TAIWANESE JOURNAL OF MATHEMATICS
Vol. 4, No. 1, pp. 55-64, March 2000

A NOTE ON THE DISCRETE
ALEKSANDROV-BAKELMAN MAXIMUM PRINCIPLE

Hung-Ju Kuo' and Neil S. Trudinger?

Dedicated to Professor Fon-Che Liu on his sixtieth birthday

Abstract. In previous works, we have established discrete versions of
the Aleksandrov -Bakelman maximum principle for elliptic operators, on
general meshes in Euclidean space. In this paper, we prove a variant
of these estimates in terms of a discrete analogue of the determinant of
the coefficient matrix in the differential operator case. Our treatment de-
pends on an interesting connection between the determinant and volumes
of cells in the underlying mesh.

In our previous papers [8, 9], we proved discrete versions of the Aleksandrov-
Bakelman maximum principle, (see [1,2]), for linear second order elliptic par-
tial differential operators in domains €2 in Euclidean n-space R™. For operators
L in the simple form

(1) E = aij Diju
acting on functions u € C2(Q) with coefficient matrix A = [4/] measurable

and positive in €2, the Aleksandrov-Bakelman maximum principle provides an
estimate,

. (L)1) "
(2) sgpuﬁs(;gau%—(l’(n) dlamQ{/QD} ,

where C(n) is a constant depending on n and D = det A is the determinant
of the coefficient matrix A. In our papers [4,8,9], we have treated analogous
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results for difference operators, with the purpose of deriving local estimates
and eventually stability results for nonlinear schemes as in [5]. Here, we again
consider meshes E, which are arbitrary discrete sets in R", and difference
operators L of the form

(3) Lu="Y_a(z,y)u(y)

Yy

acting on mesh functions u : E — R". The coefficients a(x,y) are defined on
E x E and vanish except for finitely many y, for each x value. The operator
L is called monotone if

(4) a(xz,y) >0, forall =z, y € E,

and positive, if in addition,

(5) c(z) == Za(:c,y) <0, forall x € E.

Furthermore, L is balanced if

(6) b(x) == Za(x,y)(y —z) =0, forall =z € E.

The differential operator corresponding to L is given by, (see [8]) ,

(7) Lu=A-DN+ | -Dri+ |,

with principal coefficient matrix
®) A®) = Z > AEDE -5 ® (- 5)
T

and coefficients b and ¢ as in [6] and [7]. Accordingly monotone, balanced
difference operators L of the form

(9) Lu(z) =) _ a(z,y)(u(y) — u(=))

Y

correspond to elliptic partial differential operators of the form (1).

Our purpose in this note is to deduce the discrete maximum principle in
a form corresponding to (2), where the dependence on the coefficients of L is
determined by det A for A given by (8). First we prove a lemma which gives
a representation for det A as a sum of squares of volumes spanned by n-tuples
of the vectors v/a(x,y)(y — x). For vectors y*,---,y" € R, let
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(10) V(y',-y") = det [yj]
denote the volume of the parallelpiped spanned by y',-- -, y™.

Lemma 1. Fory',---,yN € R*, N > n, we have

N
(11) det{Zyiééyi} = > VE3(y", -yt
=1

1<y <ig - <in <N

Proof. We proceed by induction on N. Accordingly suppose (11) is true
for N > n, for each n, and consider vectors y!, ---, yVt1 € R*. We may
choose coordinates so that

N+1 _
Y =oaer,

where e; is the unit vector directed along the x1 coordinate axis. Then

N+1 4 N ‘
Yoy =alaee+) yoy
i=1 i=1
and hence
N+1 ‘ N A N A
det Z YRy = detz:yZ Ry —i—anetZgZ Y,
i=1 i=1 i=1

where 7° = (y4,---,v,) € R*!. By our induction hypothesis, we then obtain

N+1 A
det Z YRy
i=1
— Z V2(y“,-~,yln)+ Z VZ(y“7...’yZn71’yN+1)
1<iy <ig - <in <N 1<ii<ig - <in—1<N

