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PARSEVAL’S FORMULA FOR DOUBLE LAGUERRE SERIES

Chang-Pao Chen and Chin-Cheng Lin

Abstract. Let a > 0. We give sufficient conditions on {c;i} to obtain Parse-
val’s formula for the corresponding double Laguerre series Z(;io Yo CiRL (@) Li(y).

1. INTRODUCTION

For a > 0, define the Laguerre function £2(¢) by

7!

—— URelre =0,1,2,--
F<n+a+1>e n() n ? ? ? )

L3(t) =
where

1 d?
L,f;(t) — Etiaetﬁ<tn+aeit>.

It is known that {£2(¢)}>°, forms an orthonormal basis in L*(R", d¢) with the

inner product (f,g) = [~ f(t)g(¢) dt (cf. [6, 7]).
In this paper, we consider the following double Laguerre series

(1.1) ciell(@)Li(y),  w,yeR.
=0 k=0

Let Sy (2, y) be the rectangular partial sums of series (1.1) given by

Smn('xy y) - Z Z Cjk£?<$> Z<y>
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We say that series (1.1) converges regularly to f(x,y) if spn(2,y) — f(z,y) as
min{m,n} — oo, the row series > > ;L (x)L(y) converges for each fixed
value of k., and the column series Zk 0 c]k[, (x)L%(y) converges for each fixed
value of j (cf. [4]). For E C RT xR, the series (1.1) is said to converge uniformly
on F to f(x,y) if s;un(x,y) — f(x,y) uniformly on F as min{m,n} — oc.

We are interested in finding conditions on {¢;x} and ¢ such that the following
Parseval’s formula holds:

(1.2) Eg$/ /fxy (2, y) drdy = }ij k(5. k),

a,—o00
where f(x,y) is the limit function of s,,,(x,y) and
#*(j, k) = lim / / d(x, y) L5 (2) L3 (y) dady.

e,6—0+F
a,—o00

For suitable ¢, we shall prove that the following conditions are sufficient for the
validity of (1.2):

(1.3)  ejul (GR)P/* V4 (logjlogh) ™ = O(1)  as  max{j,k} — oo,

(14) > 1Apocsa| (P2 i logn) T = 0(1)  as n — oo,

3=0
(1.5) > | Avpemi| (mk)P2 V4 logm) T = O(1)  as m — oo,
k=0
(1.6) | Appeiikl (5’2’)19/271/4 < 09,
7=0 k=0

where p > 1,7 > 0,¢ = max{¢, 1}, and

& s o /8
z () (D)o
s=0 t=

Conditions (1.4) — (1.6) describe certain concept of bounded variation, which are
closely related to those in [2, Theorem 2]. Our main result is

Theorem 1.1. Let a > 0,p > 1, and n > 0. Assume that {c;i} satisfies
conditions (1.3) — (1.6). Then series (1.1) converges regularly to some function
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f(z,y) for all x,y > 0, and the convergence is uniform on any rectangle {¢ <
< a0 <y < B}, where0 <e <a<ooand 0 < d < 8 < oco. Moreover,
if ¢ is measurable and locally bounded in (0,00) x (0, 00), ¢*(j, k) exists for all
J, k>0, and

(1.7)

sup  (jk)l@ )/
J,k=>0

O<e<a<oo

0<8<B<o0

B ra
/5 / b, ) () PI2LS P () L5 P (y) dady| < oo,

then (1.2) holds.

The proof of Theorem 1.1 will be given in the next section. In §3, we investigate
the validity of (1.7) for functions of the type ¢(z,y) = ¢1(2)p2(y), where ¢ and
¢2 are of the form (¢/(1 + t))”“(l + -

Throughout this paper C, C,, and C,, denote constants, which are not neces-
sarily the same at each occurrence.

