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GLOBAL AND NON-GLOBAL SOLUTIONS OF A NONLINEAR
PARABOLIC EQUATION

Jong-Shenq Guo, Yung-Jen Lin Guo and Chi-Jen Wang

Abstract. We study the global and non-global existence of positive solutions
of a nonlinear parabolic equation. For this, we consider the forward and
backward self-similar solutions of this equation. We obtain a family of radial
symmetric global solutions which tend to zero as the time tends infinity. Next,
we show that there are initial data for which the corresponding solutions blow
up in finite time. Finally, we also construct some self-similar single-point
blow-up patterns with different oscillations.

1. INTRODUCTION

In this paper, we study the following nonlinear parabolic equation
(1.1) up = u’ (Au+uP),z € R*, ¢t > 0,

where o € R, p > 1, and n > 1. Equation (1.1) has been extensively studied; see,
for example, [2, 4, 10] for o = 0, [8] for 0 < 0, [3] for o € (0, 1), [5, 6] for o = 1.

In all of these works, much attentions have been paid to the blow-up behaviours
of solutions in order to understand the mechanism of thermal runaway in combustion
problems. We also refer readers to the references listed in the books of Bebernes et
al. [1] and Samarskii et al. [9].

We are concerned with the global and non-global existence of positive solutions
of (1.1) for ¢ > 1. To study this problem, we study the existence of both forward
and backward self-similar positive solutions of (1.1) in the forms
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- ||
1.3 Ve, t) = (T =) *¢(7—=
where 1" > 0 is given and the similarity exponents are necessarily given by
1 -1
(1.4) o=—"-— [B= D
pto—1 2(pto—1)

Set & = |x|/(t+ 1)P. 1t follows that U satisfies (1.1) if and only if ¢ satisfies
the equation

—1
(15) e P as T 4 B9 7 =0, 6> 0,
and ¢/(0) = 0.
Similarly, for ¢ = ||/(T —t)?, V satisfies (1.1) if and only if ¢ satisfies the
equation

-1
(1.6) e =g T = G970, 6> 0,
and ¢'(0) = 0.
In Section 2, we shall prove that the solution of the initial value problem (1.5),
with the initial conditions

(L7) ¢'(0) =0, &(0) =,

exists globally for any # > 0. In Section 3, we study the asymptotic behaviour as
& — oo of the positive solution of (1.5). We show that for any positive solution
(&) of (1.5) the limit
(1.8) lim [£/2¢(¢)] = A
§—00
exists and A > 0. Therefore, we obtain a family of global solutions of (1.1) with
monotone decreasing symmetric initial data ug satisfying
uo(0) = n >0, uo(x) = ¢(|xl), Jlim [|2]%/Pug ()] = A > 0.
T|—00
Moreover, these global solutions tend to zero as { — oc.

In Section 4, we show that there are initial data for which the solution of (1.1)
blows up in finite time. Then, following the method of [6], we derive some self-
similar single-point blow-up patterns with different oscillations in Section 5. We
remark that any solution of these patterns has the same number of critical points
before the blow-up time and these critical points merge together to a single point
(x = 0) at the blow-up time.
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2. GLOBAL EXISTENCE OF SOLUTION FOR (1.5)

In this section, we shall study the positive solution of the following initial value
problem (P):

@.1) & + ”T_lqﬁ’ L agl Tt B 7Y = 0,6 >0,

(22) ¢'(0) = 0,4(0) = n,

where 1 > 0 is given. Note that there is no constant solution of (P). From the
local existence and uniqueness theorem of ordinary differential equations it follows
that there is a unique positive local solution ¢ of (P) for each given n > 0. For
convenience, let [0, ) be the maximum existence interval of ¢ such that ¢ > 0,
where 0 < R < oo. Define

Yy
23) o) = eanls [ €677 (€)de).
0
From (2.1) it follows that
(2.4) (€ p(&)¢'(€)) = =" p(O)I#P(€) + a7 (9],
and so
/ 1 ¢ n—I1 1—0o
239 HO- g [ ) +ad )y € >0

Hence ¢(&) is monotone decreasing in [0, R).

Theorem 2.1. For any n > 0, the local solution ¢(&) of (P) can be continued
globally so that R = oc.

Proof. On the contrary, suppose that R < co. Then ¢(¢) — 0 as &€ — R ™.
We shall divide our discussion into three cases. Each one leads to a contradiction.

