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ON CONTAINER LENGTH AND WIDE-DIAMETER IN
UNIDIRECTIONAL HYPERCUBES

Lu Changhong and Zhang Kemin

Abstract. In this paper, two unidirectional binary n-cubes, namely, Q1(n)
and Q2(n), proposed as high-speed networking schemes by Chou and Du, are
studied. We show that the smallest possible length for any maximum fault-
tolerant container from a to b is at most n+ 2 whether a and b are in Q1(n) or
in Q2(n). Furthermore,we prove that the wide-diameters of Q1 (n) and Q2(n)
are equal to n + 2. At last, we show that a conjecture proposed by Jwo and
Tuan is true.

1. INTRODUCTION

The hypercube is one of the best candidates for high-speed computing [12, 13],
and using optical fibers as point-to-point transmission links, Metropolitan Area Net-
works (M AN s) with hypercube topology can support high-speed, high-bandwith,
short-delay, and parallel communications [2, 3, 6, 15, 16]. As pointed in [10]
by Jwo and Tuan, due to the lack of a bidirectional electrical/optical converter
and the high cost of a full-duplex tansmission, a unidirectional topology is desir-
able for MANs [3, 4]. In particular, Chou and Du [3] proposed two different
schemes, namely, Q1(n) and Q2(n), to define the orientations of the edges in
the binary n-cube as follows: 7(z) is the number of 1’s in the binary represen-
tation of x. Consider the two vertices a = an—1ap—2 - 0i+10;a;—1 - - -ajag and
b=an 102 0j110;0;—1 - a10ao.

Q1(n): Let P(a,i) be the polarity of the ith communication port of a which

1s defined as A
P(a,i) = (=1)7@+,
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If P(a,i) is positive, then there is a directed edge from a to b; otherwise, there is
a directed edge from b to a. The unidirectional hypercube defined by the above
polarity function is called a positive Q1(n). A negative Q1(n) is defined in the
same way but with a different polarity function:

P(a,i) _ (_1)n(a)+i+1'

Clearly, Q1 (n) and its negative counterpart are isomorphic. Unless otherwise stated,
we shall consider the positive Q1(n) only.

Observe that 1 (n) can be constructed by one Q1 (n—1), one negative Q1 (n—1),
and 27! edges between them.

Q2(n): Like Q1(n), the orientations of the edges in QQ2(n) are defined by the
polarities of the corresponding communication ports. If n is odd, a,—; = 1 and
0 < i < n — 2, then the corresponding polarity function is

P(a,i) = (—1)"@)~1+,

otherwise, the polarity P(a,7) is the same as that for 1(n). In fact, when n is
odd, Q2(n) can be constructed by two Q1(n — 1)’s and 2"~! edges between them.
Since Q2(n) is identical to (Q1(n) when n is even, we shall only consider Q2(n)
when n is odd.

General results and more details on Q)1(n) and Q2(n) can be found in [3, 10].

Any set of vertex-disjoint paths from vertex x to vertex y, denoted by C(z,y),
is called an (z, y)-container [6]. The width of C(x,y), written as w(C(z, y)), is its
cardinality. The length of C(x,y), written as [(C(x,y)), is the longest path length
in C(x,y). Define D, (x,y) to be the minimum possible length of any (z,y)-
container with width w. Let £(x, y) denote the maximum number of vertex-disjoint
paths from z to y. The wide-diameter of a graph G [5, 7], denoted by W D(G),
is the maximum of D¢, (z,y) for all pairs of vertices x and y. Obviously, the
wide-diameter of a graph is no less than its diameter. The wide-diameter, proposed
by Hsu [7], and Flandrin and Li [5] independently, is a good index to characterize
the reliability of transmission delay in a network, and has received much attention
recently [5-9, 11, 14]. We refer to [1] for notations and terminology not defined
here.

Recently, Jwo and Tuan [10] have shown that £(x, y) = min(out(z), in(y)) for
all pairs of vertices = and y in Q1(n) or Q2(n), i.e., both Q1(n) and Q2(n) are
maximum fault-tolerant. Furthermore, they have also shown that D¢, (7, y) is
at most (1) [ + 4, where [ is the shortest path length in Q1(n) from z to y, and
(2) I + 5, where [ is the shortest path length in Q2(n) (n is odd) (i) from z to y
when z and y have the same leading-bit values and (ii) from x to 3/(y’ and y only
differ at leading-bit position) when otherwise. They also suggest that the constructed
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container in [9] has the smallest possible length among all maximum fault-tolerant
containers from x to y.

