $D_1 = ker\alpha p_1, D_2 = ker\beta f$ and $E = \psi\alpha(eR)$. If $m \in E \cap D_1$, then $m = \psi\alpha(x)$ for some $x \in eR$. Hence $0 = \alpha p_1(m) = \alpha p_1\psi\alpha(x) = vuvu(x) = vu(x) = \alpha(x)$, and then m = 0. This means that $E \cap D_1 = 0$. Given any $m \in M$, we have $m = \psi\alpha p_1(m) + (m - \psi\alpha p_1(m)) \in E + D_1$. Thus $M = E \oplus D_1$. Likewise, $M = E \oplus D_2$. Let $B_1 = p_1(e-\alpha)(eR)$ and $B_2 = f(e-\beta)(eR)$. One easily checks that $D_1 = B_1 \oplus H$ and $D_2 = B_2 \oplus K$. Thus $M = E \oplus B_1 \oplus H = E \oplus B_2 \oplus K$. Let $I_1 = R(e - \varphi(\alpha))R$ and $I_2 = R(e - \varphi(\beta))R$. Then I_1 and I_2 are ideals of R. As $(e - \varphi(\alpha)) \perp (e - \varphi(\beta))$, we deduce that $I_1 \perp I_2$. Moreover, we have $B_1I_1 = B_1$ and $B_2I_2 = B_2$.

 $(2)\Rightarrow(1)$ Let $e \in I$ be an idempotent. Suppose that $a_1(eRe) + a_2(eRe) = eRe$ with $a_1, a_2 \in eRe$. Set $M = eR \oplus eR$. Then we have a split epimorphism $\psi : M \to eR$ given by $\psi(s,t) = a_1s + a_2t$ for any $s \in eR, t \in eR$; hence, $M = A_2 \oplus K$, where $K = ker\psi$ and $A_2 \cong eR$. Therefore we get a pair of orthogonal ideals I_1 and I_2 and $M = E \oplus B_1 \oplus eR = E \oplus B_2 \oplus K$ such that $B_1I_1 = B_1$ and $B_2I_2 = B_2$. Let $\varphi : M = eR \oplus eR \to eR$ be the projection onto the first factor. Write $E_1 = \varphi(E)$ and $B'_1 = \varphi(B_1)$. Then $eR = E_1 \oplus B'_1$. Let $h : eR = E_1 \oplus B'_1 \to E_1$ be the projection onto E_1 . Then $h \in End_R(eR)$ is an idempotent. As $\alpha : End_R(eR) \cong eRe$, $\alpha(h) \in eRe$ is an idempotent. In addition, $e - \alpha(h) \in I_1$. Write $E_2 = \psi(E)$ and $B'_2 = \psi(B_2)$. We have $eR = E_2 \oplus B'_2$. Let $k : eR = E_2 \oplus B'_2 \to E_2$ be the projection onto E_2 . Then $k \in End_R(eR)$ is an idempotent, and that $e - \alpha(k) \in I_2$. Hence $(e - \alpha(h)) \perp (e - \alpha(k))$ because $I_1 \perp I_2$.

