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ON CONTAINER LENGTH AND WIDE-DIAMETER IN

UNIDIRECTIONAL HYPERCUBES

Lu Changhong and Zhang Kemin

Abstract. In this paper, two unidirectional binary n-cubes, namely, Q1(n)
and Q2(n), proposed as high-speed networking schemes by Chou and Du, are
studied. We show that the smallest possible length for any maximum fault-

tolerant container from a to b is at most n+2 whether a and b are in Q1(n) or
in Q2(n). Furthermore,we prove that the wide-diameters of Q1(n) and Q2(n)
are equal to n + 2. At last, we show that a conjecture proposed by Jwo and
Tuan is true.

1. INTRODUCTION

The hypercube is one of the best candidates for high-speed computing [12, 13],

and using optical fibers as point-to-point transmission links, Metropolitan Area Net-

works (MANs) with hypercube topology can support high-speed, high-bandwith,
short-delay, and parallel communications [2, 3, 6, 15, 16]. As pointed in [10]

by Jwo and Tuan, due to the lack of a bidirectional electrical/optical converter

and the high cost of a full-duplex tansmission, a unidirectional topology is desir-

able for MANs [3, 4]. In particular, Chou and Du [3] proposed two different

schemes, namely, Q1(n) and Q2(n), to define the orientations of the edges in
the binary n-cube as follows: η(x) is the number of 1’s in the binary represen-
tation of x. Consider the two vertices a = an−1an−2 · · ·ai+1aiai−1 · · ·a1a0 and

b = an−1an−2 · · ·ai+1aiai−1 · · ·a1a0.

Q1(n): Let P (a, i) be the polarity of the ith communication port of a which
is defined as

P (a, i) = (−1)η(a)+i.
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If P (a, i) is positive, then there is a directed edge from a to b; otherwise, there is

a directed edge from b to a. The unidirectional hypercube defined by the above
polarity function is called a positive Q1(n). A negative Q1(n) is defined in the
same way but with a different polarity function:

P (a, i) = (−1)η(a)+i+1.

Clearly, Q1(n) and its negative counterpart are isomorphic. Unless otherwise stated,
we shall consider the positive Q1(n) only.

Observe thatQ1(n) can be constructed by oneQ1(n−1), one negativeQ1(n−1),
and 2n−1 edges between them.

Q2(n): Like Q1(n), the orientations of the edges in Q2(n) are defined by the
polarities of the corresponding communication ports. If n is odd, an−1 = 1 and
0 ≤ i ≤ n − 2, then the corresponding polarity function is

P (a, i) = (−1)η(a)−1+i;

otherwise, the polarity P (a, i) is the same as that for Q1(n). In fact, when n is

odd, Q2(n) can be constructed by two Q1(n− 1)’s and 2n−1 edges between them.

Since Q2(n) is identical to Q1(n) when n is even, we shall only consider Q2(n)
when n is odd.

General results and more details on Q1(n) and Q2(n) can be found in [3, 10].
Any set of vertex-disjoint paths from vertex x to vertex y, denoted by C(x, y),

is called an (x, y)-container [6]. The width of C(x, y), written as w(C(x, y)), is its
cardinality. The length of C(x, y), written as l(C(x, y)), is the longest path length
in C(x, y). Define Dw(x, y) to be the minimum possible length of any (x, y)-
container with width w. Let ξ(x, y) denote the maximum number of vertex-disjoint
paths from x to y. The wide-diameter of a graph G [5, 7], denoted by WD(G),
is the maximum of Dξ(x,y)(x, y) for all pairs of vertices x and y. Obviously, the

wide-diameter of a graph is no less than its diameter. The wide-diameter, proposed

by Hsu [7], and Flandrin and Li [5] independently, is a good index to characterize

the reliability of transmission delay in a network, and has received much attention

recently [5-9, 11, 14]. We refer to [1] for notations and terminology not defined

here.

