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THE LIL FOR THE ESTIMATES OF THE PARAMETERS IN
A PARTLY LINEAR REGRESSION MODEL∗

Hua Liang

Abstract. Consider the partly linear regression model Yi = Xτ
i β +

g(Ti) + εi (i = 1, . . . , n), where (Xi, Ti) are i.i.d. random design points,
β is a p-dimensional unknown parameter, g(·) is an unknown function
on [0, 1], εi are i.i.d. random errors with mean 0 and variance σ2. This
paper is concerned with the LIL of the estimators of β and σ2.

1. Introduction

One of the attractively interesting models in statistical theory and appli-
cation recently is the partly linear regression model, which is defined by the
function relation

Yi = XT
i β + g(Ti) + εi, i = 1, . . . , n,(1.1)

where T denotes transposition, Xi = (xi1, . . . , xip)T (p ≥ 1) and Ti(Ti ∈ [0, 1])
are i.i.d. random design points, β = (β1, . . . , βp)T is an unknown parameter
vector, g is an unknown function, and ε1, . . . , εn are i.i.d. random variables
with mean zero and unknown variance σ2. This model was introduced by Engle
et al. [4] to study the effect of weather on electricity demand. More recent work
has dealt with the estimation of β at a root-n rate. Chen [1], Heckman [5], Rice
[8], Robinson [9] and Speckman [11] constructed

√
n-consistent estimates of β

under various conditions. Cuzick [2] constructed efficient estimates of β when
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the error density is known and has finite Fisher information. Cuzick [3] and
Schick [10] constructed efficient estimates of β when the error distribution is
unknown. Liang and Cheng [7] considered second-order asymptotic efficiency
for model (1.1).

The aim of this paper is to establish the law of the iterated logarithm
(LIL) for some estimates of the parameters β and σ2 when (Xi, Ti) are i.i.d.
random design points. First we construct the estimators of β and σ2 by using
nonparametric fitting and least squares methods. In order to establish the
results for the proposed estimators, we investigate nonparametric estimators.
We derive a uniformly consistent result for the general linear combination of
errors in the case of independence (Lemma 2.3), which is then specialized to
the case of nonparametric estimators (2.6) and (2.7) and then used repeatedly.

Assume {Xi = (xi1, . . . , xip)T , Ti, Yi, i = 1, . . . , n} satisfies the model (1.1).
It follows from Eεi = 0 that g(Ti) = E(Yi −XT

i β|Ti), which motivates us to
define, for known β,

ĝn(t) =
n∑
j=1

ωnj(t)(Yj −XT
j β)

as the estimator of g(t), where ωni(t) = ωni(t;T1, . . . , Tn), i = 1, . . ., n, are
probability weight functions depending only on the design points T1, . . . , Tn.

Replacing g(Ti) by ĝn(Ti) in model (1.1), and then getting the following
modified model

Yi = XT
i β + ĝn(Ti) + εi, i = 1, . . . , n,(1.2)

one can establish the two-step estimator of β as follows,

βn = (X̃T X̃)−1X̃T Ỹ ,

where X̃T = (X̃1, . . . , X̃n), X̃i = Xi −
∑n
j=1 ωnj(Ti)Xj, Ỹ = (Ỹ1, . . . , Ỹn)T ,

Ỹi = Yi −
∑n
j=1 ωnj(Ti)Yj. Consequently, an estimator of σ2 can be defined as

σ2
n =

1
n

n∑
i=1

(Ỹi − X̃T
i βn)2

since (1.2) is equivalent to εi = Ỹi − X̃T
i β (i = 1, . . . , n) formally.