In this paper, we shall prove that De(, (2, y) is no more than n + 2 for
any pairs of vertices = and y in Q1(n) or Q2(n). Furthermore, we prove that
the wide-diameters of @1(n) and QQ2(n) are equal to n + 2 and the conjecture in
[9] is true. Since the diameters of Q1(n) and Q2(n) are n + 1 when n is even
and the diameters of (Q1(n) and Q2(n) re n + 2 when n is odd, we have that
[WD(Qi(n))—Diam(Q;(n)| < 1,i=1,2.

2. PRELIMINARIES

Suppose that a = a,,—16,,—2---ag and b = b,_1b,,_o - - - by are two vertices in
Q1(n) (resp. Q2(n)). Define DP;(a,b) = a; ® b;, where 0 < i < n — 1 and
@ is Boolean addition. DP(a,b) is defined as the n-bit sequence: DP,_1(a,b)
-+-DPi(a,b)DPy(a,b). The polarity of DP(a,b) is the same as that of a. p
and 7 denote the number of 1’s in DP(a,b) with positive and negative polarity,
respectively. For instance, if a = 1111 and b = 0001, then DP(a,b) = 1110 and
p = 1,1 = 2. For notational simplicity, we will use z; to represent D P;(a,b).

Fact 1 [3]. Given two vertices a and b in Q1(n) (resp. Qa(n)), the shortest
path length from a to b can be computed as follows:

20— (p—n) mod 2, if p
2n+ (R —p) mod 2, if

Fact 2 [3]. Given two vertices a and b in Q1(n), let | (resp. l') be the shortest
path length from a (resp. b) to b (resp. a). Then,

I-1I'"=0, if (p—n) mod 2=0,
l—-1,=2, if (p—n) mod 2=1.

Fact 3 [3]. The diameter of Q;(n) is (@) n+ 1, if n is even; (b)) n+ 2, if n is
odd,i=1,2.

Fact 4 [9]. Let a and b be two vertices of Q1(n) (resp. Q2(n)). Then £(a,b) =
min(out(a),in(b)). In other words, both QQ1(n) and Q2(n) are maximum fault-
tolerant.

Lemma 1. WD(Q;(n)) > n+1, if n is even; WD(Q;(n) > n + 2, otherwise,
i=1,2.

Proof. By Fact 3 and the definition of wide-diameter, it is obvious. ]
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Lemma 2. Let a and b be two vertices of Q1(n) where n is odd, and | be the
shortest path length from a to b. Then, | = n + 2 if and only if

{( ) mod 2=1,

Proof. By Fact 1, we have | = n + 2 if and only if
n+2=2p—(p—n) mod 2, ifp>n,
or
n+2=2n+(n—p) mod 2, ifp<n
2)

Since n + 2 is odd and p < (n + 2)/2, we easily find

(h—p) mod 2 =1,

Lemma 3. Let a and b be two vertices of Q1(n) where n is odd, and | be the
shortest path length from a to b. Then | = n + 1 if and only if

{( ) mod 2 = 0, {(ﬁ—ﬁ) mod 2 = 0,
or n+1
=

3>

Proof. By Fact 1, we have | = n + 1 if and only if
n+1=2p—(p—n) mod 2, ifp>n,

or
n+1=2n+(—p) mod 2, ifp<n.

Since n + 1 is even, we easily find

n—p) mod 2=0, (p—n) mod 2=0,
— n+l or

>

l:n+1¢${

Lemma 4 [10]. Let a and b be two vertices of Q1(n) with z; = 1 for every
even integer i in [0,n — 1]. Then D¢ (qp)(a, b) equals the shortest path length from
atob.

