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B-BOUNDED SEMIGROUPS AND C-EXISTENCE FAMILIES

J. Banasiak and V. Singh

Abstract. The aim of this paper is to investigate links of the recently intro-

duced B-bounded semigroups [5] with other generalizations of semigroups,
like C-regularized semigroups and C-existence families.

1. INTRODUCTION

Let us consider the standard abstract Cauchy problem in a Banach space X :

du

dt
= Au, lim

t→0+
u(t) =

◦
u .(1.1)

Very often the existence of a semigroup (exp(tA))t≥0 describing the evolution of this

system is established in a non-constructive way. This is especially the case when

the positivity methods are employed. Then, very little quantitative information on

the evolution is available. On the other hand, there may exist an operator B such

that t 7→ BetA can be calculated constructively, yielding some information about the

evolution. An interesting example of this type, pertaining to the transport equation

with multiplying boundary conditions, was analysed in [11] and has prompted one

of the authors to define a class of evolution families which behave well if looked

at through the “lenses” of another operator. Such families, called B-bounded semi-

groups, have been introduced in [5], and analysed and applied to various problems

in a few papers [1, 3, 6, 7]. Recently it was observed that B-bounded semigroups

can be applied to implicit evolution equations with irregular operators – the paper

[4] is devoted to this topic.

The reasoning described above is similar to that leading to C-regularized semi-
groups (see, e.g., [8, 9]); also some results bear a formal resemblance. This created

Received February 15, 1999, revised April 26, 2000.

Communicated by S.-Y. Shaw.

2001 Mathematics Subject Classification: 47D06, 34G10.

Key words and phrases: B-bounded semigroups, C-existence families, C-regularized semigroups.
The correspondence should be directed to J. Banasiak

105



106 J. Banasiak and V. Singh

some misunderstandings (see, e.g., the reviews MR#98c:47049 and MR#98k:47075,

where the reviewer claims that B-bounded semigroups are a very special case of
C-existence families.)

This paper was prompted partly by such a misreading of the theory ofB-bounded
semigroups, and partly is intended to show the proper place of this theory amongst

the variety of recent generalizations of C0-semigroup theory.

To achieve this aim we first present some necessary developments of the theory

and in the final sections we show two groups of comparison results - one answering

the question when a B-bounded semigroup generated by A is the C-existence family

for A with B = C, and the second addressing a more general question when
a B-bounded semigroup is a C-existence family with possibly different defining
operators.

The rough answer to both questions is that whenever B-bounded semigroup and
C-existence family coincide, A (or some operator related to A) generates a C0-

semigroup in the original space X , which shows that these two families are quite
distinct.

2. BASIC NOTATIONS AND DEFINITIONS

The definition of B-quasi bounded semigroups was introduced in [6] and (with
some modifications due to the author of this paper) reads as follows.

Definition 2.1. Let (A, D(A)) be a linear operator in a Banach space X,

(B, D(B)) be another linear operator from X to another Banach space Z, and
for some ω ∈ R the resolvent set of A satisfies

ρ(A) ⊃]ω,∞[.(2.1)

A one-parameter family of operators (Y (t))t≥0 from X to Z, which satisfies:

1. D(Y (t)) =: Ω ⊇ D(B), and for any t ≥ 0 and f ∈ D(B),

‖Y (t)f‖Z ≤ M exp(ωt)‖Bf‖Z ,(2.2)

2. the function t 7→ Y (t)f is in C([0,∞[, Z) for any f ∈ Ω,

3. for any f ∈ Ω0 := {f ∈ D(A)∩ D(B); Af ∈ Ω} ⊂ D(A) ∩ D(B),

Y (t)f = Bf +

t∫

0

Y (s)Afds, t ≥ 0,(2.3)

is called a B-quasi bounded semigroup generated by A and B.
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Since it will not cause any misunderstanding, in this paper the original name of

B-quasi bounded semigroup will be replaced by B-bounded semigroup.
If A generates a B-bounded semigroup satisfying the above conditions, then

we write A ∈ B − G(M, ω, X, Z); we shall also say that (Y (t))t≥0 defined in

Definition 2.1 is simply a B-bounded semigroup generated by A. The notation

A ∈ G(M, ω, X) means that A is the generator of a C0-semigroup in X with the

Hille-Yosida constants M and ω.

Remark 2.1. A closer scrutiny of the considerations of [3] (see also [1]) shows

that the assumption (2.1) can be replaced by the requirement that for λ > ω we

have

(λI − A) : DB(A) → D(B),(2.4)

where DB(A) = {x ∈ D(A) ∩ D(B); Ax ∈ D(B)}, is bijective. Note that this
requirement is purely algebraical. All the considerations below are therefore valid

if this assumption holds.

The main role in the considerations is played by the space XB which is the

completion of the quotient space D(B)/N(B) with respect to the norm ‖ · ‖B =
‖B · ‖Z . It is known that then D(B)/N(B) is isometrically isomorphic to a dense
subspace of XB, say X . The canonical mapping of D(B) into XB (and onto X )
will be denoted by p. In a standard way, B can be shifted to X and extended by

density to an isometry B : XB → Z.
It follows [3, Lemmas 3.1 and 3.2] that if A generates a B-bounded semigroup,

then A preserves cosets of D(B)/N(B) and therefore it can be defined to act from
pDB(A) ⊂ X into X . Thus in what follows we shall always assume that the
operator A has this property which can be expressed as

A(N(B)∩ D(A)) ⊂ N(B).(2.5)

We denote by AB the part of A in D(B), i.e., AB = A|DB(A). It can be proved

[3] that if A ∈ B − G(M, ω, X, Z), then the shift ÂB of A to XB is closable in

XB; its closure ÂB in XB is denoted by A.

Let us introduce the subspace ZB = R(B) (the closure of the range of B in Z).

The main result of [3] (Theorem 4.1) reads as follows.

