TAIWANESE JOURNAL OF MATHEMATICS Vol. 6, No. 1, pp. 75-87, March 2002 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON CONTAINER LENGTH AND WIDE-DIAMETER IN UNIDIRECTIONAL HYPERCUBES

Lu Changhong and Zhang Kemin

Abstract. In this paper, two unidirectional binary *n*-cubes, namely, $Q_1(n)$ and $Q_2(n)$, proposed as high-speed networking schemes by Chou and Du, are studied. We show that the smallest possible length for any maximum fault-tolerant container from *a* to *b* is at most n+2 whether *a* and *b* are in $Q_1(n)$ or in $Q_2(n)$. Furthermore, we prove that the wide-diameters of $Q_1(n)$ and $Q_2(n)$ are equal to n+2. At last, we show that a conjecture proposed by Jwo and Tuan is true.

1. INTRODUCTION

The hypercube is one of the best candidates for high-speed computing [12, 13], and using optical fibers as point-to-point transmission links, Metropolitan Area Networks (MANs) with hypercube topology can support high-speed, high-bandwith, short-delay, and parallel communications [2, 3, 6, 15, 16]. As pointed in [10] by Jwo and Tuan, due to the lack of a bidirectional electrical/optical converter and the high cost of a full-duplex tansmission, a unidirectional topology is desirable for MANs [3, 4]. In particular, Chou and Du [3] proposed two different schemes, namely, $Q_1(n)$ and $Q_2(n)$, to define the orientations of the edges in the binary n-cube as follows: $\eta(x)$ is the number of 1's in the binary representation of x. Consider the two vertices $a = a_{n-1}a_{n-2}\cdots a_{i+1}a_ia_{i-1}\cdots a_1a_0$ and $b = a_{n-1}a_{n-2}\cdots a_{i+1}\overline{a}_ia_{i-1}\cdots a_1a_0$.

 $Q_1(n)$: Let P(a, i) be the *polarity* of the *i*th communication port of *a* which is defined as

$$P(a,i) = (-1)^{\eta(a)+i}.$$

Received October 20, 1999; revised December 10, 1999.

Communicated by F. K. Hwang.

²⁰⁰¹ Mathematics Subject Classification: 05C40, 68M10, 68R10.

Key words and phrases: Hypercube, wide-diameter, container, connectivity.

^{*}The project is supported by NSFC and NSFJS.

If P(a, i) is positive, then there is a directed edge from a to b; otherwise, there is a directed edge from b to a. The unidirectional hypercube defined by the above polarity function is called a *positive* $Q_1(n)$. A *negative* $Q_1(n)$ is defined in the same way but with a different polarity function:

$$P(a,i) = (-1)^{\eta(a)+i+1}.$$

Clearly, $Q_1(n)$ and its negative counterpart are isomorphic. Unless otherwise stated, we shall consider the positive $Q_1(n)$ only.

Observe that $Q_1(n)$ can be constructed by one $Q_1(n-1)$, one negative $Q_1(n-1)$, and 2^{n-1} edges between them.

 $Q_2(n)$: Like $Q_1(n)$, the orientations of the edges in $Q_2(n)$ are defined by the polarities of the corresponding communication ports. If n is odd, $a_{n-1} = 1$ and $0 \le i \le n-2$, then the corresponding polarity function is

$$P(a,i) = (-1)^{\eta(a)-1+i};$$

otherwise, the polarity P(a, i) is the same as that for $Q_1(n)$. In fact, when n is odd, $Q_2(n)$ can be constructed by two $Q_1(n-1)$'s and 2^{n-1} edges between them. Since $Q_2(n)$ is identical to $Q_1(n)$ when n is even, we shall only consider $Q_2(n)$ when n is odd.

General results and more details on $Q_1(n)$ and $Q_2(n)$ can be found in [3, 10].