For a = Ap—1 - A100 and b = bn—l s -blbo in Ql(n), if Zn—1 = 1 and Zi = 0
for some even integer ¢, then each vertex x = x,,_1 - - - x12¢ can be relabeled by the
mapping defied as follows:
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1. If n is odd, then choose an even integer ¢ with z; = 0 and define
QG 1 X = TiTp—2Tp—3  ** Tip1Tnp—125—1 """ X0-

2. If n is even, then arbitrarily choose an ¢ with z; = 0 and define

s ] TiTn-2Tn-3Tit1Tp1Ti1 " To, if i is odd,
! Ty 1Tp_9** Tis1TOTi_1 -+ T1, if i is even.

The following result is due to Jwo and Tuan [10], which is also easy to deduce.

Lemma 5 [10]. Let a and b be two vertices of Q1(n) with z,—1 = 1 and
z; = 0 for some even integer 1. The relabeling mapping «; described above is an
automorphism of Q1(n).

3. THE CONTAINER LENGTH AND WIDE-DIAMETER OF Ql(n)
In this section, we shall first prove the following theorem:
Theorem 1. Let a and b be two vertices of Q1(n). Then Dg(qp)(a,b) < n+2.

Proof. We proceed by induction on n. When n = 2, it is trivial. Assume that
Theorem 1 is true for n < k —1 and k£ > 3.

Let n = k. If z; = 1 for every even integer ¢ with 0 < ¢ < k — 1, Lemma 4
and Fact 3 guarantee that Theorem 1 is true. Without loss of generality, we may
assume that there exists an even integer ¢ such that z; = 0. By Lemma 5, we
can assume that z;_1; = 0, i.e., @ and b are in the same subcube Q;(k — 1). Let
Q1 (k — 1) represent the subcube containing a and b, and Q?(k — 1) respresent the
other subcube. Given an n-bit binary number v = v,,_1 - - - v1vg, let v’ denote the
n-bit binary number U,,_jv,,_2 - - - vy and v denote the (n — 1)-bit binary number
Un—2Un—3---vg. Clearly, a” and b” are two vertices in a Q1(k — 1). By Fact 4,
&(a”,b") = min(out(a”), in(b")) and £(b", a”) = min(out(d”), in(a”)).

Suppose that ap_1 = b1 = 0 (resp. 1). Let P;, P»,---, P, be a collection
of the maximum number of vertex-disjoint paths from a to b in Q1(k — 1), where
r=£&(>a"”,b") (resp. r = £(b",a”)). Obviously, we can regard P;, Py, -, P, as a
maximum amount of vertex-disjoint paths from a” to " (resp. from b” to a”) in
Q1(k — 1). By induction hypothesis, we can assume that each of the r paths has
length at most k& + 1.

Case 1. £k is odd.

Subcase 1.1. n(a) is odd or n(b) is even.
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FIG. 1. k is odd, n(a) is even, and 7n(b) is odd, or k is even, n(a) is odd, and 7(b) is
even: the r + 1 vertex-disjoint paths from a to b in Q1 (k).

In this situation, we have min(out(a), in(b)) = &(a”,d”) (resp. min(out(a),
in(b)) = £(b",a")). By Fact 3, £(a,b) = &£(a”,b") (resp. &(a,b) = £(b",a")).
Thus, Pi, P, - - -, P, is also a collectoin of the maximum number of vertex-disjoint
paths from a to b in Q1(k), where r = £(a, b). So, De¢(qp)(a,b) < k + 1.

Subcase 1.2. n(a) is even and n(b) is odd.

We have min (out(a), in(b)) = £(a”,0”) + 1 (resp. min (out(a), in(b)) =
£(b",a")+1). By Fact 3, £(a,b) = £(a”,b")+1 (resp. £(a,b) = £(b",a")+1). See
Figure 1. Since ay_; has positive polarity and b;_; has negative polarity, there exist
an edge e; from a to o’ and an edge e from b’ to b. Let P’ be a shortest path from
a’ to b in Q?(k—1). It is easy to see that there exists a new path P = e; + P’ +ea,
which certainly is vertex-disjoint with all the paths Py, Py, ---, P, from a to b in
Qi(k —1). Since P’ is a shortest path in Q%(k — 1), the length of P’ is no more
than k by Fact 3, and the length of P is no more than k + 2. So, the length of the
maximum fault-tolerant (a, b)-container Py, Py, - - -, P, P is no more than k + 2.

