ON CONTAINER LENGTH AND WIDE-DIAMETER IN UNIDIRECTIONAL HYPERCUBES

Lu Changhong and Zhang Kemin

Abstract

In this paper, two unidirectional binary n-cubes, namely, $Q_{1}(n)$ and $Q_{2}(n)$, proposed as high-speed networking schemes by Chou and Du , are studied. We show that the smallest possible length for any maximum faulttolerant container from a to b is at most $n+2$ whether a and b are in $Q_{1}(n)$ or in $Q_{2}(n)$. Furthermore,we prove that the wide-diameters of $Q_{1}(n)$ and $Q_{2}(n)$ are equal to $n+2$. At last, we show that a conjecture proposed by Jwo and Tuan is true.

1. Introduction

The hypercube is one of the best candidates for high-speed computing [12, 13], and using optical fibers as point-to-point transmission links, Metropolitan Area Networks ($M A N s$) with hypercube topology can support high-speed, high-bandwith, short-delay, and parallel communications [2, 3, 6, 15, 16]. As pointed in [10] by Jwo and Tuan, due to the lack of a bidirectional electrical/optical converter and the high cost of a full-duplex tansmission, a unidirectional topology is desirable for MANs [3, 4]. In particular, Chou and Du [3] proposed two different schemes, namely, $Q_{1}(n)$ and $Q_{2}(n)$, to define the orientations of the edges in the binary n-cube as follows: $\eta(x)$ is the number of 1 's in the binary representation of x. Consider the two vertices $a=a_{n-1} a_{n-2} \cdots a_{i+1} a_{i} a_{i-1} \cdots a_{1} a_{0}$ and $b=a_{n-1} a_{n-2} \cdots a_{i+1} \bar{a}_{i} a_{i-1} \cdots a_{1} a_{0}$.
$\boldsymbol{Q}_{1}(\boldsymbol{n})$: Let $P(a, i)$ be the polarity of the i th communication port of a which is defined as

$$
P(a, i)=(-1)^{\eta(a)+i} .
$$

[^0]If $P(a, i)$ is positive, then there is a directed edge from a to b; otherwise, there is a directed edge from b to a. The unidirectional hypercube defined by the above polarity function is called a positive $Q_{1}(n)$. A negative $Q_{1}(n)$ is defined in the same way but with a different polarity function:

$$
P(a, i)=(-1)^{\eta(a)+i+1} .
$$

Clearly, $Q_{1}(n)$ and its negative counterpart are isomorphic. Unless otherwise stated, we shall consider the positive $Q_{1}(n)$ only.

Observe that $Q_{1}(n)$ can be constructed by one $Q_{1}(n-1)$, one negative $Q_{1}(n-1)$, and 2^{n-1} edges between them.
$\boldsymbol{Q}_{2}(\boldsymbol{n})$: Like $Q_{1}(n)$, the orientations of the edges in $Q_{2}(n)$ are defined by the polarities of the corresponding communication ports. If n is odd, $a_{n-1}=1$ and $0 \leq i \leq n-2$, then the corresponding polarity function is

$$
P(a, i)=(-1)^{\eta(a)-1+i} ;
$$

otherwise, the polarity $P(a, i)$ is the same as that for $Q_{1}(n)$. In fact, when n is odd, $Q_{2}(n)$ can be constructed by two $Q_{1}(n-1)$'s and 2^{n-1} edges between them. Since $Q_{2}(n)$ is identical to $Q_{1}(n)$ when n is even, we shall only consider $Q_{2}(n)$ when n is odd.

General results and more details on $Q_{1}(n)$ and $Q_{2}(n)$ can be found in [3, 10].
Any set of vertex-disjoint paths from vertex x to vertex y, denoted by $C(x, y)$, is called an (x, y)-container [6]. The width of $C(x, y)$, written as $w(C(x, y))$, is its cardinality. The length of $C(x, y)$, written as $l(C(x, y))$, is the longest path length in $C(x, y)$. Define $D_{w}(x, y)$ to be the minimum possible length of any (x, y) container with width w. Let $\xi(x, y)$ denote the maximum number of vertex-disjoint paths from x to y. The wide-diameter of a graph G [5, 7], denoted by $W D(G)$, is the maximum of $D_{\xi(x, y)}(x, y)$ for all pairs of vertices x and y. Obviously, the wide-diameter of a graph is no less than its diameter. The wide-diameter, proposed by Hsu [7], and Flandrin and Li [5] independently, is a good index to characterize the reliability of transmission delay in a network, and has received much attention recently $[5-9,11,14]$. We refer to [1] for notations and terminology not defined here.

