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KINETIC CONDITION AND THE GIBBS FUNCTION

Fumioki Asakura

Dedicated to Professor Fon-Che Liu on his sixtieth birthday

Abstract. We study the Cauchy problem for a 3 × 3-system of conser-
vation laws describing the phase transition: ut − vx = 0, vt − σ(u)x = 0,
(e + 1

2v2)t − (σv)x = 0. A phase boundary is said to be admissible if it
satisfies the Abeyaratne-Knowles kinetic condition. We give a physical
account of the kinetic condition by means of the Gibbsfunction. We
also obtain a useful description of the entropy function using the Gibbs
function.

1. Introduction

We study the model equations of thermo-elasticity in Lagrangian form:

ut − vx = 0, vt − σx = 0,(1)

(
e +

1
2
v2

)

t
− (σv)x = 0,(2)

where u: strain, σ: stress, v: velocity, e: internal energy which is a function
of u and the specific entropy η. These quantities satisfy the fundamental
thermodynamic identity:

de = Tdη + σdu,(3)

where T is the temperature. If η is a constant, the system of equations is
reduced to the simpler system (1), which is called the isentropic equations.

0Received December 9, 1999.
Communicated by P. Y. Wu.
2000 Mathematics Subject Classification: 35L65, 35L67, 35L45.
Key words and phrases: Hyperbolic system, conservation law, phase boundary, entropy.

105



106 Fumioki Asakura

When T is a constant, it follows from the basic identity (3) that the energy
function is linear in η and σ depends only on u:

e = Tη + ψ(u), ψ(u) =
∫

σ(u) du.(4)

Hence, the two equations (1) are equivalent to the isentropic equations involv-
ing only u and v; the third equation (2) is in the form:

Tηt = −
(

ψ(u) +
1
2
v2

)

t
+ (σv)x(5)

whose right-hand side depends only on u and v.
We are mainly concerned with these isothermal elastic materials. If σ′ > 0,

then the system of equations constitutes a hyperbolic system. Chen-Dafermos
[7] showed that a global-in-time solution exists for given initial data, provided
σ′′ > 0 for x > x0 and σ′′ < 0 for x < x0. They used the method of
compensated compactness, hence the entropy function η obtained is a measure.
Bereux-Bonnetier-LeFloch [6] gave certain conditions for η to be a function.
Here, we study the material which undergoes a crystal-elastic phase transition.
We assume that the stress σ = σ(u) is a C2-function and there exist α, β (α <
β) such that

σ′(u) =





> 0 for u < α,
< 0 for α < u < β,
> 0 for u > β.

(6)

Abeyaratne-Knowles [1, 2, 3] studied models consisting of piecewise linear stress
functions. We note that the system of equations (1), (2) is hyperbolic for
u < α, u > β and elliptic for α < u < β; the region Ωα = {(u, v) : u < α}
is called the α-phase and Ωβ = {(u, v) : u > β} the β-phase. A discontinu-
ous solution connecting states in Ωα and Ωβ is called a phase boundary (see
Menikoff-Plohr [17] for general accounts). Since the discontinuous solution
is not unique for given initial data, we have to impose a physically relevant
condition for the discontinuity. For example, we have a lot of stationary dis-
continuous solutions connecting two states, but the Maxwell states: only ones
satisfying the equal-area principle are important. For shock waves in the hy-
perbolic region, we adopt the Lax entropy condition (see Lax [13, 14]). Hattori
[11, 12] adopted the entropy rate criterion of Dafermos [9] and showed that the
Maxwell states are admissible in this sense. In [1, 2], Abeyaratne-Knowles pro-
posed the kinetic condition and singled out a unique admissible solution. This
condition is very convenient in the hyperbolic theory: LeFloch [15] formulated
a weak form of the condition and obtained global solutions for given initial data
to isentropic equations with piecewise linear stress function; Asakura [5] (and
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a brief note [4]), obtained global solutions whose initial data are perturbations
of the Maxwell states to equations with nonlinear stress function.

In this paper, we first give a form of the kinetic condition using the Gibbs
function. Using this form we generalize the existence theorem in [5] for non-
isentropic equations and derive a description of the entropy function.