Any set of vertex-disjoint paths from vertex x to vertex y, denoted by C(x, y), is called an (x, y)-container [6]. The width of C(x, y), written as w(C(x, y)), is its cardinality. The length of C(x, y), written as l(C(x, y)), is the longest path length in C(x, y). Define $D_w(x, y)$ to be the minimum possible length of any (x, y)container with width w. Let $\xi(x, y)$ denote the maximum number of vertex-disjoint paths from x to y. The wide-diameter of a graph G [5, 7], denoted by WD(G), is the maximum of $D_{\xi(x,y)}(x, y)$ for all pairs of vertices x and y. Obviously, the wide-diameter of a graph is no less than its diameter. The wide-diameter, proposed by Hsu [7], and Flandrin and Li [5] independently, is a good index to characterize the reliability of transmission delay in a network, and has received much attention recently [5-9, 11, 14]. We refer to [1] for notations and terminology not defined here.

Recently, Jwo and Tuan [10] have shown that $\xi(x, y) = \min(\operatorname{out}(x), \operatorname{in}(y))$ for all pairs of vertices x and y in $Q_1(n)$ or $Q_2(n)$, i.e., both $Q_1(n)$ and $Q_2(n)$ are maximum fault-tolerant. Furthermore, they have also shown that $D_{\xi(x,y)}(x, y)$ is at most (1) l + 4, where l is the shortest path length in $Q_1(n)$ from x to y, and (2) l + 5, where l is the shortest path length in $Q_2(n)$ (n is odd) (i) from x to y when x and y have the same leading-bit values and (ii) from x to y'(y' and y only differ at leading-bit position) when otherwise. They also suggest that the constructed container in [9] has the smallest possible length among all maximum fault-tolerant containers from x to y.

In this paper, we shall prove that $D_{\xi(x,y)}(x,y)$ is no more than n+2 for any pairs of vertices x and y in $Q_1(n)$ or $Q_2(n)$. Furthermore, we prove that the wide-diameters of $Q_1(n)$ and $Q_2(n)$ are equal to n+2 and the conjecture in [9] is true. Since the diameters of $Q_1(n)$ and $Q_2(n)$ are n+1 when n is even and the diameters of $Q_1(n)$ and $Q_2(n)$ re n+2 when n is odd, we have that $|WD(Q_i(n))-\text{Diam}(Q_i(n)| \le 1, i = 1, 2.$

2. Preliminaries

Suppose that $a = a_{n-1}a_{n-2}\cdots a_0$ and $b = b_{n-1}b_{n-2}\cdots b_0$ are two vertices in $Q_1(n)$ (resp. $Q_2(n)$). Define $DP_i(a, b) = a_i \oplus b_i$, where $0 \le i \le n-1$ and \oplus is Boolean addition. DP(a, b) is defined as the *n*-bit sequence: $DP_{n-1}(a, b) \cdots DP_1(a, b)DP_0(a, b)$. The polarity of DP(a, b) is the same as that of a. \hat{p} and \hat{n} denote the number of 1's in DP(a, b) with positive and negative polarity, respectively. For instance, if a = 1111 and b = 0001, then DP(a, b) = 1110 and $\hat{p} = 1, \hat{n} = 2$. For notational simplicity, we will use z_i to represent $DP_i(a, b)$.

Fact 1 [3]. Given two vertices a and b in $Q_1(n)$ (resp. $Q_2(n)$), the shortest path length from a to b can be computed as follows:

$$\left\{ \begin{array}{ll} 2\hat{p}-(\hat{p}-\hat{n}) & \mbox{mod} & 2, \mbox{ if } \hat{p}>\hat{n}, \\ 2\hat{n}+(\hat{n}-\hat{p}) & \mbox{mod} & 2, \mbox{ if } \hat{p}\leq\hat{n}. \end{array} \right.$$

Fact 2 [3]. Given two vertices a and b in $Q_1(n)$, let l (resp. l') be the shortest path length from a (resp. b) to b (resp. a). Then,

$$\begin{cases} l-l'=0, & \text{if } (\hat{p}-\hat{n}) \mod 2=0, \\ l-l=2, & \text{if } (\hat{p}-\hat{n}) \mod 2=1. \end{cases}$$

Fact 3 [3]. The diameter of $Q_i(n)$ is (a) n + 1, if n is even; (b) n + 2, if n is odd, i = 1, 2.

Fact 4 [9]. Let a and b be two vertices of $Q_1(n)$ (resp. $Q_2(n)$). Then $\xi(a, b) = \min(\operatorname{out}(a), \operatorname{in}(b))$. In other words, both $Q_1(n)$ and $Q_2(n)$ are maximum fault-tolerant.

