Vol. 9, No. 2, pp. 281-289, June 2005

This paper is available online at http://www.math.nthu.edu.tw/tjm/

PARSEVAL'S FORMULA FOR DOUBLE LAGUERRE SERIES

Chang-Pao Chen and Chin-Cheng Lin

Abstract. Let $a \geq 0$. We give sufficient conditions on $\{c_{jk}\}$ to obtain Parseval's formula for the corresponding double Laguerre series $\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} c_{jk} \mathcal{L}_j^a(x) \mathcal{L}_k^a(y)$.

1. Introduction

For $a \geq 0$, define the Laguerre function $\mathcal{L}_n^a(t)$ by

$$\mathcal{L}_{n}^{a}(t) = \sqrt{\frac{n!}{\Gamma(n+a+1)}} e^{-t/2} t^{a/2} L_{n}^{a}(t) \qquad n = 0, 1, 2, \cdots,$$

where

$$L_n^a(t) = \frac{1}{n!} t^{-a} e^t \frac{d^n}{dt^n} (t^{n+a} e^{-t}).$$

It is known that $\{\mathcal{L}_n^a(t)\}_{n=0}^\infty$ forms an orthonormal basis in $L^2(\mathbb{R}^+,dt)$ with the inner product $\langle f,g\rangle=\int_0^\infty f(t)g(t)\,dt$ (cf. [6, 7]).

In this paper, we consider the following double Laguerre series

(1.1)
$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} c_{jk} \mathcal{L}_j^a(x) \mathcal{L}_k^a(y), \qquad x, y \in \mathbb{R}^+.$$

Let $s_{mn}(x, y)$ be the rectangular partial sums of series (1.1) given by

$$s_{mn}(x,y) = \sum_{j=0}^{m} \sum_{k=0}^{n} c_{jk} \mathcal{L}_{j}^{a}(x) \mathcal{L}_{k}^{a}(y).$$

Received February 18, 2004. accepted April 20, 2004.

Communicated by Der-Chen Chang.

2000 Mathematics Subject Classification: Primary 42C10, 42C15.

Key words and phrases: Double Laguerre series, Rectangular partial sums, Parseval's formula.

Dedicated to Professor Hwai-Chiuan Wang on his retirement.

The research was supported by the National Science Council, Taipei, R.O.C.

We say that series (1.1) converges regularly to f(x,y) if $s_{mn}(x,y) \to f(x,y)$ as $\min\{m,n\} \to \infty$, the row series $\sum_{j=0}^{\infty} c_{jk} \mathcal{L}_{j}^{a}(x) \mathcal{L}_{k}^{a}(y)$ converges for each fixed value of k, and the column series $\sum_{k=0}^{\infty} c_{jk} \mathcal{L}_{j}^{a}(x) \mathcal{L}_{k}^{a}(y)$ converges for each fixed value of j (cf. [4]). For $E \subseteq \mathbb{R}^{+} \times \mathbb{R}^{+}$, the series (1.1) is said to converge uniformly on E to f(x,y) if $s_{mn}(x,y) \to f(x,y)$ uniformly on E as $\min\{m,n\} \to \infty$.

We are interested in finding conditions on $\{c_{jk}\}$ and ϕ such that the following Parseval's formula holds:

(1.2)
$$\lim_{\substack{\epsilon,\delta \to 0^+ \\ \alpha,\beta \to \infty}} \int_{\delta}^{\beta} \int_{\epsilon}^{\alpha} f(x,y)\phi(x,y) \, dx dy = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} c_{jk} \, \hat{\phi}^*(j,k),$$

where f(x, y) is the limit function of $s_{mn}(x, y)$ and

$$\hat{\phi}^*(j,k) = \lim_{\substack{\epsilon,\delta o 0^+ \ lpha, eta o \infty}} \int_{\delta}^{eta} \int_{\epsilon}^{lpha} \phi(x,y) \mathcal{L}_j^a(x) \mathcal{L}_k^a(y) \ dx dy.$$

For suitable ϕ , we shall prove that the following conditions are sufficient for the validity of (1.2):

(1.3)
$$|c_{jk}| (\bar{j}\bar{k})^{p/2-1/4} (\overline{\log j} \overline{\log k})^{1+\eta} = O(1)$$
 as $\max\{j, k\} \to \infty$,

(1.4)
$$\sum_{j=0}^{\infty} |\Delta_{p0} c_{jn}| (\bar{j}\bar{n})^{p/2-1/4} (\overline{\log n})^{1+\eta} = O(1) \quad \text{as} \quad n \to \infty,$$