2. Model Equations

In this section we shall derive the basic equations (1), (2) of 1-dimensional
motion of an elastic bar having constant cross-sectional area A. Assume that
the bar is laid along the x-axis in a reference configuration and set in longi-
tudinal motion. During such motion, a particle initially located at x moves
to X = x + û(x, t) at time t; û(x, t) is called the displacement. Amount of
relative deformation is computed as

∆X −∆x

∆x
= ûx + O(1)∆x.

We set u = ûx: the strain and v = ût: the particle velocity. Since the mapping
x → X is one-to-one, we require u > −1. Let ρ0 denote the mass density
(constant) in the reference configuration, σ the stress and e the internal energ.
Then the balance of momentum and the conservation of the total energy are
expressed by

d

dt

∫ x2

x1

ρ0v dx = σ(x2, t)− σ(x1, t),(7)

d

dt

∫ x2

x1

ρ0

(
e +

1
2
v2

)
v dx = σ(x2, t)v(x2, t)− σ(x1, t)v(x1, t).(8)

We may assume that the coordinates are Lagrangian by setting x → ρ0x + x0

and hence ρ0 = 1. Dividing by x2 − x1 and letting x2 → x1, we obtain the
second equation of (1) and the equation (2); the first one is the compatibility
condition.

Let us consider a small deformation X = x+∆û(x). The work done in the
portion [x1, x2] of this elastic material is expressed as ∆W = −K∆L, where
K = σA: the tension force and ∆L = X2 − X1 − (x1 − x2): the elongation.
We denote by E and S, respectively, the total internal energy and the total
entropy. The first and second laws of thermodynamics (see Fermi [10]) show
that

∆E = T∆S + K∆L
= T∆S + σA{∆û(x2)−∆û(x1)}.
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Then dividing the above expression by A(x2 − x1) and letting x2 → x1, we
have

∆e = T∆η + σ∆ûx.

Thus, using differentials, we can express the first and second laws of thermo-
dynamics as

de = Tdη + σdu.(9)

First, let u and η be independent variables. Expression (9) shows that

σ =
(

∂e

∂u

)

η
, T =

(
∂e

∂η

)

u

.(10)

Introducing the free energy ψ = e − Tη, we choose u and T as independent
variables and obtain

dψ = −ηdT + σdu.(11)

Hence

σ =
(

∂ψ

∂u

)

T
, η = −

(
∂ψ

∂T

)

u
.(12)

When the elastic material is in contact with a heat reservoir which is at
the constant temperature T , such motion is called isothermal. It follows from
(10) that e is linear in η:

e = Tη + e0(u),

where e0 coincides with the free energy ψ. We have also by (10) that e′0 = σ.
Thus we have

Proposition 2.1. If the motion is isothermal, the stress σ and the free
energy ψ depend only on the strain u; the internal energy e and ψ have the
form

e = Tη + ψ(u), ψ(u) =
∫

σ(u) du.(13)

3. Phase Boundaries and the Kinetic Condition

The Riemann problem is the initial value problem with the initial data:

(u, v, η)|t=0 =

{
(uL, vL, ηL) x < 0,
(uR, vR, ηR) x > 0.

(14)
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where uL, vL, ηL, uR, vR, ηR are constants. The jump discontinuity of the
form:

(u, v, η) =

{
(u−, v−, η−) x < st,
(u+, v+, η+) x > st,

(15)

is a weak solution (u±, v±, η±: constants) if and only if it satisfies the Rankine-
Hugoniot condition :

s(u+ − u−) = −(v+ − v−),
s(v+ − v−) = −(σ+ − σ−),

s(e+ + 1
2v2

+ − e− − 1
2v2−) = −(σ+v+ − σ−v−).

(16)

In particular, thermodynamic quantities e±, σ±, u± must satisfy the Hugoniot
equation :

e+ − e− =
1
2
(σ+ + σ−)(u+ − u−).(17)

The jump discontinuity of the form (15) is said to be a phase boundary if the
states belong to different phases and satisfy the Rankine-Hugoniot condition
(16). Phase boundaries represent crystal-elastic states. These states are in
thermo-elastic equilibrium if and only if the strains satisfy

σ(u+) = σ(u−),
∫ u+

u−
σ(u)du = σ±(u+ − u−).(18)

Unique strains determined by this principle are called the Maxwell strains,
denoted by u− = um, u+ = u∗m. By setting v+ = v− (denoted by vm),
Um = (um, vm), U∗

m = (u∗m, vm) constitute stationary solutions that are called
Maxwell states.