Case 2. k is even.

Subcase 2.1. n(a) is odd and n(b) is even.

We have min(out(a), in(b)) = £(a”,0”) + 1 (resp. min(out(a), in(b)) =
£V, a")+1). ByFact 3, £(a,b) = £(a”,b")+1 (resp. £(a,b) = £(b",a")+1)). See
Fig. 1. Proceed similarly to that in Subcase 1.2 and obtain that Py, Py, ---, P, P
are a maximum fault-tolerant (a, b)-container. We calculate the length of P. When
an—1 = 0, the length of P’ is equal to the length of the shortest path from 4" to a”
in Q1 (k —1). Obviously, this is at most £+ 1 by Fact 3. Since n(b") = n(b) is
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FIG. 2. k is even, n(a) is odd and 7(b) is odd: the » + 1 disjoint-paths from a to b in
Q1(k).

even, we know that 72 of DP(b”,a") is less than k/2 and the shortest path from b”
to @’ has length at most k¥ by Lemma 2. When a,,_; = 1, the length of P’ is equal
to the length of the shortest path from a” to b” in Q1 (k—1). Obviously, this is also
no more than k + 1 by Fact 3. Since n(a”) = n(a) — 1 is even, we know that 7 of
DP(a”, V") is less than k/2 and the shortest path from b” to a” also has length at
most k. In a word, P’ has length at most k£. So, P has length at most k£ + 2. By
the induction hypothesis, we easily see that the constructed maximum fault-tolerant
(a,b)-container P;, Py, - -, P., P has length at most k + 2.

Subcase 2.2. n(a) is odd and n(b) is odd.

We similarly have £(a,b) = £(a”,b") + 1 (resp. &(a,b) = &(a”,b") + 1). See
Figure 2. Since aj_1 has positive polarity, there exists an edge e; from a to d'.
Althouhg b has k/2 incoming ports available within Q1 (k—1), only (k/2)—1 incom-
ing ports are used by the collection of vertex-disjoint paths Py, P, - - - , P, where
r=¢&(d",b") (resp. r = £(b”,a”)). Thus, there is an unused incoming port, say port
7, of b which results in the edge e3 from the vertex ¢ = bg_1 - - -bj+1b_jbj_1 --+bgy to
b. Note that ¢ is not in any of P, P5,---, P,, and ¢/ = bj_; - - -bj+1b_jbj_1 - bp.
Since ¢ and ¢ differ in the (kK — 1)th bit and the polarity of that bit in ¢’ is pos-
itive, there is an edge ey from ¢’ to c¢. Let P’ be a shortest path from a’ to ¢’ in
Q?(k—1). Then, the new path P = e; + P’ + €5+ e3 does not intersect any internal

vertex in P, Py,---, P.. So, P;,P,,---,P. and P is a maximum fault-tolerant
(a, b)-container.
Since P, P, - - -, P, is identical to a maximum amount of vertex-disjoint paths

from a” (resp. b”) to b (resp. a”) in Q1(k — 1), and since we assume that each of
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FIG. 3. K is even, n(a) is even and 7(b) is even: the r + 1 vertex-disjoint paths from a to

b in Ql(ki)

the r paths has length at most k£ + 1, it is sufficient to prove that the new path P
has length at most k& + 2. When ax_1 = 0, the length of P’ is equal to that of the
shortest path from ¢” to a” in Q1(k — 1). Since n(c”) is even and n(a”) is odd,
we have 1 # (k/2) + 1 and (p —n) mod 2 # 0. By Lemmas 2 and 3, we have
the length of the shortest path from ¢” to a” in Q1(k — 1) is at most £ — 1. When
ai_1 = 1, the length of P’ is equal to that of the shortest path from a” to ¢’ in
Q1(k — 1). Note that n(a”) is even and n(c”) is odd. Similarly, we obtain that P’
has length at most £ — 1. So, we know that P always has length at most k + 2.
Thus, De(qpy(a,b) < k + 2.

Subcase 2.3. n(a) is even and 1n(b) is even.