(1.5)
$$\sum_{k=0}^{\infty} |\Delta_{0p} c_{mk}| (\bar{m}\bar{k})^{p/2-1/4} (\overline{\log m})^{1+\eta} = O(1) \quad \text{as} \quad m \to \infty,$$

(1.6)
$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\Delta_{pp} c_{jk}| (\bar{j}\bar{k})^{p/2-1/4} < \infty,$$

where $p \ge 1, \eta > 0, \bar{\xi} \equiv \max\{\xi, 1\}$, and

$$\Delta_{\alpha\beta}c_{jk} = \sum_{s=0}^{\alpha} \sum_{t=0}^{\beta} (-1)^{s+t} \binom{\alpha}{s} \binom{\beta}{t} c_{j+s,k+t}.$$

Conditions (1.4) - (1.6) describe certain concept of bounded variation, which are closely related to those in [2, Theorem 2]. Our main result is

Theorem 1.1. Let $a \ge 0, p \ge 1$, and $\eta > 0$. Assume that $\{c_{jk}\}$ satisfies conditions (1.3) - (1.6). Then series (1.1) converges regularly to some function

f(x,y) for all x,y>0, and the convergence is uniform on any rectangle $\{\epsilon \leq x \leq \alpha, \delta \leq y \leq \beta\}$, where $0 < \epsilon < \alpha < \infty$ and $0 < \delta < \beta < \infty$. Moreover, if ϕ is measurable and locally bounded in $(0,\infty)\times(0,\infty)$, $\hat{\phi}^*(j,k)$ exists for all $j,k\geq 0$, and (1.7)

$$\sup_{\substack{j,k\geq 0\\0\leqslant \epsilon \leqslant \alpha \leqslant \infty\\\delta \leqslant \delta \leqslant \alpha \leqslant \infty}} (\bar{j}\bar{k})^{(a+p)/2} \left| \int_{\delta}^{\beta} \int_{\epsilon}^{\alpha} \phi(x,y)(xy)^{-p/2} \mathcal{L}_{j}^{a+p}(x) \mathcal{L}_{k}^{a+p}(y) \, dx dy \right| < \infty,$$

then (1.2) holds.

The proof of Theorem 1.1 will be given in the next section. In §3, we investigate the validity of (1.7) for functions of the type $\phi(x,y) = \phi_1(x)\phi_2(y)$, where ϕ_1 and ϕ_2 are of the form $(t/(1+t))^{\kappa+1}(1+t)^{\mu}$.

Throughout this paper C, C_p , and C_{ap} denote constants, which are not necessarily the same at each occurrence.

2. Proof of Theorem 1.1

Set

$$d_{jk} = c_{jk} \sqrt{rac{j!}{\Gamma(j+a+1)}} \sqrt{rac{k!}{\Gamma(k+a+1)}}.$$

Then $|d_{jk}| \leq C(\bar{j}\bar{k})^{-a/2}|c_{jk}|$. Therefore, (1.3) implies

(2.1)
$$|d_{jk}| (\bar{j}\bar{k})^{(a+p)/2-1/4} \longrightarrow 0 \quad \text{as} \quad \max\{j,k\} \to \infty.$$

Using the inequality $1 - \sqrt{1 - y} \le y$ for $y \in [0, 1]$, we get

$$\left| \Delta^{\mu} \left(\sqrt{\frac{j!}{\Gamma(j+a+1)}} \right) \right| \leq C_p \sqrt{\frac{j!}{\Gamma(j+a+1)}} \frac{a}{j+a+1}$$
$$\leq C_{ap} \, \bar{j}^{-a/2-1} \quad \text{for} \quad 1 \leq \mu \leq p,$$

which implies

$$|\Delta_{p0}d_{jn}| \leq \left\{ \sqrt{\frac{(j+p)!}{\Gamma(j+p+a+1)}} |\Delta_{p0}c_{jn}| + C_{ap}\,\bar{j}^{-a/2-1} \sum_{s=0}^{p-1} \binom{p}{s} |\Delta_{s0}c_{jn}| \right\} \sqrt{\frac{n!}{\Gamma(n+a+1)}}$$

$$\leq C_{ap}(\bar{j}\bar{n})^{-a/2} \left\{ |\Delta_{p0}c_{jn}| + \bar{j}^{-1} \binom{\max}{j \leq \mu \leq j+p-1} |c_{\mu n}| \right\}.$$