Recently, Jwo and Tuan [10] have shown that $\xi(x, y)=\min (\operatorname{out}(x), \operatorname{in}(y))$ for all pairs of vertices x and y in $Q_{1}(n)$ or $Q_{2}(n)$, i.e., both $Q_{1}(n)$ and $Q_{2}(n)$ are maximum fault-tolerant. Furthermore, they have also shown that $D_{\xi(x, y)}(x, y)$ is at most (1) $l+4$, where l is the shortest path length in $Q_{1}(n)$ from x to y, and (2) $l+5$, where l is the shortest path length in $Q_{2}(n)$ (n is odd) (i) from x to y when x and y have the same leading-bit values and (ii) from x to $y^{\prime}\left(y^{\prime}\right.$ and y only differ at leading-bit position) when otherwise. They also suggest that the constructed
container in [9] has the smallest possible length among all maximum fault-tolerant containers from x to y.

In this paper, we shall prove that $D_{\xi(x, y)}(x, y)$ is no more than $n+2$ for any pairs of vertices x and y in $Q_{1}(n)$ or $Q_{2}(n)$. Furthermore, we prove that the wide-diameters of $Q_{1}(n)$ and $Q_{2}(n)$ are equal to $n+2$ and the conjecture in [9] is true. Since the diameters of $Q_{1}(n)$ and $Q_{2}(n)$ are $n+1$ when n is even and the diameters of $Q_{1}(n)$ and $Q_{2}(n)$ re $n+2$ when n is odd, we have that $\mid W D\left(Q_{i}(n)\right)-\operatorname{Diam}\left(Q_{i}(n) \mid \leq 1, i=1,2\right.$.

2. Preliminaries

Suppose that $a=a_{n-1} a_{n-2} \cdots a_{0}$ and $b=b_{n-1} b_{n-2} \cdots b_{0}$ are two vertices in $Q_{1}(n)$ (resp. $Q_{2}(n)$). Define $D P_{i}(a, b)=a_{i} \oplus b_{i}$, where $0 \leq i \leq n-1$ and \oplus is Boolean addition. $D P(a, b)$ is defined as the n-bit sequence: $D P_{n-1}(a, b)$ $\cdots D P_{1}(a, b) D P_{0}(a, b)$. The polarity of $D P(a, b)$ is the same as that of a. \hat{p} and \hat{n} denote the number of $1^{\prime} \mathrm{s}$ in $D P(a, b)$ with positive and negative polarity, respectively. For instance, if $a=1111$ and $b=0001$, then $D P(a, b)=1110$ and $\hat{p}=1, \hat{n}=2$. For notational simplicity, we will use z_{i} to represent $D P_{i}(a, b)$.

Fact 1 [3]. Given two vertices a and b in $Q_{1}(n)\left(\right.$ resp. $\left.Q_{2}(n)\right)$, the shortest path length from a to b can be computed as follows:

$$
\left\{\begin{array}{llll}
2 \hat{p}-(\hat{p}-\hat{n}) & \bmod \quad 2, & \text { if } \hat{p}>\hat{n} \\
2 \hat{n}+(\hat{n}-\hat{p}) & \bmod \quad 2, & \text { if } \hat{p} \leq \hat{n}
\end{array}\right.
$$

Fact 2 [3]. Given two vertices a and b in $Q_{1}(n)$, let l (resp. l^{\prime}) be the shortest path length from $a($ resp. b) to b (resp. a). Then,

$$
\left\{\begin{array}{l}
l-l^{\prime}=0, \quad \text { if } \quad(\hat{p}-\hat{n}) \quad \bmod \quad 2=0 \\
l-l,=2, \quad \text { if }(\hat{p}-\hat{n}) \quad \bmod \quad 2=1
\end{array}\right.
$$

Fact 3 [3]. The diameter of $Q_{i}(n)$ is (a) $n+1$, if n is even; (b) $n+2$, if n is odd, $i=1,2$.

Fact 4 [9]. Let a and b be two vertices of $Q_{1}(n)\left(\operatorname{resp} . Q_{2}(n)\right)$. Then $\xi(a, b)=$ $\min (\operatorname{out}(a), \operatorname{in}(b))$. In other words, both $Q_{1}(n)$ and $Q_{2}(n)$ are maximum faulttolerant.

Lemma 1. $W D\left(Q_{i}(n)\right) \geq n+1$, if n is even; $W D\left(Q_{i}(n) \geq n+2\right.$, otherwise, $i=1,2$.

Proof. By Fact 3 and the definition of wide-diameter, it is obvious.