Case 1.

2.6) lim (&) = —oc.

{—R-

In this case, there exists a sequence {& } in [0, R) such that &, — R™, ¢(&,) — 07,
and ¢/ (&) — —oo as k — oo. From (??) it follows that

&r
lim [y o)’ (y) + ad' 7 (y)]dy = oo.

k—oo Jo
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For convenience, we set

13
a(6) = / )@ (y) + adl 7 (y)]dy -

Since g(¢) is an increasing continuous function, we obtain that

¢
Jm ¥ o) (y) + ag' 7 (y)ldy = o
- 0
We note that the limit of p(¢) as ¢ — R~ exists and is either infinity or a finite
positive number. First, we suppose that lim,_,p- p(§) = co. Applying L’Hopital’s
Rule, we compute from (2.5) that

e 1 & .
Jim (€)= = tim o [ o))+ 0t )y

£ 1p(&)[¢r(§) + ag" (8]

T T Do) + e p(©)pEe ()
Y GRRG)
AR Der(©) + o

= 0.

This contradicts (2.6).
Next, we consider the case that lim;_,p- p(§) = B. 0 < B < co. From (2.5),
we have

¢
513}37(‘5(5) N _flil}%m/o y* ()P (y) +ag! 7 (y)ldy = —oo.

On the other hand, it follows from (2.1) that

lime p-¢"(&) = —lime g {¢P(&) + ¢ 7(ad(&) + (BE + ¢ ()¢ (O]}

p— 007
a contradiction with (2.6). Hence this case is impossible.
Case 2.

2.7) lim ¢/'(¢§) = —M,0 < M < co.
{—R™
In this case, there exists a sequence {5} in [0, R) such that & — R, (&) — 07,

and ¢'(§g) — —M as k — oo. If lim,_, - p(§) = oo, then as in Case 1 we have
limg g~ ¢'(£) = 0. This contradicts with (2.7).
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Suppose that lim,_, - p(§) = B,0 < B < co. Then from (2.5) it follows that

1
Jim y" Lp(y)|¢F(y) + ad' 7 (y)ldy = BMR™ ',

and so )
glﬂil;gf ) y" o) e (y) + ad' 7 (y)ldy = BMR".

Therefore, we obtain that lim; - ¢'(§) = —M. It follows from (2.1) that

Jim [0(6)9"(€)]
LSHOF(E) T TN 10Ol + 568 ()

= —_ 1.
S
= OQ.

In particular, we have

(2.8) lim ¢"(¢) = oo.

§—R~
Differentiating (2.1) we have

n—1 n—1

") = - ¢ ¢"(&) — e ¢'(€) +pg" (€)' (&) + all — 0)o 7 ()¢ (&) +
Bo7()' () + BE(—a)o (O (O + BEd™7 (9" (€)}-

Then we obtain that

lim () = oo,

§—R-
a contradiction with (2.1).
Case 3.
lim ¢'(¢) = 0.
§—R-

Since ¢'(¢) < 0in [0, ), we have

(2.9) lim ¢'(¢) = 0.

{—R-

We claim that

(2.10) glil}% p() = coand lim p(£)¢(§) = oo.
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If p(§) » B as ¢ — R~ for some B € (0, 00), then from (2.5) it follows that

¢

lim [ 3" 'p(y)d*(y) + g’ 7 (y)ldy = 0.
§—R™ Jo

This is impossible, since y™ L p(y)[¢P(y) +ap 7 (y)] > 0 for all y > 0. Therefore,
Li = o0.
Jim p(§) = oo

Next, it follows from the definition of p(¢) that

¢
ﬂ/o yo 7(y)dy — oo as £ — R,

Then

LBl wdy L pEe©)
k- —[p(O)]  eor —0 (O (©)
From this and (2.1), we obtain that

Jim €66 = tim cap(s [ 567 @y +inlof€)]) =

Hence (2.10) is proved.
Now, we suppose first that
s ¢ n—1 l—0o
{111;{217 Y p(y)[er(y) +ad 7 (y)]dy = co.
- 0

Using (2.5) and .’Hépital’s Rule, we obtain that

. ¢/<5> — _ lim 1 ¢ n—1 a l—0o
{E% 00 £LR {—5n1p<5)¢<5)/() Y p(W)[#(y) + ad 7 (y)ldy }
g £ (16" + 097 (©) ,
¢-r- (n=1)§"2p(§) (&) +&" 1 p(£)BED 7 (§)B(E) + &7 p(§) ¢/ (€)
L @O vl
R Do (€) + €8+ ¢7 1))
- BB
This implies that there exists & > 0 such that
¢'(¢)

(2.11) >——fra1156(50, R).