Recently, Jwo and Tuan [10] have shown that ξ(x, y) = min(out(x), in(y)) for
all pairs of vertices x and y in Q1(n) or Q2(n), i.e., both Q1(n) and Q2(n) are
maximum fault-tolerant. Furthermore, they have also shown that Dξ(x,y)(x, y) is
at most (1) l + 4, where l is the shortest path length in Q1(n) from x to y, and
(2) l + 5, where l is the shortest path length in Q2(n) (n is odd) (i) from x to y
when x and y have the same leading-bit values and (ii) from x to y′(y′ and y only

differ at leading-bit position) when otherwise. They also suggest that the constructed
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container in [9] has the smallest possible length among all maximum fault-tolerant

containers from x to y.
In this paper, we shall prove that Dξ(x,y)(x, y) is no more than n + 2 for

any pairs of vertices x and y in Q1(n) or Q2(n). Furthermore, we prove that
the wide-diameters of Q1(n) and Q2(n) are equal to n + 2 and the conjecture in
[9] is true. Since the diameters of Q1(n) and Q2(n) are n + 1 when n is even
and the diameters of Q1(n) and Q2(n) re n + 2 when n is odd, we have that

|WD(Qi(n))−Diam(Qi(n)| ≤ 1, i = 1, 2.

2. PRELIMINARIES

Suppose that a = an−1an−2 · · ·a0 and b = bn−1bn−2 · · ·b0 are two vertices in

Q1(n) (resp. Q2(n)). Define DPi(a, b) = ai ⊕ bi, where 0 ≤ i ≤ n − 1 and
⊕ is Boolean addition. DP (a, b) is defined as the n-bit sequence: DPn−1(a, b)
· · ·DP1(a, b)DP0(a, b). The polarity of DP (a, b) is the same as that of a. p̂

and n̂ denote the number of 1′s in DP (a, b) with positive and negative polarity,
respectively. For instance, if a = 1111 and b = 0001, then DP (a, b) = 1110 and
p̂ = 1, n̂ = 2. For notational simplicity, we will use zi to represent DPi(a, b).

Fact 1 [3]. Given two vertices a and b in Q1(n) (resp. Q2(n)), the shortest
path length from a to b can be computed as follows:

{
2p̂ − (p̂− n̂) mod 2, if p̂ > n̂,
2n̂ + (n̂ − p̂) mod 2, if p̂ ≤ n̂.

Fact 2 [3]. Given two vertices a and b in Q1(n), let l (resp. l′) be the shortest
path length from a (resp. b) to b (resp. a). Then,

{
l − l′ = 0, if (p̂ − n̂) mod 2 = 0,
l − l, = 2, if (p̂ − n̂) mod 2 = 1.

Fact 3 [3]. The diameter of Qi(n) is (a) n + 1, if n is even; (b) n + 2, if n is

odd, i = 1, 2.

Fact 4 [9]. Let a and b be two vertices of Q1(n) (resp. Q2(n)). Then ξ(a, b) =
min(out(a), in(b)). In other words, both Q1(n) and Q2(n) are maximum fault-
tolerant.

Lemma 1. WD(Qi(n)) ≥ n+ 1, if n is even; WD(Qi(n) ≥ n + 2, otherwise,

i = 1, 2.

Proof. By Fact 3 and the definition of wide-diameter, it is obvious.
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Lemma 2. Let a and b be two vertices of Q1(n) where n is odd, and l be the

shortest path length from a to b. Then, l = n + 2 if and only if
{

(n̂ − p̂) mod 2 = 1,
n̂ = n+1

2 .

Proof. By Fact 1, we have l = n + 2 if and only if

n + 2 = 2p̂ − (p̂ − n̂) mod 2, if p̂ > n̂,

or

n + 2 = 2n̂ + (n̂ − p̂) mod 2, if p̂ ≤ n̂.

Since n + 2 is odd and p̂ ≤ (n + 2)/2, we easily find

l = n + 2 ⇐⇒
{

(n̂ − p̂) mod 2 = 1,

n̂ = n+1
2 .

