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A RESOLVABLE r x ¢ GRID-BLOCK PACKING AND
ITS APPLICATION TO DNA LIBRARY SCREENING

Yukiyasu Mutoh, Masakazu Jimbo and Hung-Lin Fu

Abstract. For a v-set V, let A be a collection of » X ¢ arrays with elements
in V. A pair (V, A) is called an r x ¢ grid-block packing if every two distinct
points ¢ and 7 in V' occur together at most once in the same row or in the same
column of arrays in \A. And an r X ¢ grid-block packing (V) A) is said to
be resolvable if the collection of arrays .4 can be partitioned into sub-classes
Ry, Ry, ..., R; such that every point of V' is contained in precisely one array
of each class. These packings have originated from the use of DNA library
screening. In this paper, we give some constructions of resolvable » X ¢ grid-
block packings and give a brief survey of their application to DNA library
screening.

1. INTRODUCTION

A graph G is a pair of sets (V, E), where V is a finite set and F is a set
of unordered pairs of elements of V. The elements of V' are called vertices or
points of G and the elements of Fv are called edges of G. For vertices ¢ and j of
a graph G, we say that ¢ is adjacent to j if there is an edge between ¢ and j. The
complete graph, denoted by K. is the graph with v vertices such that every vertex
is adjacent to every other vertex. The Cartesian product of graphs G1 = (V1, )
and G2 = (Va, ), denoted by G X (2, is defined to be the graph with the vertex
set V = V7 x V4, and two vertices ¢ = (i1, 42) and j = (j1, j2) are adjacent in the
Cartesian product whenever ¢; = j; and ¢ is adjacent to jo in G5 or symmetrically
if i = jo and ¢; is adjacent to j; in (G;. Note that the vertices of a Cartesian
product G; X (G5 can be arranged on the |V;| x |V3| array and each subgraph with
vertices in a row (or in a column) of the array is isomorphic to G2 (or G1).
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For a v-set V, let A be a collection of » x ¢ arrays with elements in V, and
we identify each » X ¢ array in A with a Cartesian product of two complete graphs
K, x K. whose vertices are labelled by the points in V. Each array is called a
grid-block. A pair (V, A) is called a K, X K. packing into K, or an r X ¢ grid-
block packing, denoted by P,x.(K,), if every two distinct points ¢ and j in V
occur at most once in the same row or in the same column of a grid-block in A.
Moreover, if every two distinct points occur exactly once in the same row or in the
same column, then (V, A) is called a K, X K. decomposition or an r X ¢ grid-block
design, denoted by D,.(K,). Here we used the terminology ‘grid-block design’
to avoid the confusion with the ‘grid design’ defined by Lamken and Wilson [12].

Especially, a K, x K packing or a Ky x K, packing is called a packing with
block size r and a K, X K decomposition or a K X K, decomposition is called
a balanced incomplete block design (BIB) design, denoted by B(v,r;1).

Two grid-blocks A and A’ are said to be equivalent if there are permutation
matrices P and @ such that PAQ = A’. For an r X ¢ grid-block packing (V, A).
let o be a permutationon V. For any rx ¢ grid-block A = (a;;) € A, let A7 = (af;).
If there is a permutation o on V' such that A? is contained in .4 for any grid-block
A € A, then o is called an automorphism of the r x ¢ grid-block packing (V, A).
If there is an automorphism o of order v = |V, then the r x ¢ grid-block packing
is said to be cyclic .

For a cyclic grid-block packing (V, .A), the point set V' can be identified with
Z,. For a grid-block A = (a;;). the grid-block orbit containing A is defined to be
the set of the inequivalent grid-blocks

A = At1= (a;; +1) (mod v)

forl € Z,. If a grid-block orbit has v distinct grid-blocks, then the orbit is said to
be fitll, otherwise short. Choose an arbitrarily fixed grid-block from each grid-block
orbit and call it a base grid-block. Similarly, we define cyclic packings and cyclic
BIBD:s.

A grid-block packing (V. .A) is said to be resolvable if the collection of grid-
blocks A can be partitioned into subclasses Ry, Ro, ..., R; such that every point
of V is contained in precisely one grid-block of each class. The classes R; are
called resolution classes and R = {Ry1, Ry, ..., R;} is called a resolution. Such a
grid-block packing is said to be an r X ¢ resolvable grid-block packing. Similarly,
we define resolvable packings and resolvable BIBDs.

Here we show examples of a cyclic Daoyxs(K7g), a resolvable Diyxs(Ky), a
resolvable P5y2(K3g) and a resolvable Psy3(K1g).

Example 1. The following five grid-blocks form a cyclic Dox3(K1p).
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Example 2. The following two grid-blocks form a resolvable D3y 3(Ky).

1 2 3 1 6 8
4 5 6 9 2 14
789 5 7 3

Example 3. The following six grid-blocks form a resolvable Poyo(Kg).

ocog 0o oop o oo 2o
01 oo 11 oo 21 oo
1o 20 20 Og 0o To
21 11 01 21 11 01

Example 4. The following six grid-blocks form a resolvable Psy3(K7sg).

0 1 2 0 4 8 0 9 13
3 4 5 5 6 9 10 17 8
6 7 8 7 10 14 127 3
9 10 11 1 3 15 1 5 11
12 13 14 12 16 11 6 15 2
15 16 17 17 2 13 16 14 4

For a packing P,«.(K,), let ¢; be the number of grid-blocks containing a point
7. Then,
v—1
r+c—2

holds. If a packing is resolvable, then v is divided by re, ¢; is constant(= ¢) and
the number of grid-blocks is

v v v—1
b:t—g—LiJ.
re rclr +c¢—2

A resolvable packing P,y.(K,) attaining this bound is said to be optimal. In
Example 3, the resolvable P55 ( K) is optimal. However, the resolvable Psy3(K1g)
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is not optimal in Example 4 since the upper bound of the number of resolution classes
are 4.

Next, we define the notions of the sum, the scalar multiplication and the product
over additive groups for lists to utilize in Section 4 and 6. For a finite set V', a
formal sum L = > i m,{x} is called a list, where the nonnegative integer m,,
is the multiplicity of x in the list L. Also we use the notation L = (a;|i € I) to
indicate the list of a;’s, where [ is an indexing set. We identify a subset ¥ of V'
with a list whose multiplicities m, are 1 or 0 depending on whether x belongs to
Y or not.

We define the addition and the scalar multiplication for lists L = >y, l.{«}
and M =3 yma{e}by L+-M =3 (lo+mg){atand AL = >y M {a}
for a nonnegative integer A. Moreover, if I, < m, holds for each « € V, then we
write L < M.