Theorem 2.1. If A ∈ B − G(M, ω, X, Z) and B[DB(A)]
Z

= ZB, then A ∈
G(M, ω, XB). Conversely, if there is A ⊃ ÂB such that A ∈ G(M, ω, XB), then
A = A and A ∈ B − G(M, ω, X, Z). The B-bounded semigroup (Y (t))t≥0 is

given by

Y (t)x = exp(tBAB−1)Bx = B exp(tA)px,(2.6)
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for x ∈ D(B).

The assumption that B[DB(A)] is dense in ZB can be discarded if Z (and

consequently ZB) are reflexive spaces [3, Corollary 4.1]. Recently, Arlotti [1] (see

also the proof of Theorem 3.1) proved that if the B-bounded semigroup satisfies an
additional condition:

∀x∈D(B) Y (0)x = Bx,(2.7)

then B[DB(A)] is dense in ZB (or equivalently, DB(A) is dense in XB). Note

that (2.3) gives (2.7) only for x ∈ Ω0 which in most cases reduces to DB(A). It
is easy to see that the converse is also true. Thus if (2.7) holds, then the density

assumption in Theorem 2.1 can be omitted.

In the next section we shall see that there exist objects satisfying the assumptions

1–3 of Definition 2.1 but associated with much more general operators than those

specified in this definition. Following this observation, we shall formulate and

prove a generalization of Theorem 2.1. It is also worthwhile to note that similar

results, though through other methods, have been recently obtained by Arlotti in the

forthcoming paper [2].

3. NEW GENERATION THEOREM

Let us first observe that the existence of a B-bounded semigroup is no longer
related to the existence of (exp(tA))t≥0, as was the case in the motivating example

of [5]. Moreover, assumption (2.1) can be replaced by a weaker one (2.4). In the

example below, we shall show that even this assumption is too restrictive and can

be relaxed even further.

Example 3.1. Let us consider X = L2(R, ex2
dx), Au = ∂xu on the maximal

domain, and (Bu)(x) = exp(−x2/2))u(x). Clearly, B : X → X is a continuous

operator. Moreover, ‖Bu‖X = ‖u‖L2(R) and since C∞
0 (R) ⊂ X , we can identify

XB with L2(R). Let us consider the closure A of A, that is, we take a sequence

(un)n∈N of elements of D(A) such that un → u and ∂xun → g as n → ∞
in L2(R). However, this is the same as the closure of D(A) in W 1

2 (R), and as
C∞

0 (R) ⊂ D(A) is dense in W 1
2 (R), we obtain that Au = ∂xu for u ∈ W 1

2 (R).
Thus, A generates a semigroup in XB and (Y (t)u)(x) = (exp(−x2/2))u(t + x)
satisfies conditions 1-3 of Definition 2.1.

On the other hand, λI − A : DB(A) = D(A) → D(B) = X is not bijective.

To prove this, we note that for any φ ∈ C∞
0 (R) we have

∞∫

−∞

∂xu(x)φ(x)ex2
dx = −

∞∫

−∞

u(x)(∂xφ(x) + 2xφ(x))ex2
dx,



B-Bounded Semigroups 109

and therefore A#φ = −∂xφ−2xφ is the formal adjoint of A in X . Let us consider

the equation λΦ+2xΦ+∂xΦ = 0 in X ; we see that Φ(x) = exp(−x2 −λx) is its
solution. We have Φ ∈ X and we must prove that Φ ∈ D(A∗). Let φn ∈ C∞

0 (R),
n = 1, 2, . . . , be such that φn(x) = 1 for |x| ≤ n and φn(x) = 0 for |x| ≥ n + 1
with |∂xφn(x)| ≤ M for n ≤ |x| ≤ n + 1. Then, integrating by parts, we have for
any u ∈ D(A),

∞∫

−∞

∂xu(x)Φ(x)φn(x)ex2
dx =−

∫

n≤|x|≤n+1

u(x)∂xφn(x)e−λxdx

+λ

∞∫

−∞

u(x)φn(x)e−λxdx.

Since u, Φ ∈ X so that uΦ ∈ L1(R, ex2
dx), it follows that u(x)e−λx = u(x)Φ(x)ex2

∈ L1(R). Hence passing to the limit with n → ∞ we obtain

∞∫

−∞

∂xu(x)Φ(x)ex2
dx = λ

∞∫

−∞

u(x)e−λxdx = λ

∞∫

−∞

u(x)Φ(x)ex2
dx.

This shows that Φ ∈ D(A∗) and Φ ∈ N(λ − A∗) = R(λ − A)⊥, and therefore
(λ − A) : D(A) → X is not a surjective operator; even more, it is not a surjection

onto any dense subspace of X .

Remark 3.1. This example was used in [9] to motivate the introduction of

C-existence and uniqueness families. Here we have seen an alternative way of
regularizing this problem.

Example 3.1 shows that we should be able to replace the assumption 2.1 by

one even weaker than (2.4), which would require only the bijectivity of a suitable

extension of the shift of A (remember that (2.5) holds so that the shift Â can

be defined). In fact, in the proof of Theorem 2.1, (2.1) was used to show that

[ω,∞[⊂ ρ(A). Thus, what we really need is that the Hille-Yosida estimate holds on
some dense subspace X of XB. Moreover, as we use the pseudo-resolvent identity,

we require Dλ = (λI −A)−1X ⊂ X for λ > ω. Finally, as our starting point is the
space X and the operators defined in it, the space X must be accessible from X in

the sense of the operator closure in XB.

Before we formulate the suitable assumption, we note that the above require-

ments make our choice limited to certain extent. We have the following simple

proposition.

Proposition 3.1. ∀λ>ω Dλ = D if and only if ∀λ>ω Dλ ⊂ X.
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Proof. To prove necessity, let us take λ 6= λ′ > ω, then for any x′ ∈ Dλ′ there

exists x ∈ Dλ such that for some y ∈ X we have λx−Ax = y = λ′x′−Ax′. This
can be written as

λ(x− x′) − A(x− x′) = (λ′ − λ)x′.

Now, assume thatDλ′ ⊂ Dλ, then x−x′ ∈ Dλ, and therefore λ(x−x′)−A(x−x′) ∈
X. Thus, x′ ∈ X. Since x′ is arbitrary, Dλ′ ⊂ X. Clearly, the converse is also true.