2. Proor ofF THEOREM 1.1

Set

! !
dix = ¢ .
ik qm¢rg+a+1MAXk+a+D
Then |djx| < C(jk)~%/?|c;x|. Therefore, (1.3) implies
(2.1) |dj| GR) TP/ 0 as max{yj, k} — oo

Using the inequality 1 — /1 —y < y for y € [0, 1], we get

7! 7! a
APl ———— )| <C
( F(j+a+1))‘ ~ PTG +a+)jt+a+1
<Copj ** 1 for 1<u<p,

which implies

(j +p)!
Apodinl < AL0Cin
| Apodynl _{\/F(j+p+a+1)| p0Cjnl

Ca joe/2l P As in ~
Hap s g s |Asocinl Fn+a+1)

< Cap(j) " 1 8pocinl + 57 W)p-
> P(]n) {| p0Cj |+ jgu%?fpfl|c“|
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Putting this with (1.3), (1.4) together yields

(2.2) nlim Z | Apodn|(G7) (atp)/2-1/4 _
Similarly, conditions (1.3) and (1.5) imply

(2.3) n}Lm Z|A0p | (ke )a+p)/2 /4 _ .

We have

(U +p)! (k + p)!
Appds] < A
[Aendjil _\/F(j+p+a+1) Tt p by D) et

I(
p—1
= aj2 (k+p)!
C, a/2—1 p .
Hap ] 2 ()12t a1

570
T—a/2—-1 P (J+p)!
HCap k Z<t>| ptcﬂ’“'\/ TG+ptatl)
p—1p—1 o
+Calh) 2 Y (2) () 2uend

s=0 {=0

< Cap<jk’)a/2{|Appcjk| +5! (j<;§?fp71 |A0pcuk|)

k1 . =7y —1
T (kﬁlglf?fpfl |APOCJV|) + (k) (jsggﬁ—l |c’“’|) }
k<v<htp—1

Putting this with (1.3) — (1.6) together yields

oo o0

| A ppdii| (k) P)/271/4

7=0 k=0
>~ Cap{ Z Z |Appcjk|<3]%)p/2—1/4
J= Ok 0
A ) SEyp/2-1/4
(2.4) +ZJ Z(]<M@ffp 1 Bopeunl ) GG)
k! N (R\p/21/4
+kz;k = (k<ygl]?fp 1 |APOCJV|)<]IC>
k) Fp\p/2-1/4
+ZZ(M) (jgg%ﬂ |cW|)(]k) }
=0 k=0 jspsitrel

< o0,
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Applying [3. Theorem 2.1] to the series 377 37 o djL§ (x) Lg(y). we see that
series (1.1) converges regularly to some function f(z,y) for z,y > 0, and the
convergence is uniform on any rectangle {¢ <z < o, < y < 8}, where 0 < € <
a<ooand 0 <d < < oo As proved in [3, Theorem 2.1],

DD (Appdi) L (@) L P (y) — 92 (ay) 2 f (2, y)
=0 k=0
as  min{m,n} — oo,

and the convergence is uniform on {¢ <z < a,d <y < B}. Set
3 o
febad — [ [ oo nig Ly e 2wl dudy,

Then as min{m, n} — oo,
(2.5) ZZ eéaﬂ—%//fxy (2, y) dedy.
5=0 k=0

Employing the equation Y ;_, LE(¢) = L&T1(¢) (¢f. [7, Eq. 5.1.13]), we get

j
e, 6,0, 8) szlteéaﬂ ZCIDStleéozﬂ)
=0
(2.6) “] L
:ZZ 81t16(5046)
=0 =0

On the other hand,

o ! !
27) ¢<J’k><e}sﬂl+q) <6’6’O"ﬂ>>\/r(j+a+1)\/F(k+a+1)'

a,—o00

Since ¢*(j, k) exists for all j, k > 0, it follows from (2.6) and (2.7) that the limit
]s]tc = lim+ CID;?i(e, J, o, B) exists for all s,t,j, k> 0. The condition (1.7) on ¢ is
€,6—0
a,—o00

equivalent to the existence of the constant C' with

(2.8) sup ‘CD];Z(Q J, a, 6)‘ < C < oo
0<L St
0<6<B<o0

By (2.6) and (2.8), we can assume

(2.9) |Gkl < ¢ forall j,k>0and 0 <s,t<p.
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We have (a +p)/2 —1/4 > 0. It follows from (2.4), (2.5), and (2.8) that the limit
. ﬂ @
lim / / Fa, 9)é(e, y) dady
SSMECIRL