Moreover, V' is an additive group with order v. The product of two lists . =

Yosev etz and M = 3" i m,{a} is defined by

LoM=>" ( lemz){z}.

z€V zf/i/z
List multiplication is commutative, associative and distributive over the addition of
lists. For any subset S of V and for any element y of V, let S+y = {s+y|s € S}
and Sy = {sy|s € S}.

In Section 2, we will give a brief survey of its application to DNA library
screening and will explain the relationship to a grid-block packing. In Section 3,
we will give a brief survey of constructions of grid-block designs. And in Section
4, 5 and 6, we will give some constructions of resolvable r x ¢ grid-block packings
and designs.

2. DNA LIBRARY SCREENING

The notion of r x ¢ grid-block designs was introduced by Fu, Hwang, Jimbo,
Mutoh and Shive [8]. The special case of ¢ = v is called a lattice square design
if » = ¢, or a lattice rectangle design otherwise, which was introduced by Yates
[16] and Harshbarger [9], respectively. These designs are obviously resolvable.
A construction of lattice square designs for /v odd prime powers was given by
Raghavarao [14]. And its use for the DNA library screening was proposed by
Hwang [10].

In DNA library screening, there are many oligonucleotides (clones) to be tested
whether they are positive or negative. An oligonucleotide is a short string of nu-
cleotides A, T, G and C. The goal of a DNA library screening is to identify all



A Resolvable r x ¢ Grid-block Packing and Its Application 717

positive clones. Economy of time and costs requires that the clones be assayed in
groups. Each group is called a pool. If a pool gives a negative outcome, all clones
contained in it are found to be negative. In this case, we can save numbers of tests.
On the other hand, if the pool is positive, at the second stage we test each clone
individually. This screening method is called a two-stage test, which is a popular
group testing.

In such screening, a microtiter plate, which is an array with size 8 X 12 or
16 x 24, etc. is utilized and different clones are settled in each spot, called well, of
the plate.

In this method, every row and every column in a microtiter plate is tested at
the same time as a pool in the first stage, and each clone with positive response
is tested individually in the second stage. This method is called the basic matrix
method (BMM). In this method each clone is tested twice. If the array contains only
a single positive clone, or more generally, if there is only one row (or column) of
positive then we can determine the positive clones without individual tests. However,
it does not always occur, that is, arrays often contain several positive clones. For
example if two rows and two columns are positive as we see in Fig. 1(b), we can
not determine whether the four clones settled at the crossing spots of positives are
really positive or not.

Thus, if it 1s allowed to test more than twice for each clone, then, it is desired
that every two distinct clones occur at most once in the same row or the same
column, which is called the unique collinearity condition. The efficiency of the
unique collinearity condition was shown by Barillot, Lacroix and Cohen [1] by
simulation and was also proved theoretically by Berger, Mandell and Subrahmanya
[2].

We consider the case when there is a single positive clone within the set of v

4 4
4
4
4
v 4 4
[/ a positive response [/ : a positive response
@ : a positive clone A @ an semipositive clone
(a) One column is positive. (b) Two rows and columns are positive.

Fig. 1. Results of the first stage group tests in DNA library screening.
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clones and we place those clones on ¢ » X ¢ microtiter plates at random allowing
repetition, where n = {rc¢ > v holds. Then, the expectation of the number of
different clones, which occur in the all microtiter plates, is

L (v (kY. v— 1) N
LS (1) B () e
k=1 =1

In this case, the expectation of the number of individual tests we need is at least
(1— %)”v However, if n = v and each clone is settled exactly once on the microtiter
plates, then we can decide the positive/negative only by the first stage group tests
and we can reduce about (1 — %)”v tests. We can also show it by an example
shown in Figure 2. In this figure, there are v = 1000 clones and p is the probability
of positives. The vertical line is the number of tests for (i) the case of the same
replication number and (ii) the case when the replication numbers are not constant.
By Figure 2, we can see that, in case of the constant replications, the number of
tests can be reduced comparing with the case of non-constant replications.

It is a favorite property that the number of replications for each clone should
be almost the same in the first stage. This condition is called the equal replication
number of tests.

An r X ¢ grid-block packing defined by Section 1 satisfies ‘the unique collinearity
condition’, moreover, a resolvable r X ¢ grid-block packing satisfies also ‘the equal
replication number of tests’.

Berger et al. [2] gave the optimal size of the array and the optimal replication
number according as the probability (ratio) of positive clones under the implicit con-
dition of the equal replication number of tests. Though they utilized the terminology
of ‘n-dimensional array’, it implies that the replication numbers are all equal (= n).
Knill, Bruno and Torney [11] considered non-adaptive group testing problems with
SOME eITorS.

# of tests
1200

1000
800
600

400

200

0.05 0.1 0.15 0.2F

Fig. 2. A simulation result of a comparison between constant replications and random
replications.
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3. KNowN RESULTS

In this section, we will list some known results for » X ¢ grid-block designs.
Firstly, we give necessary conditions of a D,.x.(K,) obtained by Fu et al. [8].

Proposition 1. Necessary conditions for the existence of a D,x.(K,) are
(1) v—1=0 (mod r +¢—2), and
(ii) v(v —1) =0 (mod re(r + ¢ —2)).

These conditions are not sufficient in general. It may be difficult to determine those
parameters for which D, (K, )s exist. Among them, the existence of a Doy (K,)
is known in terms of a ‘4-cycle system’.

Proposition 2.  The necessary condition v = 1 (mod 8) for the existence of
a Doy (K,) is sufficient.

And the existence of a Dyy3(K,) was shown by Carter [5] by decomposing K,
into cubic graphs.

Proposition 3. ([5]) The necessary condition v =1 (mod 9) for the existence
of a Dax3(K,) is sufficient.

Meanwhile, Fu er al. [8] showed the existence of a D3x3(K,) by some direct
constructions and gave some general constructions.

Proposition 4. ([8]) The necessary condition v = 1,9 (mod 36) for the
existence of a D3x3(K,) is sufficient.

Mutoh, Morihara, Jimbo and Fu [13] showed the existence of a Doy (K,) by
utilizing some direct and recursive constructions.

Proposition 5. ([13]) The necessary condition v = 1 (mod 32) for the exis-
tence of a Doys(K,) is sufficient.

Next, we define some notions. For a set of positive integers K, let V be a set
of v points (vertices) and let B be a collection of k-subsets (called blocks) of V'
for k € K. If every two distinct points occur exactly A times in blocks, then a pair
(V, B) is called a pairwise balanced design, denoted by B(v, K, \). Especially, a
B(v, {k}, \) is written by B(v, k, ) for simplicity of the notation and it is a BIB
design.