Suppose that the material is in thermal contact with a heat reservoir which
is at a constant temperature T and at a constant stress σ. We define the Gibbs
free energy G by

G = E − TS −KL.

Then the change of entropy is

∆S = −∆G

T
.(19)

Hence we can deduce that this material is at thermal equilibrium if and only
if the Gibbs free energy attains its minimum (see Reif [19]).

Now we assume that the material is composed of two phases: mass Mα of
α-phase and Mβ of β-phase. Then G can be written as

G = Mαgα + Mβgβ,
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where gα and gβ are the specific Gibbs potentials of each phase. Since Mα +
Mβ = M : constant, Mα is taken to be the independent variable. Then it
follows that

∆G = (gα − gβ)∆Mα.(20)

Hence, denoting the mass density of the α-phase by mα, we have

Proposition 3.1.

de = Tdη + σdu + (gα − gβ)dmα.(21)

This is the fundamental law of thermodynamics by taking the phase tran-
sition into account.

For simplicity, we consider the case where du = 0. We suppose that the
material has a transitional region having a cross-section A and a small thick-
ness L0. Moreover, the material is supposed to be in α-phase on the left side
of the transition region and β-phase on the right side. Recall that our coor-
dinate is Lagrangian: ∆Mα = A∆x; assume that |∆x| ¿ L0 and the phase
transition occurs in quasi-static manner. Then it follows from (19) and (20)
that

T∆η = −(gα − gβ)
∆Mα

AL0

= −(gα − gβ)
∆x

L0
.

Hence the chemical work ∆W exerted for the transition from β-phase into
α-phase is

∆W = (AL0)T∆η = −A(gα − gβ)∆x.

Dividing both sides by ∆x and letting ∆x → 0, we have

−dW

dx
= A(gα − gβ).(22)

Thus, letting L0 → 0, we find that A(gα − gβ) is the chemical force acted on
the phase boundary.

Now we postulate that the rate of the change of the mass Mα is a function
of the chemical force:

dMα

dt
= Φ(A(gα − gβ)),

where Φ(θ) satisfies Φ′(θ) ≥ 0, Φ(0) = 0. Hence we have

dx

dt
=

1
A

Φ(A(gα − gβ)),(23)
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which is the kinetic condition on the phase boundary.
Let us consider the jump discontinuity (15). The mechanical Gibbs function

ĝ is defined by

ĝ = e +
1
2
ŝ2 − Tη − σu,(24)

where ŝ = su is the Eulerian propagation speed. Clearly, g depends only on
u.

Proposition 3.2. If the motion is isothermal, we have

ĝ+ − ĝ− =
∫ u+

u−
σ(u)du− 1

2
(σ+ + σ−)(u+ − u−).(25)

Proof. It follows from Proposition 2.1 that

ĝ+ − ĝ− = ψ+ − ψ− +
1
2
s2(u2

+ − u2
−)− σ+u+ + σ−u−

=
∫ u+

u−
σ(u) du +

1
2
(σ+ − σ−)(u+ + u−)− σ+u+ + σ−u−

=
∫ u+

u−
σ(u)du− 1

2
(σ+ + σ−)(u+ − u−).

Thus we have the proposition.

If s = 0, then ĝ = g. We find by (18) that the Maxwell strains satisfy

g+ = g−.(26)

From now on, we simply denote ĝ = g and call this quantity the Gibbs function.
We say that the phase boundary (14) is admissible if and only if it satisfies
the Abeyaratne-Knowles kinetic equation

sφ = Φ(g+ − g−),(27)

where Φ(θ) is a nondecreasing function satisfying Φ(0) = 0. This condition
is a generalization of (26) to propagating phase boundaries and A−1Φ(Aθ) is
denoted simply by Φ(θ). The quantity g+ − g− is called the driving traction
denoted by f(u+, u−) in Abeyaratne-Knowles [1, 2, 3].