Lemma 2. Let a and b be two vertices of $Q_{1}(n)$ where n is odd, and l be the shortest path length from a to b. Then, $l=n+2$ if and only if

$$
\left\{\begin{array}{l}
(\hat{n}-\hat{p}) \quad \bmod \quad 2=1 \\
\hat{n}=\frac{n+1}{2}
\end{array}\right.
$$

Proof. By Fact 1, we have $l=n+2$ if and only if

$$
n+2=2 \hat{p}-(\hat{p}-\hat{n}) \quad \bmod 2, \quad \text { if } \hat{p}>\hat{n}
$$

or

$$
n+2=2 \hat{n}+(\hat{n}-\hat{p}) \quad \bmod 2, \quad \text { if } \hat{p} \leq \hat{n}
$$

Since $n+2$ is odd and $\hat{p} \leq(n+2) / 2$, we easily find

$$
l=n+2 \Longleftrightarrow\left\{\begin{array}{l}
(\hat{n}-\hat{p}) \quad \bmod 2=1 \\
\hat{n}=\frac{n+1}{2}
\end{array}\right.
$$

Lemma 3. Let a and b be two vertices of $Q_{1}(n)$ where n is odd, and l be the shortest path length from a to b. Then $l=n+1$ if and only if

$$
\left\{\begin{array} { l }
{ (\hat { n } - \hat { p }) \quad \operatorname { m o d } 2 = 0 , } \\
{ \hat { n } = \frac { n + 1 } { 2 } , }
\end{array} \text { or } \left\{\begin{array}{l}
(\hat{n}-\hat{p}) \quad \bmod 2=0 \\
\hat{p}=\frac{n+1}{2}
\end{array}\right.\right.
$$

Proof. By Fact 1, we have $l=n+1$ if and only if

$$
n+1=2 \hat{p}-(\hat{p}-\hat{n}) \quad \bmod 2, \quad \text { if } \hat{p}>\hat{n}
$$

or

$$
n+1=2 \hat{n}+(\hat{n}-\hat{p}) \quad \bmod 2, \quad \text { if } \hat{p} \leq \hat{n}
$$

Since $n+1$ is even, we easily find

$$
l=n+1 \Longleftrightarrow\left\{\begin{array} { l }
{ (\hat { n } - \hat { p }) } \\
{ \hat { n } = \frac { n + 1 } { 2 } , }
\end{array} \quad \operatorname { m o d } 2 = 0 , \quad \text { or } \left\{\begin{array}{l}
(\hat{p}-\hat{n}) \\
\hat{p}=\frac{n+1}{2}
\end{array} \quad \bmod 2=0\right.\right.
$$

Lemma 4 [10]. Let a and be two vertices of $Q_{1}(n)$ with $z_{i}=1$ for every even integer i in $[0, n-1]$. Then $D_{\xi(a, b)}(a, b)$ equals the shortest path length from a to b.

For $a=a_{n-1} \cdots a_{1} a_{0}$ and $b=b_{n-1} \cdots b_{1} b_{0}$ in $Q_{1}(n)$, if $z_{n-1}=1$ and $z_{i}=0$ for some even integer i, then each vertex $x=x_{n-1} \cdots x_{1} x_{0}$ can be relabeled by the mapping defied as follows:

1. If n is odd, then choose an even integer i with $z_{i}=0$ and define

$$
\alpha_{i}: x \rightarrow x_{i} x_{n-2} x_{n-3} \cdots x_{i+1} x_{n-1} x_{i-1} \cdots x_{0}
$$

2. If n is even, then arbitrarily choose an i with $z_{i}=0$ and define

$$
\alpha_{i} \rightarrow \begin{cases}x_{i} x_{n-2} x_{n-3} \cdots x_{i+1} x_{n-1} x_{i-1} \cdots x_{0}, & \text { if } \mathrm{i} \text { is odd } \\ \bar{x}_{i} x_{n-1} x_{n-2} \cdots x_{i+1} x_{0} x_{i-1} \cdots x_{1}, & \text { if } \mathrm{i} \text { is even. }\end{cases}
$$

The following result is due to Jwo and Tuan [10], which is also easy to deduce.
Lemma 5 [10]. Let a and be two vertices of $Q_{1}(n)$ with $z_{n-1}=1$ and $z_{i}=0$ for some even integer i. The relabeling mapping α_{i} described above is an automorphism of $Q_{1}(n)$.

3. The Container Length and Wide-diameter of $Q_{1}(n)$

In this section, we shall first prove the following theorem:
Theorem 1. Let a and b be two vertices of $Q_{1}(n)$. Then $D_{\xi(a, b)}(a, b) \leq n+2$.
Proof. We proceed by induction on n. When $n=2$, it is trivial. Assume that Theorem 1 is true for $n \leq k-1$ and $k \geq 3$.