For sets of positive integers K and M, let V be a set of v points, G =
{G1,G3,...,Gy} be a partition of V' such that each ; has m points for m € M
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and B be a collection of k-subsets (blocks) of V' for k € K. A triple (V,G,B) is
called a group divisible design, denoted by G D (v, K, \, M), if every two distinct
points contained in the different groups occur in exactly A blocks and if every two
distinct points contained in the same group do not occur together in any blocks.
Especially, a GD(v, {k}, A, {m}) is simply written by GD(v, k, A, m).

Suppose that the set of st vertices are partitioned into s subsets of size ¢ each.
Let K(t) be the complete multipartite graph such that the vertex set is divided into
t groups each of which has s vertices and that {¢, j} is an edge if ¢ and j are not
in the same subset. Let V' be the set of vertices in K(Z) and let .A be a collection
of r x ¢ grid-blocks with elements in V. For any edge {7, j} in K(t), if there is a
single grid-block containing ¢ and j in the same row or in the same column, then a
pair (V, .A) is called a group divisible grid-block design, denoted by D, x.(Ks(t)).
It is easy to see that the following proposition holds:

Proposition 6. ([8]) Necessary conditions for a D,y .(K4(t)) to exist are
(1) (s—1)t=0 (mod r + ¢ —2), and
(i) (s —1)st> =0 (mod rc(r + ¢ — 2)).

We list some recursive constructions obtained by Fu ef al. [8] and Mutoh ef al.
[13].

Proposition 7. ([8]) A D, xo(Kstr1) existsifa D,y (Kir1) and a Dyx(K4(1))
exist.

Proposition 8. ([8]) A4 D,x.(K,(t)) existsifa B(v, K,1) and D,x.(K4(t))’s
Jors € K exists. Especially,a D,x.(K,(t)) existsifa B(v,s, 1) and a D,x.(Ks(t))
exist.

Corollary 9. ([8]) A D,xc(Kytt1) exists if a B(v, K,1), @ Dyx.(K¢+1) and
D,x.(Ks(t)) s for s € K exist.

Proposition 10. ([8]) A Dyxc(K(y—1)e1) existsifa B(v, s,1),a Dyxe(Kii1),
a Dysce(K (s 1)41) and a Dyx (Ks(1)) exist.

Proposition 11. ([8]) A D,xc(K(,14)+1) exists if a resolvable B(v, s, 1) with
at least i resolution classes, @ D, x.(Ki11), @ Dypxe(Kit11), @ Dpxo(Ks(l)) and a
Dyxo(Ksi1(t)) exist.

Proposition 12. ([13]) A D, x (K1) exists if a GD(v, K, 1, M) exists and
if @ Dpxoe(Ki(t)) and a D,xo(Kper1) exist for any k € K and for any m € M.
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Proposition 13. ([8]) Suppose a D,x.(Ks(t)) and s —2 mutually orthogonal
Latin squares of order m exist for s > 3. Then a D,x.(K(mt)) exist.

Morcover, we list two direct constructions.

Proposition 14. ([8]) For an even integer n and an odd prime power q, there
exists a Dgxq(Kqn).

Proposition 15. ([8]) Let p be an odd prime and v = p (mod 2p(p —1)). If
there exists a cyclic B(v,p, 1), then there exists a Dpx,(Kp,).

4. SoME OPTIMAL RESOLVABLE 7 X ¢ GRID-BLOCK PACKINGS

In this section, we will construct an optimal resolvable 2 x 2 grid-block packing
and a g X ¢ grid-block packing for a prime power g. Firstly, we will give the
following theorem by constructing directly.

Theorem 16.  There exists an optimal resolvable Payo(K,) for any v = 0
(mod 4).

Before we prove Theorem 16, we give some notations. For an additive group
V' with v elements, we introduce the list of differences of a k-set B = {b;} with
elements in V by AB = (b; — b;|1 < 4,5, < k, 7 # j). For a family of k-sets
B — (B;|i € I) withelementsin V, we define AB = >, ;AB;. If AB = V\{0}
holds, then B is a (v, k, 1)-difference family in V, denoted by DF(v,k,1) in V.

We generalize such notion to an r» X ¢ grid-block. We introduce the list of
differences of an r x ¢ grid-block A = (a;;) with elements of V' as follows:

OA=(aji—ay|l <i#j<r, 1<1<c)
Hayy —au|l <U<r, 1<i#j<ec).

For a family of » x ¢ arrays A = (A;]¢ € I) with elements in V, we define
0A =3 .1 0A;. T DA <V \ {0} holds, then A is called a grid-block difference
packing, denoted by DP(v, K, x K., 1). Especially, if 94 = V' \ {0} holds, then
A is called a grid-block difference family, denoted by DF (v, K, x K., 1). In fact,
the development of A is defined by A = {As+g|g € V'}. Then a pair (V, A) is an
r X ¢ grid-block packing if and only if A < V'\ {0} holds and an r X ¢ grid-block
design if and only if 04 = V' \ {0}.

Next, we give a notion of the method of mixed differences introduced by Bose
[4]. For an additive group G and an indexset M = {0,1,...,t—1} etV = GxM
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be a set of points. For g € G and B = {(by,11), (bo,l2), ..., (br, lx)} TV, we
define the addition B + g by

B +g - {<b1 +gyl1>7 <b2+gyl2>7 ey (bk+gylk>}

For a k-subset B = {(b1,11), (b2, l2), ..., (bg, lk) }. let Aj;B be the list of differ-
ences b,y — by, such that ((b,,7)) and ((b,/, 7)) occur in B, that is,

AijB = (by —byp|l <n# n <k, =1, ly = j).

Note that if ¢ # j the difference b,y —b,, = 0 can occur, but not for ¢ = j. Obviously,
A;jB = —Aj;B. For a family of k-subsets B = {B;|s € S} with elements in G,
we define A;; B = ZSGS A;iBs. AyB s called the i-th list of pure differences.
In case of ¢ # j the list A;; B 1s called the list of mixed differences for the index
pair (7, 7). Obviously, A;; B = —A;; B holds. Note that the difference 0 is allowed
in A;; B if and only if ¢ # j holds.

The development of B is defined by B = {Bs +¢g|s € S, g € G}. A pair
(V, B) is a balanced incomplete block design with parameter A = 1 if and only if

(i) A;B = G\ {0} holds for every i € M and
(i) Ay B = G holds for each i,j € M.