In this situation, &(a,b) = £(a”,b") + 1 (resp. &£(a,b) = £(b",a")). As shown
in Figure 3, Py, P,, - - -, P, and the new path P = e1 +e5 + P’ + e3 is a maximum
fault-tolerant (a, b)-container with width £(a, b), where r = £(a”, ") (resp. r =
£(b",a")) and P’ is a shortest path from d’ to b’ in Q?(k — 1). Similarly, we can
prove that P’ has length at most £ — 1 and the length of P is no more than &k + 2.
Thus, De(qp)(a,b) < k + 2. The detail is left to readers.

Subcase 2.4. n(a) is even and n(b) is odd.
In this situation, £(a, b) = £{(a”, ") (resp. {(a,b) = £(b”, a")). We easily know

De(apy(a,b) < k + 2. The proof is similar to that of Subcase 1.1.
By induction, we get that D¢, 4)(a,b) < n + 2.
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The proof of Thereom 1 is completed. ]

Due to Thereom 1, we know that the wide-diameter of )1(n) is no more than
n + 2 and, when n is odd, WD(Q1(n)) = n + 2 by Lemma 1. On the other hand,
if there exists some even number k (> 4) such that WD(Q1(k)) = k + 1, then
consider two vertices a = 00---0 and b = 0011 ---1 in Q; (k). Since n(a) is even
and n(b) is even, we know &(a,b) = £(a”,b") 4+ 1, so any (a, b)-container with
width &(a, b) must have a path, say P, which passes the vertex ' = 1011 - - -1, and
(t/,b) is the last edge in P. Let P’ be a shortest path from a to &’ in Q1 (k). By Fact
1, we calculate that the length of P is equal to k& + 1 since DP(a,b’) = 1011 ---1
and p = (k—2)/2, n = k/2. Then P has length at least k + 2. So the length of
any (a, b)-container with width &(a, b) is at least k + 2, a contradiction. Thus, we
have the follow thoerem:

Theorem 2. The wide-diameter of Q1(n) (n > 3) is equal to n + 2.

Remark 1. In [10], Jwo and Tuan have shown that the smallest possible
length for any maximum fault-tolerant container from a to b is at most [ + 4, where
[ is the shortest path in Q1(n) from a to b. Now, we show that this upper bound is
best. When n > 4 is even, consider the two verticesa = 00---0and b = 0011 ---1
in @1(n) (n > 4 is even). Since DP(a,b) = 0011---1and p =n = (n —2)/2,
we have [ = n —2 by Fact 1. As above, we know that the length for any maximum
fault-tolerant container from a to b is at least n + 2. By Theorem 1, we see that
the smallest possible length for any maximum fault-tolerant container from a to b is
equal to n + 2, i.e., it equals [ 4+ 4. Thus the upper bound given by Jwo and Tuan
in [10] is in a sense best possible.

4. THE CONTAINER LENGTH AND WIDE-DIAMETER OF Qg(n)

By the definition, it is enough to consider for odd n. Let ¢ and b be two
vertices in Q2(n). We know QQ2(n) is constructed from two Q1(n — 1)’s in [3],
say, Q1(n — 1) and Q?(n — 1). And we assume a € Q}(n). Note that if there
exists a path @ = vg — vy — -+ — vy in Q1 (n — 1), then there is a corresponding
path ’ = v — v} — -+ — v}, in Q3(n — 1). Suppose that Py, P,,---, P, are a
collection of maximum number of vertex-disjoint paths from a to a,,_1b” in Q1 (n —
1), where r = £(a”,b"), and P}, P}, -+, P! are their counterparts in Q?(n — 1).
Obviously, Py, Py, - - -, P, is identical to a maximum fault-torelant (a”, b”)-container
in Q1(n —1). By Theorem 1, we assume each of paths P;, Ps, - - -, P, has length
at most n + 1.

Case 1. n(a) is odd or n(b) is even.
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FIG. 4. n(a) is odd or 7(b) is even, and a,,—1 # b,_1: the r vertex-disjoint paths from a
to b in Q2(n).

Subcase 1.1. ap,—1 = bp—1.

In this situation, we know &(a,b) = £(a”,b"). Therefore, P, Po, -, P, is a
maximum fault-torelant (a, b)-container in Q2(n), and D¢(qp)(a,b) < n + 1.