Let $n=k$. If $z_{i}=1$ for every even integer i with $0 \leq i \leq k-1$, Lemma 4 and Fact 3 guarantee that Theorem 1 is true. Without loss of generality, we may assume that there exists an even integer i such that $z_{i}=0$. By Lemma 5, we can assume that $z_{k-1}=0$, i.e., a and b are in the same subcube $Q_{1}(k-1)$. Let $Q_{1}^{1}(k-1)$ represent the subcube containing a and b, and $Q_{1}^{2}(k-1)$ respresent the other subcube. Given an n-bit binary number $v=v_{n-1} \cdots v_{1} v_{0}$, let v^{\prime} denote the n-bit binary number $\bar{v}_{n-1} v_{n-2} \cdots v_{0}$ and $v^{\prime \prime}$ denote the $(n-1)$-bit binary number $v_{n-2} v_{n-3} \cdots v_{0}$. Clearly, $a^{\prime \prime}$ and $b^{\prime \prime}$ are two vertices in a $Q_{1}(k-1)$. By Fact 4, $\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)=\min \left(\right.$ out $\left.\left(a^{\prime \prime}\right), \operatorname{in}\left(b^{\prime \prime}\right)\right)$ and $\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)=\min \left(\right.$ out $\left.\left(b^{\prime \prime}\right), \operatorname{in}\left(a^{\prime \prime}\right)\right)$.

Suppose that $a_{k-1}=b_{k-1}=0$ (resp. 1). Let $P_{1}, P_{2}, \cdots, P_{r}$ be a collection of the maximum number of vertex-disjoint paths from a to b in $Q_{1}^{1}(k-1)$, where $r=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)$ (resp. $r=\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)$). Obviously, we can regard $P_{1}, P_{2}, \cdots, P_{r}$ as a maximum amount of vertex-disjoint paths from $a^{\prime \prime}$ to $b^{\prime \prime}$ (resp. from $b^{\prime \prime}$ to $a^{\prime \prime}$) in $Q_{1}(k-1)$. By induction hypothesis, we can assume that each of the r paths has length at most $k+1$.

Case 1. k is odd.
Subcase 1.1. $\eta(a)$ is odd or $\eta(b)$ is even.

FIG. 1. k is odd, $\eta(a)$ is even, and $\eta(b)$ is odd, or k is even, $\eta(a)$ is odd, and $\eta(b)$ is even: the $r+1$ vertex-disjoint paths from a to b in $Q_{1}(k)$.

In this situation, we have $\min (\operatorname{out}(a), \operatorname{in}(b))=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)$ (resp. $\min (\operatorname{out}(a)$, $\operatorname{in}(b))=\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)$). By Fact $3, \xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)$ (resp. $\xi(a, b)=\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)$). Thus, $P_{1}, P_{2}, \cdots, P_{r}$ is also a collectoin of the maximum number of vertex-disjoint paths from a to b in $Q_{1}(k)$, where $r=\xi(a, b)$. So, $D_{\xi(a, b)}(a, b) \leq k+1$.

Subcase 1.2. $\eta(a)$ is even and $\eta(b)$ is odd.
We have $\min (\operatorname{out}(a), \operatorname{in}(b))=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$ (resp. $\quad \min (\operatorname{out}(a), \operatorname{in}(b))=$ $\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)+1$). By Fact $3, \xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$ (resp. $\xi(a, b)=\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)+1$). See Figure 1. Since a_{k-1} has positive polarity and b_{k-1} has negative polarity, there exist an edge e_{1} from a to a^{\prime} and an edge e_{2} from b^{\prime} to b. Let P^{\prime} be a shortest path from a^{\prime} to b^{\prime} in $Q_{1}^{2}(k-1)$. It is easy to see that there exists a new path $P=e_{1}+P^{\prime}+e_{2}$, which certainly is vertex-disjoint with all the paths $P_{1}, P_{2}, \cdots, P_{r}$ from a to b in $Q_{1}^{1}(k-1)$. Since P^{\prime} is a shortest path in $Q_{1}^{2}(k-1)$, the length of P^{\prime} is no more than k by Fact 3 , and the length of P is no more than $k+2$. So, the length of the maximum fault-tolerant (a, b)-container $P_{1}, P_{2}, \cdots, P_{r}, P$ is no more than $k+2$.

Case 2. k is even.