We generalize the notion of the mixed (or pure) differences to an r X ¢ grid-block
packing. Let G be an additive group and M = {0,1,...,¢ — 1} be an index set.
For an r x ¢ array A = ((@m,n, lm,n)) With elements in V = G x M, let 9;;4
be the list of differences a,y ;v — i sUch that (@, %)) and ((ap 7, 7)) occur
together in the same row or the same column of A, that is,

81]14 - (am/,u - am,u|1 <m 7£ m’ <r,1<uc<yg, lm,u =1, lm/,u - J)
+<au,n/ - au,n|1 <u<r, 1<n 7£ n/ <c, lu,n/ - iy 7lu,n - J)

For a family of » X ¢ arrays A = {A;|s € S} with eclements in &, we define
0;; A = Zse g 0ijAs. Obviously, 9;; A = —0;; A holds. Note that the difference 0
is allowed in 0;; A if and only if ¢ # j holds.
The development of A is defined by A = {A; + g|g € G}. Then a pair (V, A)
is an r X ¢ grid-block packing if and only if
(1) 0;;A <G 0 holds for every i € M and
(i1) 0;;A < G holds for each i,j € M.

If 0;; A = G\{0} and 9;; A = G hold for each 7, j € M, a pair (V, A)isanr x ¢
grid-block design. Now we are ready to prove Theorem 16.
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Proof of Theorem 16.  LetV = (Zg—1 U{oo}) x {0,1} for any ¢ > 1. We
define base grid-blocks

| ocg Op
A = 01 oo1
and
|l (2t —=1—1)o
A= (2t —1—1)1 & ’

forl=1,2,...,t — 1. Also we define the family A of base grid-blocks by
A={A.lzr =00,1,2,...,t —1}.
Moreover we define a map
7y i (@,5) = (w1 g,])

for x € Zy 1 U{o0}, g € Zy1 and j = 0,1. Note that co + g = oco. Let
A = {r(A)|e = 00,1,2,...,t — 1,9 € Zy_1}. Then (V, A) is a Ky x K>
packing since

JooA = 001 A = D10A = 011 A =Zy 1\ {0}

hold and oc; and g; occurs exactly once in the same row or in the same column of
a grid-block for each ¢, j = {0,1} and each g € Z5; ;.

Also, Tg(A) is obviously a resolution class for ¢ € Z3 ;. The number of
resolution classes is

which implies that the resolvable grid-block packing is optimal. ]

Next, for a prime power ¢, let AG(n, q) be the n-dimensional affine geometry
over GF(q). Here, an m-flat means an m-dimensional linear subspace or its coset
in AG(n,q). Then, we obtain the following theorem by generalizing Proposition
14.

Theorem 17. An optimal resolvable grid-block packing Py q(Kyn) exists for a
prime power q and an integer n. Moreover, when n is even and q is odd, the optimal
resolvable grid-block packing is a resolvable grid-block design D gxq(Kgn).

Proof.  Let o be a primitive element of G'F'(¢™). Then each point of AG(n, q)
is represented by af. For convenience, let ™ = 0. We define a base ¢ x ¢
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grid-block G as follows:

a™>® a® a2y Oé(2q74)u

at aO + ot a2u + ot . Oé(2q74)u + ot

a3u aO + a3u a2u + a3u .. Oé(2q74)u + a3u :
Oé(2q73)u aO + Oé(2q73)u a2u + Oé(2q73)u . Oé(2q74)u + Oé(2q73)u

where
5=
U= .
2(q—1)

Then Gy is a 2-flat in AG(n, q) and rows and columns of G are lines (1-flats) in
AG(n,q). Thus, Gy generates a Py (K ) together with its cyclic shifts oiGy for
i=20,1,...,u— 1 and with the parallel 2-flats of them.

In fact, let of and o/ be two points in AG(n, q). To count the number of rows
and columns of ¢ x ¢ grid-blocks containing of and o/ simultancously, we have
only to count the number of rows and columns such that 0 (= a™) and o* — o/

occur together. We can represent o — o = of for some integer /. When 7 is even

and ¢ is odd, u = % holds and there is exactly one line passing through the

origin 0 and of. Otherwise, there is at most one line passing through the origin 0
and of.

Furthermore, we partition the arrays into resolution classes. We define a class
Ry as a setof G and its parallel 2-flats. Its cyclic shifts o' Ry fori = 0, 1,...,u—1
are obviously resolution classes, and it is obvious that there are u resolution classes,
which implies that the packing is optimal. Thus the theorem is proved. ]

5. RECURSIVE CONSTRUCTIONS BY ORTHOGONAL ARRAYS

In this section, we will give constructions of resolvable r X ¢ grid-block packings
by utilizing orthogonal arrays and latin squares. Firstly, we define a notation. For
S = {0,1,...,s — 1}, an orthogonal array of order s, degree k and index X,
denoted by OA(s, k, ), is an (52X X m)-matrix with entries from S such that each
(%X x 2)-submatrix contains every ordered pair of S precisely A times.

We will give a recursive construction of a resolvable » x ¢ grid-block packing
by utilizing an orthogonal array.

Theorem 18. Assume that r < c. If there exist a resolvable P,y .(K,) with t
resolution classes and an OA(s,c+1,1), then there exists a resolvable Py .(Ks,)
with st resolution classes.
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Proof.  For a v-set V, let a pair (V,.A) be a resolvable P, .(K,), where
A = {Ay, Ag, ..., Ay} is a collection of arrays. Let R = {Ry, Ry,...,R;} be a
resolution of the resolvable P.x.(K,). By applying a permutation to rows of M, we
assume the each element of (¢+ 1)-th column as follows without loss of generality:

£0,c — 0, Ple — 0, cevs Ps—1,c 0,

Ps,c — 1, Pst+1l,c — 1, <oy P2s—1c— 1,

p(sfl)s,c = 8= 17 p(sfl)sle,c = 8= 17 ey psgfl,c =s— 1L
Then, each s x 1-column vector (pus j, Pust1,js - - -5 Pusts—1,5) foru=20,1,...,s—
land j =0,1,...,¢c— 1 contains every element of .S precisely once.

For V¥ = V xS = {(a,p)la € V, p € S} and for each r x ¢ grid-block
A; = (a,) of (V, A), we define

A5 = (@ pjar)

(ado, pj0) (@b pj1) o (@he1sPje1)
(@10, pj1) (ai1,pj2) .. (@i 1,pj0)

—| (a3, pj2) (ah,pj3) - (aheq,p51)
(aifLo:Pj,rfl) (aifl,hpjﬂ”) (aifl,cfhpjﬂ*C*?)

fori =1,2,....,band j = 0,1,...,s%> — 1. Note that in the second subscript of
p, x +y means  +y (mod c). We define the set A* as {A%[i = 1,2,...,b,7 =
0,1,...,82—1}.