Since the argument is symmetric with respect to primed and un-primed objects we

conclude the proof.

These considerations lead to the following new assumption on A.

(2.1′) The shift ÂB of the operator AB is closable in XB, i.e., if the sequence

(xn)n∈N of elements of DB(A) is such that Bxn → 0 and BAxn → y in Z

as n → ∞, then y = 0. Denoting A = ÂB

XB

, we assume further that there

exist subspaces: X satisfyingD(B)/N(B) ⊆ X ⊆ XB, andDB(A)/N(B) ⊆
D ⊆ X ∩ D(A) such that (λ − A|D) : D → X is bijective for all λ > ω.

We have then the following theorem.

Theorem 3.1. Let the operatorsA and B satisfy the conditions of Definition 2.1

with assumption (2.1) replaced by assumption 2.1′. Then A ∈ B − G(M, ω, X, Z)
and (2.7) holds if and only if the following conditions are satisfied:

1. B(D) is dense in ZB ,

2. there exist M > 0 and ω ∈ R such that for any y ∈ X, λ > ω and n ∈ N:

‖B(λI − A|D)−ny‖Z ≤ M

(λ− ω)n
‖By‖Z .(3.1)

If we don’t assume (2.7), then the assumption 1. is sufficient but not necessary.

Proof. The proof essentially consists in checking that the new assumption (2.1′)
is sufficient to mimic the crucial steps from proofs of Theorems 2.1 and 3.2. How-

ever, to make the paper self-contained we shall provide all the necessary details.

As in [5, 6] we introduce the operators Jn(λ) : Ω −→ Z as follows

Jn(λ)x =
1

(n − 1)!

∫ ∞

0

tn−1 exp(−λt)Y (t)x dt, λ > ω.(3.2)

The integral exists since the function t 7→ Y (t)x is continuous and satisfies (2.2).
In particular, for x ∈ D(B), we have from the definition that

‖Jn(λ)x‖Z ≤ 1
(n − 1)!

∫ ∞

0

tn−1 exp(−λt)‖Y (t)x‖Z dt ≤ M ‖x‖B

(λ − ω)n
.(3.3)
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By (3.3) and (2.2), we can extend by continuity the operators Jn(λ), n = 1, 2 . . . ,

λ > ω, and Y (t), t ≥ 0, to bounded linear operators Jn(λ) : XB → Z and

Y(t) : XB → Z. Let (xn)n∈N ⊂ X satisfy xn → x in XB. Then ‖Y (t)xn −
Y(t)x‖Z ≤ Meωt‖xn − x‖B, and thus t → Y(t)x is continuous for any x ∈ XB.

Moreover, by (3.3) we can pass to the limit in (3.2) to get

Jn(λ)x =
1

(n − 1)!

∫ ∞

0

tn−1 exp(−λt)Y(t)x dt, λ > ω(3.4)

for any x ∈ XB. Thus, similarly to [5, Section 3], we obtain for all x ∈ D(A):

J1(λ)(λI − A)x = λ

∞∫

0

exp(−λt)Y(t)xdt−
∞∫

0

exp(−λt)Y(t)Ax.

To evaluate the first integral, we observe that (2.3) can be extended by density to

Y(t)x = Bx +
∫ t

0
Y(s)Axds, t ≥ 0,(3.5)

where x ∈ D(A). Inserting (3.5) into the first integral and carrying out the integra-
tion, we obtain

J1(λ)(λI − A)x = Bx.(3.6)

Using assumption (2.1′) we obtain

J1(λ)y = B(λI − A|D)−1y(3.7)

for all y ∈ X and by the estimate (3.3) we obtain that for those y we have

‖(λI − A|D)−1y‖XB
≤ M

(λ− ω)
‖y‖XB

.(3.8)

Next iterating the procedure used to derive (3.6), we obtain from (3.4) the formula

Jn(λ)y = B(λI − A|D)−ny,(3.9)

valid for y ∈ X, λ > ω. Finally from Eqs. (3.9), (3.3) and (3.4) we obtain

‖B(λI − A|D)−ny‖Z ≤ 1
(n − 1)!

∫ ∞

0
tn−1 exp(−λt)‖Y(t)y‖Z dt

≤ M ‖y‖XB

(λ− ω)n

(3.10)

which gives (3.1).
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To prove property 1, we extend the argument of [1, Theorem 2.1]. Let x ∈ X

and yλ = λ(λ− A|D)−1x ∈ D. By (3.7),

Bx − Byλ = Bx − λB(λI − A|D)−1x =

∞∫

0

λe−λt(B − Y(t))xdt.

By (2.7), Y (0)x = Bx for all x ∈ D(B). Since the shifts of both operators to
XB can be extended by continuity to XB, and D(B)/N(B) is dense in XB, we

have Y(0)x = Bx for all x ∈ X. As we observed earlier, for such x the function

t 7→ Y(t)x is continuous, and hence for any ε > 0 we can find δ > 0 such that
sup0≤t≤δ ‖(B − Y(t))x‖Z ≤ ε. Thus

‖Bx − Byλ‖Z ≤
∞∫

0

λe−λt‖(B− Y(t))x‖Zdt

≤ ε + (1 + M)

∞∫

δ

λe−(λ−ω)‖x‖XB
dt ≤ 2ε,

provided λ is sufficiently large. Hence, B(D) is dense in B(X) = R(B) and so
in ZB, in Z topology or, equivalently, D is dense in X in XB topology. However,

as D(B) ⊂ X is dense in XB, X is dense in XB and therefore D
XB = XB. This

proves the necessity of the conditions 1 and 2.