Subcase 2.1. $\eta(a)$ is odd and $\eta(b)$ is even.
We have $\min (\operatorname{out}(a), \operatorname{in}(b))=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$ (resp. $\quad \min ($ out $(a), \operatorname{in}(b))=$ $\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)+1$). By Fact $3, \xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$ (resp. $\left.\xi(a, b)=\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)+1\right)$). See Fig. 1. Proceed similarly to that in Subcase 1.2 and obtain that $P_{1}, P_{2}, \cdots, P_{r}, P$ are a maximum fault-tolerant (a, b)-container. We calculate the length of P. When $a_{n-1}=0$, the length of P^{\prime} is equal to the length of the shortest path from $b^{\prime \prime}$ to $a^{\prime \prime}$ in $Q_{1}(k-1)$. Obviously, this is at most $k+1$ by Fact 3 . Since $\eta\left(b^{\prime \prime}\right)=\eta(b)$ is

FIG. 2. k is even, $\eta(a)$ is odd and $\eta(b)$ is odd: the $r+1$ disjoint-paths from a to b in $Q_{1}(k)$.
even, we know that \hat{n} of $D P\left(b^{\prime \prime}, a^{\prime \prime}\right)$ is less than $k / 2$ and the shortest path from $b^{\prime \prime}$ to $a^{\prime \prime}$ has length at most k by Lemma 2. When $a_{n-1}=1$, the length of P^{\prime} is equal to the length of the shortest path from $a^{\prime \prime}$ to $b^{\prime \prime}$ in $Q_{1}(k-1)$. Obviously, this is also no more than $k+1$ by Fact 3 . Since $\eta\left(a^{\prime \prime}\right)=\eta(a)-1$ is even, we know that \hat{n} of $D P\left(a^{\prime \prime}, b^{\prime \prime}\right)$ is less than $k / 2$ and the shortest path from $b^{\prime \prime}$ to $a^{\prime \prime}$ also has length at most k. In a word, P^{\prime} has length at most k. So, P has length at most $k+2$. By the induction hypothesis, we easily see that the constructed maximum fault-tolerant (a, b)-container $P_{1}, P_{2}, \cdots, P_{r}, P$ has length at most $k+2$.

Subcase 2.2. $\eta(a)$ is odd and $\eta(b)$ is odd.
We similarly have $\xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$ (resp. $\xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$). See Figure 2. Since a_{k-1} has positive polarity, there exists an edge e_{1} from a to a^{\prime}. Althouhg b has $k / 2$ incoming ports available within $Q_{1}^{1}(k-1)$, only $(k / 2)-1$ incoming ports are used by the collection of vertex-disjoint paths $P_{1}, P_{2}, \cdots, P_{r}$, where $r=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)$ (resp. $r=\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)$). Thus, there is an unused incoming port, say port j, of b which results in the edge e_{3} from the vertex $c=b_{k-1} \cdots b_{j+1} \overline{b_{j}} b_{j-1} \cdots b_{0}$ to b. Note that c is not in any of $P_{1}, P_{2}, \cdots, P_{r}$, and $c^{\prime}=\overline{b_{k-1}} \cdots b_{j+1} \overline{b_{j}} b_{j-1} \cdots b_{0}$. Since c and c^{\prime} differ in the $(k-1)$ th bit and the polarity of that bit in c^{\prime} is positive, there is an edge e_{2} from c^{\prime} to c. Let P^{\prime} be a shortest path from a^{\prime} to c^{\prime} in $Q_{1}^{2}(k-1)$. Then, the new path $P=e_{1}+P^{\prime}+e_{2}+e_{3}$ does not intersect any internal vertex in $P_{1}, P_{2}, \cdots, P_{r}$. So, $P_{1}, P_{2}, \cdots, P_{r}$ and P is a maximum fault-tolerant (a, b)-container.

Since $P_{1}, P_{2}, \cdots, P_{r}$ is identical to a maximum amount of vertex-disjoint paths from $a^{\prime \prime}$ (resp. $b^{\prime \prime}$) to $b^{\prime \prime}$ (resp. $a^{\prime \prime}$) in $Q_{1}(k-1)$, and since we assume that each of

FIG. 3. k is even, $\eta(a)$ is even and $\eta(b)$ is even: the $r+1$ vertex-disjoint paths from a to b in $Q_{1}(k)$.
the r paths has length at most $k+1$, it is sufficient to prove that the new path P has length at most $k+2$. When $a_{k-1}=0$, the length of P^{\prime} is equal to that of the shortest path from $c^{\prime \prime}$ to $a^{\prime \prime}$ in $Q_{1}(k-1)$. Since $\eta\left(c^{\prime \prime}\right)$ is even and $\eta\left(a^{\prime \prime}\right)$ is odd, we have $\hat{n} \neq(k / 2)+1$ and $(\hat{p}-\hat{n}) \quad \bmod 2 \neq 0$. By Lemmas 2 and 3 , we have the length of the shortest path from $c^{\prime \prime}$ to $a^{\prime \prime}$ in $Q_{1}(k-1)$ is at most $k-1$. When $a_{k-1}=1$, the length of P^{\prime} is equal to that of the shortest path from $a^{\prime \prime}$ to $c^{\prime \prime}$ in $Q_{1}(k-1)$. Note that $\eta\left(a^{\prime \prime}\right)$ is even and $\eta\left(c^{\prime \prime}\right)$ is odd. Similarly, we obtain that P^{\prime} has length at most $k-1$. So, we know that P always has length at most $k+2$. Thus, $D_{\xi(a, b)}(a, b) \leq k+2$.