If two distinct elements ¢ and as in V' occur together at most once in A; and
the pair (p1, p2) occur exactly once in the OA(s, ¢+ 1, 1), then each pair (a1, p1)
and (az, p2) occurs at most once in the same row or in the same column of an array
in A* for any py, po € S. That is, the pair (V*, A*) is an r X ¢ grid-block packing.
It remains to show that (V*, A*) is resolvable.

We partition the arrays into st resolution classes. Let R}, for w = 1,2,...,1
and v =0,1,...,5 — 1 be as follows:

R, = {A}|li = us,us +1,...,us+ s —1 and for any i such that 4; € R, }.
Note that, each (pus j, Pust1,js - - -» Pust+s—1,;) contains every element of S precisely

once for j = 0,1,...,c—1. That is, each R}, is a resolution class and the number
of resolution classes is st. ]
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Moreover, by utilizing a resolvable D, .(K,,(n)) instead of P,y .(K,,,) in
Theorem 18 and a resolvable D,y .(K,), we will give a recursive construction of
a resolvable » X ¢ grid-block design.

Theorem 19.  Assume that v < c. If there exist a resolvable D,y (K, (n)),
an OA(s,c+ 1,1) and a resolvable D,x.(Ks,), then there exists a resolvable

Dr><c<Ksmn>-

Proof.  For an nm-set V, let (V, A, G) be a resolvable D, x.(K,,(n)), where
A= {Ay, Ay, ..., Ay} is a collection of grid-blocks and G = {G1,Ga, ..., G} is
a family of n-partite sets, that is a partition of V. The number b of the grid-blocks
is n®m(m — 1)/rc(r + ¢ — 2). Let R = {Ry, Ry, ..., R;} be a resolution of the
resolvable D,.x.(K,,(n)), the number ¢ of the resolution classes is n(m —1)/(r +
c—2).

Similarly, for an sn-set W, let (W, F) be a resolvable D,y .(Ks,), where F =
{F1, Fy,..., Fy} is a collection of grid-blocks. The number &’ of the grid-blocks
is sn(sn —1)/re(r +¢—2). Let Q@ = {Q,,Q,...,Qy} be a resolution of the
resolvable D, x.(Ksy,), the number ¢’ of the resolution classes is (sn—1)/(r +c—2).

For V¥ =V x S = {(a,p)la € V, p € S} and for each r x ¢ grid-block
A; = (al,,) of (V, A, G), we define Af = ((a s Pjety))- And let A = {A5li =
1,2,...,b,5=0,1,...,5°—1}. Up to now we have s2b = s’n?m(m —1)/rc(r +
¢ — 2) grid-blocks, but we need smn(smn — 1)/rc(r + ¢ — 2) grid-blocks in total.

In order to get further grid-blocks we consider a one-to-one map from W to the
set W; = G; x S, and let (W, F;) be a resolvable D, x.(Ks,) on the point set ;.
Let A5 = F1UFU. . .UF,,. Then we obtain more mby = msn(sn—1)/rc(r+c—2)
additional grid-blocks, in total

smn(smn — 1)

2
b by = ——— 7
870+ mbs re(r+c¢—2)

grid-blocks A7, and F, l-(] ) e F; are obtained as desired. Now let A* = AT U A3,

By Theorem 18, if two distinct elements a and a9 in V' are not contained in the
same partite set G, then each pair (a1, p1) and (as, p2) occurs exactly once in the
same row or in the same column of a grid-block in A} and does not occur in A3.
On the other hand, in the case when two elements a; and as in V' are contained
in the same partite set (; including the case of a; = ap, each pair (a1, p1) and
(a2, p2) occurs exactly once in the same row or in the same column of a grid-block
in (W;, ;) and does not occur in Af. That is, (V*, A*) is an  x ¢ grid-block
design. It remains to show that (V*, A*) is resolvable.

We partition the grid-blocks into t* = (smn —1)/(r + ¢ —2) resolution classes.
At first, let

R, ={Ajlj =us,us+1,...,us + s — 1 and for any ¢ such that A; € R, }
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forw=1,2,....,tand w = 0,1,...,s — 1. Note that, each s X 1 column vector
(Pus,js Pust1,js -« -2 Pus+s—1,5) for 7 =10,1,...,¢—1 contains every element of S
precisely once. That is, each R, is a resolution class.

For resolution classes Qq(ﬂ) in (W;, F;). let

Q.- Ui
j=1

w

and Q7 is ts + ¢ = (smn — 1)(r + ¢ — 2) as desired. [

Obviously, @Q;, is a resolution class. The total number of resolution classes R,

If each partite set has a single point, then we obtain the following corollary.

Corollary 20.  Assume that r < c. If there exist a resolvable D,y .(K,,),
an OA(s,c + 1,1) and a resolvable D,x.(Ks), then there exists a resolvable

Dr><c<Ksm>-

Moreover, we will give a construction of a resolvable » X ¢ grid-block packing
by utilizing a resolvable packing.

Theorem 21.  Assume that v < c. If there exists a resolvable PA(v,c, 1)
with t resolution classes, then there exists a resolvable P,y .(K,,) with { resolution
classes.

Proof.  For a v-set V, let a pair (V,B) be a resolvable PA(v, ¢, 1) with
t resolution classes, where B = {B1, Bs,..., By} is a collection of blocks. Let
R ={R1, Rz, ...R:} be a resolution of the resolvable packing (V, ).

For S = {0,1,...,r — 1}, let V* =V x S and let

R ()

(b, 0) (61,0) N (N
(b1, 1) (b5, 1) e (b5, 1)
= (%2 (63,2) o (01,2)
kbifp r—= 1) kbiy r—= 1) . .<b7i”+0727 r—= 1)

for each block B; = (b;) of (V,B) and for ¢ = 1,2,...,b. Note that in the first
subscript of b,  + y means @ + y (mod ¢). We define the set A* as {Af|i =
1,2,...,b}

Since two distinct elements b; and by in V' occur together at most once in a
block of the PA(v, ¢, 1), each pair (by,7) and (by,4) occurs at most once in the
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same row of an array in .A* for any ¢ € S. And each pair (b, ¢) and (be, j) occurs
at most once in the same column of an array in for any ¢ £ 5 € S. Hence, the pair
(V, A*) is an r X ¢ grid-block packing. Moreover, let

R} = {A}| for any B; € R, }

for w=1,2,...,t. Obviously, cach R;, is a resolution class. Thus, the theorem is
proved. ]

Theorem 22. Assume that v < c. If there exist a resolvable PA(v, ¢, 1) with
t resolution classes and a resolvable P,y .(K,.) with s + 1 grid-blocks, then there
exists a resolvable P.x.(K,,) with st + 1 resolution classes.