To prove the sufficiency, we note first that the resolvent equation is of purely

algebraic character and therefore for λ, µ ∈ [ω,∞[ and x ∈ X we have

(λ− A|D)−1x − (µ − A|D)−1x = (µ − λ)(λ− A|D)−1(λ − A|D)−1x,(3.11)

where we used the assumption that D ⊂ X coming from (2.1′).
Since B(D) is dense in ZB, we see that D is dense in XB and so is X by the

assumption D ⊂ X ⊂ XB of (2.1
′). From the assumption (3.1), it follows that for

each λ > ω the operator (λ− A|D)−1 can be extended by continuity to a bounded

operator R(λ) : XB → XB, which satisfies for any y ∈ XB,

‖R(λ)y‖XB
≤ M

(λ− ω)
‖y‖XB

.(3.12)

Thus, equation (3.11) can be extended onto the whole of XB preserving its structure,

and hence the family of operators R(λ) is a pseudo resolvent. The range of each
R(λ) contains D, and therefore is dense in XB. Thanks to (3.12) we can use

Theorem 9.4 of [10] to conclude that R(λ) is the resolvent of a unique densely
defined closed operator in XB. Denote this operator by A. Since ((λ−A)−1)−1x =
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((λ − A|D)−1)−1x for x ∈ D and A = λI −
(
(λ− A)−1

)−1
, we obtain that A is

an extension of AD := A|D. Hence AD is closable and AD ⊂ A.
Let now x ∈ D(A); then x = (λ − A)−1y for some y ∈ XB. This means

that x = lim
n→∞

(λ − AD)−1yn for yn ∈ X and yn → y. In other words, xn =

(λ−AD)−1yn ∈ D converges to x. Solving this equation we get ADxn = λxn − yn

and (ADxn)n∈N converges to λx − y. Hence x ∈ D(AD) and ADx = λx − y =
λx −

(
(λ −A)−1

)−1
x = Ax. This shows A ⊂ AD. Consequently, we have

A = AD and R(λ) = (λ− AD)−1.

Therefore, Eq. (3.12) can be written as ‖(λ−AD)−1x‖XB
≤ (λ−ω)−1M‖x‖XB

valid for any x ∈ XB and λ > ω. Since clearly (λ − AD)−n = (λ − AD)−n,

it follows from (3.1) and the density of X in XB that writing (λ − AD)−n =
(λ − AD)−1(λ− AD)−n+1 and using induction in n ∈ N we have

‖(λ− AD)−nx‖XB
≤ M

(λ − ω)n
‖x‖XB

for all n ∈ N and x ∈ XB. This shows that AD generates a semigroup in XB and

thanks to the assumption DB(A)/N(B) ⊂ D ⊂ D(AD), it is straightforward to
prove that the family (Y (t))t≥0 =

(
BetAD

)
t≥0

satisfies the conditions of Definition

2.1.

Remark 3.2. The assumption that DB(A)/N(B) ⊂ D may seem too restrictive

as what we need and use is that DB(A)/N(B) ⊂ D(AD) (otherwise property 3
of Definition 2.1 would be satisfied on a smaller set than required). However, the

proposition below shows that this is precisely what we need.

Let us consider the relations between the operators appearing in this theorem.

We have the original operator A, its B-closure A (i.e., the closure in XB of the

shift ÂB of the part AB of A in D(B)), the restriction of A to D, AD, and the

generator A = AD. We can prove the following proposition.

Proposition 3.2. The following are equivalent:

(i) A = A,

(ii) ÂB ⊂ AD,

(iii) for some λ > ω the operator λ− A is injective,

(iv) ÂB ⊂ AD.

Proof. (i)⇔ (ii). LetA = A. ThenA = AD = A yields ÂB ⊂ AD. Conversely,

from (ii) we have A = A ⊂ AD = A. This and A ⊂ AD ⊂ A = A yield A = A.

For any operator K, let us introduce the notation Kλ = λI − K.



114 J. Banasiak and V. Singh

To prove (i) ⇐ (iii), we assume that Aλ is one-to-one. Clearly, A ⊃ A. We
show the converse inclusion. Since Aλ acts onto XB, for any x′ ∈ D(A) there
is x ∈ D(A) such that Aλx′ = Aλx. Since A ⊂ A, we have also Aλ ⊃ Aλ so

that Aλx = Aλx. Therefore Aλx = Aλx′, and by the injectivity of Aλ we obtain

x = x′ ∈ D(A). The converse implication is obvious.
For (i) ⇐ (iv), we see that if ÂB ⊂ AD, then A = ÂB ⊂ AD = A and hence

A = A. Conversely, if A = A, then by (iii) Aλ is a one-to-one operator for some

λ, and therefore Aλ and (AD)λ are one-to-one. Let x ∈ DB(A)/N(B) \ D. Then
Aλx = Aλx = y ∈ D(B)/N(B) and since D(B)/N(B) ⊂ X, by (2.1′) there is

x 6= x′ ∈ D such that Aλx = (AD)λx′ = y. However, since x 6= x′ and Aλ is

injective, this is impossible. Thus DB(A)/N(B) ⊂ D which is equivalent to (iv).

Thus we see that the assumptionDB(A)/N(B) ⊂ D is necessary and sufficient

for the semigroup (exp(tA))t≥0 to define a B-bounded semigroup (see Remark 3.2).
Another consequence of this proposition is that theB-bounded semigroup (Y (t))t≥0

is uniquely determined by A and B, being defined by the semigroup generated by

the B-closure of A restricted to DB(A).
It can be checked that Theorem 3.1 is a generalization of the similar theorem,

proved in [3] for the case of operators satisfying all the assumptions of Definition

2.1, which reads as follows.

Theorem 3.2. Let operators A and B satisfy the conditions of Definition 2.1

together with (2.5). Then A is the generator of a B-quasi bounded semigroup
satisfying (2.7) if and only if the following conditions hold:

1. B[DB(A)] is dense in ZB,

2. there exist M > 0 and ω ∈ R such that for any x ∈ D(B), λ > ω and

n ∈ N:

‖B (λI − A)−n x‖Z ≤ M

(λ− ω)n
‖Bx‖Z .(3.13)

If we don’t require (Y (t))t≥0 to satisfy (2.7), then condition 1. is sufficient but not
necessary.

