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ON REGULAR QB-IDEALS

Huanyin Chen

Abstract. Let I be a regular ideal of a ring R. It is shown that I is a QB-
ideal if and only if for all finitely generated projective right R-module A with
AI = A, if B1 and B2 are any right R-modules such that A⊕B1

∼= A⊕B2,
then there exists a pair of orthogonal ideals I1 and I2 and B1 ⊕C1

∼= B2 ⊕C2

such that C1I1 ∼= C1 and CI2 ∼= C2.

1. INTRODUCTION

The theory of QB-rings has been developed by Ara, Pedersen and Perera to
provide an infinite analogue of rings with stable range one. Following Ara et al.
[2], we say that a ring R is a QB-ring when aR+ bR = R with a, b ∈ R implies
that a+ by ∈ R−1

q for a y ∈ R. Let I be an ideal of a ring R. I is a QB-ideal of
R if and only if whenever xa−x−a+ b = 0 for x, a and b in I , there exists y ∈ I

such that 1− (a− yb) ∈ R−1
q (see [2] and [11]). Clearly, every ideal of a QB-ring

R is a QB-ideal. An element x ∈ R is regular in case there exists y ∈ R such
that x = xyx. We say that an ideal I of a ring R is regular if every element in I
is regular. Let M(R) = {x ∈ R|RxR be a regular ideal}. In view of [5, Theorem
1], M(R) is the maximal regular ideal of R.

So far, most of investigation of the QB-ideals is only in an exchange ring. In
this paper, we obtain a new characterization of a regular QB-ideal for an arbitrary
ring. It is shown that a regular ideal I of a ring R is a QB-ideal if and only if
for all finitely generated projective right R-module A with AI = A, if B1 and B2

are any right R-modules such that A ⊕ B1
∼= A ⊕ B2, then there exists a pair of

orthogonal ideals I1 and I2 and B1 ⊕ C1
∼= B2 ⊕ C2 such that C1I1 ∼= C1 and

CI2 ∼= C2.
Throughout the paper, all rings are associative with identity. We say that x, y ∈

R are centrally orthogonal, in symbols x⊥y, if xRy = 0 and yRx = 0. We use
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R−1
q to denote the set {u ∈ R | ∃a, b ∈ R such that (1 − ua)⊥(1 − bu)}. If I1

and I2 are ideals of R, then I1⊥I2 means that x⊥y for all x ∈ I1, y ∈ I2, and we
say that I1 and I2 are orthogonal ideals. The notation M �⊕ N means that M is
isomorphic to a direct summand of N .

Lemma 1. Let I be a regular ideal of R. Then the following are equivalent:

(1) I is a QB-ideal.

(2) eRe is a QB-ring for all idempotents e ∈ I .

Proof. (1) ⇒ (2) Given ax + b = e with a, x, b ∈ eRe, e ∈ I , then (a +
1 − e)(x + 1 − e) + b = 1 in R. As a + 1 − e ∈ 1 + I , we have y ∈ R such
that a + 1 − e + by ∈ R−1

q . By [2,Proposition 2.2], there exists u ∈ R such that(
1 − (a + 1 − e + by)u

)⊥(
1 − (a + 1 − e + by)u

)
. That is,

(
1 − (a + 1 − e +

by)u
)
R

(
1− u(a+ 1 − e+ by)

)
= 0 and

(
1 − u(a+ 1 − e+ by)

)
R

(
1 − (a+ 1−

e + by)u
)

= 0; hence,
(
e − (a + by)(ue)

)
(eRe)

(
e − (eue)(a + b(eye)

)
= 0 and(

e− (eue)(a+ b(eye))
)
(eRe)

(
e− (a+ by)(ue)

)
= 0. Furthermore, we get

(
e− (a+ by)(ue)

)
(eRe)

(
e − (eue)(a+ b(eye)

)
=

(
e− (a+ by)(eue+ (1 − e)ue)

)
(eRe)

(
e− (eue)(a+ b(eye)

)
=

(
e− (a+ by)(eue)− (a+ by)(1− e)ue)

)
(eRe)

(
e− (eue)(a+ b(eye)

)
= 0.