Lemma 1. $WD(Q_i(n)) \ge n+1$, if n is even; $WD(Q_i(n) \ge n+2)$, otherwise, i = 1, 2.

Proof. By Fact 3 and the definition of wide-diameter, it is obvious.

Lemma 2. Let a and b be two vertices of $Q_1(n)$ where n is odd, and l be the shortest path length from a to b. Then, l = n + 2 if and only if

$$\begin{cases} (\hat{n} - \hat{p}) \mod 2 = 1\\ \hat{n} = \frac{n+1}{2}. \end{cases}$$

Proof. By Fact 1, we have l = n + 2 if and only if

$$n+2 = 2\hat{p} - (\hat{p} - \hat{n}) \mod 2, \text{ if } \hat{p} > \hat{n},$$

or

$$n+2 = 2\hat{n} + (\hat{n} - \hat{p}) \mod 2$$
, if $\hat{p} \le \hat{n}$.

Since n+2 is odd and $\hat{p} \leq (n+2)/2$, we easily find

$$l = n + 2 \Longleftrightarrow \begin{cases} (\hat{n} - \hat{p}) \mod 2 = 1, \\ \hat{n} = \frac{n+1}{2}. \end{cases} \blacksquare$$

Lemma 3. Let a and b be two vertices of $Q_1(n)$ where n is odd, and l be the shortest path length from a to b. Then l = n + 1 if and only if

$$\begin{cases} (\hat{n} - \hat{p}) \mod 2 = 0, \\ \hat{n} = \frac{n+1}{2}, \end{cases} \text{ or } \begin{cases} (\hat{n} - \hat{p}) \mod 2 = 0, \\ \hat{p} = \frac{n+1}{2}. \end{cases}$$

Proof. By Fact 1, we have l = n + 1 if and only if

$$n + 1 = 2\hat{p} - (\hat{p} - \hat{n}) \mod 2, \text{ if } \hat{p} > \hat{n},$$

or

$$n+1 = 2\hat{n} + (\hat{n} - \hat{p}) \mod 2$$
, if $\hat{p} \le \hat{n}$.

Since n + 1 is even, we easily find

$$l = n + 1 \Longleftrightarrow \begin{cases} (\hat{n} - \hat{p}) \mod 2 = 0, \\ \hat{n} = \frac{n+1}{2}, \end{cases} \text{ or } \begin{cases} (\hat{p} - \hat{n}) \mod 2 = 0, \\ \hat{p} = \frac{n+1}{2}. \end{cases}$$

Lemma 4 [10]. Let a and b be two vertices of $Q_1(n)$ with $z_i = 1$ for every even integer i in [0, n-1]. Then $D_{\xi(a,b)}(a, b)$ equals the shortest path length from a to b.

For $a = a_{n-1} \cdots a_1 a_0$ and $b = b_{n-1} \cdots b_1 b_0$ in $Q_1(n)$, if $z_{n-1} = 1$ and $z_i = 0$ for some even integer *i*, then each vertex $x = x_{n-1} \cdots x_1 x_0$ can be relabeled by the mapping defied as follows:

1. If n is odd, then choose an even integer i with $z_i = 0$ and define

$$\alpha_i: x \to x_i x_{n-2} x_{n-3} \cdots x_{i+1} x_{n-1} x_{i-1} \cdots x_0$$

2. If n is even, then arbitrarily choose an i with $z_i = 0$ and define

$$\alpha_i \to \begin{cases} x_i x_{n-2} x_{n-3} \cdots x_{i+1} x_{n-1} x_{i-1} \cdots x_0, & \text{if i is odd,} \\ \overline{x}_i x_{n-1} x_{n-2} \cdots x_{i+1} x_0 x_{i-1} \cdots x_1, & \text{if i is even.} \end{cases}$$

The following result is due to Jwo and Tuan [10], which is also easy to deduce.

Lemma 5 [10]. Let a and b be two vertices of $Q_1(n)$ with $z_{n-1} = 1$ and $z_i = 0$ for some even integer i. The relabeling mapping α_i described above is an automorphism of $Q_1(n)$.

3. The Container Length and Wide-Diameter of $Q_1(n)$

In this section, we shall first prove the following theorem:

Theorem 1. Let a and b be two vertices of $Q_1(n)$. Then $D_{\xi(a,b)}(a,b) \leq n+2$.