Proof. We take X = D(B)/N(B) and D = DB(A)/N(B). By (2.5), it is
possible to define the shift ÂB of AB into XB. Next, we see that if (2.4) holds,

then the same is true for ÂB. In fact, that λ − ÂB is surjective is obvious. To

show that λ− ÂB is injective, let x̂ ∈ DB(A)/N(B) be such that (λ− ÂB)x̂ = 0.
This shows that for some x ∈ DB(A) we have (λ − A)x = g ∈ N(B), and thus
x = (λ − A)−1g. Since x ∈ D(B), we get Bx = B(λ − A)−1g and by (3.13) we
obtain

‖Bx‖Z = ‖B(λ − A)−1g‖Z ≤ M(λ − ω)−1‖Bg‖Z = 0,
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which shows that x ∈ N(B) and consequently x̂ = 0. Therefore λ−ÂB is bijective

from D = DB(A)/N(B) to X = D(B)/N(B). To complete the proof that the
assumptions of Theorem 3.2 yield those of Theorem 3.1, we note that by [3, Lemma

4.1] from (3.13) it follows that ÂB is closable in XB.

Remark 3.3. In the recent papers [1, 2], the author showed a construction of B-

bounded semigroups without passing through the spaceXB and the related operators.

In this way, the assumption (2.5) does not appear directly in the construction of the

B-bounded semigroup but it is imbedded in the assumptions adopted by the author.
In any case, it is a consequence of A being the generator of a B-bounded semigroup.

3.1 The case XB ↪→ X

It is of interest to determine conditions under which XB is not an abstract space

but can be identified with a subspace of X . This will play an important role in

comparing B-bounded semigroups and C-existence families. The following theorem
was proved in [4, Theorem 2.4].

Theorem 3.3. Let B : X → Z be an injective operator. The following condi-

tions are equivalent:

( i ) XB has the following properties:

(i′) each coset x̃ ∈ XB contains a sequence (xn)n∈N converging in the norm
of X to some x ∈ X, and x is the limit of no other X-Cauchy sequence

in x̃,

(i′′) if (xn)n∈N ∈ x̃, (yn)n∈N satisfy ‖xn − yn‖X → 0 as n → ∞ and

(yn)n∈N ∈ ỹ for some ỹ ∈ XB, then x̃ = ỹ,

( ii ) the operator B is closable and B−1 is bounded,

(iii) there is an isomorphism T : XB → X ′
B ↪→ X which satisfies T |D(B) = Id.

If we have the case described in the theorem above, the operator A also becomes

much simpler. The proof of the following theorem can be found in [4, Theorem

2.5].

Theorem 3.4. If B is a closable operator such that B−1 is bounded, and A
is closable in X with λI − Ā injective for some λ > ω, and moreover A ∈
B − G(M, ω, X, Z), then

A = Ā|DB̄(Ā),(3.14)

where

DB̄(Ā) = {x ∈ D(Ā)∩ D(B̄); Āx ∈ D(B̄)}.
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Example 3.2. Let us consider X = L2(R, e−x2
dx), Au = ∂xu on the maximal

domain, and (Bu)(x) = exp(x2/2))u(x). B : X → X is an unbounded operator

and since ‖Bu‖X = ‖u‖L2(R), we see that D(B) = L2(R). Since B(D(B)) = X ,

we obtain that XB = D(B) = L2(R) by Theorem 3.3. Then DB(A) = W 1
2 (R)

and AB generates a contraction semigroup, say (T (t))t≥0, in L2(R). Thus Y (t)u =
BT (t)u = exp(x2/2))u(t + x) is the B-bounded semigroup generated by (A, B).

Note that here neither D(A) ⊂ D(B), nor ρ(A) ⊃ [ω,∞[ (see similar consid-
erations in Example 3.1), but the assumption (2.4) is satisfied.

4. RELATION TO C-REGULARIZED SEMIGROUPS AND SIMILAR OBJECTS

The philosophy and appearance of B-bounded semigroups are similar to C-
semigroups and related objects, like C-existence and uniqueness families, and this

has caused some misunderstanding. It follows, however, that these objects are

quite different, as we shall see, to the extent that the only objects which can be

simultaneously C-semigroups and B-bounded semigroups in the same space X are

C0-semigroups in X .

To understand a link between C-existence families and B-bounded semigroups,
we begin with noting that by Theorem 2.1 any B-bounded semigroup solves an
abstract Cauchy problem in XB. Since the very concept of C-existence families is

that they provide solutions for the initial values taken from a subspace of the original

space X , we are placed in the situation described in Theorem 3.3 with C = B
−1
.

The first result in this direction is the following.

Proposition 4.1. Assume that A : D(A) → X is a closed operator with no

eigenvalues in ]ω,∞[ for some ω ∈ R, and A ∈ B − G(M, ω, X). If B−1 is

densely defined and XB ↪→ X, then

(W (t))t≥0 =
(
B̄−1Y (t)B̄−1

)
t≥0

is a mild B̄−1-existence family for A. It is a strong B̄−1-existence family for A if

B̄−1(D(A)) ⊂ D(A).(4.1)

If B̄−1A ⊂ AB̄−1, then
(
B̄−1Y (t)B̄−1

)
t≥0

is the B̄−1-regularized semigroup

generated by A.

Proof. From Theorem 3.3, B is closable and B−1 is bounded and we can

identify XB with D(B̄) and Im B̄ = X (by the density of D(B−1) = Im B in

X). Moreover, we have then by Theorem 3.4 that A = A restricted to DB̄(A) =
{x ∈ D(A) ∩ D(B̄); Ax ∈ D(B̄)}, and the B-bounded semigroup is given by

Y (t) = B̄etA, where the semigroup acts in D(B̄). Clearly, thenW (t) = etAB̄−1 =



B-Bounded Semigroups 117

B̄−1Y (t)B̄−1, t ≥ 0, is a strong C-existence family for A. Indeed, sinceXB ↪→ X ,

(W (t))t≥0 is a family of bounded operators in X and t 7→ W (t)x is continuous for
any x ∈ X . Since (exp(tA))t≥0 is a semigroup in XB, we have for any y ∈ XB,

etAy = y + A




t∫

0

esAyds


 , t ≥ 0,

and therefore for any x ∈ X such that x = B̄y we have

W (t)x = etAB̄−1x = B̄−1x + A




t∫

0

esAB̄−1xds


 ,(4.2)

which is the mild C-existence family identity (note that again due to XB ↪→ X , the
integral and A can be considered as X-space operations).