As pointed out at the beginning of this section, the asymptotics of βn and
σ2
n have been greatly considered in literature. See Chen [1], Cuzick [2,3], Heck-

man [5], Liang and Cheng [7], Rice [8], Robinson [9] and Speckman [11]. Liang
[6] studied the Berry-Esseen bounds of the distribution of some estimator of
σ2 when (Xi, Ti) are known design points, and obtained the optimal bound
O(n−1/2). To establish the (LIL) forms the core of this context.
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Now we present an example to explain how to select the weight functions.
Take

ωni(t) =
1
hn

∫ si

si−1

K
( t− s
hn

)
ds, 1 ≤ i ≤ n,

where s0 = 0, sn = 1 and si = 1/2(T(i) + T(i+1)) (1 ≤ i ≤ n − 1) for the
ordered statistics T(1), . . . , T(n) of T1, . . . , Tn, hn is a sequence of bandwidth
parameters which tends to zero as n→∞ and K(·) is a kernel function, which
is supposed to satisfy

supp(K) = [−1, 1], sup |K(x)| ≤ C <∞,
∫
K(u)du = 1 and K(u) = K(−u).

Other weight functions can be found in Liang [6].
The paper is organized as follows. In the following we give the conditions

on the Xi and Ti, and the main result. Section 2 proves some lemmas. Section
3 presents the proof of the main result. For the convenience and simplicity,
we shall employ C (0 < C < ∞) to denote some constant not depending on
n but may assume different values at each appearance. Some notations are
introduced: ε = (ε1, . . . , εn)T , ε̃ = (ε̃1, . . . , ε̃n)T , ε̃i = εi −

∑n
j=1Wnj(Ti)εj;

gni = g(Ti) −
∑n
k=1Wnk(Ti)g(Tk), Ĝ = (g(T1) − ĝn(T1), . . . , g(Tn) − ĝn(Tn))T ;

hj(t) = E(xij|Ti = t), uij = xij − hj(Ti) for i = 1, . . . , n and j = 1, . . . , p.

Condition 1. sup0≤t≤1E(‖X1‖3|T = t) <∞ andB = Cov(X1−E(X1|T1))
is a positive-definite matrix.

Condition 2. g(·) and hj(·) are all Lipschitz continuous of order 1.

Condition 3. The weight functions ωni(·) satisfy the following:

( i ) max
1≤i≤n

n∑
j=1

ωni(Tj) = O(1) a.s.,

( ii ) max
1≤i,j≤n

ωni(Tj) = O(bn) a.s., bn = n−2/3,

(iii) max
1≤i≤n

n∑
j=1

ωnj(Ti)I(|Tj−Ti|>cn) = O(cn) a.s., cn = n−1/2 log−1 n.

The following theorem gives our main result.

Theorem 1.1. Suppose conditions 1-3 hold. If E|ε1|3 <∞, then

lim sup
n→∞

(
n

2 log log n

)1/2

|βnj − βj| = (σ2bjj)1/2 a.s..(1.3)

Furthermore, if Eε4
1 <∞, then
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lim sup
n→∞

(
n

2 log log n

)1/2

|σ2
n − σ2| = (Varε2

1)1/2 a.s.,(1.4)

where βnj, βj and bjj denote the j-th element of βn, β and the (j, j)-th element
of B−1, respectively.

Now, we outline the proof of the theorem. First we decompose
√
n(βn −

β) and
√
n(σ2

n − σ2) into three and five terms respectively. Then we will
calculate deliberately the tail probability value of each term. We have from
the definitions of βn and σ2

n,

√
n(βn − β) =

√
n(X̃T X̃)−1

{ n∑
i=1

X̃igni −
n∑
i=1

X̃i

( n∑
j=1

ωnj(Ti)εj
)

+
n∑
i=1

X̃iεi
}

def= n(X̃T X̃)−1(H1 −H2 +H3),(1.5)
√
n(σ2

n − σ2)=
1√
n
Ỹ T{F − X̃(X̃T X̃)−1X̃T}Ỹ −

√
nσ2

=
1√
n
εT ε−

√
nσ2 − 1√

n
εT X̃(X̃T X̃)−1X̃T ε

+
1√
n
ĜT{F − X̃(X̃T X̃)−1X̃T}Ĝ

− 2√
n
ĜT X̃(X̃T X̃)−1X̃T ε+

2√
n
ĜT ε.