Lemma 3. Let a and b be two vertices of Q1(n) where n is odd, and l be the
shortest path length from a to b. Then l = n + 1 if and only if

{
(n̂ − p̂) mod 2 = 0,

n̂ = n+1
2 ,

or

{
(n̂ − p̂) mod 2 = 0,

p̂ = n+1
2 .

Proof. By Fact 1, we have l = n + 1 if and only if

n + 1 = 2p̂ − (p̂ − n̂) mod 2, if p̂ > n̂,

or

n + 1 = 2n̂ + (n̂ − p̂) mod 2, if p̂ ≤ n̂.

Since n + 1 is even, we easily find

l = n + 1 ⇐⇒
{

(n̂ − p̂) mod 2 = 0,
n̂ = n+1

2 ,
or

{
(p̂ − n̂) mod 2 = 0,
p̂ = n+1

2 .

Lemma 4 [10]. Let a and b be two vertices of Q1(n) with zi = 1 for every
even integer i in [0, n− 1]. Then Dξ(a,b)(a, b) equals the shortest path length from
a to b.

For a = an−1 · · ·a1a0 and b = bn−1 · · ·b1b0 in Q1(n), if zn−1 = 1 and zi = 0
for some even integer i, then each vertex x = xn−1 · · ·x1x0 can be relabeled by the

mapping defied as follows:
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1. If n is odd, then choose an even integer i with zi = 0 and define

αi : x → xixn−2xn−3 · · ·xi+1xn−1xi−1 · · ·x0.

2. If n is even, then arbitrarily choose an i with zi = 0 and define

αi →
{

xixn−2xn−3 · · ·xi+1xn−1xi−1 · · ·x0, if i is odd,

xixn−1xn−2 · · ·xi+1x0xi−1 · · ·x1, if i is even.

The following result is due to Jwo and Tuan [10], which is also easy to deduce.

Lemma 5 [10]. Let a and b be two vertices of Q1(n) with zn−1 = 1 and
zi = 0 for some even integer i. The relabeling mapping αi described above is an

automorphism of Q1(n).

3. THE CONTAINER LENGTH AND WIDE-DIAMETER OF Q1(n)

In this section, we shall first prove the following theorem:

Theorem 1. Let a and b be two vertices of Q1(n). Then Dξ(a,b)(a, b) ≤ n + 2.

Proof. We proceed by induction on n. When n = 2, it is trivial. Assume that
Theorem 1 is true for n ≤ k − 1 and k ≥ 3.

Let n = k. If zi = 1 for every even integer i with 0 ≤ i ≤ k − 1, Lemma 4
and Fact 3 guarantee that Theorem 1 is true. Without loss of generality, we may

assume that there exists an even integer i such that zi = 0. By Lemma 5, we
can assume that zk−1 = 0, i.e., a and b are in the same subcube Q1(k − 1). Let
Q1

1(k − 1) represent the subcube containing a and b, and Q2
1(k − 1) respresent the

other subcube. Given an n-bit binary number v = vn−1 · · ·v1v0, let v′ denote the
n-bit binary number vn−1vn−2 · · ·v0 and v′′ denote the (n − 1)-bit binary number
vn−2vn−3 · · ·v0. Clearly, a′′ and b′′ are two vertices in a Q1(k − 1). By Fact 4,
ξ(a′′, b′′) = min(out(a′′), in(b′′)) and ξ(b′′, a′′) = min(out(b′′), in(a′′)).

Suppose that ak−1 = bk−1 = 0 (resp. 1). Let P1, P2, · · · , Pr be a collection

of the maximum number of vertex-disjoint paths from a to b in Q1
1(k − 1), where

r = ξ(a′′, b′′) (resp. r = ξ(b′′, a′′)). Obviously, we can regard P1, P2, · · · , Pr as a

maximum amount of vertex-disjoint paths from a′′ to b′′ (resp. from b′′ to a′′) in
Q1(k − 1). By induction hypothesis, we can assume that each of the r paths has

length at most k + 1.