Next note that for a mild C-existence family to be a strong C-existence family it
is necessary to leave D(A) invariant [9, Definition 2.4], so if we have a semigroup
acting in a subspace of X which is accessible by an operator C, then we must have
Cx ∈ D(A) whenever x ∈ D(A), which in our case translates into Eq. (4.1). If this
is the case, then using again the fact that (exp(tA))t≥0 is the semigroup generated

by A, we have from B̄−1x ∈ D(A) that esAB̄−1x ∈ D(A) and
(
esAB̄−1

)
t≥0

is a strongly continuous family of operators in D(A) with graph norm. Thus A
commutes with the integral in (4.2) and (W (t))t≥0 is a strong B̄−1-existence family

for A.
Finally, if the commutativity property is satisfied (and then (4.1) follows auto-

matically), then for any x ∈ D(A) and t ≥ 0 we have W (t)Ax = etAB̄−1Ax =
AetAB̄−1x = AW (t)x and by Theorem 3.7 of [9], (W (t))t≥0 is a C-regularized
semigroup generated by an extension of A and since ρ(A) 6= ∅, by Proposition 3.9
of [9] we obtain (W (t))t≥0 is generated by A.

This proposition suggests that C-evolution families are related to C−1-bounded

semigroups rather that C-bounded semigroups. The following theorem shows that

the choice is quite limited.

Theorem 4.1. Assume that A : D(A) → X is a closed operator with no

eigenvalues in ]ω,∞[ for some ω ∈ R, B−1 is densely defined and XB ↪→ X . Let

(W (t))t≥0 be a mild B̄−1-existence family for A. The formula

Y (t)x = B̄W (t)B̄x(4.3)

defines a B̄-bounded semigroup if and only if B̄AB̄−1 generates a C0-semigroup in

X and (W (t))t≥0 is exponentially bounded. Then BAB−1 = B̄AB̄−1, B̄W (t) =
eB̄AB̄−1t, t ≥ 0, and (Y (t))t≥0 is generated by A.
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Proof. If Eq. (4.3) defines a B̄-bounded semigroup, then, since B̄D(B̄) = X ,

∀t≥0 W (t)X ⊂ D(B̄).(4.4)

Also, since by Theorem 2.1, Y (t) = etKB̄ for some K acting in X , (B̄W (t))t≥0 is

a semigroup in X . To find K we use the definition of existence families to obtain

∀t≥0,x∈X

t∫
0

W (s)xds ∈ D(A) and

W (t)x = B̄−1x + A




t∫

0

W (s)xds


 .(4.5)

By (4.4), all the terms above are in D(B̄) and we have

B̄W (t)x = x + B̄A




t∫

0

B̄−1B̄W (s)xds


 .(4.6)

Since B̄−1 is bounded, we have
t∫
0

B̄W (s)xds ∈ D(B̄AB̄−1) and

B̄W (t)x = x + B̄AB̄−1




t∫

0

B̄W (s)xds


 .(4.7)

By Eq. (4.3), t 7→ B̄W (t)x = Y (t)B̄−1x and since B̄−1x ∈ D(B̄), this is a
continuous function by Definition 2.1, property 2. Therefore t 7→ B̄W (t)x is a
mild solution of the Cauchy problem

∂tu = B̄AB̄−1u, u(0) = x.(4.8)

Moreover, by property 1 of Definition 2.1, ‖B̄W (t)x‖X = ‖Y (t)B̄−1x‖X ≤
Meωt‖x‖X , and hence the solutions to (4.8) are exponentially bounded. Since B̄−1

is a bounded operator, we obtain also ‖W (t)x‖X = ‖B̄−1B̄W (t)x‖ ≤ M ′eωt‖x‖X ,

and hence (W (tt))t≥0 is exponentially bounded.

By Proposition 2.9 of [9], all exponentially bounded mild solutions are unique.

Since we have exponentially bounded mild solution for any x ∈ X , by Theorems
5.5 and 5.16 of [9], the operator B̄AB̄−1 generates a C0-semigroup on X .

Next we obtain ∀t≥0,x∈X B̄W (t)x = etB̄AB̄−1
x and consequently

∀t≥0,x∈D(B̄) Y (t)x = etB̄AB̄−1
B̄x.(4.9)



B-Bounded Semigroups 119

By the semigroup property ∀t≥0,x∈D(B̄) Y (t)x = etB̄AB̄−1
B̄x = B̄x +

t∫
0

esB̄AB̄−1

B̄AB̄−1B̄x = B̄x+
t∫

0

Y (s)Axds and by the uniqueness of B-bounded semigroups

[5, Theorem 1], (Y (t))t≥0 is generated by A, and from Eq. (4.9) of [3] it follows

that BAB−1 = B̄AB̄−1.

Conversely, if B̄AB̄−1 generates a C0-semigroup in X , then repeating the con-

siderations above we obtain that A generates a B̄-bounded semigroup (Y (t))t≥0,

and by Proposition 4.1, W ′(t) = B̄−1Y (t)B̄−1 defines an exponentially bounded

B̄−1-existence family for A. Since (W (t))t≥0 is also an exponentially bounded mild

B̄−1-existence family for A, (W
′′
(t))t≥0 = (W (t)−W ′(t))t≥0 is also exponentially

bounded. However, we have for any x ∈ X , W
′′
(t)x = A

(
t∫
0

W
′′
(s)xds

)
, that is,

t 7→ W
′′
(t)x is an exponentially bounded mild solution to the homogeneous problem

(1.1). By Proposition 2.9 of [9], W
′′
(t)x ≡ 0, and hence (W (t))t≥0 = (W ′(t))t≥0

and the formula (4.3) holds.

Remark 4.1. From the proof of the above theorem, it follows that the “only if”

part can be proved under a weaker assumption that mild solutions of (1.1) in X
are unique. Note that the fact that A generates a semigroup in XB = D(B̄) is not
sufficient for that purpose as it gives only uniqueness in a smaller space D(B̄).