Proof. We proceed by induction on n. When n = 2, it is trivial. Assume that Theorem 1 is true for $n \le k - 1$ and $k \ge 3$.

Let n = k. If $z_i = 1$ for every even integer i with $0 \le i \le k - 1$, Lemma 4 and Fact 3 guarantee that Theorem 1 is true. Without loss of generality, we may assume that there exists an even integer i such that $z_i = 0$. By Lemma 5, we can assume that $z_{k-1} = 0$, i.e., a and b are in the same subcube $Q_1(k-1)$. Let $Q_1^1(k-1)$ represent the subcube containing a and b, and $Q_1^2(k-1)$ respresent the other subcube. Given an n-bit binary number $v = v_{n-1} \cdots v_1 v_0$, let v' denote the n-bit binary number $\overline{v}_{n-1}v_{n-2}\cdots v_0$ and v'' denote the (n-1)-bit binary number $v_{n-2}v_{n-3}\cdots v_0$. Clearly, a'' and b'' are two vertices in a $Q_1(k-1)$. By Fact 4, $\xi(a'', b'') = \min(\operatorname{out}(a''), \operatorname{in}(b''))$ and $\xi(b'', a'') = \min(\operatorname{out}(b''), \operatorname{in}(a''))$.

Suppose that $a_{k-1} = b_{k-1} = 0$ (resp. 1). Let P_1, P_2, \dots, P_r be a collection of the maximum number of vertex-disjoint paths from a to b in $Q_1^1(k-1)$, where $r = \xi(a'', b'')$ (resp. $r = \xi(b'', a'')$). Obviously, we can regard P_1, P_2, \dots, P_r as a maximum amount of vertex-disjoint paths from a'' to b'' (resp. from b'' to a'') in $Q_1(k-1)$. By induction hypothesis, we can assume that each of the r paths has length at most k + 1.

Case 1. k is odd.

Subcase 1.1. $\eta(a)$ is odd or $\eta(b)$ is even.

FIG. 1. k is odd, $\eta(a)$ is even, and $\eta(b)$ is odd, or k is even, $\eta(a)$ is odd, and $\eta(b)$ is even: the r + 1 vertex-disjoint paths from a to b in $Q_1(k)$.

In this situation, we have $\min(\operatorname{out}(a), \operatorname{in}(b)) = \xi(a'', b'')$ (resp. $\min(\operatorname{out}(a), \operatorname{in}(b)) = \xi(b'', a'')$). By Fact 3, $\xi(a, b) = \xi(a'', b'')$ (resp. $\xi(a, b) = \xi(b'', a'')$). Thus, P_1, P_2, \dots, P_r is also a collectoin of the maximum number of vertex-disjoint paths from a to b in $Q_1(k)$, where $r = \xi(a, b)$. So, $D_{\xi(a,b)}(a, b) \le k + 1$.

Subcase 1.2. $\eta(a)$ is even and $\eta(b)$ is odd.

We have min (out(a), in(b)) = $\xi(a'', b'') + 1$ (resp. min (out(a), in(b)) = $\xi(b'', a'') + 1$). By Fact 3, $\xi(a, b) = \xi(a'', b'') + 1$ (resp. $\xi(a, b) = \xi(b'', a'') + 1$). See Figure 1. Since a_{k-1} has positive polarity and b_{k-1} has negative polarity, there exist an edge e_1 from a to a' and an edge e_2 from b' to b. Let P' be a shortest path from a' to b' in $Q_1^2(k-1)$. It is easy to see that there exists a new path $P = e_1 + P' + e_2$, which certainly is vertex-disjoint with all the paths P_1, P_2, \dots, P_r from a to b in $Q_1^1(k-1)$. Since P' is a shortest path in $Q_1^2(k-1)$, the length of P' is no more than k by Fact 3, and the length of P is no more than k+2. So, the length of the maximum fault-tolerant (a, b)-container P_1, P_2, \dots, P_r, P is no more than k+2.

Case 2. k is even.

Subcase 2.1. $\eta(a)$ is odd and $\eta(b)$ is even.