Obviously, $\psi \mid_{E \oplus B_2} : E \oplus B_2 \to eR$ is an isomorphism. Let $\theta = (\psi \mid_{E \oplus B_2})^{-1}$, and let $i : E \oplus B_2 \to M = eR \oplus eR$ be the injection. Since $\alpha(k) \in eRe$ is an idempotent, we may assume that $i\theta(\alpha(k)) = (x_1, x_2)$ with $x_1 \in eR\alpha(k)$ and $x_2 \in eR\alpha(k)$. Then $\alpha(k) = \psi i\theta(\alpha(k)) = \psi(x_1, x_2) = a_1x_1 + a_2x_2$. Inasmuch as $E_1 = \varphi(E)$ and $E_2 = \psi(E)$, we get an isomorphism $\varphi\theta : E_2 \to E_1$. Evidently, $E_2 = k(eR) = k(e)eR = \alpha(k)R$. Likewise, $E_1 = \alpha(h)R$. So we have $r \in R$ such that $\alpha(h) = \varphi\theta(\alpha(k)r) = \alpha(h)\varphi\theta(\alpha(k))\alpha(k)r\alpha(h)$. Clearly, $x_1 = \varphi i\theta(\alpha(k)) = \varphi\theta(\alpha(k)) = \alpha(h)\varphi\theta(\alpha(k))\alpha(k)$. Set $y_1 = \alpha(k)r\alpha(h)$. Then $\alpha(h) = x_1y_1$. Moreover, $y_1x_1 = \alpha(k)r\alpha(h)\varphi\theta(\alpha(k)) = (\varphi\theta)^{-1}(\alpha(h))\varphi\theta(\alpha(k)))$ $= (\varphi\theta)^{-1}(\alpha(h)\varphi\theta(\alpha(k))) = (\varphi\theta)^{-1}(\varphi\theta(\alpha(k))) = \alpha(k)$. Hence $(e - y_1x_1) \perp (e - x_1y_1)$. That is, $x_1 \in (eRe)_q^{-1}$. In addition, $(a + bx_2y_1)x_1 = ax_1 + bx_2\alpha(k) = \alpha(h) = y_1x_1$. So $x_1(a + bx_2y_1)x_1 = x_1y_1x_1 = x_1\alpha(h) = x_1$. As $x_1 \in (eRe)_q^{-1}$, we deduce that $a + bx_2y_1 \in (eRe)_q^{-1}$ from [2, Remark 2.10]. It follows by Lemma 1 that I is a QB-ideal.

We use $\mathcal{V}(R)$ to denote the monoid of isomorphism classes of finitely generated projective right *R*-modules. An order-ideal in $\mathcal{V}(R)$ is a submonoid *S* of $\mathcal{V}(R)$ that is order-hereditary. If *I* is an ideal of *R*, we denote by $\mathcal{V}(I)$ the monoid of isomorphism classes of finitely generated projective right *R*-modules *A* such that AI = A. Following P. Ara et al.[2], we say that two order-ideals S_1 and S_2 of $\mathcal{V}(R)$ are orthogonal provided that $S_1 \cap S_2 = 0$. We denote it by $S_1 \perp S_2$.

Lemma 3. Let I be a regular ideal of a ring R, and let $e \in I$ an idempotent. For any right R-modules A, B_1 and B_2 , if $eR \oplus B_1 \cong A \oplus B_2$ then we have a refinement matrix

$$\begin{array}{ccc} & eR & B_1 \\ A & \left(\begin{array}{cc} A' & B_1' \\ B_2 & \left(\begin{array}{cc} B_2' & C' \end{array}\right) \end{array}\right)$$

That is, $A \cong A' \oplus B'_1, eR \cong A' \oplus B'_2, B_1 \cong B'_1 \oplus C'$ and $B_2 \cong B'_2 \oplus C'$.

Proof. Suppose that $\psi : eR \oplus B_1 \cong A \oplus B_2$. Given decompositions $N := eR \oplus B_1 = \psi^{-1}(A) \oplus \psi^{-1}(B_2)$. Since I is a regular ideal and $e = e^2 \in I$, eRe is a regular ring; hence eR as a right R-module has the finite exchange property. Thus we can find some $B'_1 \leq^{\oplus} \psi^{-1}(A)$ and $C' \leq^{\oplus} \psi^{-1}(B_2)$ such that $N = eR \oplus B'_1 \oplus C'$. So $A \cong \psi^{-1}(A) = A' \oplus B'_1$ and $B_2 \cong \psi^{-1}(B_2) = B'_2 \oplus C'$ for some right R-modules A' and B'_2 . It follows from $N = \psi^{-1}(A) \oplus \psi^{-1}(B_2) = A' \oplus B'_1 \oplus B'_2 \oplus C' = eR \oplus B'_1 \oplus C'$ that $eR \cong A' \oplus B'_2$. In addition, we claim that $B_1 \cong B'_1 \oplus C'$ because $N = eR \oplus B_1 = eR \oplus B'_1 \oplus C'$.