Corollary 4.1. Let the assumptions of the previous theorem be satisfied and let

(W (t))t≥0 be a B̄−1 regularized semigroup generated by A. The formula

Y (t)x = B̄W (t)B̄x(4.10)

defines a B̄-bounded semigroup if and only if (B̄W (t))t≥0 is a semigroup in X

generated by A.

Proof. Since a B̄−1-regularized semigroup generated by A is a mild

B̄−1-existence family for A [9, Theorem 3.5], we obtain from Theorem 4.1 that

(B̄W (t))t≥0 is a semigroup generated by B̄AB̄−1 which, since B̄−1A ⊂ AB̄−1,

is an extension of A. However, using the definition of the generator we obtain that

for x ∈ D(B̄AB̄−1),

B̄AB̄−1x = lim
t→0+

B̄W (t)x − x

t
= lim

t→0+
B̄

W (t)x − B̄−1x

t
.

Since B̄−1 is bounded, the existence of the left-hand side limit yields the existence of

the limit of t−1(W (t)x−B̄−1x), as t → 0+, which is AB̄−1x ∈ D(B̄) = R(B̄−1).
Thus by the definition of the generator we have x ∈ D(A) and Ax = B̄AB̄−1x.

Consequently, A = B̄AB̄−1 and the semigroup (B̄W (t))t≥0 is generated by A.
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The converse follows as in Theorem 4.1 with the sole difference that we use the

uniqueness of solutions of Cauchy problem (1.1) ensured by Theorem 3.5 of [9], as

noted in Remark 4.1.

In [9, Chapter 6] the author develops the theory of C-regularized semigroups in
extrapolation spaces (obtained by completion of X with respect to the norm ‖C ·‖X

– compare our approach to B-bounded semigroups). This allows to develop a link
between C-regularized semigroups and B-bounded semigroups with a different set

of assumptions on B.

Theorem 4.2. Let B : X → X be a bounded, injective operator, A : D(A) →
X be a closed operator which generates a B-bounded semigroup (Y (t))t≥0 and

satisfies

BA ⊂ AB.(4.11)

Then the extension of A, given by B−1AB, generates a B-regularized semigroup
(W (t))t≥0 on X which is given by

∀x∈X,t≥0 W (t)x = Y (t)x.(4.12)

If ρ(A) 6= ∅, then A = B−1AB.

Proof. We check the following points. B : XB → X is a bounded extension

of B which satisfies B(XB) = ImB
X

↪→ X ↪→ XB (the last embedding fol-

lows from the construction of the completion and boundedness of B). Moreover,

A generates a strongly continuous semigroup on XB. Since A is the closure of

A in XB, any x ∈ D(A) is defined by Bx = limn→∞ Bxn , xn ∈ D(A), and
BAx = limn→∞ BAxn = limn→∞ ABxn, where in the last equality we used
(4.11). Since (Bxn)n∈N converges (in X) and from above (ABxn)n∈N also con-

verges, by closedness of A we obtain BAx = ABx = ABx as, by the definition,

A is the closure of A in XB. Therefore, etAB = BetA. Thus all the assump-

tions of Proposition 6.4 of [9] are satisfied and B−1AB generates a C-regularized

semigroup on X given by

∀x∈X,t≥0 W (t)x = BetAx,

which, by Theorem 2.1, yields Eq. (4.12).

Note, that condition (4.11) ensures only that A ⊂ B−1AB as there can be

x ∈ X \ D(A) satisfying Bx ∈ D(A) and ABx ∈ ImB.

The last statement follows from Proposition 3.9 of [9].
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The second set of comparison results stems from the formal similarity of Eq. (2.3)

and the formula (2) of Definition 2.4 of [9] which suggest that a B-bounded semi-
group could be a C-existence family with C = B subject to additional conditions.

The following theorem shows that again this is possible only for a very restricted

class of operators.

Theorem 4.3. Let us assume that A : X → X is a closed operator such that

[ω,∞[ does not contain its eigenvalues, B : X → X is a bounded operator with

the range ImB dense in X and (W (t))t≥0 is a mild B-existence family for A.

Then (W (t))t≥0 is a B-bounded semigroup (Y (t))t≥0 satisfying (2.7), generated

by some operator D if and only if A generates a semigroup in X . In such a case,

∀t≥0,x∈X W (t)x = etABx = etBDB−1

Bx = Y (t)x,(4.13)

where B, D are the closures of B and D, respectively, in XB.

Proof. Let t 7→ u(t, Bx) = W (t)x be a mild solution to (1.1) and (W (t))t≥0

is a B-bounded semigroup. From the property 1 of Definition 2.1 we have for any
x ∈ X , ‖u(t, Bx)‖ = ‖Y (t)x‖ ≤ Meωt‖Bx‖ ≤ M ′eωt‖x‖. Hence we can use [9,
Lemma 2.10] to get

∀x∈X,λ>ω (λ− A)

∞∫

0

e−λtu(t, Bx)dt = Bx.(4.14)

On the other hand, from the original version of (3.6) (see (9) of [5]) we obtain

∀x∈X,λ>ω

∞∫

0

e−λtY (t)xdt = B(λ − D)−1x.(4.15)

Combining (4.14) and (4.15), we have

∀x∈X,λ>ω (λ − A)−1Bx = B(λ − D)−1x.(4.16)

From Lemma 3.1 of [3], we know that λI − D reduces cosets X/N(B); therefore
Eq. (4.16) can be written for B, restricted toX (whereB is the extension by density

of B to the completion XB of X with respect to the seminorm ‖B · ‖; see Section
2):

∀x∈X,λ>ω (λ− A)−1Bx = B(λ −D)−1x.(4.17)

Let x ∈ XB be such that Bx = z ∈ ImB; then from (4.17) we have for all

z ∈ Im B, λ > ω,

‖(λ− A)−1z‖X = ‖B(λ−D)−1B−1z‖X ≤ M

λ − ω
‖B−1z‖XB

≤ M

λ − ω
‖z‖X .