Also we have
(
(1 − e) − (1 − e)u

)
(eRe)

(
e − (eue)(a + b(eye)

)
= 0; hence,( − (a+ by)(1− e)ue

)
(eRe)

(
e− (eue)(a+ b(eye)

)
= 0. Clearly, we see that

(
e− (a+ by)(eue)

)
(eRe)

(
e− (eue)(a+ b(eye)

)
⊆ (

e− (a+ by)(eue)− (a+ by)(1− e)ue)
)
(eRe)

(
e− (eue)(a+ b(eye)

)
+

( − (a+ by)(1− e)ue
)
(eRe)

(
e− (eue)(a+ b(eye)

)
,

so we deduce that
(
e− (a+by)(eue)

)
(eRe)

(
e− (eue)(a+b(eye)

)
= 0. Likewise,(

e− (eue)(a+b(eye)
)
(eRe)

(
e− (a+by)(eue)

)
= 0. Thus a+b(eye) ∈ (eRe)−1

q ,
as required.

(2)⇒(1) Given aR + bR = R with a ∈ 1 + I and b ∈ R, since I is regular,
there exists e = e2 ∈ I such that 1 − a = (1 − a)e; hence, a(1 − e) = 1 − e.
Suppose that ar + bs = (1 − a)e for some r, s ∈ R. Then eae(e + ere) + ebse =
eae(e+ere)+ea(1−e)re+ebse = e. As eRe is a QB-ring, we can find z ∈ eRe

such that eae + ebsez = u ∈ (eRe)−1
q . Set w = (1 − e)ae+ (1 − e)bsez. By [2,
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Proposition 2.2], we have v ∈ eRe such that (e− uv)⊥(e− vu). Clearly,

1 − (a+ bsez)(v −wv + 1 − e)
= 1 − a(1 − e) − (a+ bsez)(v −wv)
= e+ (a+ bsez)wv − (a+ bsez)v
= e+ awv − (a+ bsez)v
= e+wv − (a+ bsez)v
= e+

(
w − (a+ bsez)

)
v

= e+
(
(1 − e)ae+ (1− e)bsez − (ae+ bsez + a(1 − e))

)
v

= e− (eae + ebsez)v
= e− uv.

On the other hand, we have

1 − (v −wv + 1 − e)(a+ bsez)
= 1 − (v −wv + 1 − e)(ae+ bsez) − (v −wv + 1 − e)a(1 − e)
= e− (v − wv + 1 − e)(ae+ bsez)
= e− w − (e− w)v(ae+ bsez)
= (e− w)− (e− w)vu
= (e− w)(e− vu).

It follows from (e − uv)⊥(e− vu) that
(
1 − (a + bsez)(v − wv + 1 − e)

)⊥(v −
wv + 1 − e)

(
1 − (a+ bsez)

)
. Therefore a+ bsez ∈ R−1

q , as desired.

Lemma 2. Let I be a regular ideal of R. Then the following are equivalent:

(1) I is a QB-ideal.

(2) For any idempotent e ∈ I , M = A1 ⊕ H = A2 ⊕K with A1
∼= eR ∼= A2

implies that there exists a pair of orthogonal ideals I 1 and I2 and M =
E ⊕ B1 ⊕H = E ⊕B2 ⊕K such that B1I1 = B1 and B2I2 = B2.