Finally, we note that the Hugoniot equation (17) is expressed as

η+ − η− = − 1
T

(g+ − g−),(28)

which will be useful in the following sections.
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4. Isentropic Equations

Let us first study the isentropic equations (1). For technical reasons, we
assume that

σ′′(u) 6= 0, for u < α, u > β.(29)

Existence and large time stability of weak solutions are obtained in Asakura
[5], which are briefly reviewed in this section.

We can solve the Riemann problem in this case with the initial data

(u, v)|t=0 =

{
(uL, vL) x < 0,
(uR, vR) x > 0.

(30)

Hereafter, we always assume that Φ is a C2-function and

Φ′(0) > 0.(31)

Following Abeyaratne-Knowles, we also assume that the new phase does not
occur from any point in the interior of the hyperbolic regions, which is called
the nucleation condition. Suppose that UL = (uL, vL) and UR = (uR, vR) are
contained in small neighborhoods of the Maxwell states Um = (um, vm) and
U∗

m = (um, v∗m), respectively. Then we can construct a self-similar solution
which consists of 4 constant regions UL, U− ∈ Ωα and U+, UR ∈ Ωβ, where
UL, U− are connected by a 1-rarefaction wave or shock wave in Ωα, U−, U+

by a single phase boundary and U+, UR by a 2-rarefaction wave or shock wave
in Ωβ. However the solution of this form is not unique and these solutions
constitute a one-parameter family.

Now we consider the kinetic equation (27) with (31). This condition, to-
gether with the Rankine-Hugoniot condition, determines u+ as a function of
u−. We proved in [5] the following.

Lemma 4.1. If Φ(0) = 0 and Φ′(0) > 0, then u+ and sφ are functions of
u− in a neighborhood of um and

du+

du−

∣∣∣∣
u−=um

=
σ′(um)
σ′(u∗m)

,
dsφ

du−

∣∣∣∣
u−=um

= −Φ′(0)σ′(um)(u∗m − um).(32)

We note that the derivative of u+ does not depend on the particular value
of Φ′(0) and coincides with Hattori’s description coming from the maximum
entropy dissipation rate admissibility condition. By using these relations, the
following existence theorem is obtained.
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Theorem 4.1 [5, Theorem 2.1]. If |UL − Um|, |UR − U∗
m| are sufficiently

small, then there exists a unique admissible solution which consists of 4 con-
stant regions connected by rarefaction waves, shock waves and a phase bound-
ary. Moreover these constant states are differentiable with respect to the initial
data UL, UR.

These solutions are used to construct approximate solutions with general
initial data U0(x) = UR(x) for x > 0, UL(x) for x < 0. We have the following
existence theorem of global solutions by the wave-front tracking alternative
of the Glimm method. We use important ideas of Chern [8] in estimating
approximate solutions.

Theorem 4.2 [5, Theorems 2.2, 2.3]. Suppose that the initial perturbation
is sufficiently small in total variation, i.e., the quantity

T.V.(UL(x)− Um)|x<0 + T.V.(UR(x)− U∗
m)|x>0(33)

is sufficiently small. Then there exists a weak global solution with a single
phase boundary which is Lipschitz continuous curve in (x, t)-space. Moreover,
the limit

lim
δ→±0

U(χ(t) + δ, t) = U±(t)(34)

exists except for countably many t at the phase boundary; the Rankine-Hugoniot
conditions (16) and the kinetic equation

χ̇(t) = Φ(g+(t)− g−(t))(35)

hold at these points.

5. Non-Isentropic Equations

Using the solution to the isentropic equations, we have a unique admissible
solution to the Riemann problem for the general isothermal system (1), (2).

Theorem 5.1. If the Riemann initial data (uL, vL, ηL) and (uR, vR, ηL)
are close to the Maxwell states, then there exists a unique admissible solution
which consists of 5 constant regions connected by rarefaction waves, shock
waves and a phase boundary. Moreover these constant states are Lipschitz
continuous with respect to the initial data.