(4.18)
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Since A is closed, (λ−A)−1 is also closed and, being defined on a dense subspace

Im B ⊂ X and bounded, it is defined on the whole X . Therefore (λ−A)−1 is the

resolvent of A. Furthermore,

(λ− A)−2z = (λ− A)−1
(
(λ− A)−1z

)
= (λ− A)−1

(
B(λ −D)−1B−1z

)

= B(λ− D)−2B−1z

and, using (4.18) and (4.15),

‖(λ− A)−2z‖X ≤ M

(λ− ω)2
‖z‖X .(4.19)

By induction we see that A satisfies the Hille-Yosida estimates in X .
Since (Y (t))t≥0 satisfies (2.7), B(D(D)) is dense inX , and hence by Eq. (4.16)

D(A) = (λI−A)−1X ⊃ (λI−A)−1(Im B) is dense in X . Therefore A generates
a semigroup in X and from (4.17) we obtain that

A = BDB−1.(4.20)

Thus, by Theorem 2.1, the B-existence family is given by

W (t)x = etABx = Y (t)x = etBDB−1
Bx.

Conversely, assume that A generates a semigroup in X define by (4.20)

∀x∈B−1(D(A)) Dx = B−1ABx.(4.21)

Since D(A) is dense in X and B is an isomorphism, B−1(D(A)) is dense in XB.

Next, we obtain for any x ∈ X , (λI − A)−1x = B(λI − D)−1B−1x. Therefore
for any λ > ω, (λ − ω)−1M‖x‖ ≥ ‖(λI − A)−1x‖ = ‖B(λI − D)−1B−1x‖,
which is the same as ‖(λI − D)−1x‖XB

≤ (λ − ω)−1M‖x‖XB
for all x ∈ XB.

By induction we obtain all the Hille-Yosida estimates, and thus D generates a B-

bounded semigroup in X .

Corollary 4.2. If, in the statement of the previous theorem, (Y (t))t≥0 is gener-

ated by an extension of A, then (W (t))t≥0 is a B-regularized semigroup generated
by A.

Proof. By the closedness of A, the equation

(λI − A)−1z = B(λI − D)−1B−1z(4.22)

originally defined for z ∈ ImB is valid (with the same operators) on the whole

X . Therefore, D(A) = B(D(D)). Moreover, D is an extension of A, that is,
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D(A) ⊂ D(D). Consequently, if x ∈ D(A), then Dx = Ax ∈ X and BDx =
BAx. Also, if x ∈ D(A), then Bx = Bx ∈ D(A). Eq. (4.20) can be written as
∀x∈B−1(D(A)) ABx = BDx, which, by the considerations above, is equivalent to

∀x∈D(A) ABx = BAx. Hence,

∀x∈D(A) W (t)Ax = etABAx = AetABx

and by Theorem 3.7 of [9], (W (t))t≥0 is a B semigroup generated by an exten-

sion of A. However, since A itself is a generator, by Proposition 3.9 of op. cit.,

(W (t))t≥0must be generated by A.

These results allow to prove an interesting observation pertaining to B-bounded
semigroups.

Corollary 4.3. If B : X → X is a bounded, one-to-one operator satisfying

BA ⊂ AB, and A generates a B-bounded semigroup (Y (t))t≥0, then the extension
of A, B−1AB, generates a semigroup in X . If ρ(A) 6= ∅, then A generates a

semigroup in X .

Proof. By Theorem 4.2, there is aB-regularized semigroup (W (t))t≥0 generated

by an extension B−1AB of A, such that ∀x∈X,t≥0 W (t)x = Y (t)x. If ρ(A) 6= ∅,
then B−1AB = A by Proposition 3.9 of [9]. By Theorem 3.5 of op. cit., this

B-regularized semigroup is a mild existence family for B−1AB, or A, respectively.
From Theorem 4.3 it follows then that B−1AB (or, resp. A) generates a semigroup

in X .

Theorem 4.4. Let us assume that B : X → X is a bounded one-to-one

operator, ImB = X, and let (W (t))t≥ be a B-regularized semigroup in X gen-

erated by A. (W (t))t≥0 is a B-bounded semigroup if and only if the semigroup

(B−1W (t))t≥0 extends to a C0-semigroup on X, generated by A.

Proof. By Theorem 3.5 of [9], (W (t))t≥0 is a strong B-existence family for
A. If it is a B-bounded semigroup, then by Theorem 4.3, A generates a semigroup

exp(tA))t≥0 such that ∀x∈X,t≥0 W (t)x = etABx. By Theorem 3.1 of op. cit. and
the definition of B-regularized semigroup we have

BA ⊂ AB(4.23)

and since B is bounded, from the exponential formula for etA we obtain BetAx =
etABx for any x ∈ X . Thus W (t)x ⊂ ImB for any x ∈ X, t ≥ 0 and
B−1W (t)x = etAx for any x ∈ X, t ≥ 0. By (4.23) we have B(λI − A)−1 =
(λI − A)−1B. Indeed, if y = B(λI − A)−1x, x ∈ X , then B−1y ∈ D(A) and
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x = λB−1y − AB−1y. Eq. (4.23) is equivalent to saying that B−1Ay = AB−1y

whenever B−1y ∈ D(A) (and then clearly y ∈ D(A)). This is exactly the condition
on y we have above, and thus y = (λI − A)−1Bx. Thanks to this, (4.16) can be

written as

∀x∈X,λ>ω B(λ − A)−1x = B(λ − D)−1x

and from the invertibility of B we obtain D = A. Applying Corollary 4.2 ends the

proof of this part.

Conversely, if (B−1W (t))t≥0 is a C0-semigroup generated by A, then we define

Y (t)x = etABx = BetAx = W (t)x.

Clearly, ‖Y (t)x‖ ≤ Meω‖Bx‖X and t 7→ Y (t)x is continuous for any x ∈ X .
From the semigroup properties and (4.23), for any x ∈ D(A), Bx ∈ D(A) and

Y (t) = Bx +

t∫

0

AesABxds = Bx +

t∫

0

esABAxds,

which shows that (Y (t))g≥0 is the B-bounded semigroup generated by A.
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