We have min(out(a), in(b)) = $\xi(a'', b'') + 1$ (resp. min(out(a), in(b)) = $\xi(b'', a'') + 1$). By Fact 3, $\xi(a, b) = \xi(a'', b'') + 1$ (resp. $\xi(a, b) = \xi(b'', a'') + 1$)). See Fig. 1. Proceed similarly to that in Subcase 1.2 and obtain that P_1, P_2, \dots, P_r, P are a maximum fault-tolerant (a, b)-container. We calculate the length of P. When $a_{n-1} = 0$, the length of P' is equal to the length of the shortest path from b'' to a'' in $Q_1(k-1)$. Obviously, this is at most k+1 by Fact 3. Since $\eta(b'') = \eta(b)$ is

FIG. 2. k is even, $\eta(a)$ is odd and $\eta(b)$ is odd: the r + 1 disjoint-paths from a to b in $Q_1(k)$.

even, we know that \hat{n} of DP(b'', a'') is less than k/2 and the shortest path from b'' to a'' has length at most k by Lemma 2. When $a_{n-1} = 1$, the length of P' is equal to the length of the shortest path from a'' to b'' in $Q_1(k-1)$. Obviously, this is also no more than k + 1 by Fact 3. Since $\eta(a'') = \eta(a) - 1$ is even, we know that \hat{n} of DP(a'', b'') is less than k/2 and the shortest path from b'' to a'' also has length at most k. In a word, P' has length at most k. So, P has length at most k + 2. By the induction hypothesis, we easily see that the constructed maximum fault-tolerant (a, b)-container P_1, P_2, \dots, P_r, P has length at most k + 2.

Subcase 2.2. $\eta(a)$ is odd and $\eta(b)$ is odd.

We similarly have $\xi(a, b) = \xi(a'', b'') + 1$ (resp. $\xi(a, b) = \xi(a'', b'') + 1$). See Figure 2. Since a_{k-1} has positive polarity, there exists an edge e_1 from a to a'. Althoung b has k/2 incoming ports available within $Q_1^1(k-1)$, only (k/2)-1 incoming ports are used by the collection of vertex-disjoint paths P_1, P_2, \dots, P_r , where $r = \xi(a'', b'')$ (resp. $r = \xi(b'', a'')$). Thus, there is an unused incoming port, say port j, of b which results in the edge e_3 from the vertex $c = b_{k-1} \cdots b_{j+1} \overline{b_j} \overline{b_{j-1}} \cdots b_0$ to b. Note that c is not in any of P_1, P_2, \dots, P_r , and $c' = \overline{b_{k-1}} \cdots \overline{b_{j+1}} \overline{b_j} \overline{b_{j-1}} \cdots \overline{b_0}$. Since c and c' differ in the (k - 1)th bit and the polarity of that bit in c' is positive, there is an edge e_2 from c' to c. Let P' be a shortest path from a' to c' in $Q_1^2(k-1)$. Then, the new path $P = e_1 + P' + e_2 + e_3$ does not intersect any internal vertex in P_1, P_2, \dots, P_r . So, P_1, P_2, \dots, P_r and P is a maximum fault-tolerant (a, b)-container.

Since P_1, P_2, \dots, P_r is identical to a maximum amount of vertex-disjoint paths from a'' (resp. b'') to b'' (resp. a'') in $Q_1(k-1)$, and since we assume that each of

FIG. 3. k is even, $\eta(a)$ is even and $\eta(b)$ is even: the r+1 vertex-disjoint paths from a to b in $Q_1(k)$.

the r paths has length at most k + 1, it is sufficient to prove that the new path P has length at most k + 2. When $a_{k-1} = 0$, the length of P' is equal to that of the shortest path from c" to a" in $Q_1(k-1)$. Since $\eta(c")$ is even and $\eta(a")$ is odd, we have $\hat{n} \neq (k/2) + 1$ and $(\hat{p} - \hat{n}) \mod 2 \neq 0$. By Lemmas 2 and 3, we have the length of the shortest path from c" to a" in $Q_1(k-1)$ is at most k-1. When $a_{k-1} = 1$, the length of P' is equal to that of the shortest path from a" to c" in $Q_1(k-1)$. Note that $\eta(a")$ is even and $\eta(c")$ is odd. Similarly, we obtain that P' has length at most k - 1. So, we know that P always has length at most k + 2. Thus, $D_{\xi(a,b)}(a, b) \leq k + 2$.