Case 1. k is odd.

Subcase 1.1. η(a) is odd or η(b) is even.
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FIG. 1. k is odd, η(a) is even, and η(b) is odd, or k is even, η(a) is odd, and η(b) is
even: the r + 1 vertex-disjoint paths from a to b in Q1(k).

In this situation, we have min(out(a), in(b)) = ξ(a′′, b′′) (resp. min(out(a),
in(b)) = ξ(b′′, a′′)). By Fact 3, ξ(a, b) = ξ(a′′, b′′) (resp. ξ(a, b) = ξ(b′′, a′′)).
Thus, P1, P2, · · · , Pr is also a collectoin of the maximum number of vertex-disjoint

paths from a to b in Q1(k), where r = ξ(a, b). So, Dξ(a,b)(a, b) ≤ k + 1.

Subcase 1.2. η(a) is even and η(b) is odd.

We have min (out(a), in(b)) = ξ(a′′, b′′) + 1 (resp. min (out(a), in(b)) =
ξ(b′′, a′′)+1). By Fact 3, ξ(a, b) = ξ(a′′, b′′)+1 (resp. ξ(a, b) = ξ(b′′, a′′)+1). See
Figure 1. Since ak−1 has positive polarity and bk−1 has negative polarity, there exist

an edge e1 from a to a′ and an edge e2 from b′ to b. Let P ′ be a shortest path from
a′ to b′ in Q2

1(k−1). It is easy to see that there exists a new path P = e1 +P ′ +e2,

which certainly is vertex-disjoint with all the paths P1, P2, · · · , Pr from a to b in
Q1

1(k − 1). Since P ′ is a shortest path in Q2
1(k − 1), the length of P ′ is no more

than k by Fact 3, and the length of P is no more than k + 2. So, the length of the
maximum fault-tolerant (a, b)-container P1, P2, · · · , Pr, P is no more than k + 2.

Case 2. k is even.

Subcase 2.1. η(a) is odd and η(b) is even.

We have min(out(a), in(b)) = ξ(a′′, b′′) + 1 (resp. min(out(a), in(b)) =
ξ(b′′, a′′)+1). By Fact 3, ξ(a, b) = ξ(a′′, b′′)+1 (resp. ξ(a, b) = ξ(b′′, a′′)+1)). See
Fig. 1. Proceed similarly to that in Subcase 1.2 and obtain that P1, P2, · · · , Pr, P

are a maximum fault-tolerant (a, b)-container. We calculate the length of P . When
an−1 = 0, the length of P ′ is equal to the length of the shortest path from b′′ to a′′

in Q1(k− 1). Obviously, this is at most k + 1 by Fact 3. Since η(b′′) = η(b) is
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FIG. 2. k is even, η(a) is odd and η(b) is odd: the r + 1 disjoint-paths from a to b in

Q1(k).

even, we know that n̂ of DP (b′′, a′′) is less than k/2 and the shortest path from b′′

to a′′ has length at most k by Lemma 2. When an−1 = 1, the length of P ′ is equal

to the length of the shortest path from a′′ to b′′ in Q1(k−1). Obviously, this is also
no more than k + 1 by Fact 3. Since η(a′′) = η(a)− 1 is even, we know that n̂ of
DP (a′′, b′′) is less than k/2 and the shortest path from b′′ to a′′ also has length at
most k. In a word, P ′ has length at most k. So, P has length at most k + 2. By
the induction hypothesis, we easily see that the constructed maximum fault-tolerant

(a, b)-container P1, P2, · · · , Pr, P has length at most k + 2.

Subcase 2.2. η(a) is odd and η(b) is odd.

We similarly have ξ(a, b) = ξ(a′′, b′′) + 1 (resp. ξ(a, b) = ξ(a′′, b′′) + 1). See
Figure 2. Since ak−1 has positive polarity, there exists an edge e1 from a to a′.