Putting this with (1.3), (1.4) together yields

(2.2)
$$\lim_{n \to \infty} \sum_{j=0}^{\infty} |\Delta_{p0} d_{jn}| (\bar{j}\bar{n})^{(a+p)/2 - 1/4} = 0.$$

Similarly, conditions (1.3) and (1.5) imply

(2.3)
$$\lim_{m \to \infty} \sum_{k=0}^{\infty} |\Delta_{0p} d_{mk}| (\bar{m}\bar{k})^{(a+p)/2-1/4} = 0.$$

We have

$$\begin{split} |\Delta_{pp}d_{jk}| &\leq \sqrt{\frac{(j+p)!}{\Gamma(j+p+a+1)}} \sqrt{\frac{(k+p)!}{\Gamma(k+p+a+1)}} |\Delta_{pp}c_{jk}| \\ &+ C_{ap} \, \bar{j}^{-a/2-1} \sum_{s=0}^{p-1} \binom{p}{s} |\Delta_{sp}c_{jk}| \sqrt{\frac{(k+p)!}{\Gamma(k+p+a+1)}} \\ &+ C_{ap} \, \bar{k}^{-a/2-1} \sum_{t=0}^{p-1} \binom{p}{t} |\Delta_{pt}c_{jk}| \sqrt{\frac{(j+p)!}{\Gamma(j+p+a+1)}} \\ &+ C_{ap} (\bar{j}\bar{k})^{-a/2-1} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \binom{p}{s} \binom{p}{t} |\Delta_{st}c_{jk}| \\ &\leq C_{ap} (\bar{j}\bar{k})^{-a/2} \bigg\{ |\Delta_{pp}c_{jk}| + \bar{j}^{-1} \binom{\max}{j \leq \mu \leq j+p-1} |\Delta_{0p}c_{\mu k}| \bigg\} \\ &+ \bar{k}^{-1} \binom{\max}{k \leq \nu \leq k+p-1} |\Delta_{p0}c_{j\nu}| + (\bar{j}\bar{k})^{-1} \binom{\max}{j \leq \mu \leq j+p-1} |c_{\mu\nu}| \bigg\} \bigg\}. \end{split}$$

Putting this with (1.3) - (1.6) together yields

(2.4)
$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\Delta_{pp} d_{jk}| (\bar{j}\bar{k})^{(a+p)/2-1/4}$$

$$\leq C_{ap} \left\{ \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\Delta_{pp} c_{jk}| (\bar{j}\bar{k})^{p/2-1/4}$$

$$+ \sum_{j=0}^{\infty} \bar{j}^{-1} \sum_{k=0}^{\infty} \left(\max_{j \leq \mu \leq j+p-1} |\Delta_{0p} c_{\mu k}| \right) (\bar{j}\bar{k})^{p/2-1/4}$$

$$+ \sum_{k=0}^{\infty} \bar{k}^{-1} \sum_{j=0}^{\infty} \left(\max_{k \leq \nu \leq k+p-1} |\Delta_{p0} c_{j\nu}| \right) (\bar{j}\bar{k})^{p/2-1/4}$$

$$+ \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (\bar{j}\bar{k})^{-1} \left(\max_{\substack{j \leq \mu \leq j+p-1 \\ k \leq \nu \leq k+p-1}} |c_{\mu\nu}| \right) (\bar{j}\bar{k})^{p/2-1/4} \right\}$$

$$< \infty.$$

Applying [3, Theorem 2.1] to the series $\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} d_{jk} L_j^a(x) L_k^a(y)$, we see that series (1.1) converges regularly to some function f(x,y) for x,y>0, and the convergence is uniform on any rectangle $\{\epsilon \leq x \leq \alpha, \delta \leq y \leq \beta\}$, where $0 < \epsilon < \alpha < \infty$ and $0 < \delta < \beta < \infty$. As proved in [3, Theorem 2.1],

$$\sum_{j=0}^{m} \sum_{k=0}^{n} (\Delta_{pp} d_{jk}) L_{j}^{a+p}(x) L_{k}^{a+p}(y) \longrightarrow e^{(x+y)/2}(xy)^{-a/2} f(x,y)$$
as $\min\{m,n\} \to \infty$,

and the convergence is uniform on $\{\epsilon \le x \le \alpha, \delta \le y \le \beta\}$. Set

$$\Phi_{jk}^{st}(\epsilon,\delta,\alpha,eta) = \int_{\delta}^{eta} \int_{\epsilon}^{lpha} \phi(x,y) L_{j}^{a+s}(x) L_{k}^{a+t}(y) e^{-(x+y)/2} (xy)^{a/2} dx dy.$$