exists and equals

=y Y

=0 k=0

The double series defining ¢ converges absolutely. For m,n > 0, we have

Amn = D) (4, k) }g{;/ / (2, y) $mn(, y) dady

(210> j:O k=0 ﬂ a,—o00
=t [ [ oty tunle e I ) 2 dady,
€,6—0 €
a,—o00 J
where tmn(2,y) = 3500 > po dijk L (x) Li(y). Summation by parts gives

mn .%‘ y ZZ Appdjk>L;'L+p<x>LZ+p<y>
0 k=0

p—1 m

+ Z Z(Aptd -,n+1)L?+p(x)Lf‘l+tH (v)

t=0 5=0

b

3

-
3D (Al i10) LT @) L P ()
0 k=0
p—1p—1
T (Asilpms1 1) LT (@) LET (y).
s=0 t=0

8

Plug this into (2.10) to obtain

m n p—1 m
A1
= 2D (pdi) L+ DD (Apidinn)
7=0 k=0 t=0 =0
p—1 n p—1p-—1

e L+l
D (Aaplim 1) G T DD (Aatliminr1) Gt

5=0 k=0 s=0 t=0
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It follows from (2.1) — (2.3) and (2.9) that

p—1 m p—1 ¢ m
1
)2) DLV NEL) 9) DY () D ol L teee
=0 j—=0 t=0 =0 7=0
2PC supZ|Apod]k|)
>nj 0
—0 as  min{m,n} — oo,
p—1 n s n
Z |Aspdim 11, k||Cs+1’p| < CZZ < > Z | Aopdim 14,k
=0 k=0 s=0 pu=0 k=0
< QPC( sup Z |Aop ]k|)
IZm =0
—0 as  min{m,n} — oo,
and
[/
Z |Astdm 10|l T < C Z Z Z < > < >|A00dm+1+u,n+1+y
5,t=0 5,t=0 =0 =0 v
< 22p0( sup |djk|)
ji>mk>n
—0 as  min{m,n} — oo.

Hence A\, — ¢ as min{m, n} — oco. This completes the proof.

3. INVESTIGATION OF CONDITION (1.7)

The condition (1.7) with p = 1 is equivalent to

(1.7)  sup ‘/ / oz, y) L“H( VLS (y)e (I+y)/2(xy)“/2dxdy‘ < 0.

7,k>0
O<e<a<oo
0<s<B<o0

For one-variable case, it reduces to

j=0
O<e<a<oo

(1.7 sup / gb(t)L;-‘H (t)e H2ge/? dt‘ < 0.

Theorem 3.1. Let 0 < a < 1/2. Assume that

(3.1) el ()" a0,
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(3.2) Fol<o((T) o) (>0

Jor some K,y satisfying k > —3/4 and p < —a/2 — 1. Then condition (1.7")
holds.

Proof.  Seti)(t) = ¢(t)e t/%t%/2. From [1, 5] we can find an absolute constant
C' such that

(33)  |LY(0)] < O AGRR ) (20,05 0).

Since a/2 —1/4 <0,k > —3/4, and p+ 1/4 <0, it follows from (3.1) and (3.3)
that

B4 sup [HOLEO] < O(sup o+ 9]) < oc.
0,20 ¢>0

We have
Wl <e e llg o)+ (5 + el )

For 0 < e < a < oo and j > 0, as proved in [3, Lemma 3.3], (3.1) and (3.2) imply

e
(L7 L L L e o

<C,

where v = 45 + 2a + 6. Hence

(3.5) sup ‘ / Y () L4 ( dt‘ <C.
O<ej<7a<oo
Using %L;‘ (1) = —L;‘H (t) and integration by parts, we obtain

Comretwe el a = — [ pw(Lre, ) a
(36 / / (dt o )
= () L, (¢ /¢ $ra(t

Putting (3.4) — (3.6) together yields (1.7”). This finishes the proof.
Consider the case ¢(x, y) = ¢1(2)d2(y), where ¢ and ¢ are of the form given
in Theorem 3.1. Then (1.7’) is satisfied and Theorem 1.1 can apply to such a case.
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