¢(§) — 2Rp
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Integrating (2.11) from &y to & > &y, we have

InG(€) — ng(Go) > — g 1 2% ¢

2R( 2R(
1€.,

B(&) > Ce3aé/(2RB)

for all ¢ € (&, R), where C' = qﬁ(fo)e?%ﬁ{o > 0. This contradicts with ¢(&) — 0
as & — R
Next, we suppose that
. ¢ 1 1—
{111;{217 Y p(y)[PP(y) + a7 (y)ldy = B
—R~Jo

for some B € (0,00). Then

. ¢/<5> o . 1 ¢ n—1 l—0o _
Jm e _{E%{—fnlp(f)¢(f)/() ¥ (W) (y) +ad 7 (y)ldy } = 0.

This implies that there exists & > 0 such that

¢'(€)
¢(&)

Similarly, integrating (2.12) from &y to & > &y, we obtain that

(2.12)

> —1 for all £ € (&, R).

B(&) > Ce*

for all ¢ € (&, R), for some positive constant C'. Again, this is a contradiction.
This complete the proof of the theorem. ]
3. ASYMPTOTIC BEHAVIOR OF SOLUTION FOR (1.5)

In this section, we shall study the asymptotic behavior of positive solution ¢(&)
of (P) as £ — oo. We first study the limits of ¢(&) and ¢'(¢) as & — oo.

Lemma 3.1.  There holds ¢(§) — 0 as & — oo.

Proof.  Since ¢(&) is monotone decreasing, the limit

[= lim (&)

oo



194 Jong-Shenq Guo, Yung-Jen Lin Guo and Chi-Jen Wang

exists and [ > 0. Suppose [ > 0, we define

G () = S$OF +G6(6), € >0,
where

6
(3.2) G(¢) = / (sP +ast™)ds, 1<¢<n.

n
Since .

H'(€) = (% : (€)= 0

and

G(¢) > —(nP +ad' =) (n — 1),

the limit
L= lim H(¢)

oo

exists and I > —oo. By the definition of H(¢), the limit

—K = lim ¢/(¢)

oo

/0 & (E)dE = 1 -1,

there exists a sequence {&x} such that & — oo and ¢/(&x) — 0 as k — co. Hence
K = 0. Therefore, there exists M > 0 such that | ¢(&) |< M and | ¢/(€) |< M,
v¢ > 0. Dividing (2.1) by &, we have

I SN (3 N (I NP
= o= -5 = =567 (O6€).

Integrating it from 1 to &, we obtain

‘/fw’g( st - PRy /fk%b’(ﬁ)‘

&
" o0 - |-

exists and K > 0. Since

‘JrnM,
(6" <@>—¢>H<1>>\g%a“’w”m)

‘ 1

But,

— o0 as k — oo,

S gP(€) + agl 7 (€) Lo [
/1 : z ol /1

a contradiction. Hence, [ = 0. [ |

Sy | o=
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Lemma 3.2. [t holds ¢/ (&) — 0 as £ — oo.

Proof.  Using (2.5) and applying 1.’Hépital’s Rule, we have

. ’ T 1 ¢ n—1 1-0o
lim (€)= = tim o [ ) ot )y

i PO + a7 (Q)]
g0 (n—1)En2p(€) + & 1p(€)BEP—7 ()
L 1977 T ag(9)]
00 (= 1)E%(E) |
¢

= 0.

The lemma follows. ]
The following lemma will be useful to obtain the asymptotic behavior of ¢(¢&).
Lemma 3.3. There holds ¢(&)p(&) — oo as & — oo.