Theorem 4. Let I be a regular ideal of R. Then the following are equivalent:

- (1) I is a QB-ideal.
- (2) For any idempotent $e \in I$, $[eR] + b_1 = [eR] + b_2$ in $\mathcal{V}(R)$ implies that there exist orthogonal order-ideal S_1 and S_2 in $\mathcal{V}(R)$ and elements c_1, c_2 , such that $c_1 \in S_1, c_2 \in S_2$ and $b_1 + c_1 = b_2 + c_2$.
- (3) For all idempotents $e \in I$, if B_1 and B_2 are any right *R*-modules such that $eR \oplus B_1 \cong eR \oplus B_2$ then there exists a pair of orthogonal ideals I_1 and I_2 and $B_1 \oplus C_1 \cong B_2 \oplus C_2$ such that $C_1I_1 = C_1$ and $CI_2 = C_2$.

Proof. (1) \Rightarrow (2) Choose representations B_1 and B_2 for b_1 and b_2 such that $M := A_1 \oplus B_1 = A_1 \oplus B_2$ with $A_1 \cong eR \cong A_2$. By Lemma 2, there exists a pair of orthogonal ideals I_1 and I_2 and $M = E \oplus C_1 \oplus B_1 = E \oplus C_2 \oplus B_2$ such that $C_1I_1 = C_1$ and $C_2I_2 = C_2$. Since $A_1, B_1 \in \mathcal{V}(R)$, we have $M \in \mathcal{V}(R)$; hence, $E, C_1, C_2 \in \mathcal{V}(R)$. Let $c_1 = [C_1]$ and $c_2 = [C_2]$. We get $b_1 + c_1 = b_2 + c_2$. Let $S_i = \mathcal{V}(I_i)$. Then $\mathcal{V}(I_1)$ and $\mathcal{V}(I_2)$ are orthogonal order-ideals of $\mathcal{V}(R)$. Furthermore, we have $c_i \in S_i$ for i = 1, 2.

 $(2) \Rightarrow (3)$ Let $e \in I$ be an idempotent. Suppose that B_1 and B_2 are any right *R*-modules such that $eR \oplus B_1 \cong eR \oplus B_2$. By virtue of Lemma 3, we get a refinement matrix

Huanyin Chen

$$eR \quad B_1$$

$$eR \quad \left(\begin{array}{cc} A' & B_1' \\ B_2 & B_2' & C' \end{array}\right).$$

Hence $eR \cong A' \oplus B'_1 \cong A' \oplus B'_2$ with $A', B'_1, B'_2 \in \mathcal{V}(R)$. Clearly, we have an idempotent $g \in eRe \subseteq I$ such that $A' \cong gR$. So $gR \oplus B'_1 \cong gR \oplus B'_2$ in $\mathcal{V}(R)$, and then we have orthogonal order-ideals S_1 and S_2 in $\mathcal{V}(R)$ and elements $c'_1 = [C'_1], c'_2 = [C'_2]$, such that $c'_1 \in S_1, c'_2 \in S_2$ and $[B'_1] + c'_1 = [B'_2] + c'_2$. That is, $B'_1 \oplus C'_1 \cong B'_2 \oplus C'_2$. This infers that $eR \oplus C'_1 \cong A' \oplus (B'_1 \oplus C'_1) \cong A' \oplus (B'_2 \oplus C'_2) \cong$ $eR \oplus C'_2$. By Lemma 3 again , we have a refinement matrix

$$eR \quad C_1' \ eR \quad \left(egin{array}{cc} A'' & C_1 \ C_2 & C'' \end{array}
ight).$$