Subcase 2.3. $\eta(a)$ is even and $\eta(b)$ is even.
In this situation, $\xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$ (resp. $\xi(a, b)=\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)$). As shown in Figure 3, $P_{1}, P_{2}, \cdots, P_{r}$ and the new path $P=e_{1}+e_{2}+P^{\prime}+e_{3}$ is a maximum fault-tolerant (a, b)-container with width $\xi(a, b)$, where $r=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)$ (resp. $r=$ $\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)$) and P^{\prime} is a shortest path from d^{\prime} to b^{\prime} in $Q_{1}^{2}(k-1)$. Similarly, we can prove that P^{\prime} has length at most $k-1$ and the length of P is no more than $k+2$. Thus, $D_{\xi(a, b)}(a, b) \leq k+2$. The detail is left to readers.

Subcase 2.4. $\eta(a)$ is even and $\eta(b)$ is odd.
In this situation, $\xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)$ (resp. $\xi(a, b)=\xi\left(b^{\prime \prime}, a^{\prime \prime}\right)$). We easily know $D_{\xi(a, b)}(a, b) \leq k+2$. The proof is similar to that of Subcase 1.1.

By induction, we get that $D_{\xi(a, b)}(a, b) \leq n+2$.

The proof of Thereom 1 is completed.
Due to Thereom 1, we know that the wide-diameter of $Q_{1}(n)$ is no more than $n+2$ and, when n is odd, $W D\left(Q_{1}(n)\right)=n+2$ by Lemma 1 . On the other hand, if there exists some even number $k(\geq 4)$ such that $W D\left(Q_{1}(k)\right)=k+1$, then consider two vertices $a=00 \cdots 0$ and $b=0011 \cdots 1$ in $Q_{1}(k)$. Since $\eta(a)$ is even and $\eta(b)$ is even, we know $\xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$, so any (a, b)-container with width $\xi(a, b)$ must have a path, say P, which passes the vertex $b^{\prime}=1011 \cdots 1$, and $\left(b^{\prime}, b\right)$ is the last edge in P. Let P^{\prime} be a shortest path from a to b^{\prime} in $Q_{1}(k)$. By Fact 1, we calculate that the length of P is equal to $k+1$ since $D P\left(a, b^{\prime}\right)=1011 \cdots 1$ and $\hat{p}=(k-2) / 2, \hat{n}=k / 2$. Then P has length at least $k+2$. So the length of any (a, b)-container with width $\xi(a, b)$ is at least $k+2$, a contradiction. Thus, we have the follow thoerem:

Theorem 2. The wide-diameter of $Q_{1}(n)(n \geq 3)$ is equal to $n+2$.
Remark 1. In [10], Jwo and Tuan have shown that the smallest possible length for any maximum fault-tolerant container from a to b is at most $l+4$, where l is the shortest path in $Q_{1}(n)$ from a to b. Now, we show that this upper bound is best. When $n \geq 4$ is even, consider the two vertices $a=00 \cdots 0$ and $b=0011 \cdots 1$ in $Q_{1}(n)(n \geq 4$ is even). Since $D P(a, b)=0011 \cdots 1$ and $\hat{p}=\hat{n}=(n-2) / 2$, we have $l=n-2$ by Fact 1 . As above, we know that the length for any maximum fault-tolerant container from a to b is at least $n+2$. By Theorem 1, we see that the smallest possible length for any maximum fault-tolerant container from a to b is equal to $n+2$, i.e., it equals $l+4$. Thus the upper bound given by Jwo and Tuan in [10] is in a sense best possible.

4. The Container Length and Wide-diameter of $Q_{2}(n)$

By the definition, it is enough to consider for odd n. Let a and b be two vertices in $Q_{2}(n)$. We know $Q_{2}(n)$ is constructed from two $Q_{1}(n-1)$'s in [3], say, $Q_{1}^{1}(n-1)$ and $Q_{1}^{2}(n-1)$. And we assume $a \in Q_{1}^{1}(n)$. Note that if there exists a path $a=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}$ in $Q_{1}^{1}(n-1)$, then there is a corresponding path $a^{\prime}=v_{0}^{\prime} \rightarrow v_{1}^{\prime} \rightarrow \cdots \rightarrow v_{k}^{\prime}$ in $Q_{1}^{2}(n-1)$. Suppose that $P_{1}, P_{2}, \cdots, P_{r}$ are a collection of maximum number of vertex-disjoint paths from a to $a_{n-1} b^{\prime \prime}$ in $Q_{1}^{1}(n-$ $1)$, where $r=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)$, and $P_{1}^{\prime}, P_{2}^{\prime}, \cdots, P_{r}^{\prime}$ are their counterparts in $Q_{1}^{2}(n-1)$. Obviously, $P_{1}, P_{2}, \cdots, P_{r}$ is identical to a maximum fault-torelant ($a^{\prime \prime}, b^{\prime \prime}$)-container in $Q_{1}(n-1)$. By Theorem 1, we assume each of paths $P_{1}, P_{2}, \cdots, P_{r}$ has length at most $n+1$.