Proof.  Let My, M. ..., M, be r x ¢ grid-blocks of a resolvable Py .(K,.)
on the point set B x C, where R = {0,1,...,r — 1} and C' = {0,1,...,¢—1}.
We rename the (7, j)-th element of My = (m?j) simply by (¢, ). Then we have

D ... (0,e—1)
D . (Le—1)

(r—1,0) (r—1,1) ... (r—=1,e—1)

(5.1) My =

and by this renaming, M1, Mo, ..., M are also represented as grid-blocks with
elements in R x C. It is obvious that each element in R x (' occurs exactly once
in every M;. Moreover, (¢, ) and (¢, j') do not occur in the same row and column
of My, Mo, ..., M. Similarly, (¢, 7) and (7', j) do not occur, too.

Now, let (V, B) be a resolvable PA(v, ¢, 1) with ¢ resolution classes Ry, Rs,

.. Ry. For each block B= (b, b1,. . .,b.1)inBand foreach M;= ((Uiy,Tny)) Vet
Ay = (b, 0%)

be an r X ¢ grid-block with element in V x R. Let A = {AL|B € R,,}, then A,
is a resolution class in V' X R, since every element in B X R occurs exactly once

n A%. Here, let st
A=A ul{lyU AL
=1 w=1
Then, for any two distinct elements (b,¢) and (&',¢) in V' x R,

() in case of b =V, (b, ) and (b,i'), i # i', occur exactly once in a column of
a grid-block in A9,

(ii) in case of b £V,
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(a) if there is no block in (V,B) containing b and b’ simultaneously, then
(b,7) and (V',4") do not occur in the same grid-block of A,

(b) if there is a block B containing b and V', there is at most one row or
one column of a grid-block in AL, for | = 1,2,...,s which contains
(b,7) and (V',4"), i # ', simultaneously,

(¢) if there is a block B containing b and b’ and B belongs to Ry, there is
exactly one row of a grid-block in A which contains (b,i) and (V',1),
i =0,1,...,r = 1, simultaneously, by the definition of a resolvable
Pr><c<Krc>-

Thus, (V x R, A) is a resolvable P,x.(K,,) with st + 1 resolution classes .A!. m

By coupling two mutually orthogonal X r latin squares, we can obtain an Euler
square. Thus together with M in (5.1) for » = ¢, we obtain a P, (K,2) with two
grid-blocks. Since there are two mutually orthogonal latin squares except for r = 6,
we obtain the following corollary.

Corollary 23. For a positive integer r # 6, if there exist a resolvable
B(v,r, 1), then there exists a resolvable Py, (K,,) with (v —1)/(r —1) + 1 res-
olution classes.

Moreover, when r is an odd prime power, it was shown that there exists a
resolvable D, (K,2) with (r 4+ 1)/2 grid-blocks by Raghavarao [14]. Thus, we
obtain the following corollary.

Corollary 24. For an odd prime power, if there exist a resolvable PA(v,r, 1)
with t resolution classes, then there exists a resolvable P,y (K,,) with t(r—1)/2+1
resolution classes.

For example, in the case of r = ¢ = 3. it is well known that there is a resolvable
B(6t + 3,3, 1) for any positive integer ¢. By Corollary 23, we obtain a resolvable
Ps53(K18¢4+9) with 3¢ + 2 resolution classes for any ¢. The number of pairs which
occur in the same row or in the same column in a grid-block is 18(3¢ +2)(2¢ + 1)
and the total number of the pairs of two distinct points is (18t + 9)(18¢ + 8)/2.
That is, more than 2/3 of the pairs occur in the same row or in the same column
in the grid-block packing.

In addition, it is known that there is a resolvable PA(6¢,3,1) with 3¢ — 1
resolution classes for any £ > 2 (see Colbourn and Dinitz [7, pp. 413]). That is,
we obtain a resolvable P;y3(K1s:) with 3¢ resolution classes. Similarly, in this
case, about 2/3 of the pairs occur in the same row or in the same column in the
grid-block packing.
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6. CONSTRUCTIONS BY THE METHOD OF DIFFERENCE AND AN
ASsYMPTOTIC EXISTENCE THEOREM

In this section, we will give constructions of » X ¢ grid-block designs and
resolvable r X ¢ grid-block designs by utilizing the method of difference.

For an integer e such that e|(g—1), we define H¢ as {a!|t = (mod €)}, where
o is a primitive element of G F'(q). Clearly H is a subgroup of GF'(q)\ {0}, which
is denoted by [/°. We select an element s,,, from each IS, form =0,1,...,e—1
and call the set S = {sp,s1,...,8c1} a system of representatives for cosets
modulo H¢. Then GF(q)\ {0} = H¢o S, holds. We define H® as the class of
cosets {HS, He, ..., HE | }.

We note that if ¢ is even, ie., if ¢ is a power of 2, then —1 = 1 is always
an e-th root of unity. If ¢ is odd, then —1 € H¢ if and only if 2¢|(g — 1), since
—1 = al971/2 is an e-th power if and only if (g — 1)/2=0 (mod e).

We will give constructions by utilizing the method of difference over finite fields.

Theorem 25. [f there exists a DF(q, K, x K., 1) in G(q), then there exists
a DF(q", K, x K., 1) in G(q"), hence a D,x.(Kq) exists for n > 1.

Proof. TLet A = (Ajli € I) be a DF(q, K, X K., 1) in G(q). Then 0A =
Y ic1 0A; = G(q) \ {0}. If we consider GF(q) as a subfield of G'F(q"), then
G'F(q)\ {0} is the group H¢ of the e-th powers of a primitive element in G F(¢™)
where e = (¢" —1)/(¢ — 1).