Althouhg b has k/2 incoming ports available withinQ1
1(k−1), only (k/2)−1 incom-

ing ports are used by the collection of vertex-disjoint paths P1, P2, · · · , Pr, where

r = ξ(a′′, b′′) (resp. r = ξ(b′′, a′′)). Thus, there is an unused incoming port, say port
j, of b which results in the edge e3 from the vertex c = bk−1 · · ·bj+1bjbj−1 · · ·b0 to

b. Note that c is not in any of P1, P2, · · · , Pr, and c′ = bk−1 · · ·bj+1bjbj−1 · · ·b0.

Since c and c′ differ in the (k − 1)th bit and the polarity of that bit in c′ is pos-

itive, there is an edge e2 from c′ to c. Let P ′ be a shortest path from a′ to c′ in
Q2

1(k−1). Then, the new path P = e1 +P ′+e2 +e3 does not intersect any internal

vertex in P1, P2, · · · , Pr. So, P1, P2, · · · , Pr and P is a maximum fault-tolerant

(a, b)-container.
Since P1, P2, · · · , Pr is identical to a maximum amount of vertex-disjoint paths

from a′′ (resp. b′′) to b′′ (resp. a′′) in Q1(k− 1), and since we assume that each of
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FIG. 3. k is even, η(a) is even and η(b) is even: the r + 1 vertex-disjoint paths from a to

b in Q1(k).

the r paths has length at most k + 1, it is sufficient to prove that the new path P
has length at most k + 2. When ak−1 = 0, the length of P ′ is equal to that of the

shortest path from c′′ to a′′ in Q1(k − 1). Since η(c′′) is even and η(a′′) is odd,
we have n̂ 6= (k/2) + 1 and (p̂ − n̂) mod 2 6= 0. By Lemmas 2 and 3, we have
the length of the shortest path from c′′ to a′′ in Q1(k − 1) is at most k − 1. When
ak−1 = 1, the length of P ′ is equal to that of the shortest path from a′′ to c′′ in

Q1(k − 1). Note that η(a′′) is even and η(c′′) is odd. Similarly, we obtain that P ′

has length at most k − 1. So, we know that P always has length at most k + 2.
Thus, Dξ(a,b)(a, b) ≤ k + 2.

Subcase 2.3. η(a) is even and η(b) is even.

In this situation, ξ(a, b) = ξ(a′′, b′′) + 1 (resp. ξ(a, b) = ξ(b′′, a′′)). As shown
in Figure 3, P1, P2, · · · , Pr and the new path P = e1 + e2 +P ′ + e3 is a maximum

fault-tolerant (a, b)-container with width ξ(a, b), where r = ξ(a′′, b′′) (resp. r =
ξ(b′′, a′′)) and P ′ is a shortest path from d′ to b′ in Q2

1(k − 1). Similarly, we can
prove that P ′ has length at most k − 1 and the length of P is no more than k + 2.
Thus, Dξ(a,b)(a, b) ≤ k + 2. The detail is left to readers.

Subcase 2.4. η(a) is even and η(b) is odd.

In this situation, ξ(a, b) = ξ(a′′, b′′) (resp. ξ(a, b) = ξ(b′′, a′′)). We easily know
Dξ(a,b)(a, b) ≤ k + 2. The proof is similar to that of Subcase 1.1.

By induction, we get that Dξ(a,b)(a, b) ≤ n + 2.
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The proof of Thereom 1 is completed.