Proof. (1)⇒(2) Let e ∈ I be an idempotent. By Lemma 1, ϕ : EndR(eR) ∼=
eRe is a regularQB-ring. Given any rightR-module decompositionM = A1⊕H =
A2 ⊕K with A1

∼= eR ∼= A2. Using the decomposition M = A1 ⊕H ∼= eR⊕H ,
we obtain projections p1 : M → eR, p2 : M → H and injections q1 : eR →
M, q2 : H → M such that p1q1 = 1, q1p1 + q2p2 = 1M and Kerp1 = H . Using
the decomposition M = A2 ⊕ K ∼= eR ⊕ K, we obtain a projection f : M →
eR and an injection g : eR → M such that fg = 1 and Kerf = K. From
(fq1)(p1g) + fq2p2g = f(q1p1 + q2p2)g = fg = 1 in EndR(eR), we can find
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some u ∈ EndR(eR)−1
q such that fq1 + fq2p2gy = u for a y ∈ EndR(eR). That

is, f(q1 + q2p2gy) = u. Choose a quasi-inverse v for u and set α = vu, β = uv.
Let ψ = q1 +q2p2gy. Then fψ = u and p1ψ = 1. Let D1 = kerαp1, D2 = kerβf

and E = ψα(eR). If m ∈ E ∩D1, then m = ψα(x) for some x ∈ eR. Hence 0 =
αp1(m) = αp1ψα(x) = vuvu(x) = vu(x) = α(x), and then m = 0. This means
that E∩D1 = 0. Given any m ∈M , we have m = ψαp1(m)+

(
m−ψαp1(m)

) ∈
E+D1. Thus M = E⊕D1. Likewise,M = E⊕D2. Let B1 = p1(e−α)(eR) and
B2 = f(e−β)(eR). One easily checks that D1 = B1⊕H and D2 = B2⊕K . Thus
M = E⊕B1⊕H = E⊕B2⊕K. Let I1 = R

(
e−ϕ(α)

)
R and I2 = R

(
e−ϕ(β)

)
R.

Then I1 and I2 are ideals of R. As
(
e−ϕ(α)

)⊥(
e−ϕ(β)

)
, we deduce that I1⊥I2.

Moreover, we have B1I1 = B1 and B2I2 = B2.
(2)⇒(1) Let e ∈ I be an idempotent. Suppose that a1(eRe) + a2(eRe) = eRe

with a1, a2 ∈ eRe. Set M = eR ⊕ eR. Then we have a split epimorphism
ψ : M → eR given by ψ(s, t) = a1s + a2t for any s ∈ eR, t ∈ eR; hence,
M = A2 ⊕ K, where K = kerψ and A2

∼= eR. Therefore we get a pair of
orthogonal ideals I1 and I2 and M = E ⊕ B1 ⊕ eR = E ⊕ B2 ⊕ K such that
B1I1 = B1 and B2I2 = B2. Let ϕ : M = eR⊕ eR → eR be the projection onto
the first factor. Write E1 = ϕ(E) and B′

1 = ϕ(B1). Then eR = E1 ⊕ B′
1. Let

h : eR = E1 ⊕ B′
1 → E1 be the projection onto E1. Then h ∈ EndR(eR) is an

idempotent. As α : EndR(eR) ∼= eRe, α(h) ∈ eRe is an idempotent. In addition,
e− α(h) ∈ I1. Write E2 = ψ(E) and B′

2 = ψ(B2). We have eR = E2 ⊕ B′
2. Let

k : eR = E2 ⊕ B′
2 → E2 be the projection onto E2. Then k ∈ EndR(eR) is an

idempotent, and that e−α(k) ∈ I2. Hence
(
e−α(h)

)⊥(
e−α(k)

)
because I1⊥I2.