def=
√
n{(I1 − σ2)− I2 + I3 − 2I4 + 2I5},

where F denotes the identity matrix of order p.
In the following sections we will prove that each element of H1 and H2

converges almost surely to zero, and
√
nIi also converge almost surely to zero

for i = 2, 3, 4, 5. The proofs of the first assertion will be finished in Lemmas
2.4 and 2.5. The proofs of the second assertion will be arranged in Section 3
after we complete the proof of (1.3). Finally, we use Corollary 5.2.3 of Stout
[12], and Hartman-Winter theorem, and complete the proof of the theorem.

2. Some Lemmas

In this section we prove several lemmas required. In Lemma 2.1 we think of
the boundedness for hj(Ti)−

∑n
k=1 ωnk(Ti)hj(Tk) and g(Ti)−

∑n
k=1 ωnk(Ti)g(Tk).

The proofs are implied by Lipschitz continuity and Condition 3 (iii). Lemma
2.2 states that n−1X̃T X̃ converges to B. Its proof can be referred to Speckman
[11] and Chen [1], and is therefore omitted.
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Lemma 2.1. Suppose that conditions 2 and 3 (iii) hold. Then

max
1≤i≤n

∣∣∣Gj(Ti)−
n∑
k=1

ωnk(Ti)Gj(Tk)
∣∣∣ = O(cn) for j = 0, . . . , p,

where G0(·) = g(·) and Gl(·) = hl(·) for l = 1, . . . , p.

Lemma 2.2. If conditions 1-3 hold, then limn→∞ 1/nX̃T X̃ = B a.s..

Next we shall prove a rather general result on strong uniform convergence
of weighted averages in Lemma 2.3, which is applied in the later proofs re-
peatedly. First we give an exponential inequality for bounded independent
random variables, that is,

Bernstein’s Inequality. Let V1, . . . , Vn be independent random variables
with zero means and bounded ranges: |Vi| ≤M. Then for each η > 0,

P

(
|
n∑
i=1

Vi| > η

)
≤ 2 exp

[
−η2

/{
2
( n∑
i=1

var Vi +Mη
)}]

.

Lemma 2.3. Let V1, . . . , Vn be independent random variables with means
zero and finite variances, i.e., sup1≤j≤nE|Vj|r ≤ C < ∞ (r ≥ 2). Assume
aki, k, i = 1 . . . , n, is a sequence of positive numbers such that sup1≤i,k≤n |aki| ≤
n−p1 for some 0 < p1 < 1 and

∑n
j=1 aji = O(np2) for p2 ≥ max(0, 2/r − p1).

Then

max
1≤i≤n

∣∣∣ n∑
k=1

akiVk
∣∣∣ = O(n−s log n) for s = (p1 − p2)/2. a.s..

Proof. Denote V ′j = VjI(|Vj| ≤ n1/r) and V ′′j = Vj − V ′j for j = 1, . . . , n.
Let M = Cn−p1n1/r and η = n−s log n. By Bernstein’s inequality,

P
{

max
1≤i≤n

∣∣∣ n∑
j=1

aji(V ′j − EV ′j )
∣∣∣

> C1η
}
≤

n∑
i=1

P
{∣∣∣ n∑
j=1

aji(V ′j − EV ′j )
∣∣∣ > C1η

}
≤ 2n exp

(
− C1n

−2s log2 n

2
n∑
j=1

a2
jiEV

2
j + 2CC1n

−p1+1/r−s log n

)

≤ 2n exp(−C2
1C log n) ≤ Cn−3/2 for some large C1 > 0,
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where the second inequality is from

n∑
j=1

a2
jiEV

2
j ≤ sup |aji|

n∑
j=1

ajiEV
2
j = n−p1+p2 and n−p1+1/r−s logn ≤ n−p1+p2 .