Since $[C'_1] \in S_1$ and $[C''] \leq [C'_1]$, we have $[C''] \in S_1$. Likewise, we have $[C''] \in S_2$. It follows from $S_1 \cap S_2 = 0$ that C'' = 0. Therefore there exist some idempotents $h_1, h_2, h_1, k_2 \in eRe$ such that $h_1 + k_1 = e = h_2 + k_2, h_1R \cong h_2R, k_1R \cong C_1$ and $k_2R \cong C_2$. For i = 1, 2 let $I_i = \{\sum RpR \mid p = p^2, pR \in S_i\}$, respectively. Then $I_1 \cap I_2 = 0$; hence, $I_1 \perp I_2 = 0$. Furthermore, we have $k_1 \in I_1$ and $k_2 \in I_2$. Clearly, $C_1I_1 = C_1$ and $C_2I_1 = C_2$. Moreover, we get $B'_1 \oplus C_1 \cong B'_1 \oplus C'_1 \cong B'_2 \oplus C'_2 \cong B'_2 \oplus C_2$, and then $B_1 \oplus C_1 \cong (B'_1 \oplus C') \oplus C_1 \cong C' \oplus (B'_2 \oplus C_2) \cong B_2 \oplus C_2$, as required.

 $(3) \Rightarrow (1)$ Let $e \in I$ be an idempotent. Then eRe is a regular ring. Let $a \in eRe$. There exists $b \in eRe$ such that a = aba and b = bab. Set p = ab and q = ba. As in the proof of [2, Theorem 8.7], we see that $eR \oplus (e - p)R \cong qR \oplus (e - q)R \oplus (e - p)R \cong pR \oplus (e - q)R \oplus (e - p)R \cong eR \oplus (e - q)R$. So we have right *R*-modules C_1 and C_2 such that $(e - p)R \oplus C_1 \cong (e - q)R \oplus C_2$ and a pair of orthogonal ideals I_1 and I_2 such that $C_1I_1 = C_1$ and $C_2I_2 = C_2$. As $e - p = (e - p)^2 \in I$, by Lemma 3, we get a refinement matrix

$$\begin{array}{ccc} (e-p)R & C_1 \\ (e-q)R & \left(\begin{array}{ccc} A' & C_1' \\ C_2 & C' \end{array} \right). \end{array}$$

Inasmuch as $C'I_1 = C' = C'I_2, C' = C'I_1 = (C'I_1)I_1 = (C'I_2)I_1 = 0$. Hence we have idempotents $e_1, f_1 \in (e-p)R(e-p), e_2, f_2 \in (e-q)R(e-q)$ such that $e-p = e_1 + f_1, e-q = e_2 + f_2, e_1R \cong A' \cong e_2R$, and $f_1R \cong C'_1$ and $f_2R \cong C'_2$. As $e_1R \cong e_2R$, we can find $c \in e_1Re_2$ and $d \in e_2Re_1$ such that $e_1 = cd$ and $e_2 = dc$. Clearly, $a \in p(eRe)q$ and $c \in (e-p)(eRe)(e-q)$ are both regular in eRe. By [2, Lemma 2.7], $a \leq a + c$. Furthermore, it follows from $b \in qRp, d \in (e-q)R(e-p)$ that $e-(a+c)(b+d) = e-ab-cd = (e-p)-e_1 = f_1$. Likewise, $e-(b+d)(a+c) = f_2$. Obviously, $C'_1I_1 = C'_1$ and $C'_2I_2 = C_2$. From

1266

this, we deduce that $f_1RI_1 = f_1R$ and $f_2RI_2 = f_2R$; hence, $f_1 \in I_1$ and $f_2 \in I_2$. From $I_1 \perp I_2$, it follows that (e - (a + c)(b + d))R(e - (b + d)(a + c)) = 0 and (e - (b + d)(a + c)R(e - (a + c)(b + d)) = 0. So $a + c \in (eRe)_q^{-1}$. Therefore we complete the proof by [2, Theorem 8.4] and Lemma 1.

Theorem 5. Let I be a regular ideal of R. Then the following are equivalent:

- (1) I is a QB-ideal.
- (2) For all finitely generated projective right R-module A with AI = A, if B_1 and B_2 are any right R-modules such that $A \oplus B_1 \cong A \oplus B_2$, then there exists a pair of orthogonal ideals I_1 and I_2 and $B_1 \oplus C_1 \cong B_2 \oplus C_2$ such that $C_1I_1 = C_1$ and $CI_2 = C_2$.

Proof. $(2) \Rightarrow (1)$ Given any idempotent $e \in I$, then we have a finitely generated projective right *R*-module eR such that eRI = eR. In view of Theorem 4, *I* is a *QB*-ideal of *R*.