Obviously, ψ |E⊕B2: E ⊕ B2 → eR is an isomorphism. Let θ = (ψ |E⊕B2)
−1,

and let i : E ⊕ B2 → M = eR ⊕ eR be the injection. Since α(k) ∈ eRe is
an idempotent, we may assume that iθ

(
α(k)

)
= (x1, x2) with x1 ∈ eRα(k) and

x2 ∈ eRα(k). Then α(k) = ψiθ
(
α(k)

)
= ψ(x1, x2) = a1x1 + a2x2. Inas-

much as E1 = ϕ(E) and E2 = ψ(E), we get an isomorphism ϕθ : E2 → E1.
Evidently, E2 = k(eR) = k(e)eR = α(k)R. Likewise, E1 = α(h)R. So we
have r ∈ R such that α(h) = ϕθ

(
α(k)r

)
= α(h)ϕθ

(
α(k)

)
α(k)rα(h). Clearly,

x1 = ϕiθ
(
α(k)

)
= ϕθ

(
α(k)

)
= α(h)ϕθ

(
α(k)

)
α(k). Set y1 = α(k)rα(h). Then

α(h) = x1y1. Moreover, y1x1 = α(k)rα(h)ϕθ
(
α(k)

)
= (ϕθ)−1

(
α(h)

)
ϕθ

(
α(k)

)
= (ϕθ)−1

(
α(h)ϕθ(α(k))

)
= (ϕθ)−1

(
ϕθ(α(k))

)
= α(k). Hence (e− y1x1)⊥(e−

x1y1). That is, x1 ∈ (eRe)−1
q . In addition, (a + bx2y1)x1 = ax1 + bx2α(k) =

α(h) = y1x1. So x1(a+ bx2y1)x1 = x1y1x1 = x1α(h) = x1. As x1 ∈ (eRe)−1
q ,

we deduce that a+ bx2y1 ∈ (eRe)−1
q from [2, Remark 2.10]. It follows by Lemma

1 that I is a QB-ideal.

We use V(R) to denote the monoid of isomorphism classes of finitely generated
projective right R-modules. An order-ideal in V(R) is a submonoid S of V(R)
that is order-hereditary. If I is an ideal of R, we denote by V(I) the monoid of
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isomorphism classes of finitely generated projective right R-modules A such that
AI = A. Following P. Ara et al.[2], we say that two order-ideals S1 and S2 of
V(R) are orthogonal provided that S1 ∩ S2 = 0. We denote it by S1⊥S2.

Lemma 3. Let I be a regular ideal of a ring R, and let e ∈ I an idempotent.
For any right R-modules A,B1 and B2, if eR ⊕ B1

∼= A ⊕ B2 then we have a
refinement matrix

eR B1

A

B2

(
A′ B′

1

B′
2 C′

)
.

That is, A ∼= A′ ⊕ B′
1, eR

∼= A′ ⊕B′
2, B1

∼= B′
1 ⊕C′ and B2

∼= B′
2 ⊕C′ .

Proof. Suppose that ψ : eR⊕B1
∼= A⊕B2. Given decompositionsN := eR⊕B1 =

ψ−1(A) ⊕ ψ−1(B2). Since I is a regular ideal and e = e2 ∈ I , eRe is a regular
ring; hence eR as a right R-module has the finite exchange property. Thus we can
find some B′

1 �⊕ ψ−1(A) and C ′ �⊕ ψ−1(B2) such that N = eR⊕B ′
1 ⊕ C′. So

A ∼= ψ−1(A) = A′⊕B′
1 and B2

∼= ψ−1(B2) = B′
2 ⊕C′ for some right R-modules

A′ and B′
2. It follows from N = ψ−1(A) ⊕ ψ−1(B2) = A′ ⊕ B′

1 ⊕ B′
2 ⊕ C′ =

eR⊕B′
1⊕C′ that eR ∼= A′⊕B′

2. In addition, we claim that B1
∼= B′

1⊕C′ because
N = eR ⊕B1 = eR⊕B′

1 ⊕C′ .

Theorem 4. Let I be a regular ideal of R. Then the following are equivalent:

(1) I is a QB-ideal.
(2) For any idempotent e ∈ I , [eR] + b1 = [eR] + b2 in V(R) implies that there

exist orthogonal order-ideal S 1 and S2 in V(R) and elements c1, c2, such
that c1 ∈ S1, c2 ∈ S2 and b1 + c1 = b2 + c2.