Case 1. $\eta(a)$ is odd or $\eta(b)$ is even.

FIG. 4. $\eta(a)$ is odd or $\eta(b)$ is even, and $a_{n-1} \neq b_{n-1}$: the r vertex-disjoint paths from a to b in $Q_{2}(n)$.

Subcase 1.1. $a_{n-1}=b_{n-1}$.
In this situation, we know $\xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)$. Therefore, $P_{1}, P_{2}, \cdots, P_{r}$ is a maximum fault-torelant (a, b)-container in $Q_{2}(n)$, and $D_{\xi(a, b)}(a, b) \leq n+1$.

Subcase 1.2. $a_{n-1} \neq b_{n-1}$
Similarly, $\xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)=r . a$ and b are not in the same subcube. Then a and b^{\prime} are in $Q_{1}^{1}(n-1)$ and b and a^{\prime} are in $Q_{1}^{2}(n-1)$. See Figure 4. Observe that among $P_{1}, P_{2}, \cdots, P_{r}$, (1) at most one path has length less than 3 , and (2) each of the remaining paths has length more than 2 and thus contains at least two internal vertices. For $1 \leq i \leq r$, let u and v be two consecutive vertices in P_{i} and let u^{\prime} and v^{\prime} be their counterparts in P_{i}^{\prime}, respectively. Note that it is easy to check that there always exists u with an outgoing edge to u^{\prime} or v to v^{\prime}. Then we can select a vertex c_{i} in P_{i} with an outgoing edge to c_{i}^{\prime} in $P_{i}^{\prime}, i=1,2, \cdots, r$. Evidently, the $2 r$ vertices $c_{1}, c_{2}, \cdots, c_{r}, c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{r}^{\prime}$, are all distinct. For each i in $[1, r]$, a path from a to b in $Q_{2}(n)$ can be formed by first going through the subpath of P_{i} from a to c_{i}, then through the edge from c_{i} to c_{i}^{\prime}, and, finally, through the subpath of P_{i}^{\prime} from c_{i}^{\prime} to b. These newly formed r paths are vertex-disjoint and each of them has length at most $n+2$ since each of the paths $P_{1}, P_{2}, \cdots, P_{r}$ has length at most $n+1$ by Theorem 1. Then $D_{\xi(a, b)}(a, b) \leq n+2$.

Case 2. $\eta(a)$ is even and $\eta(b)$ is odd.
Subcase 2.1. $a_{n-1}=b_{n-1}$.

FIG. 5. $\eta(a)$ is even, $\eta(b)$ is odd, and $a_{n-1}=b_{n-1}$: the $r+1$ vertex-disjoint paths from a to b in $Q_{2}(n)$.

We know $\xi(a, b)=\xi\left(a^{\prime \prime}, b^{\prime \prime}\right)+1$, and a and b are in the same subcube. See Figure 5, where P^{\prime} is a shortest path from a^{\prime} to b^{\prime} in $Q_{1}^{2}(n)$. Since the $(n-1)$ th port of a has positive polarity and that of b has negative polarity, there exist e_{1} from a to a^{\prime} and e_{2} from b^{\prime} to b. We easily get a new path $P=e_{1}+P^{\prime}+e_{2}$. Due to Fact 3 and the fact that $n-1$ is even, we know that the length of P^{\prime} is at most n. Then P has length at most $n+2$. Now, it is easy to see $D_{\xi(a, b)}(a, b) \leq n+2$.

Subcase 2.2. $a_{n-1} \neq b_{n-1}$.
We have $\xi(a, b)=\xi(a ", b)+1$ by Fact 4 . See Figure 6 , where P_{t} is a shortest path in $\left\{P_{i} \mid i \in[1, r]\right\}$. Since the $(n-1)$ th port of a has positive polarity and that of b has negative polarity, e_{1} is from a to a^{\prime} and e_{2} is from b^{\prime} to b. For each pair P_{i} and $P_{i}^{\prime}, i \neq t$, there exists a vertex c_{i} in P_{i} and c_{i}^{\prime} in P_{i}^{\prime} such that a new path from a to b in $Q_{2}(n)$ is formed by taking the subpath from a to c_{i} in P_{i}, then through the edge from c_{i} to c_{i}^{\prime}, and finally from c_{i}^{\prime} to b in P_{i}^{\prime}. For the pair P_{t} and P_{t}^{\prime}, two new paths are formed: One is $e_{1}+P_{t}^{\prime}$ and the other is $P_{t}+e_{2}$. Since each of the paths $P_{1}, P_{2}, \cdots, P_{r}$ has length at most $n+1$ by Theorem 1 , we easily see that each of the paths in the new container has length at most $n+2$. Thus $D_{\xi(a, b)}(a, b) \leq n+2$.