Subcase 2.3. $\eta(a)$ is even and $\eta(b)$ is even.

In this situation, $\xi(a, b) = \xi(a'', b'') + 1$ (resp. $\xi(a, b) = \xi(b'', a'')$). As shown in Figure 3, P_1, P_2, \dots, P_r and the new path $P = e_1 + e_2 + P' + e_3$ is a maximum fault-tolerant (a, b)-container with width $\xi(a, b)$, where $r = \xi(a'', b'')$ (resp. $r = \xi(b'', a'')$) and P' is a shortest path from d' to b' in $Q_1^2(k-1)$. Similarly, we can prove that P' has length at most k-1 and the length of P is no more than k+2. Thus, $D_{\xi(a,b)}(a, b) \le k+2$. The detail is left to readers.

Subcase 2.4. $\eta(a)$ is even and $\eta(b)$ is odd.

In this situation, $\xi(a, b) = \xi(a'', b'')$ (resp. $\xi(a, b) = \xi(b'', a'')$). We easily know $D_{\xi(a,b)}(a, b) \le k + 2$. The proof is similar to that of Subcase 1.1.

By induction, we get that $D_{\xi(a,b)}(a,b) \leq n+2$.

The proof of Thereom 1 is completed.

Due to Thereom 1, we know that the wide-diameter of $Q_1(n)$ is no more than n+2 and, when n is odd, $WD(Q_1(n)) = n+2$ by Lemma 1. On the other hand, if there exists some even number $k (\geq 4)$ such that $WD(Q_1(k)) = k+1$, then consider two vertices $a = 00 \cdots 0$ and $b = 0011 \cdots 1$ in $Q_1(k)$. Since $\eta(a)$ is even and $\eta(b)$ is even, we know $\xi(a,b) = \xi(a'',b'') + 1$, so any (a,b)-container with width $\xi(a,b)$ must have a path, say P, which passes the vertex $b' = 1011 \cdots 1$, and (b',b) is the last edge in P. Let P' be a shortest path from a to b' in $Q_1(k)$. By Fact 1, we calculate that the length of P is equal to k+1 since $DP(a,b') = 1011 \cdots 1$ and $\hat{p} = (k-2)/2$, $\hat{n} = k/2$. Then P has length at least k+2. So the length of any (a,b)-container with width $\xi(a,b)$ is at least k+2, a contradiction. Thus, we have the follow thoerem:

Theorem 2. The wide-diameter of $Q_1(n)$ $(n \ge 3)$ is equal to n + 2.

Remark 1. In [10], Jwo and Tuan have shown that the smallest possible length for any maximum fault-tolerant container from a to b is at most l + 4, where l is the shortest path in $Q_1(n)$ from a to b. Now, we show that this upper bound is best. When $n \ge 4$ is even, consider the two vertices $a = 00 \cdots 0$ and $b = 0011 \cdots 1$ in $Q_1(n)$ ($n \ge 4$ is even). Since $DP(a, b) = 0011 \cdots 1$ and $\hat{p} = \hat{n} = (n - 2)/2$, we have l = n - 2 by Fact 1. As above, we know that the length for any maximum fault-tolerant container from a to b is at least n + 2. By Theorem 1, we see that the smallest possible length for any maximum fault-tolerant container from a to b is equal to n + 2, i.e., it equals l + 4. Thus the upper bound given by Jwo and Tuan in [10] is in a sense best possible.

4. The Container Length and Wide-Diameter of $Q_2(n)$

By the definition, it is enough to consider for odd n. Let a and b be two vertices in $Q_2(n)$. We know $Q_2(n)$ is constructed from two $Q_1(n-1)$'s in [3], say, $Q_1^1(n-1)$ and $Q_1^2(n-1)$. And we assume $a \in Q_1^1(n)$. Note that if there exists a path $a = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k$ in $Q_1^1(n-1)$, then there is a corresponding path $a' = v'_0 \rightarrow v'_1 \rightarrow \cdots \rightarrow v'_k$ in $Q_1^2(n-1)$. Suppose that P_1, P_2, \cdots, P_r are a collection of maximum number of vertex-disjoint paths from a to $a_{n-1}b''$ in $Q_1^1(n-1)$, where $r = \xi(a'', b'')$, and P'_1, P'_2, \cdots, P'_r are their counterparts in $Q_1^2(n-1)$. Obviously, P_1, P_2, \cdots, P_r is identical to a maximum fault-torelant (a'', b'')-container in $Q_1(n-1)$. By Theorem 1, we assume each of paths P_1, P_2, \cdots, P_r has length at most n + 1.