(3) For all idempotents e ∈ I , if B1 and B2 are any right R-modules such that
eR⊕ B1

∼= eR ⊕B2 then there exists a pair of orthogonal ideals I 1 and I2
and B1 ⊕C1

∼= B2 ⊕ C2 such that C1I1 = C1 and CI2 = C2.

Proof. (1) ⇒ (2) Choose representations B1 and B2 for b1 and b2 such that
M := A1 ⊕B1 = A1 ⊕ B2 with A1

∼= eR ∼= A2. By Lemma 2, there exists a pair
of orthogonal ideals I1 and I2 and M = E ⊕ C1 ⊕ B1 = E ⊕ C2 ⊕ B2 such that
C1I1 = C1 and C2I2 = C2. Since A1, B1 ∈ V(R), we have M ∈ V(R); hence,
E, C1, C2 ∈ V(R). Let c1 = [C1] and c2 = [C2]. We get b1+c1 = b2+c2. Let Si =
V(Ii). Then V(I1) and V(I2) are orthogonal order-ideals of V(R). Furthermore,
we have ci ∈ Si for i = 1, 2.

(2) ⇒ (3) Let e ∈ I be an idempotent. Suppose that B1 and B2 are any
right R-modules such that eR⊕ B1

∼= eR ⊕ B2. By virtue of Lemma 3, we get a
refinement matrix
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eR B1

eR
B2

(
A′ B′

1

B′
2 C′

)
.

Hence eR ∼= A′ ⊕ B′
1
∼= A′ ⊕ B′

2 with A′, B′
1, B

′
2 ∈ V(R). Clearly, we have

an idempotent g ∈ eRe ⊆ I such that A′ ∼= gR. So gR ⊕ B′
1
∼= gR ⊕ B′

2 in
V(R), and then we have orthogonal order-ideals S1 and S2 in V(R) and elements
c′1 = [C′

1], c
′
2 = [C′

2], such that c′1 ∈ S1, c
′
2 ∈ S2 and [B′

1]+c′1 = [B′
2]+c′2. That is,

B′
1⊕C′

1
∼= B′

2⊕C′
2. This infers that eR⊕C ′

1
∼= A′⊕(B′

1⊕C′
1) ∼= A′⊕(B′

2⊕C′
2) ∼=

eR⊕ C′
2. By Lemma 3 again , we have a refinement matrix

eR C′
1

eR
C′

2

(
A′′ C1

C2 C′′

)
.

Since [C′
1] ∈ S1 and [C ′′] ≤ [C′

1], we have [C′′] ∈ S1. Likewise, we have [C′′] ∈ S2.
It follows from S1 ∩ S2 = 0 that C ′′ = 0. Therefore there exist some idempotents
h1, h2, k1, k2 ∈ eRe such that h1 + k1 = e = h2 + k2, h1R ∼= h2R, k1R ∼= C1 and
k2R ∼= C2. For i = 1, 2 let Ii = {∑RpR | p = p2, pR ∈ Si}, respectively. Then
I1∩I2 = 0; hence, I1⊥I2 = 0. Furthermore, we have k1 ∈ I1 and k2 ∈ I2. Clearly,
C1I1 = C1 and C2I1 = C2. Moreover, we get B′

1 ⊕ C1
∼= B′

1 ⊕C′
1
∼= B′

2 ⊕ C′
2
∼=

B′
2 ⊕ C2, and then B1 ⊕ C1

∼= (B′
1 ⊕C′) ⊕C1

∼= C′ ⊕ (B′
2 ⊕C2) ∼= B2 ⊕ C2, as

required.
(3) ⇒ (1) Let e ∈ I be an idempotent. Then eRe is a regular ring. Let

a ∈ eRe. There exists b ∈ eRe such that a = aba and b = bab. Set p = ab

and q = ba. As in the proof of [2, Theorem 8.7], we see that eR ⊕ (e − p)R ∼=
qR ⊕ (e − q)R⊕ (e − p)R ∼= pR ⊕ (e − q)R ⊕ (e − p)R ∼= eR ⊕ (e − q)R. So
we have right R-modules C1 and C2 such that (e − p)R ⊕ C1

∼= (e − q)R ⊕ C2

and a pair of orthogonal ideals I1 and I2 such that C1I1 = C1 and C2I2 = C2. As
e− p = (e− p)2 ∈ I , by Lemma 3, we get a refinement matrix

(e− p)R C1

(e− q)R
C2

(
A′ C′

1

C′
2 C′

)
.