Proof. Theorem 4.1 shows that for given UL = (uL, vL) ∈ Ωα and UR =
(uR, vR) ∈ Ωβ such that |UL − Um|, |UR − U∗

m| are sufficiently small, there
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exists a unique admissible solution to the Riemann problem with initial data
(30); this solution consists of 4 constant regions: UL, UR, U+ and U− connected
by rarefaction waves, shock waves and a phase boundary. By the Hugoniot
equation (28), η± are defined by

η− − ηL = − 1
T

(g− − gL),

η+ − ηR = − 1
T

(g+ − gR).
(36)

Moreover, we define η± as the following:

η− =

{
ηL − 1

T (g− − gL)− 1
T (g+ − g−) g+ < g−,

ηL − 1
T (g− − gL) g+ ≥ g−,

η+ =

{
ηR − 1

T (g+ − gR) g+ < g−,

ηR − 1
T (g+ − gR)− 1

T (g− − g+) g+ ≥ g−.

(37)

Then η− − η− (g+ < g−) and η+ − η+ (g+ > g−) are the changes of entropy
across the phase boundary and η defined by

η =

{
η− x < 0,
η+ x > 0

(38)

together with σ± = σ− (or σ+) and v± = v− (or v+) constitutes a contact
discontinuity which completes the solution. It is easy to see that the above
constant states are Lipschitz functions of the initial data.

These Riemann solutions constitute approximate solutions with general
initial data

(u, v, η) =

{
(uL(x), vL(x), ηL(x)) x < 0,
(uR(x), vR(x), ηR(x)) x > 0.

(39)

Since the equations (1) are equal to the isentropic equations, we find by The-
orem 4.2 that there exist weak global solutions u and v with a single phase
boundary provided the initial data are close to the Maxwell states and the
perturbation is sufficiently small in total variation. Hence we have only to
construct the entropy η.

Theorem 5.2. For given initial data with bounded total variation, the
specific entropy exists and has the form :

η(x, t) = η0(x)− 1
T

∫ t

0
dτg(u(x, τ))(40)
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for almost all x.

Proof. Estimates for T.V.u(∗, t) and T.V.v(∗, t) are contained in the proof
of Theorem 4.2. Using the expressions (36), (37), we have

|η+ − ηR|+ |η− − ηL|+ |η+ − η+|+ |η− − η−|+ |η+ − η−|

=
1
T

(|ηR − ηL|+ 2|g+ − g−|+ 2|g+ − gR|+ 2|g− − gL|),
(41)

that is estimated by T.V.u(∗, t) + T.V.v(∗, t). Hence we obtain the estimates
of T.V.η(∗, t).

The constructions (36), (37) of η indicate that the front-tracking approxi-
mation ηh will be defined by

ηh(x, t) = ηh
0 (x)− 1

T

∑

l

[
gh

]
x=xl

(42)

for all x for which the vertical line through (x, 0), denoted by lx, does not
lie on stationary (s = 0) phase boundaries and the summation runs over all
discontinuities x = xl(t) that meet the line lx. On the jump discontinuities,
ηh is defined to be the mean value of both sides.

Let t1, t2, . . . , tn, . . . denote the collision times and x = xl(t) (a line with
gradient sl) the wave front at Jm. We have, for C1-functions φ with bounded
support,

∫ ∫

R+×[0,T ]
{φt(Tηh +

1
2
(vh)2) + ψh)− φx(σhvh)} dxdt +

∫

R
φ(x, 0)ηh

0 (x) dx

=
∑

l

∫ tm+1

tm

{
sl[Tηh + ψh + 1

2(vh)2]x=xl
+ [σhvh]x=xl

}
φ(xl, t) dt

=
∑

l

∫ tm+1

tm
sl

{
T

[
ηh

]
x=xl

+
[
gh

]
x=xl

}
φ(xl, t) dt = 0.

Thus we find that the limit function satisfies the equation in the weak sense
and has the form (40).

Remark 5.1. The description (40) of the entropy function η is also valid
for the large amplitude solutions obtained by Nishida [18] for model equations
of isothermal ideal gas.

Remark 5.2. We find by (40) that the limit

η∞(x) = lim
t→∞ η(x, t)



116 Fumioki Asakura

exists for almost all x. Moreover, Liu [16] shows that η(∗, t) converges to η∞
in L1(R) at the rate t−1/2.
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