Proof.  Since

(6p)'(€) = p(E)[$'(&) + o' 7 (&)5¢],

we obtain that lim; o (¢p)'(§) = oo. Therefore, ¢(&)p(&) o0 as & oo, W
Using (2.5) and L’Hépital’s Rule, we obtain

Jim, i(f)) = —gliggo{m /0{ y* () ¢P(y) +ag' 7 (y)ldy }
~ im{ £ p()[¢P(€) +ad' 7 ()] )
g-00 (n=1)€m2p(§)P(&) +E™ 1 p(§)BEP (§) (&) +Emp(§) ¢/ (§)
¢l E) +a )

— lim { D)
e g (6) 1 66+ 971 (90
= 0.

Similarly, we have

N . 1 - 1o
glggo +©) —hm{m/oy p(y)[97(y) +ad” 7 (y)ldy }

£—00
£ p(&)[87(§) +ag 7 (€)]

R P T N Y P R e
L P +a
-y TIO9E)]

67(6) + g+ O

& £

e
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This implies that ¥V € > 0 there exists K, R > 0 depending only on ¢ such that
(33) 96 S K¢ P vz R,
Let 9(¢) = ¢/(€)/6(€). Note that

Jim (§) =0, lim () = —

By (2.1), ¢(&) satisfies the following equation

W(&) + n—_1¢(5) + 8607 (Ov(€) = —[¢" (&) + a7 (&) + ¥ (&),

a
7

3
@O = () + a7 (€) + ().
Hence
1 ¢ n—1 —1 —0 2
G 0O - g / o) W)+ ad 7 () + R ()]dy.

Now we are ready to prove the main theorem of this section as follows.
Theorem 3.4. The limit lims_,o,{6*/Pp(€)} exists and is positive.

Proof.  From (3.4) and applying 1.’Hopital’s Rule, it follows that

€ (&) + %}8
3
(3.5) — [y @) ) + T (y) + VA(y))dy + =€ 2p(8)
0 3
- 2-2p(¢) ’
where A € (0,2). Then we obtain
glifilo[flﬁ(f) + B]f’\
| —s”*1p<s>[¢ﬂ<s>+aw<s>+w2<s>]+%(n—msﬂp(s)msnﬂqs*”(s)p(s)
= i, (n—2= N T A @)+ BE T3 p 7(E)p(©)
L TR QP 5 -2
= (n—2—NE 21 867
= 0.

From this and by integration, we obtain

(3.6) G(¢) = AL F[1 +o(¢ )] as £ — oo

for some positive constant A. Hence the theorem follows.
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4. BLow-UP FOR LARGE INITIAL DATA

In this section we prove that finite-time blow-up actually occurs for the Cauchy
problem. We consider the case of positive solutions for the general r-dimensional
case. One can see that the classical analysis of Kaplan [7], based on an ordinary
differential inequality for the first Fourier coefficient, can be applied to (1.1).

Indeed, for any ¢ > 0, let ¢(z) = A(c) exp(—e|x|?), where A(e) is defined so
that [g, ¢c(x)dx = 1. Suppose that u is a bounded positive solution for ¢ € [0,7)
for some 7' > 0 with the initial condition u(z, 0) = ug(z). Set

o) :/nu(x,t)qﬁe(x)dx, (1) i —— /nul"(x,t)qﬁe(x)dx.

oc—1

Note that by Jensen’s Inequality we have

[ 0o 2 0.

Then we have the inequality

(4.1) G'(t) > gP(t) —2eng(t), t € [0, T).

Again, by Jensen’s Inequality we have

/ o )l > < / nu(m,t)qﬁe(x)dx)la, te0,7).

This implies that
1

c—1

(4.2) G(t) < —

g o), te[0,7).

It follows by an integration of (4.1) that

¢
G(t)2 GO} + [ 197(5) — 2eng(s)ds, ¢ € 0.7),
0
Hence it follows from (4.2) that

(4.3) / ((s) — 2eng(s)]ds T —— g7 (1) < ~G(0), ¢ € 0, T).

c—1

Now, we choose ug such that

(4.4) —G(0) < (k +m)te

c—1
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for some 1 > 0, where x is the unique positive zero of gP —2eng (i.e., kP~ = 2en).
Note that g(0) > x + 7. Then by (4.3) we have

(4.5) o) > K+, L€[0,T).

Indeed, if (4.5) were not true, then there exists the smallest £g > 0 such that
g(to) = k +n. Then by (4.3) and (4.4) we have

1 1—

1—o
—9 (k+m) 7.