Inasmuch as C′I1 = C′ = C′I2, C′ = C′I1 = (C′I1)I1 = (C′I2)I1 = 0. Hence
we have idempotents e1, f1 ∈ (e − p)R(e − p), e2, f2 ∈ (e − q)R(e − q) such
that e − p = e1 + f1, e − q = e2 + f2, e1R ∼= A′ ∼= e2R, and f1R ∼= C′

1 and
f2R ∼= C′

2. As e1R ∼= e2R, we can find c ∈ e1Re2 and d ∈ e2Re1 such that
e1 = cd and e2 = dc. Clearly, a ∈ p(eRe)q and c ∈ (e − p)(eRe)(e − q) are
both regular in eRe. By [2, Lemma 2.7], a ≤ a + c. Furthermore, it follows from
b ∈ qRp, d ∈ (e−q)R(e−p) that e−(a+c)(b+d) = e−ab−cd = (e−p)−e1 = f1.
Likewise, e − (b+ d)(a+ c) = f2. Obviously, C′

1I1 = C′
1 and C ′

2I2 = C2. From
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this, we deduce that f1RI1 = f1R and f2RI2 = f2R; hence, f1 ∈ I1 and f2 ∈ I2.
From I1⊥I2, it follows that

(
e − (a + c)(b+ d)

)
R

(
e − (b + d)(a+ c)

)
= 0 and(

e− (b+ d)(a+ c
)
R

(
e− (a+ c)(b+ d)

)
= 0. So a+ c ∈ (eRe)−1

q . Therefore we
complete the proof by [2, Theorem 8.4] and Lemma 1.

Theorem 5. Let I be a regular ideal of R. Then the following are equivalent:

(1) I is a QB-ideal.

(2) For all finitely generated projective right R-module A with AI = A, if B 1

and B2 are any right R-modules such that A ⊕ B1
∼= A ⊕ B2, then there

exists a pair of orthogonal ideals I 1 and I2 and B1 ⊕ C1
∼= B2 ⊕ C2 such

that C1I1 = C1 and CI2 = C2.

Proof. (2) ⇒ (1) Given any idempotent e ∈ I , then we have a finitely generated
projective right R-module eR such that eRI = eR. In view of Theorem 4, I is a
QB-ideal of R.

(1) ⇒ (2) Let A be a finitely generated projective right R-module A with
AI = A. Suppose that A ⊕ B1

∼= A ⊕ B2. By virtue of [9, Lemma 6],
there exist idempotents e1, · · · , en ∈ I such that A ∼= e1R ⊕ · · · ⊕ enR. So
diag(e1, · · · , en)Rn×1⊕B1

∼= diag(e1, · · · , en)Rn×1⊕B2, and then diag(e1, · · · ,
en)Mn(R)⊕B1

⊗
R

R1×n ∼= diag(e1, · · · , en)Mn(R)⊕B2
⊗
R

R1×n. Clearly, diag(e1,

· · · , en) ∈Mn(I). By [5, Lemma 2] and [2, Remark 6.5], Mn(I) is a regular QB-
ideal of Mn(R). It follows from Theorem 4 that there exists a pair of orthogonal
ideals Mn(I1) and Mn(I2) of Mn(R) and B1

⊗
R
R1×n ⊕ C′

1
∼= B2

⊗
R
R1×n ⊕ C′

2

such that C ′
1Mn(I1) = C′

1 and C ′
2Mn(I2) = C′

2. Obviously, I1⊥I2. Set Ci =
C′

i

⊗
Mn(R)

Rn×1(i = 1, 2). Then B1 ⊕ C1
∼= B2 ⊕ C2. As Rn×1I ∼= Mn(I)Rn×1,

we deduce that C1I = C1 and C2I = C2, as required.