Let S be a system of representatives for the cosets H¢ modulo H¢ in GF(q™).
Thus S is a set of e field elements such that S o H¢ = G(¢™) \ {0}. Consider the
family A* = (sA;|¢ € I, s € S). Noting that the list of differences from the set
sA; is (s) o OA;, we have

OA* =) ") (5)0 A= SodA = SoH®=G(¢")\ {0}.

s€S el

That is, A" is a DF(¢", K, x K., 1) and there exists a D, x.(K4n). ]

Theorem 26. For a prime power ¢ = 1 (mod re(r + ¢ — 2)), if there exists
an r x ¢ array A = (a;;) over GF(q) such that two differences in OA lie in each

re(r+c—2)

1
coset modulo H> , or equivalently, such that

5)A:{ajl—ail|1§i<j§r,1§l§c}
Uday —aull <i<r, 1<i<j<c}

is a system of representatives for the cosets H%’”C(’”“*Q), then there exists a DF(q,
K, x K., 1) in G(q), hence a D,x.(K,) exists.
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Proof. Lete = Zre(r+c—2). Then —1 € H® holds, since 2¢|(g—1). By the
assumption, 3 A must have precisely one entry in each coset S, for 0 <m < e—1,

and 04 = (1,-1)o0 9 A holds. Let S be a system of representatives for the cosets
of the quotient group H¢/{1, —1}, so that H¢ = S o (1,—1). Let A be the family
(sA|s € §). Then,

A= S0dA=So(l,~1)o A= H dA=GF(q)\ {0
ie. Aisa DF(q, K, x K., 1) in G(q) and there exists a D, (Kg). ]

The following construction for a resolvable BIB design is obtained by Ray-
Chaudhuri and Wilson [6] (see also Beth et al. [3, pp. 356-358]).

Proposition 27.  Theorem 1.1. Lemma 2.1. For a prime power q, if there
is a mutually disjoint DF(q, k, 1) in G(q), then there exists a resolvable B(kq, k, 1).

By utilizing Proposition 27, we obtain the following corollary.

Corollary 28. Let q be a prime power, if there exist a mutually disjoint
DF(q,re, 1) in G(q) and a Dy (Ky.), then a resolvable D,y (K,.q) exists.

Proof. By assumption, there is a resolvable B(rcq, rc, 1). For each block in the
resolvable B(v, re, 1), we construct (re—1)/(r+c¢—2) grid-blocks of a D, x.(K,.)
whose elements set 1s the block. Thus we obtain a resolvable Dr><c<Krcq>- [ ]

Here, we define a mutually disjoint D F(q, K, x K., 1) similar to the case of
DF(q,k,1). Then we obtain the following theorem.

Theorem 29. For a prime power q, assume that rc(r + ¢ —2)|(q — 1) holds.
If there exist a mutually disjoint DF(q, K, X K., 1) in G(q) and a D,x.(K,.),
then there exists a resolvable D,y (Kyeq).

Proof. Let Ey, I, ..., By 1 be r x ¢ grid-blocks of a D,y .(K,.), where
bye = (re—1)/(r+c—2). For an rc-set B, we define Fj,(B) as the r x ¢ grid-block
Ej, whose elements are labelled by the points in B.

Let A = {A1, Ay, ..., As} be a mutually disjoint DF(q, K, x K., 1), where
the number of base grid-blocks A; is s = (¢ — 1)/re(r + ¢ —1). Hence,

S
Z|A’| =s-rc<q,
i—1

and without loss of generality, we assume that 0 ¢ A; for ¢ = 1,2,...,s. For
M = {0,1,...,r¢c — 1}, let V.= G(q) x M. For an re-set let By = {0} x
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0,0),(0,1),...,(0,7¢—1)}, let E,(Bg) be a grid-block labelled by By for
yeoeybpe— 1 and

Bl = A; x {} = ((a], . 4))

fori =1,2,...,sand j € M. Upto now we have b,.+rcs = (re+q—2)/(r+c—2)
base grid-blocks. In order to get further base grid-blocks we choose r¢ distinct
elements ug = 1, uq, ..., up. 1 of GF(q)\ {0}, and let

=
Il
~=
—_ o~

Cr = {(upz, 0), (wz, 1), ..., (tpe12,7c— 1)}
for x € GF(q)\ {0}. We have b,.(q — 1) new base grid-blocks which are Fj(C.,)
for h=0,1,...,b.. — 1 and for 2 € GF(q) \ {0}, in total
(re+q—2)/(r+c—2)+b(q—1)=(req—1)/(r +c—2)

base gird-blocks Eh(Bo'), Bg and I, (C,) are obtained. Now we replace the base
grid-blocks B! by ;B! to satisty the condition of resolvability and we define the
set of A* of new base grid-blocks by
A* ={Ey(By)|lh =0,1,....b,. — 1}
U {ujBlli=1,2,...,5,j € M}
U {EL(Cy)|z € GF(q)\ {0}, h=10,1,...,byc — 1}.

The pure differences arise from the ung , and the mixed differences come from
the Fy(C,) and Ep(By). Since A is a DF(q, K, x K., 1),

D 0iuBY) = 3 w038 = wi(G(@) \ {0}) = G(a) \ {0}

holds. Furthermore, for 7 < j,

bre—1

> 9 Bn(Bo) = Ai; By = {0}
h=0

and

bre—1
> (Z &-th(Cz)) > 4G,

#€G(@\{0} \ h=0 z€G(g)\{0}
= (u; —u;)(G(g) \ {0})
= G(g)\ {0}
hold.
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Hence 0;; A* = G(q)\{0} and 0;; A* = G(q) hold for 7 # j, which implies that
the pair (V, A*) is an r X ¢ grid-block design for A* = {A+g|A € A*, g € G(q)}.
It remains to show that A* is resolvable.

We partition the grid-blocks into ¢ = (req — 1)/
For A; = (af,,,). we identify the set {a?, ,|m = 1,
the grid-block A. Let Py be as follows:

(r 4+ ¢ — 2) resolution classes.
2,..,t,n=1,2,...,¢} with

Po = {Eo(Bo)}U{u;B|i =1,2,...,5,j € M}
U {Fo(Cy)|x & A; for any ¢}.

Then the number of grid-blocks in Py is 1 +res + (¢ — 1 — res) = g. The points
in these grid-blocks are

(0,0),(0,1),...,(0,7c—1),
(ujaiy, gy ..., (wjabhy, 3), - (ujaijc,j) fori=1,2,...,sand j € M, and

(uopz, 0), (w1, 1), ..., (upe_12,7c — 1) for all 4, j, n, m and for 0 # x # afn’n.

Obviously every point of V' = G/(q) x M occurs exactly once, i.e. Py is a resolution
class.