= Z V2(yila T yln)

1< <t <in <N+1

It therefore remains to show (11) when N = n. Again we may proceed by
induction. Taking y"™ = aej, we obtain, as before,

n n—1
dyey =da e+ ¥y
=1 =1

and hence the validity of (11) for N = n — 1 in R"~! implies that for N = n
in R™. Obviously (11) is true for N = n =1 and we are done. [
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For the difference operator L, given by (3), and the mesh E, let us introduce
a volume element V(z) at a point = € E by setting

Y= {y € Ela(z,y) > 0},

V(r)= max V(y'—=z, --,y" —x).
y17"'7yn€YI

(12)

The set Y, consists of those points y which are directly connected to z
through L. For future use, we will let N = N(z) denote the number of points
in Y;. Recall from [8,9] that for a bounded subset D of E, the interior D°

and boundary D’ of D, with respect to L, are defined by
(13) D°={z € D|a(z,y) =0 V y+# D},
Db=D - De,

respectively. We can now state the following discrete maximum principle.

Theorem 2. Let u be a mesh function satisfying the difference inequality,

(14) Lu+f>0

i the interior D° of a bounded set D in E, with L positive and balanced in
D° and u <0 on the boundary DY, Then we have the estimate

. @V
(15) maxu < (C-diam D {xezD:o det.,4(§)} ,

where C' is a constant depending on n and N, = max,, V.

Remarks:

(i) The condition det.A > /, together with the balance condition (6), imply
N > n+1. It would be interesting to remove the dependence on N from
Theorem 2, although normally one would expect N < O(n).

(ii) As in previous works, the summation over D° in the estimate (15) can
be replaced by summation over the upper contact set It = T'} defined
by

't = {z € D°|Fp € R" satisfying

(16)
u(y) <u(@)+p-(y—=z) Yy € D}
Proof. The estimate (15) can be extracted from the proof of [9, Theorem
1]. For completeness, we provide the details here. First, we recall for a mesh
function w, its normal mapping X = X, over the domain D is defined by
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(17) X(z) ={p € R"u(y) <u(x) +p-(y—2) VyeD}
for x € D, so that from (16) we see that

I+ = {z € D°| Xy(x) # 0}.

Note that X, (x) being nonempty at x means that u is concave at the point
x. To prove Theorem 2, we need to estimate |X,(z)| at points z € I'". Let us
fix a point x € I'" and a vector p € X, (x). Without loss of generality, we can
assume u(z) > 0. Writing

(18) v(z) = u(z) —p- (2 —2),

we then have v(y) < v(z) for all y € D. Using the difference inequality (14)
and the fact that L is positive and balanced, we then have

> _alz,y)(v(z) —v(y)
)

(19) = a(z,y)(u(x) —u
= —Lu(z) + c(z)u(z)
< f(x).

Now let Z = Z, be given by

()

(20) Ze ={z+az,y)(y —2) |y € E}.

The condition that L is balanced means that Z, is centred at x. Let us suppose
for the time being that Z, consists only of extreme points. Defining a new
function w by

’LU(I') = U(.’L‘),
(21) w(y) = v(x) + a(z, y)(v(y) — v(x))
for y € Z,, we have
(22) Xu () = Xo ()

and by (19),
(23) > (wlz) —w(y)) < f(z).
Hence

(24) w(z) —w(y) < f(z)
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for all y € Y. Now let k = k; be the function given by

k(x) =1,
k(y)=0 for ye Z.

(25)

Then by (24), we have
X

w

—

) C Xy ()
and hence, by (22),

(26) Xo(@)] < |f(2)]" [X, (2)].
Noting that

Zg = Xp(z)
(27)
={peR'p-(y—x)<1 for all ye Z},
is the polar of the convex hull Z with respect to x, we have [X;(z)| = |Z¥| and

hence by (26),

(28) Xo(2)] < [f(2)]"Z2].
To estimate the polar volume | Z*|, we use the following geometric inequal-

ity.