(1) \Rightarrow (2) Let A be a finitely generated projective right R-module A with AI = A. Suppose that $A \oplus B_1 \cong A \oplus B_2$. By virtue of [9, Lemma 6], there exist idempotents $e_1, \dots, e_n \in I$ such that $A \cong e_1R \oplus \dots \oplus e_nR$. So $diag(e_1, \dots, e_n)R^{n\times 1} \oplus B_1 \cong diag(e_1, \dots, e_n)R^{n\times 1} \oplus B_2$, and then $diag(e_1, \dots, e_n)M_n(R) \oplus B_1 \bigotimes_R R^{1\times n} \cong diag(e_1, \dots, e_n)M_n(R) \oplus B_2 \bigotimes_R R^{1\times n}$. Clearly, $diag(e_1, \dots, e_n)M_n(R) \oplus B_2 \bigotimes_R R^{1\times n}$. Clearly, $diag(e_1, \dots, e_n)M_n(R) \oplus B_1 \bigotimes_R R^{1\times n} \cong diag(e_1, \dots, e_n)M_n(R) \oplus B_2 \bigotimes_R R^{1\times n}$. Clearly, $diag(e_1, \dots, e_n) \in M_n(I)$. By [5, Lemma 2] and [2, Remark 6.5], $M_n(I)$ is a regular QB-ideal of $M_n(R)$. It follows from Theorem 4 that there exists a pair of orthogonal ideals $M_n(I_1)$ and $M_n(I_2)$ of $M_n(R)$ and $B_1 \bigotimes_R R^{1\times n} \oplus C'_1 \cong B_2 \bigotimes_R R^{1\times n} \oplus C'_2$ such that $C'_1M_n(I_1) = C'_1$ and $C'_2M_n(I_2) = C'_2$. Obviously, $I_1 \perp I_2$. Set $C_i = C'_i \bigotimes_{M_n(R)} R^{n\times 1}(i=1,2)$. Then $B_1 \oplus C_1 \cong B_2 \oplus C_2$. As $R^{n\times 1}I \cong M_n(I)R^{n\times 1}$, we deduce that $C_1I = C_1$ and $C_2I = C_2$, as required.

As a result, we prove that a regular ring R is a QB-ring if and only for all finitely generated projective right R-module A, if B_1 and B_2 are any right R-modules such that $A \oplus B_1 \cong A \oplus B_2$, then there exists a pair of orthogonal ideals I_1 and I_2 and $B_1 \oplus C_1 \cong B_2 \oplus C_2$ such that $C_1I_1 = C_1$ and $CI_2 = C_2$, which extend [2, Theorem 8.7] and gives a new characterization of regular QB-rings.

Corollary 6. Let I be a purely infinite simple regular ideal of a ring R, and let A be a finitely generated projective right R-module such that A = AI. If B_1 and B_2 are any right R-modules such that $A \oplus B_1 \cong A \oplus B_2$, then there exists a pair of orthogonal ideals I_1 and I_2 and $B_1 \oplus C_1 \cong B_2 \oplus C_2$ such that $C_1I_1 = C_1$ and $CI_2 = C_2$. *Proof.* According to [4, Corollary 1.11], I is a QB-ideal of R. So the result follows by Theorem 5.

Following P. Ara et al. (cf. [3] and [11]), we say that R is a separative ring if the following condition holds for all finitely generated projective right R-modules $A, B : A \oplus A \cong A \oplus B \cong B \oplus B \Longrightarrow A \cong B$. A ring R is said to be one-sided unit-regular in case for any $x \in R$ there exists a right or left invertible $u \in R$ such that x = xux (cf. [7-8]). A simple ring R is said to be purely infinite if R is not a division ring, but for any non-zero element $x \in R$ there are $s, t \in R$ such that sxt = 1(see [3]). The class of purely infinite simple regular rings is rather large (cf.[1]). We claim that every purely infinite simple regular ring is separative.

Corollary 7. Let *R* be a simple regular ring. Then the following are equivalent:

- (1) R is a QB-ring.
- (2) R is a separative ring.
- (3) R is one-sided unit-regular.
- (4) *R* either has stable rank 1 or is purely infinite.