Case 1. $\eta(a)$ is odd or $\eta(b)$ is even.

FIG. 4. $\eta(a)$ is odd or $\eta(b)$ is even, and $a_{n-1} \neq b_{n-1}$: the *r* vertex-disjoint paths from *a* to *b* in $Q_2(n)$.

Subcase 1.1. $a_{n-1} = b_{n-1}$.

In this situation, we know $\xi(a, b) = \xi(a'', b'')$. Therefore, P_1, P_2, \dots, P_r is a maximum fault-torelant (a, b)-container in $Q_2(n)$, and $D_{\xi(a,b)}(a, b) \le n + 1$.

Subcase 1.2. $a_{n-1} \neq b_{n-1}$

Similarly, $\xi(a, b) = \xi(a'', b'') = r$. a and b are not in the same subcube. Then a and b' are in $Q_1^1(n-1)$ and b and a' are in $Q_1^2(n-1)$. See Figure 4. Observe that among P_1, P_2, \dots, P_r , (1) at most one path has length less than 3, and (2) each of the remaining paths has length more than 2 and thus contains at least two internal vertices. For $1 \le i \le r$, let u and v be two consecutive vertices in P_i and let u' and v' be their counterparts in P'_i , respectively. Note that it is easy to check that there always exists u with an outgoing edge to u' or v to v'. Then we can select a vertex c_i in P_i with an outgoing edge to c'_i in P'_i , $i = 1, 2, \dots, r$. Evidently, the 2r vertices $c_1, c_2, \dots, c_r, c'_1, c'_2, \dots, c'_r$, are all distinct. For each i in [1, r], a path from a to b in $Q_2(n)$ can be formed by first going through the subpath of P_i from a to c_i , then through the edge from c_i to c'_i , and, finally, through the subpath of P'_i from c'_i to b. These newly formed r paths are vertex-disjoint and each of them has length at most n + 2 since each of the paths P_1, P_2, \dots, P_r has length at most n + 1 by Theorem 1. Then $D_{\xi(a,b)}(a, b) \le n + 2$.

Case 2. $\eta(a)$ is even and $\eta(b)$ is odd.

Subcase 2.1. $a_{n-1} = b_{n-1}$.

FIG. 5. $\eta(a)$ is even, $\eta(b)$ is odd, and $a_{n-1} = b_{n-1}$: the r+1 vertex-disjoint paths from a to b in $Q_2(n)$.

We know $\xi(a, b) = \xi(a^{"}, b^{"}) + 1$, and a and b are in the same subcube. See Figure 5, where P' is a shortest path from a' to b' in $Q_1^2(n)$. Since the (n-1)th port of a has positive polarity and that of b has negative polarity, there exist e_1 from a to a' and e_2 from b' to b. We easily get a new path $P = e_1 + P' + e_2$. Due to Fact 3 and the fact that n - 1 is even, we know that the length of P' is at most n. Then P has length at most n + 2. Now, it is easy to see $D_{\xi(a,b)}(a,b) \le n+2$.

Subcase 2.2. $a_{n-1} \neq b_{n-1}$.

We have $\xi(a, b) = \xi(a^{"}, b^{"}) + 1$ by Fact 4. See Figure 6, where P_t is a shortest path in $\{P_i | i \in [1, r]\}$. Since the (n - 1)th port of a has positive polarity and that of b has negative polarity, e_1 is from a to a' and e_2 is from b' to b. For each pair P_i and P'_i , $i \neq t$, there exists a vertex c_i in P_i and c'_i in P'_i such that a new path from a to b in $Q_2(n)$ is formed by taking the subpath from a to c_i in P_i , then through the edge from c_i to c'_i , and finally from c'_i to b in P'_i . For the pair P_t and P'_t , two new paths are formed: One is $e_1 + P'_t$ and the other is $P_t + e_2$. Since each of the paths P_1, P_2, \dots, P_r has length at most n + 1 by Theorem 1, we easily see that each of the paths in the new container has length at most n + 2. Thus $D_{\xi(a,b)}(a, b) \leq n + 2$.