7(to) < =G(0) <

oc—1

This is a contradiction and the estimate (4.5) follows.
Suppose that « exists globally, i.e., T = oo, for some wug satistying (4.4) for
some 77 > 0. Then by (4.5) there is a positive constant ¢ such that

gP(t) — 2eng(t) > ¢ for all ¢ > 0.

We reach a contradiction by letting { — oo in (4.3). Therefore, we conclude that
blows up in finite time if ug satisfies (4.4) for some 5 > 0.

5. BLow-UP PATTERNS

We denote the initial value problem (1.6) with ¢'(0) = 0 and ¢(0) = 5 > 0
by (Q). Let x = a®. Then ¢ = « is the only trivial constant solution of (Q). It is
obvious that there is a unique local solution ¢ of (Q) for each given n > 0.

Let [0, R) be the maximal existence interval of ¢, where 0 < R < oco. As
before, we define

H(E) = S0 (©OF + G6(6), € € [0, R),
where .
G(¢) = / (P —ast™)ds, ¢ > 0.

In this section, we always assume that o € (1,2). Note that G(0) € (0,0),
G(o0) = o0, G(¢p) > 0 for all ¢ > 0 except ¢ = k, and there is a unique & > K
such that G(%) = G(0).

For a given solution ¢ of (Q), we define

Yy
5.1) p(y) = expl -0 /0 o), 0<y<R.

Then we have

¢
(32) ¢ = _5”1;/1(5)/0 ¥ ()¢ (y) — ag' 7 (y)ldy, 0<E<R.
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Next, we study the solution for 7 near x. Set n = k +e. If we write ¢(¢) =
K+ ev(€), then, as € — 0, v satisfies the limiting problem

n—1, @
—’l} [ —
3 g

v'(0) =0, ©(0) = 1.

1
v+ &'+ —v=0, £>0,
KU

It is well-known that v has exactly N zeros in (0, 00), where —N is the largest
integer which is less or equal to —1/(28) = —(p + o —1)/(p — 1). Notice that
N > 2, since p > 1. By the standard theory on continuous dependence, it is easy
to show that for » sufficiently close to «, the solution ¢ of (Q) intersects « at least
N times.

Now, for n = 1, with some necessary modifications of the proofs of lemmas in
section 2 of [6], we can easily obtain the following theorem.

Theorem 5.1.  Suppose that n = 1. Then the problem (Q) has at least N — 1
distinct positive global solutions such that ¢(§) — 0 as & — oo, where —N is the
largest integer which is less than or equal to —(p +o —1)/(p —1).

Set p.(n) = (n+2)/(n—2) for n > 3 and p.(2) = co. Similar to section 3 of
[6], we can also derive the following theorem for the multi-dimensional case.

Theorem 5.2. Suppose thatn > 2 and 1 < p < p.(n). Then the problem (Q)
has at least Ny distinct positive global solutions such that ¢(0) > r and ¢(£) — 0
as & — oo, where N1 is the largest integer which is less than or equal to N/2.

For the asymptotic behavior of any bounded global solution of (1.6), we have

Theorem 5.3. The limit B := lims_,[£%/P¢(¢)| exists and is positive.

Note that B = B(n). It follows that
(5.3) 111;{1 V(z,t) = B|x|7o‘/ﬂ, x#£ 0,
t—1'—

for any nonconstant bounded global solution ¢ of (1.6).

From these results there always exists a symmetric positive monotone self-similar
solution V of (1.1) in the form (1.3) such that V' blows up only at the single point
x = 0 at T for a given finite time /". Note that N =2forp > o+ 1 and N > 3 for
p € (1,0+1). Also, there are some other self-similar single-point blow-up patterns
with different oscillations, if p € (1,0 + 1). Notice that any self-similar solution
we constructed above has the same number of critical points at any time before the
blow-up time, vet the critical points of the self-similar solution merge together to a
single point at the blow-up time.
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It is interesting to remark that for ug(x) = ¢(|2|) (with 7= 1) we have
lim [|#]*Pug(x)] = B > 0

|z =00
and the corresponding solution w blows up in finite time 7" = 1. In particular, for
the monotone decreasing backward self-similar solution ¢, this spatial asymptotic
behavior is the same as the one for the forward self-similar solution (except the
constants A and B). However, one is a global solution and the other is non-global.
It will be very interesting to determine the global and/or non-global existence
for different constants A or B. This is left as an open problem.
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