Proof. (1) \Rightarrow (2) Suppose that A, B_1 and B_2 are finitely generated projective right R-modules such that $A \oplus B_1 \cong A \oplus B_2$. In view of Theorem 5, there exists a pair of orthogonal ideals I_1 and I_2 and $B_1 \oplus C_1 \cong B_2 \oplus C_2$ such that $C_1I_1 = C_1$ and $CI_2 = C_2$. Since R is a simple ring, either I_1 or I_2 is zero. This infers that $C_1 = 0$ or $C_2 = 0$. So $B_1 \leq^{\oplus} B_2$ or $B_2 \leq^{\oplus} B_1$. By [8,Theorem 8], R is one-sided unit-regular.

 $(2) \Rightarrow (3)$ Let R be a simple regular separative ring. If R is directly finite, R has stable range one from [3, Theorem 3.4]. If R is directly infinite, then $R \oplus D \cong R$ for some nonzero right R-module D. Given any right R-modules P and Q. If either P or Q is zero, then $P \leq^{\oplus} Q$ or $Q \leq^{\oplus} P$. Now we assume that P and Q are both nonzero. Since R is simple, there exists a positive integer n such that $P \leq^{\oplus} nD$. Thus $P \oplus R \leq^{\oplus} nD \oplus R \cong R$. So $P \oplus R \leq^{\oplus} R \leq^{\oplus} Q \oplus R$, and then $R \oplus (P \oplus E) \cong R \oplus Q$ for a right R-module E. Inasmuch as $P \oplus E$ and Q are nonzero, we have $R \leq^{\oplus} s(P \oplus E)$ and $R \leq^{\oplus} tQ$ for positive integers s and t. Applying [3,Lemma 2.1], $P \leq^{\oplus} P \oplus E \cong Q$. Therefore R is one-sided unit-regular.

- $(3) \Rightarrow (1)$ According to [2, Example 8.8], R is a QB-ring.
- $(1) \Leftrightarrow (4)$ is clear by [1, Remark 1.8] and [2, Proposition 3.10].

References

1. P. Ara, K. R. Goodearl and E. Pardo, K₀ of purely infinite simple regular rings, *K*-Theory, **26** (2002), 69-100.

- 2. P. Ara, G. K. Pedersen and F. Perera, An infinite analogue of rings with stable range one, *J. Algebra* 230 (2000), 608-655.
- P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Separative cancellation for projective modules over exchange rings, *Israel J. Math.*, 105 (1998), 105-137.
- 4. P. Ara, G. K. Pedersen and F. Perera, Extensions and pullbacks in *QB*-rings, *Algebra Represent Theory*, **8** (2005), 75-97.
- 5. B. Brown, N. H. Mccoy, The maximal regular ideal of a ring, *Proc. Amer. Math. Soc.*, **1** (1950), 165-171.
- 6. C. Y. Hong, N. K. Kim, Nam and Y. Lee, Exchange rings and their extensions, J. *Pure Appl. Algebra*, **179** (2003), 117-126.
- H. Chen, Elements in one-sided unit-regular rings, Comm. Algebra, 25 (1997), 2517-2529.
- 8. H. Chen, On exchange QB-rings, Comm. Algebra, 31 (2003), 831-841.
- 9. H. Chen and M. Chen, On unit-regular ideals, New York J. Math., 9 (2003), 295-302.
- K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991.
- 11 K. R. Goodearl, von Neumann regular rings and direct sum decomposition problems, Facchini Alberto (ed.) et al., Abelian groups and modules, *Proc. Padaova Conference*, Padova, Italy, 1994. Dordrecht: Kluwer Academic Publishers, *Math. Appl. Dordr.*, **343** (1995), 249-255.
- F. Perera, Lifting units modulo exchange ideals and C*-algebras with real rank zero, J. reine. Math., 522 (2000), 51-62.
- 13. H.P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra, **98** (1995), 105-108.

Huanyin Chen Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People's Republic of China E-mail: chyzxl@@hunnu.edu.cn