Then as $\min\{m, n\} \to \infty$,

(2.5)
$$\sum_{j=0}^{m} \sum_{k=0}^{n} (\Delta_{pp} d_{jk}) \Phi_{jk}^{pp}(\epsilon, \delta, \alpha, \beta) \longrightarrow \int_{\delta}^{\beta} \int_{\epsilon}^{\alpha} f(x, y) \phi(x, y) \, dx dy.$$

Employing the equation $\sum_{k=0}^{n} L_k^a(t) = L_n^{a+1}(t)$ (cf. [7, Eq. 5.1.13]), we get

(2.6)
$$\Phi_{jk}^{st}(\epsilon, \delta, \alpha, \beta) = \sum_{\mu=0}^{j} \Phi_{\mu k}^{s-1, t}(\epsilon, \delta, \alpha, \beta) = \sum_{\nu=0}^{k} \Phi_{j\nu}^{s, t-1}(\epsilon, \delta, \alpha, \beta)$$
$$= \sum_{\mu=0}^{j} \sum_{\nu=0}^{k} \Phi_{\mu\nu}^{s-1, t-1}(\epsilon, \delta, \alpha, \beta).$$

On the other hand,

(2.7)
$$\hat{\phi}^*(j,k) = \left(\lim_{\substack{\epsilon,\delta \to 0^+ \\ \alpha,\beta \to \infty}} \Phi_{jk}^{00}(\epsilon,\delta,\alpha,\beta)\right) \sqrt{\frac{j!}{\Gamma(j+a+1)}} \sqrt{\frac{k!}{\Gamma(k+a+1)}}.$$

Since $\hat{\phi}^*(j,k)$ exists for all $j,k \geq 0$, it follows from (2.6) and (2.7) that the limit $\zeta_{jk}^{st} \equiv \lim_{\epsilon,\delta \to 0^+ \atop \alpha,\beta \to \infty} \Phi_{jk}^{st}(\epsilon,\delta,\alpha,\beta)$ exists for all $s,t,j,k \geq 0$. The condition (1.7) on ϕ is

equivalent to the existence of the constant C with

(2.8)
$$\sup_{\substack{j,k\geq 0\\0<\epsilon<\alpha<\infty\\0<\delta<\beta<\infty}} \left| \Phi_{jk}^{pp}(\epsilon,\delta,\alpha,\beta) \right| \leq C < \infty.$$

By (2.6) and (2.8), we can assume

(2.9)
$$|\zeta_{jk}^{st}| \le C \quad \text{for all } j, k \ge 0 \text{ and } 0 \le s, t \le p.$$

We have $(a+p)/2 - 1/4 \ge 0$. It follows from (2.4), (2.5), and (2.8) that the limit

$$\lim_{\substack{\epsilon,\delta \to 0^+ \\ \alpha,\beta \to \infty}} \int_{\delta}^{\beta} \int_{\epsilon}^{\alpha} f(x,y) \phi(x,y) \, dx dy$$

exists and equals

$$\zeta \equiv \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (\Delta_{pp} d_{jk}) \zeta_{jk}^{pp}.$$

The double series defining ζ converges absolutely. For $m, n \geq 0$, we have

(2.10)
$$\lambda_{mn} \equiv \sum_{j=0}^{m} \sum_{k=0}^{n} c_{jk} \hat{\phi}^{*}(j,k) = \lim_{\substack{\epsilon,\delta \to 0^{+} \\ \alpha,\beta \to \infty}} \int_{\delta}^{\beta} \int_{\epsilon}^{\alpha} \phi(x,y) s_{mn}(x,y) dxdy$$
$$= \lim_{\substack{\epsilon,\delta \to 0^{+} \\ \alpha,\beta \to \infty}} \int_{\delta}^{\beta} \int_{\epsilon}^{\alpha} \phi(x,y) t_{mn}(x,y) e^{-(x+y)/2} (xy)^{a/2} dxdy,$$

where $t_{mn}(x,y) = \sum_{j=0}^{m} \sum_{k=0}^{n} d_{jk} L_{j}^{a}(x) L_{k}^{a}(y)$. Summation by parts gives

$$t_{mn}(x,y) = \sum_{j=0}^{m} \sum_{k=0}^{n} (\Delta_{pp} d_{jk}) L_{j}^{a+p}(x) L_{k}^{a+p}(y)$$

$$+ \sum_{t=0}^{p-1} \sum_{j=0}^{m} (\Delta_{pt} d_{j,n+1}) L_{j}^{a+p}(x) L_{n}^{a+t+1}(y)$$

$$+ \sum_{s=0}^{p-1} \sum_{k=0}^{n} (\Delta_{sp} d_{m+1,k}) L_{m}^{a+s+1}(x) L_{k}^{a+p}(y)$$

$$+ \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} (\Delta_{st} d_{m+1,n+1}) L_{m}^{a+s+1}(x) L_{n}^{a+t+1}(y).$$