From the above discussion, we have the following theorem:

Theorem 3. Let a and b be two vertices of $Q_2(n)$. Then $D_{\xi(a,b)}(a,b) \leq n+2$.

From Lemma 1, we have:

Theorem 4. The wide-diameter of $Q_2(n)$ (n is odd) is equal to n+2.

FIG. 6. $\eta(a)$ is even, $\eta(b)$ is odd, and $a_{n-1} \neq b_{n-1}$

Remark 2. For the two vertices $a = 00 \cdots 0$ and $b = 1001 \cdots 1$ in $Q_2(n)$ $(n \ge 3 \text{ is odd})$, since $DP(a, b') = 00011 \cdots 1$ and $\hat{p} = \hat{n} = (n-3)/2$, we have l = n-3 by Fact 1, where l is the shortest path length from a to b'. As Subcase 2.2 of Theorem 2, we know that for any maximum fault-tolerant container from a to b, there is a path through the edge (a, c), where $c = 0010 \cdots 0$. We easily know that the shortest path from c to b in Q_2 has length n + 1. So we see that the smallest possible length for any maximum fault-tolerant container from a to b is equal to n+2, i.e., it equals l+5. Thus the upper bound given by Jwo and Tuan [10] is in a sense best possible.

5. CONCLUSION

In this paper, we give the wide-diameters of the two unidirectional binary *n*-cubes proposed by Chou and Du [3]. Since the constructed container in this paper is the same as that in [10], Remarks 1 and 2 show that the conjecture in [10] is true.

REFERENCES

- 1. J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan Press Ltd, London, 1976.
- F. Boragonove and E. Cadorin, HR⁴-net: A hierachical random-routing reliable and reconfigurable network for metropolitan area, in *Pro. IEEE INFOCOM*, March, 1987, pp. 320-326.
- C. H. Chou and David H. C. Du, Unidirectional hypercubes, in: Proc. Supercomputing '90, 1990, pp. 254-263.

- 4. K. Day and A. Tripathi, Unidirectional star graphs, *Inform. Process. Lett.* **45** (1993), 123-129.
- E. Flandrin and H. Li, Mengerian properties, Hamiltonicity and claw-free graphs, Networks 24 (1994), 660-678.
- 6. D. F. Hsu, On container width and length in graphs, groups, and networks, *IEICE Trans. Fundam.* E(77A) (1994), 668-680.
- D. F. Hsu and Y. D. Lyuu, A graph-theoratical study of transmission delay and fault-tolerance, in: Proc. of 4th ISMM International Conference on Parallel and Distributed Computing and Systems 1991, pp. 20-24.
- D. F. Hsu and T. Luszak, Note on the k-diameter of k-regular k-connected graphs, Discrete Math. 132 (1994), 291-296.
- 9. Y. Ishigami, The wide-diameter of the *n*-dimensionml toroidal mesh, *Networks* **27** (1996), 257-266.
- J. S. Jwo and T. C. Tuan, On container length and connectivity in unidirectional hypercubes, *Networks* 32 (1998), 307-317.
- Q. Li, D. Sotteau and J. M. Xu, 2-diameter of de Bruijn graphs, *Networks* 28 (1996), 7-14.
- 12. S. Lakshmivarahan and S. K. Dhall, *Analysis and Design of Parallel Algorithms*, McGraw-Hill, New York, 1990.
- 13. F. T. Leighton, *Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes*, Morgan Kaufmann, Son Mates, CA, 1992.
- 14. S. C. Liaw and G. J. Chang, Wide diameters of Butterfly networks, *Taiwanese J. Math.* **3** (1999), 83-88.
- 15. N. Maxemchuk, The Manhattan street network, in: *Proc. GLOBECOM'85, Del.*, 1985, pp. 255-261.
- N. Maxemchuk, Routing in the Manhattan street network, *IEEE Trans. Commum.* 35 (1987), 503-512.

Lu Changhong and Zhang Kemin Department of Mathematics, Nanjing University, Nanjing, 210093, China.