We define a map 7, : («,j) — (& +g,j) for g € G(g) and P, = {1,(A)|A €
Py}. Then it is obvious that P,’s are resolution classes. It is easy to see that
Q. = {7yE0(C:) : g € G(q)} is a resolution class for each z € A;UAU. . . UA,.
Similarly, we construct more classes R = {r,F,(C,) : g € G(q)} and R} =
{r,En(Bo) : g € G(q)} for h = 1,2,...,b,. — 1. R" is also a resolution class.
The total number of resolution classes P, Q, and R" is

req — 1
bype —1)g= ———=1.
q+res+( )q e _2

Hence the theorem is proved ]

From Corollary 28, we obtain a resolvable D, x (K, o(re(re—1)n+1)) Whenre(re—
1)n+1 is a prime power. But from Theorem 29, we obtain a resolvable DTXC(KTC(TC
(rte—2)nt1)) When re(r + ¢ —2)n + 1 is a prime power. By the existence of
a Dyxe(Kre), (r +c¢—2)|(re — 1) holds. That is, Corollary 28 is included in
Theorem 29. For example, in case of » = ¢ = 3 and ¢ = 37, there exists a cyclic
D3x3(Ks7) but a B(37,9,1) does not exist. Hence we can not find the existence
of a resolvable D3y3(K333) by Corollary 28, while we can claim the existence by
Theorem 29.

Moreover, by utilizing a DP(q, K, x K, 1) with s base grid-blocks in G(q),
we obtain the following corollary.
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Corollary 30. For a prime power q, if there exists a DP(q, K, x K, 1) with
s > 0 base grid-blocks in G(q), then there exists a resolvable P,y (K,q) with
q+res resolution classes. Moreover, if there exists a Dy x.(Ky.), then there exists
a resolvable P,y (K cq) with q(rc — 1)/(r + ¢ —2) + rcs resolution classes.

Next, by utilizing Wilson’s choice function, we will show the existence of a
D, x.(Ky) and a resolvable D,y .(K,.,) for a sufficiently large prime power ¢. For
a prime power ¢ = ef + 1 and an integer £ > 2, let Py be the set of ordered
pairs {(¢,7)|1 < < 7 < k}. We define a choice to be any map C : Py — HE,
assigning each pair (¢, j) € Py to a coset C(Z, j) modulo H® in GF(q). A k-tuple
(a1, a2, ...,ax) of clements of GF(q) is consistent with the choice C' if and only
if aj —a; € C(¢,7) forall 1 <7 < j < k. Then, the following lemma is well
known by Wilson [15].

Lemma 31. let g = ef + 1 be a prime power such that q > ek(kfl), then
for any choice C : P, — HE, there exists a k-tuple (ay, as, ..., ax) of elements of
G'F(q) which is consistent with C.

The following existence theorem is based on the facts of Theorem 26 and Lemma
31.

Theorem 32. Let q be a prime power with ¢ > {3rc(r + ¢ — 2)}7”0(7”071) and
assume that ¢ —1 = 0 (mod re(r + ¢ — 2)) holds, then there exists a DF(q, K, X
K., 1) in G(q), hence a D,x.(K,) exists.

Proof.  Firstly, let M = {(¢,7)|[1<i <r,1 <j <c}and P« be the set of
the following ordered pairs of M:

Prxe = {((71, J1), (72, j2)) 1 < iy <dp <y 1 < gy <o < e}
(@), @)L <i<r 1<j<c}h
We divide P, «. into two subsets () and R such that
Q={((1,), (i, )L < iy <iz<r, 1 <1< c}
U 41), (1, 72)1 <1<, 1 <41 <ja <c}and
R={((i1,51), (G2, j2))|1 <1 <idp <1, 1<y # ja2 <}

By considering a pair (¢, 7) € M as ¢j +1, the set of pairs in P, can be identified
with P,. = {(¢, j)|1 < < j' < rc}.

Let e = %rc(r +c¢—2)and C : Py, — H® be a choice which is an injection
from ) to H® and which maps R into ¢ arbitrarily.
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Since ¢ > {3re(r +c— 2)}7”0(7”071), we can find an r x ¢ matrix A = (a;;)
consistent with the choice C' by Lemma 31. That is, ' maps the differences of 9 A
exactly twice to each coset in H¢. Thus, there exists a DF(q, K, X K., 1) in G(q),
hence a D,y .(K,) exists by Theorem 26. ]

By virtue of Theorem 29 and 32, we obtain the following theorem.

Theorem 33. Let q be a prime power with q > {3rc(r + ¢ — 2)}TC(TCH) and
assume that g — 1 = 0 (mod rc(r + ¢ — 2)) holds. Then, there exists a resolvable
Dyxe(Kyeq) if @ Dypxo(Kye) exists.

Proof. Tt is sufficient that there exists a mutually disjoint D F(q, K, X K., 1)
in G(g). Let M = {(4,7)[1 <i <r,1 <j <c}and let Px.11 be the set of the
following ordered pairs of M U {0}, that is,

Prxer1 = {((i1, 1), (i2,J2)) |1 < iy <idp <y 1 < g1 < iz e}
{(G@9), @)l <i<r, 1<j<c}
U0, @)1 <i<r 1<j<ch
We divide P,«.+1 into three subsets as follows:
Q=A((i1, 1), (i, D)1 < iy <ip <7, 1 <1< c}
U{((L,71), (Lg2) 1 <<, 1<y <j2 < el
R = {((#1,41), (i2,J2))|1 < i1 <iz <7, 1 < j1 # j2 < c} and
S=H00,@E )N <i<r 1<j<ch

By considering a pair (¢,7) € M as ¢j + 4, the set of pairs in P,x..1 can be
identified with P,..1 = {(¢/, 7)1 < < j' <rc+ 1}

Let e = %rc(r +c¢—2) and C : Pry.r1 — HE be a choice such that (i) C
is an injection from ¢ to H¢, (i1) it maps R into H¢ arbitrarily and (ii1) it does
each ordered pair (0, (¢, 7)) € S into mutually distinct cosets HE,. Then by Lemma
31, we can find an element ay € GF(q) and an r X ¢ matrix (a;;) over GF(q)
consistent with the choice C.

Let B = (b;;) = (a;; —ao). then the elements of 9B occur exactly twice in each
coset of H¢. Then B = {hB|h € H¢/{1,—1}}isa DF(q, K, x K, 1). And. b;;’s
lic in distinct cosets modulo H® for¢ = 1,2,...,r and 7 = 1,2,..., c. Morcover,
all points contained in hB € B are distinct, that is, the sets hB for h € H¢/{1,1}
are disjoint, i.c., B is also a mutually disjoint DF(q, K, X K, 1), which proves
the theorem by Theorem 29. ]
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