Plug this into (2.10) to obtain

$$\lambda_{mn} = \sum_{j=0}^{m} \sum_{k=0}^{n} (\Delta_{pp} d_{jk}) \zeta_{jk}^{pp} + \sum_{t=0}^{p-1} \sum_{j=0}^{m} (\Delta_{pt} d_{j,n+1}) \zeta_{jn}^{p,t+1} + \sum_{s=0}^{p-1} \sum_{k=0}^{n} (\Delta_{sp} d_{m+1,k}) \zeta_{mk}^{s+1,p} + \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} (\Delta_{st} d_{m+1,n+1}) \zeta_{mn}^{s+1,t+1}.$$

It follows from (2.1) - (2.3) and (2.9) that

$$\sum_{t=0}^{p-1} \sum_{j=0}^{m} |\Delta_{pt} d_{j,n+1}| |\zeta_{jn}^{p,t+1}| \leq C \sum_{t=0}^{p-1} \sum_{\nu=0}^{t} {t \choose \nu} \sum_{j=0}^{m} |\Delta_{p0} d_{j,n+1+\nu}|$$

$$\leq 2^{p} C \left(\sup_{k>n} \sum_{j=0}^{m} |\Delta_{p0} d_{jk}| \right)$$

$$\longrightarrow 0 \quad \text{as} \quad \min\{m,n\} \to \infty,$$

$$\begin{split} \sum_{s=0}^{p-1} \sum_{k=0}^{n} |\Delta_{sp} d_{m+1,k}| |\zeta_{mk}^{s+1,p}| &\leq C \sum_{s=0}^{p-1} \sum_{\mu=0}^{s} \binom{s}{\mu} \sum_{k=0}^{n} |\Delta_{0p} d_{m+1+\mu,k}| \\ &\leq 2^{p} C \Big(\sup_{j>m} \sum_{k=0}^{n} |\Delta_{0p} d_{jk}| \Big) \\ &\longrightarrow 0 \quad \text{as} \quad \min\{m,n\} \to \infty, \end{split}$$

and

$$\begin{split} \sum_{s,t=0}^{p-1} |\Delta_{st} d_{m+1,n+1}| |\zeta_{mn}^{s+1,t+1}| &\leq C \sum_{s,t=0}^{p-1} \sum_{\mu=0}^{s} \sum_{\nu=0}^{t} \binom{s}{\mu} \binom{t}{\nu} |\Delta_{00} d_{m+1+\mu,n+1+\nu}| \\ &\leq 2^{2p} C \Big(\sup_{j>m,k>n} |d_{jk}| \Big) \\ &\longrightarrow 0 \quad \text{as} \quad \min\{m,n\} \to \infty. \end{split}$$

Hence $\lambda_{mn} \longrightarrow \zeta$ as $\min\{m,n\} \to \infty$. This completes the proof.

3. Investigation of Condition (1.7)

The condition (1.7) with p = 1 is equivalent to

$$(1.7') \sup_{\substack{j,k \geq 0 \\ 0 < \epsilon < \alpha < \infty}} \left| \int_{\delta}^{\beta} \int_{\epsilon}^{\alpha} \phi(x,y) L_{j}^{a+1}(x) L_{k}^{a+1}(y) e^{-(x+y)/2} (xy)^{a/2} \, dx dy \right| < \infty.$$

For one-variable case, it reduces to

(1.7")
$$\sup_{\substack{j \ge 0 \\ 0 < \epsilon < \alpha < \infty}} \left| \int_{\epsilon}^{\alpha} \phi(t) L_j^{a+1}(t) e^{-t/2} t^{a/2} dt \right| < \infty.$$

Theorem 3.1. Let $0 \le a \le 1/2$. Assume that

(3.1)
$$|\phi(t)| \le C\left(\left(\frac{t}{1+t}\right)^{\kappa+1}(1+t)^{\mu}\right) \qquad (t>0),$$

$$(3.2) |\phi'(t)| \le C\left(\left(\frac{t}{1+t}\right)^{\kappa} (1+t)^{\mu}\right) (t>0)$$

for some κ, μ satisfying $\kappa > -3/4$ and $\mu \leq -a/2 - 1$. Then condition (1.7") holds.