Subcase 1.2. ap_1 # bp_1

Similarly, £(a,b) = £(a”,b") = r. a and b are not in the same subcube. Then a
and b’ are in Q}(n — 1) and b and @’ are in Q?(n — 1). See Figure 4. Observe that
among Pi, P, ---, Py, (1) at most one path has length less than 3, and (2) each of
the remaining paths has length more than 2 and thus contains at least two internal
vertices. For 1 < ¢ < r, let u and v be two consecutive vertices in P; and let v/
and v be their counterparts in P, respectively. Note that it is easy to check that
there always exists u with an outgoing edge to u’ or v to v'. Then we can select
a vertex ¢; in P; with an outgoing edge to ¢} in P!, i = 1,2,---,r. Evidently, the
2r vertices ¢y, ¢2, - -+ , ¢y, ¢, Ch, -+ -, L, are all distinct. For each ¢ in [1, 7], a path
from a to b in Q2(n) can be formed by first going through the subpath of P; from
a to ¢;, then through the edge from ¢; to ¢}, and, finally, through the subpath of
P! from ¢ to b. These newly formed r paths are vertex-disjoint and each of them
has length at most n + 2 since each of the paths P;, P, - - - , P, has length at most
n + 1 by Theorem 1. Then D¢, p)(a,b) < n+ 2.

Case 2. n(a) is even and n(b) is odd.

Subcase 2.1. a,—1 = bp—1.
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FIG. 5. n(a) is even, n(b) is odd, and a,,—1 = b,_1: the r + 1 vertex-disjoint paths from
a to b in Q2(n).

We know &(a,b) = &(a”,b") 4+ 1, and a and b are in the same subcube. See
Figure 5, where P’ is a shortest path from a’ to b’ in Q3(n). Since the (n — 1)th
port of a has positive polarity and that of b has negative polarity, there exist e; from
a to a’ and ey from b’ to b. We easily get a new path P = e; + P’ + e5. Due to
Fact 3 and the fact that n — 1 is even, we know that the length of P’ is at most n.
Then P has length at most n + 2. Now, it is easy to see Dg(avb)(a, b) <n+2.

Subcase 2.2. ap_1 # bp_1.

We have £(a,b) = (a’,b") + 1 by Fact 4. See Figure 6, where P; is a shortest
path in {P;|i € [1,r]}. Since the (n — 1)th port of a has positive polarity and that
of b has negative polarity, e; is from a to a’ and e is from b’ to b. For each pair P;
and P/, i # t, there exists a vertex ¢; in P; and ¢} in P/ such that a new path from
a to b in Q2(n) is formed by taking the subpath from « to ¢; in P;, then through the
edge from ¢; to ¢}, and finally from ¢ to b in P/. For the pair P, and P/, two new
paths are formed: One is e; + P/ and the other is P; + e5. Since each of the paths
P, Py, .-+, P, has length at most n + 1 by Theorem 1, we easily see that each of
the paths in the new container has length at most 7 +2. Thus D¢, p)(a,b) < n+2.

From the above discussion, we have the following theorem:

Theorem 3. Let a and b be two vertices of Q2(n). Then D¢, p(a,b) < n+2.
From Lemma 1, we have:

Theorem 4. The wide-diameter of Q2(n) (n is odd) is equal to n + 2.
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Remark 2. For the two vertices a = 00---0 and b = 1001---1 in Q2(n)
(n > 3 is odd), since DP(a,b’) = 00011---1 and p =n = (n — 3)/2, we have
[ = n—3 by Fact 1, where [ is the shortest path length from a to &’. As Subcase 2.2
of Theorem 2, we know that for any maximum fault-tolerant container from a to b,
there is a path through the edge (a, ¢), where ¢ = 0010 - - -0. We easily know that
the shortest path from ¢ to b in Q2 has length n + 1. So we see that the smallest
possible length for any maximum fault-tolerant container from a to b is equal to
n+ 2, i.e., it equals [ + 5. Thus the upper bound given by Jwo and Tuan [10] is in
a sense best possible.

5. CONCLUSION

In this paper, we give the wide-diameters of the two unidirectional binary n-
cubes proposed by Chou and Du [3]. Since the constructed container in this paper
is the same as that in [10], Remarks 1 and 2 show that the conjecture in [10] is
true.
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