From the above discussion, we have the following theorem:
Theorem 3. Let a and b be two vertices of $Q_{2}(n)$. Then $D_{\xi(a, b)}(a, b) \leq n+2$.
From Lemma 1, we have:
Theorem 4. The wide-diameter of $Q_{2}(n)$ (n is odd) is equal to $n+2$.

FIG. 6. $\eta(a)$ is even, $\eta(b)$ is odd, and $a_{n-1} \neq b_{n-1}$

Remark 2. For the two vertices $a=00 \cdots 0$ and $b=1001 \cdots 1$ in $Q_{2}(n)$ ($n \geq 3$ is odd), since $D P\left(a, b^{\prime}\right)=00011 \cdots 1$ and $\hat{p}=\hat{n}=(n-3) / 2$, we have $l=n-3$ by Fact 1 , where l is the shortest path length from a to b^{\prime}. As Subcase 2.2 of Theorem 2, we know that for any maximum fault-tolerant container from a to b, there is a path through the edge (a, c), where $c=0010 \cdots 0$. We easily know that the shortest path from c to b in Q_{2} has length $n+1$. So we see that the smallest possible length for any maximum fault-tolerant container from a to b is equal to $n+2$, i.e., it equals $l+5$. Thus the upper bound given by Jwo and Tuan [10] is in a sense best possible.

5. Conclusion

In this paper, we give the wide-diameters of the two unidirectional binary n cubes proposed by Chou and Du [3]. Since the constructed container in this paper is the same as that in [10], Remarks 1 and 2 show that the conjecture in [10] is true.

References

1. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Marmillan Press Ltd, London, 1976.
2. F. Boragonove and E. Cadorin, $H R^{4}$-net: A hierachical random-routing reliable and reconfigurable network for metropolitan area, in Pro. IEEE INFOCOM, March, 1987, pp. 320-326.
3. C. H. Chou and David H. C. Du, Unidirectional hypercubes, in: Proc. Supercomputing '90, 1990, pp. 254-263.
4. K. Day and A. Tripathi, Unidirectional star graphs, Inform. Process. Lett. 45 (1993), 123-129.
5. E. Flandrin and H. Li, Mengerian properties, Hamiltonicity and claw-free graphs, Networks 24 (1994), 660-678.
6. D. F. Hsu, On container width and length in graphs, groups, and networks, IEICE Trans. Fundam. E(77A) (1994), 668-680.
7. D. F. Hsu and Y. D. Lyuu, A graph-theoratical study of transmission delay and fault-tolerance, in: Proc. of 4th ISMM International Conference on Parallel and Distributed Computing and Systems 1991, pp. 20-24.
8. D. F. Hsu and T. Luszak, Note on the k-diameter of k-regular k-connected graphs, Discrete Math. 132 (1994), 291-296.
9. Y. Ishigami, The wide-diameter of the n-dimensionml toroidal mesh, Networks 27 (1996), 257-266.
10. J. S. Jwo and T. C. Tuan, On container length and connectivity in unidirectional hypercubes, Networks 32 (1998), 307-317.
11. Q. Li, D. Sotteau and J. M. Xu, 2-diameter of de Bruijn graphs, Networks 28 (1996), 7-14.
12. S. Lakshmivarahan and S. K. Dhall, Analysis and Design of Parallel Algorithms, McGraw-Hill, New York, 1990.
13. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, Son Mates, CA, 1992.
14. S. C. Liaw and G. J. Chang, Wide diameters of Butterfly networks, Taiwanese J. Math. 3 (1999), 83-88.
15. N. Maxemchuk, The Manhattan street network, in: Proc. GLOBECOM'85, Del., 1985, pp. 255-261.
16. N. Maxemchuk, Routing in the Manhattan street network, IEEE Trans. Commum. 35 (1987), 503-512.

Lu Changhong and Zhang Kemin
Department of Mathematics, Nanjing University,
Nanjing, 210093, China.

[^0]: Received October 20, 1999; revised December 10, 1999.
 Communicated by F. K. Hwang.
 2001 Mathematics Subject Classification: 05C40, 68M10, 68R10.
 Key words and phrases: Hypercube, wide-diameter, container, connectivity.
 *The project is supported by NSFC and NSFJS.