Proof. Set $\psi(t)=\phi(t)e^{-t/2}t^{a/2}$. From [1, 5] we can find an absolute constant C such that

$$(3.3) |L_i^a(t)| \le Ce^{t/2}t^{-a/2-1/4}(\bar{j})^{a/2-1/4}(\bar{t})^{1/2} (j \ge 0, t > 0).$$

Since $a/2 - 1/4 \le 0$, $\kappa > -3/4$, and $\mu + 1/4 \le 0$, it follows from (3.1) and (3.3) that

(3.4)
$$\sup_{t>0, i\geq 0} |\psi(t)L_{j+1}^a(t)| \leq C\left(\sup_{t>0} |\phi(t)t^{-1/4}(1+t)^{1/2}|\right) < \infty.$$

We have

$$|\psi'(t)| \le e^{-t/2} t^{a/2} \Big\{ |\phi'(t)| + \Big(\frac{1}{2} + \frac{a}{2t}\Big) |\phi(t)| \Big\}.$$

For $0 < \epsilon < \alpha < \infty$ and $j \ge 0$, as proved in [3, Lemma 3.3], (3.1) and (3.2) imply

$$\left| \int_{\epsilon}^{\alpha} \psi'(t) L_{j+1}^{a}(t) dt \right|$$

$$\leq \left(\int_{0}^{1/(j+1)} + \int_{1/(j+1)}^{1} + \int_{1}^{\nu/2} + \int_{\nu/2}^{3\nu/2} + \int_{3\nu/2}^{\infty} \right) |\psi'(t)| |L_{j+1}^{a}(t)| dt$$

$$< C,$$

where $\nu = 4j + 2a + 6$. Hence

(3.5)
$$\sup_{\substack{j \ge 0 \\ 0 < \epsilon < \alpha < \infty}} \left| \int_{\epsilon}^{\alpha} \psi'(t) L_{j+1}^{a}(t) dt \right| \le C.$$

Using $\frac{d}{dt}L^a_{j+1}(t) = -L^{a+1}_j(t)$ and integration by parts, we obtain

(3.6)
$$\int_{\epsilon}^{\alpha} \phi(t) L_{j}^{a+1}(t) e^{-t/2} t^{a/2} dt = -\int_{\epsilon}^{\alpha} \psi(t) \left(\frac{d}{dt} L_{j+1}^{a}(t)\right) dt$$
$$= -\psi(t) L_{j+1}^{a}(t) \Big|_{\epsilon}^{\alpha} + \int_{\epsilon}^{\alpha} \psi'(t) L_{j+1}^{a}(t) dt.$$

Putting (3.4) - (3.6) together yields (1.7''). This finishes the proof.

Consider the case $\phi(x,y) = \phi_1(x)\phi_2(y)$, where ϕ_1 and ϕ_2 are of the form given in Theorem 3.1. Then (1.7') is satisfied and Theorem 1.1 can apply to such a case.

References

- 1. R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, *Amer. J. Math.*, **87** (1965), 695-708.
- 2. C.-P. Chen and C.-C. Lin, Almost everywhere convergence of Laguerre series, *Studia Math.*, **109** (1994), 291-301.
- 3. C.-P. Chen and C.-C. Lin, Convergence of double Laguerre series, *Taiwanese J. Math.*, 6 (2002), 533-544.
- 4. G. H. Hardy, On the convergence of certain multiple series, *Proc. Cambridge Phil. Soc.*, **19** (1916-1919), 86-95.
- 5. B. Muckenhoupt, Mean convergence of Hermite and Laguerre series II, *Trans. Amer. Math. Soc.*, **147** (1970), 433-460.
- 6. G. Sansone, Orthogonal Functions, Yale Univ. Press, New Haven, Conn., 1959.
- G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., 4th ed., Providence, RI, 1975.

Chang-Pao Chen
Department of Mathematics,
National Tsing Hua University,
Hsinchu, Taiwan 300,
Republic of China
E-mail: cpchen@math.nthu.edu.tw

Chin-Cheng Lin
Department of Mathematics,
National Central University,
Chung-Li, Taiwan 320,
Republic of China
E-mail: clin@math.ncu.edu.tw