Due to Thereom 1, we know that the wide-diameter of Q1(n) is no more than
n + 2 and, when n is odd, WD(Q1(n)) = n + 2 by Lemma 1. On the other hand,
if there exists some even number k (≥ 4) such that WD(Q1(k)) = k + 1, then
consider two vertices a = 00 · · ·0 and b = 0011 · · ·1 in Q1(k). Since η(a) is even
and η(b) is even, we know ξ(a, b) = ξ(a′′, b′′) + 1, so any (a, b)-container with
width ξ(a, b) must have a path, say P , which passes the vertex b′ = 1011 · · ·1, and
(b′, b) is the last edge in P . Let P ′ be a shortest path from a to b′ in Q1(k). By Fact
1, we calculate that the length of P is equal to k + 1 since DP (a, b′) = 1011 · · ·1
and p̂ = (k − 2)/2, n̂ = k/2. Then P has length at least k + 2. So the length of
any (a, b)-container with width ξ(a, b) is at least k + 2, a contradiction. Thus, we
have the follow thoerem:

Theorem 2. The wide-diameter of Q1(n) (n ≥ 3) is equal to n + 2.

Remark 1. In [10], Jwo and Tuan have shown that the smallest possible

length for any maximum fault-tolerant container from a to b is at most l + 4, where
l is the shortest path in Q1(n) from a to b. Now, we show that this upper bound is
best. When n ≥ 4 is even, consider the two vertices a = 00 · · ·0 and b = 0011 · · ·1
in Q1(n) (n ≥ 4 is even). Since DP (a, b) = 0011 · · ·1 and p̂ = n̂ = (n − 2)/2,
we have l = n− 2 by Fact 1. As above, we know that the length for any maximum
fault-tolerant container from a to b is at least n + 2. By Theorem 1, we see that
the smallest possible length for any maximum fault-tolerant container from a to b is
equal to n + 2, i.e., it equals l + 4. Thus the upper bound given by Jwo and Tuan
in [10] is in a sense best possible.

4. THE CONTAINER LENGTH AND WIDE-DIAMETER OF Q2(n)

By the definition, it is enough to consider for odd n. Let a and b be two

vertices in Q2(n). We know Q2(n) is constructed from two Q1(n − 1)’s in [3],
say, Q1

1(n − 1) and Q2
1(n − 1). And we assume a ∈ Q1

1(n). Note that if there
exists a path a = v0 → v1 → · · · → vk in Q1

1(n− 1), then there is a corresponding
path a′ = v′0 → v′1 → · · · → v′k in Q2

1(n − 1). Suppose that P1, P2, · · · , Pr are a

collection of maximum number of vertex-disjoint paths from a to an−1b
′′ in Q1

1(n−
1), where r = ξ(a′′, b′′), and P ′

1, P
′
2, · · · , P ′

r are their counterparts in Q2
1(n − 1).

Obviously, P1, P2, · · · , Pr is identical to a maximum fault-torelant (a′′, b′′)-container
in Q1(n − 1). By Theorem 1, we assume each of paths P1, P2, · · · , Pr has length

at most n + 1.

Case 1. η(a) is odd or η(b) is even.



84 Lu Chang-hong and Zhang Ke-min

FIG. 4. η(a) is odd or η(b) is even, and an−1 6= bn−1: the r vertex-disjoint paths from a

to b in Q2(n).

Subcase 1.1. an−1 = bn−1.

In this situation, we know ξ(a, b) = ξ(a′′, b′′). Therefore, P1, P2, · · · , Pr is a

maximum fault-torelant (a, b)-container in Q2(n), and Dξ(a,b)(a, b) ≤ n + 1.

Subcase 1.2. an−1 6= bn−1

Similarly, ξ(a, b) = ξ(a′′, b′′) = r. a and b are not in the same subcube. Then a
and b′ are in Q1

1(n− 1) and b and a′ are in Q2
1(n− 1). See Figure 4. Observe that

among P1, P2, · · · , Pr, (1) at most one path has length less than 3, and (2) each of
the remaining paths has length more than 2 and thus contains at least two internal

vertices. For 1 ≤ i ≤ r, let u and v be two consecutive vertices in Pi and let u′

and v′ be their counterparts in P ′
i , respectively. Note that it is easy to check that

there always exists u with an outgoing edge to u′ or v to v′. Then we can select

a vertex ci in Pi with an outgoing edge to c′i in P ′
i , i = 1, 2, · · · , r. Evidently, the