By Borel-Cantelli Lemma,

max
1≤i≤n

∣∣∣ n∑
j=1

Wnj(Ti)(V ′j − EV ′j )
∣∣∣ = O(n−s log n) a.s..(2.1)

Let 1 ≤ p < 2, 1/p + 1/q = 1 be such that 1/q < (p1 + p2)/2 − 1/r. By
Hölder’s inequality,

max
1≤i≤n

∣∣∣ n∑
j=1

aji(V ′′j − EV ′′j )
∣∣∣≤ max

1≤i≤n

( n∑
j=1

|aji|q
)1/q( n∑

j=1

|V ′′j −EV ′′j |p
)1/p

≤ Cn−(p1q−1)/q
( n∑
j=1

|V ′′j − EV ′′j |p
)1/p

.

(2.2)

Observe that

1
n

n∑
j=1

(
|V ′′j − EV ′′j |p − E|V ′′j − EV ′′j |p

)
→ 0 a.s.(2.3)

and E|V ′′j |p ≤ E|Vj|rn−1+p/r, and then

n∑
j=1

E|V ′′j − EV ′′j |p ≤ Cnp/r a.s..(2.4)

Combining (2.2), (2.3) with (2.4), we obtain

max
1≤i≤n

∣∣∣ n∑
k=1

aki(V ′′k − EV ′′k )
∣∣∣ ≤ Cn−p1+1/q+1/r = o(n−s) a.s..(2.5)

Lemma 2.3 follows from (2.1) and (2.5) directly.

Let r = 3, Vk = ek or ukl, aji = Wnj(Ti), p1 = 2/3 and p2 = 0. We obtain
the following formulas, which will play critical roles in the process of proving
the theorem:

max
i≤n

∣∣∣ n∑
k=1

Wnk(Ti)ek
∣∣∣ = O(n−1/3 logn) a.s.(2.6)

and
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max
i≤n

∣∣∣ n∑
k=1

Wnk(Ti)ukl
∣∣∣ = O(n−1/3 log n) for l = 1, . . . , p a.s..(2.7)

Lemma 2.4. Suppose conditions 1-3 hold and E|ε1|3 <∞. Then

√
nH1j = O(n1/2 log−1/2 n) for j = 1, . . . , p.(2.8)

Proof. Denote hnij = hj(Ti)−
∑n
k=1 ωnk(Ti)hj(Tk). Notice that

√
nH1j =

n∑
i=1

x̃ijgni =
n∑
i=1

uijgni +
n∑
i=1

hnijgni −
n∑
i=1

n∑
q=1

ωnq(Ti)uqjgni.

By Lemma 2.1, ∣∣∣ n∑
i=1

hnijgni
∣∣∣ ≤ nmax

i≤n
|gni|max

i≤n
|hnij| = O(nc2

n).

In Lemma 2.3, we take r = 2, Vk = ukl, aji = gnj, 1/4 < p1 < 1/3 and
p2 = 1− p1. Then ∣∣∣ n∑

i=1

uijgni
∣∣∣ = O(n−(2p1−1)/2).

By Abel’s inequality and (2.7),∣∣∣ n∑
i=1

n∑
q=1

ωnq(Ti)uqjgni
∣∣∣≤ nmax

i≤n
|gni|max

i≤n

∣∣∣ n∑
q=1

ωnq(Ti)uqj
∣∣∣

= O(n2/3cn log n).

The above arguments entail that
√
nH1j = O(n1/2 log−1/2 n) for j = 1, . . . , p.

Thus we complete the proof of Lemma 2.4.

Lemma 2.5. Suppose conditions 1-3 hold and E|ε1|3 <∞. Then
√
nH2j = o(n1/2) for j = 1, . . . , p a.s..