Lemma 3. Let K be a conver body in R™ and K* its polar with respect
to its centre x. Then

(29) K| [K* | <C

for some constant C depending only on n.

Proof. To show (29), we observe first that for an ellipsoid E, we have the
equality

(30) || |E*| = wy,

where wy, denotes the volume of the unit ball in R". The inequality (29) then
follows from the existence of a minimal ellipsoid F, with centre x, satisfying

(31) n‘%EcKcE,

where for v > 0, vE denotes the v dilation of F with respect to x. For a proof
of (31), see, for example, [1, Lemma 25.6]. [ |

From Lemma 3, we have
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C
(32) 1Z7] < ==,
|Zz]

3n/2 2

where C'=n is the constant in (29). To proceed further, we write

N
Y(:U): {yla"'vy }7
(33) 2=z +a(z,y')(y" — ),
a(z, 2') = a, i=1,---, N,

and apply Lemma 1 to estimate

det A= > VE(Vai (yt — ), -+, Vain(y'" — 1))
1<i1 <t <in <N

= Z V(i =, =) V(Y —x, -,y — 1)
(34) 1<y <ig<in <N

<V(x) Z V(" —x,---, 2 — )
1<iy <ig - <in <N

< C(N)V ()| Za -

Consequently, we obtain from (32), (28), (18),

Xu(2)]= [Xo(2)]

35 P

% < O g o "

and hence

(36) X, (TT)| < C(N (@)[".
%;r detA §

The estimate (15) then follows from [9, Lemma 2.2].

Returning to the general case, we write each point z € Z, as a convex
combination,

l
(37) z= Z ai(2)2",
i=1

of the extreme points 2!, - -+ 2, where 0 < a;(2) <1, Y oy = land £ = U(z) <
N(x) is the number of extreme points of Z,. We then define a new set Z by

(38) z={@"---.®'},
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where

(39) (2)' = <Z ai(z)> (2" — )+ 2, i=1,---,¢,

z2€Z
and extend the function v by defining

(40) | |
w((2)")= (Z ai(2)> (v(2%) —v(z)) + v(z), i=1,--- 1.

ze€Z

Continuing the process, we end up with a set Z = Z, consisting of only
extreme points, centred at = by the balance condition of L, and a function w
on Z U {x} for which

(41) Xo(7) C X~(2),

w

but which satisfies

(42) > ((2) — w(2)) < C(N)|f(x)]

instead of (23). We obtain thus estimate (36) and as before conclude (15). m

Remarks :

(i) If K is a convex body in R™ and K* its polar with respect to some
interior point x, we have a complementary lower bound,

(43) K| [K™[ = C,

where C' is a positive constant depending on n, to the upper bound (29)
(see, for example, [1]). Consequently, from (36), we infer a sharper form
of the estimate (15) with diam D replaced by |D|'/™.

(ii) When the convex body K in Lemma 3 is centrally symmetric, inequality
(29) with the sharp constant C' = w? is a consequence of the Blashcke-
Santalo inequality (see, for example, [11]).

(iii) From (24), applied to the extreme points of Z,, we deduce the estimate

(44) Xu(@)| < |f(2)"|Z;),  wel™,

which is more general than (28), leading to Theorem 1 in [9]. Under the further
assumption of nondegeneracy



On the Discrete Aleksandrov-Bakelman Maximum Principle 63

(45) B,(x) C Zy,

where B,(x) denotes the ball of radius p = p(x) and centre z in R", we obtain,
in place of (15),

nY 1/n
(46) max < C(n) diamD{ Z <M> } ,

reD° p

which is the basis for our treatment of local estimates (Harnack inequality,
Holder estimate, Liouville theorem) in [8,9].
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