2r vertices c1, c2, · · · , cr, c
′
1, c

′
2, · · · , c′r, are all distinct. For each i in [1, r], a path

from a to b in Q2(n) can be formed by first going through the subpath of Pi from

a to ci, then through the edge from ci to c′i, and, finally, through the subpath of

P ′
i from c′i to b. These newly formed r paths are vertex-disjoint and each of them
has length at most n + 2 since each of the paths P1, P2, · · · , Pr has length at most

n + 1 by Theorem 1. Then Dξ(a,b)(a, b) ≤ n + 2.

Case 2. η(a) is even and η(b) is odd.

Subcase 2.1. an−1 = bn−1.
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FIG. 5. η(a) is even, η(b) is odd, and an−1 = bn−1: the r + 1 vertex-disjoint paths from
a to b in Q2(n).

We know ξ(a, b) = ξ(a”, b”) + 1, and a and b are in the same subcube. See

Figure 5, where P ′ is a shortest path from a′ to b′ in Q2
1(n). Since the (n − 1)th

port of a has positive polarity and that of b has negative polarity, there exist e1 from

a to a′ and e2 from b′ to b. We easily get a new path P = e1 + P ′ + e2. Due to

Fact 3 and the fact that n − 1 is even, we know that the length of P ′ is at most n.
Then P has length at most n + 2. Now, it is easy to see Dξ(a,b)(a, b) ≤ n + 2.

Subcase 2.2. an−1 6= bn−1.

We have ξ(a, b) = ξ(a”, b”)+ 1 by Fact 4. See Figure 6, where Pt is a shortest

path in {Pi|i ∈ [1, r]}. Since the (n − 1)th port of a has positive polarity and that

of b has negative polarity, e1 is from a to a′ and e2 is from b′ to b. For each pair Pi

and P ′
i , i 6= t, there exists a vertex ci in Pi and c′i in P ′

i such that a new path from

a to b in Q2(n) is formed by taking the subpath from a to ci in Pi, then through the

edge from ci to c′i, and finally from c′i to b in P ′
i . For the pair Pt and P ′

t , two new

paths are formed: One is e1 + P ′
t and the other is Pt + e2. Since each of the paths

P1, P2, · · · , Pr has length at most n + 1 by Theorem 1, we easily see that each of
the paths in the new container has length at most n+2. Thus Dξ(a,b)(a, b) ≤ n+2.

From the above discussion, we have the following theorem:

Theorem 3. Let a and b be two vertices of Q2(n). Then Dξ(a,b)(a, b) ≤ n + 2.

From Lemma 1, we have:

Theorem 4. The wide-diameter of Q2(n) (n is odd) is equal to n + 2.
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FIG. 6. η(a) is even, η(b) is odd, and an−1 6= bn−1

Remark 2. For the two vertices a = 00 · · ·0 and b = 1001 · · ·1 in Q2(n)
(n ≥ 3 is odd), since DP (a, b′) = 00011 · · ·1 and p̂ = n̂ = (n − 3)/2, we have
l = n−3 by Fact 1, where l is the shortest path length from a to b′. As Subcase 2.2
of Theorem 2, we know that for any maximum fault-tolerant container from a to b,

there is a path through the edge (a, c), where c = 0010 · · ·0. We easily know that
the shortest path from c to b in Q2 has length n + 1. So we see that the smallest
possible length for any maximum fault-tolerant container from a to b is equal to
n + 2, i.e., it equals l + 5. Thus the upper bound given by Jwo and Tuan [10] is in
a sense best possible.

5. CONCLUSION

In this paper, we give the wide-diameters of the two unidirectional binary n-

cubes proposed by Chou and Du [3]. Since the constructed container in this paper

is the same as that in [10], Remarks 1 and 2 show that the conjecture in [10] is

true.
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