Proof. Observe that

√
nH2j =

n∑
i=1

{ n∑
k=1

x̃kjωni(Tk)
}
εi

=
n∑
i=1

{ n∑
k=1

ukjωni(Tk)
}
εi +

n∑
i=1

{ n∑
k=1

hnkjωni(Tk)
}
εi

−
n∑
i=1

[ n∑
k=1

{ n∑
q=1

uqjωnq(Tk)
}
ωni(Tk)

]
εi.
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We now handle these three terms separately. Let r = 2, Vk = εk, ali =∑n
k=1 ukjωni(Tk), 1/4 < p1 < 1/3 and p2 = 1− p1. Using Lemma 2.3, we have

∣∣∣ n∑
i=1

{ n∑
k=1

ukjωni(Tk)
}
εi
∣∣∣ = O(n−(2p1−1)/2 logn) a.s..(2.9)

By Lemma 2.1 and (2.6), we get

∣∣∣ n∑
i=1

{ n∑
k=1

hnkjωni(Tk)
}
εi
∣∣∣≤ nmax

k≤n

∣∣∣ n∑
i=1

ωni(Tk)εi
∣∣∣max
k≤n
|hnkj|

= O(n2/3cn log n) a.s..
(2.10)

Using Abel’s inequality and (2.6) and (2.7), we obtain

∣∣∣ n∑
i=1

[ n∑
k=1

{ n∑
q=1

uqjωnq(Tk)
}
ωni(Tk)

]
εi
∣∣∣

≤ nmax
k≤n

∣∣∣ n∑
i=1

ωni(Tk)εi
∣∣∣max
k≤n

∣∣∣ k∑
q=1

uqjωnq(Tj)
∣∣∣

= O(n1/3 log2 n) = o(n1/2) a.s..

(2.11)

A combination of (2.9)–(2.11) yields Lemma 2.5.

Lemma 2.6. Assume that conditions 1-3 hold. If Eε2
1 <∞, then

In = o(n1/2),

where In =
∑n
i=1
∑
j 6=i ωnj(Ti)(ε

′
j − Eε′j)(ε′i − Eε′i) with ε′j = εjI[(|εj |≤n1/2).

Proof. In Lemma 2.3, we take r = 2, Vk = ε′k−Eε′k, aki =
∑n
j 6=i ωnj(Ti)(ε

′
j−

Eε′j). As for (2.1), we have supi |aki| = o(n−1/3 log n). Furthermore, note that
In =

∑n
i=1 aki(ε

′
i − Eε′i). We adopt the same technique as for (2.1) by letting

1/4 < p1 < 1/3, p2 = 1− p1, and have

In = o(n1/2).

This completes the proof of Lemma 2.6.

3. Proof of the Theorem

In this section we shall complete the proof of the main result. At first, we
state a conclusion, Corollary 5.2.3 of Stout [12], which will play an elementary
role for our proof.
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Conclusion S. Let V1, . . . , Vn be independent random variables with means
zero. There exists a δ0 > 0 such that max1≤i≤nE|Vi|2+δ0 <∞ and lim infn→∞ 1

n∑n
i=1 Var (Vi) > 0. Then

lim sup
n→∞

|Sn|√
2s2

n log log s2
n

= 1, a.s.,

where Sn =
∑n
i=1 Vi and s2

n =
∑n
i=1EV

2
i .

From (1.5) and Lemmas 2.4 and 2.5, we know that in order to complete
the proof of (1.3), it suffices to show

lim sup
n→∞

(
|(B−1X̃ε)j|
2n log log n

)1/2

= (σ2bjj)1/2 a.s..(3.1)

By calculation, we get

1√
n

(B−1X̃ε)j =
p∑
k=1

bjk
[
Wk +

1√
n

n∑
q=1

{xqk − hk(Tq)}εq
]

=
p∑
k=1

bjkWk +
1√
n

n∑
q=1

( p∑
k=1

bjkuqk
)
εq,

where

Wk =
1√
n

n∑
i=1

(
hk(Ti)−

n∑
q=1

ωnq(Ti)xqk
)
εi for 1 ≤ k ≤ p.