As a result, we prove that a regular ring R is a QB-ring if and only for all finitely
generated projective right R-module A, if B1 and B2 are any right R-modules such
that A⊕ B1

∼= A⊕ B2, then there exists a pair of orthogonal ideals I1 and I2 and
B1⊕C1

∼= B2⊕C2 such that C1I1 = C1 and CI2 = C2, which extend [2, Theorem
8.7] and gives a new characterization of regular QB-rings.

Corollary 6. Let I be a purely infinite simple regular ideal of a ring R, and
let A be a finitely generated projective right R-module such that A = AI . If B 1

and B2 are any right R-modules such that A ⊕ B1
∼= A⊕ B2, then there exists a

pair of orthogonal ideals I 1 and I2 and B1 ⊕C1
∼= B2 ⊕C2 such that C1I1 = C1

and CI2 = C2.
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Proof. According to [4, Corollary 1.11], I is a QB-ideal of R. So the result follows
by Theorem 5.

Following P. Ara et al. (cf. [3] and [11]), we say that R is a separative ring if
the following condition holds for all finitely generated projective right R-modules
A,B : A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ A ∼= B. A ring R is said to be one-sided
unit-regular in case for any x ∈ R there exists a right or left invertible u ∈ R such
that x = xux (cf. [7-8]). A simple ring R is said to be purely infinite if R is not
a division ring, but for any non-zero element x ∈ R there are s, t ∈ R such that
sxt = 1(see [3]). The class of purely infinite simple regular rings is rather large
(cf.[1]). We claim that every purely infinite simple regular ring is separative.

Corollary 7. Let R be a simple regular ring. Then the following are equiva-
lent:

(1) R is a QB-ring.
(2) R is a separative ring.
(3) R is one-sided unit-regular.
(4) R either has stable rank 1 or is purely infinite.

Proof. (1) ⇒ (2) Suppose that A,B1 and B2 are finitely generated projective
right R-modules such that A⊕B1

∼= A⊕B2. In view of Theorem 5, there exists a
pair of orthogonal ideals I1 and I2 and B1 ⊕ C1

∼= B2 ⊕ C2 such that C1I1 = C1

and CI2 = C2. Since R is a simple ring, either I1 or I2 is zero. This infers that
C1 = 0 or C2 = 0. So B1 �⊕ B2 or B2 �⊕ B1. By [8,Theorem 8], R is one-sided
unit-regular.

(2) ⇒ (3) LetR be a simple regular separative ring. If R is directly finite,R has
stable range one from [3, Theorem 3.4]. If R is directly infinite, then R⊕D ∼= R
for some nonzero right R-module D. Given any right R-modules P and Q. If
either P or Q is zero, then P �⊕ Q or Q �⊕ P . Now we assume that P and
Q are both nonzero. Since R is simple, there exists a positive integer n such that
P �⊕ nD. Thus P ⊕ R �⊕ nD ⊕ R ∼= R. So P ⊕ R �⊕ R �⊕ Q ⊕ R, and
then R⊕ (P ⊕ E) ∼= R ⊕Q for a right R-module E . Inasmuch as P ⊕ E and Q
are nonzero, we have R �⊕ s(P ⊕ E) and R �⊕ tQ for positive integers s and t.
Applying [3,Lemma 2.1], P �⊕ P ⊕E ∼= Q. Therefore R is one-sided unit-regular.

(3) ⇒ (1) According to [2, Example 8.8], R is a QB-ring.
(1) ⇔ (4) is clear by [1, Remark 1.8] and [2, Proposition 3.10].
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