The classic LIL implies that

max
1≤k≤n

∣∣∣ k∑
i=1

εi
∣∣∣ = O(n1/2 log n) a.s.,(3.2)

which, by Lemma 2.1, Abel’s inequality and (2.7), yields that

|Wk|≤ C/
√
n max

1≤k≤n

∣∣∣ k∑
i=1

εi
∣∣∣ max

1≤i≤n

∣∣∣hk(Ti)− n∑
q=1

ωnq(Ti)xqk
∣∣∣

≤ C/
√
n max

1≤k≤n

∣∣∣ k∑
i=1

εi
∣∣∣{max

1≤i≤n

∣∣∣hk(Ti)− n∑
q=1

ωnq(Ti)hk(Tq)
∣∣∣

+ max
1≤i≤n

∣∣∣ n∑
q=1

ωnq(Ti)uqk
∣∣∣}

= O(log n) · o(log−1 n) = o(1) a.s..
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Denote ωij =
∑p
k=1 b

jkuikεi. Then Eωij = 0 for i = 1, . . . , n,

E|ωij|2+δ0 ≤ C max
1≤i≤n

E|εi|2+δ0 <∞,

and

lim inf
n→∞

1
n

n∑
i=1

Eω2
ij = σ2(bj1, . . . , bjp)

{
lim
n→∞

n∑
i=1

ui · uTi
}

(bj1, . . . , bjp)T

= σ2(bj1, . . . , bjp)B(bj1, . . . , bjp)T = σ2bjj > 0.

It follows from Conclusion S that (3.1) holds. This completes the proof of
(1.3).

Next, we prove the latter part of Theorem 1.1, i.e., (1.4). We show
√
nIi =

o(1) (i = 2, 3, 4, 5) firstly, and then deal with
√
n(I1 − σ2). It follows from

Lemma 2.1 and (2.6) that

|
√
nI3|≤ C

√
n max

1≤i≤n

(
|g(Ti)−

n∑
k=1

ωnk(Ti)g(Tk)|2 +
∣∣∣ n∑
k=1

ωnk(Ti)εk
∣∣∣2)

= o(1) a.s..

It follows from Lemma 2.1, (2.8) and (3.1) that

√
nI2 = o(1),

√
nI4 = o(1) a.s..

Now, we decompose I5 into three terms and prove that each term tends to
zero. More precisely, we have

I5 =
1
n

 n∑
i=1

gniεi −
n∑
k=1

ωni(Tk)ε2
k −

n∑
i=1

n∑
k 6=i

ωni(Tk)εiεk


def= I51 + I52 + I53.

From (3.2) and Lemma 2.1, we know

√
nI51 = o(1) and

√
nI52 ≤ bnn−1/2

n∑
i=1

ε2
i = O(log−2 n) = o(1) a.s..(3.3)

Observe that

√
n|I53| ≤

1√
n

∣∣∣ n∑
i=1

∑
k 6=i

ωnk(Ti)εiεk − In
∣∣∣+ In

def=
1√
n

(J1n + In).
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Similar manipulation as in Lemma 2.3 shows that

J1n≤ max
1≤j≤n

∣∣∣ n∑
i=1

ωnj(Ti)εi
∣∣∣( n∑
i=1

|ε′′i |+ E|εi|′′
)

+ max
1≤j≤n

∣∣∣ n∑
i=1

ωnj(Ti)(ε′i − Eε′i)
∣∣∣( n∑
i=1

|ε′′i |+ E|ε′′i |
)

=o(1).

It follows from Lemma 2.6 and (3.4) that
√
nI53 = o(1) a.s..(3.5)

A combination of (3.3)–(3.5) leads tp
√
nI5 = o(1) a.s..

To this end, using Hartman-Winter theorem, we have

lim sup
n→∞

(
n

2 log log n

)1/2

|I1 − σ2| = (Var ε2
1)1/2 a.s..

This completes the proof of Theorem 1.1.
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