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ON THE TRIPLET-DIVISIONS OF THE
SET {1, 2, 3, · · · , p− 2}

Chyi-Lung Lin

Abstract. In this paper, we give a number theoretical application of a
simple discrete map. For any prime p ≥ 5, we show that the numbers in
the set G(1, p−2) = {1, 2, 3, · · · , p−2} can be divided into disjoint triplets
〈a, b, c〉, such that a ·b ·c ≡ 1 (mod p). This is a generalization of the well
known doublet–division, that is, the numbers in the set {1, 2, 3, · · · , p−1}
can be divided into disjoint pairs 〈a, a∗〉, such that a·a∗ ≡ 1 (mod p). The
reason that we can perform the triplet-division is because there exists
a simple map F defined on the set G(1, p − 2) such that any number
a ∈ G(1, p − 2) is a period-3 point of the map. Furthermore, the triplet
〈a, F (a), F 2(a)〉 has the property that a · F (a) · F 2(a) ≡ 1 (mod p).

1. Introduction

Our goal in this paper is to introduce an interesting application of iterated
maps. It is surprising that there are many different areas whose dynamics
can be expressed as iterated maps. It is then natural to see that iterated
maps have many applications in large areas, including mathematics, physics,
biology, etc. We show in this paper an application of iterated maps to number
theory.

It is known that one of the interesting properties of a prime p is that the
numbers in the set {1, 2, 3, · · · , p−1} can be divided into disjoint pairs 〈a, a∗〉,
such that a · a∗ ≡ 1 (mod p) [1]. We call this the doublet-division. This
property was used to prove the well-known Wilson’s theorem: (p − 1)! ≡ −1
(mod p), for p a prime [1, 2, 3]. We call 〈a, a∗〉 a doublet, and a∗ the associate
of a [2 p.5]. For every a < p, the existence of a unique a∗ < p such that
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a · a∗ ≡ 1 (mod p) is guaranteed by Fermat’s little theorem, ap−1 ≡ 1 (mod
p), which implies that a∗ ≡ ap−2 (mod p).

We can easily generalize a doublet to a triplet 〈a, b, c〉 for which a · b · c ≡ 1
(mod p). For any a < p, it is easy to derive from Fermat’s little theorem
triplets that contain a. For instance, 〈a, a2, ap−4〉 and 〈a, a3, ap−5〉 are triplets
containing a. However, it is deeper to divide all the numbers less than p into
disjoint triplets. If this can be done, we shall call this the triplet-division. For
convenience, we denote by G(1, k) the set of numbers from 1 to k, i.e.,

G(1, k) = {1, 2, 3, · · · , k}.

Therefore, G(1, p−1) = {1, 2, 3, · · · , p−1} and G(1, p−2) = {1, 2, 3, · · · , p−2}.
The doublet-division is on the set G(1, p − 1), while the triplet-division will
be shown to be on the set G(1, p − 2). In this paper, we are to introduce
a generalization of doublet-division to the triplet-division, exploring another
interesting property of a prime.

For an easy example, consider p = 11. The doublet-division is: 〈1, 1〉,
〈2, 6〉, 〈3, 4〉, 〈5, 9〉, 〈7, 8〉, 〈10, 10〉. While, there are two ways for performing
the triplet-division on the set G(1, p− 2) = {1, 2, 3, · · · , 9}, namely:

〈1, 9, 5〉 〈1, 3, 4〉

〈2, 4, 7〉 〈8, 9, 2〉

〈3, 6, 8〉 〈5, 7, 6〉

(A1) (A2)

Next, consider p = 13. The doublet-division is: 〈1, 1〉, 〈2, 7〉, 〈3, 9〉, 〈4, 10〉,
〈5, 8〉, 〈6, 11〉, 〈12, 12〉. The triplet-division on the set G(1, p−2) = {1, 2, 3, · · ·,
11} is:

〈1, 11, 6〉 〈1, 7, 2〉

〈2, 5, 4〉 〈6, 5, 10〉

〈7, 10, 8〉 〈11, 4, 8〉

〈3, 3, 3〉 〈9, 9, 9〉

〈9, 9, 9〉 〈3, 3, 3〉

(B1) (B2)

There are two triplets whose three numbers are equal in either (B1) or (B2).
We will show that, for a prime of the type p = 6m+ 1, the triplet-division of
G(1, p− 2) always contains two such triplets.
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In general, if we find a triplet-division, we can then generate other triplet-
divisions by raising each number in the triplets to the power j, where j is a
number < p and relatively prime to p − 1; the same as if we find a primitive
root g for a prime p, then we can generate all the other primitive roots by
gj . It is interesting to note that it is possible to find the first or the basic
triplet-division, called the 3-cycle-division, which can be easily derived from
a simple map. In Section 2, we introduce this map F which is defined on
G(1, p − 2), and we show that every a ∈ G(1, p − 2) is a period-3 point of F .
Accordingly, the numbers in G(1, p− 2) can be divided into disjoint 3-cycles,
namely, the 3-cycle-division. In Section 3, we show that different triplet-
divisions of G(1, p− 2) can be derived from the basic 3-cycle-division, and in
fact there are ϕ(p − 1)/2 ways for performing the triplet-division. In Section
4, we generalize the above discussions to the more general Fk-map.

2. The F -map and the 3-cycles for F

In the following, we consider p a prime ≥ 5; as the case for p = 3 is trivial.

Lemma 2.1. For any a ∈ G(1, p − 2), there exists a unique number
b ∈ G(1, p− 2) such that a · (1 + b) ≡ −1 (mod p).

Proof. Let b = p − 1 − a∗, where a∗ ≡ ap−2 (mod p) < p is the associate
of a. Then we easily have b ∈ G(1, p− 2), and a · (1 + b) ≡ −a · a∗ ≡ −1 (mod
p).

Definition 2.2. We define a map F : G(1, p−2)→ G(1, p−2) such that
for any a ∈ G(1, p− 2),

F (a) = p− 1− a∗.

This map is one-to-one and onto. We define F 2 = F ◦F and Fn = F ◦Fn−1.

Theorem 2.3.

(T1) Any a ∈ G(1, p− 2) is a period-3 point of F, i.e., F 3(a) = a.

(T2) Each 3-cycle for F , i.e., 〈a, F (a), F 2(a)〉, is a triplet with a · F (a) ·
F 2(a) ≡ 1 (mod p).

(T3) The numbers in G(1, P − 2) can be divided into disjoint 3-cycles for F.

Proof. To prove (T1) and (T2), consider

F : a→ b, which yields a · (1 + b) ≡ −1 (mod p),(2.1)
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F : b→ c, which yields b · (1 + c) ≡ −1 (mod p),(2.2)

F : c→ d, which yields c · (1 + d) ≡ −1 (mod p).(2.3)

From (2.1), (2.2), and (2.3), we have

a+ a · b ≡ −1 (mod p),(2.4)

b+ b · c ≡ −1 (mod p),(2.5)

c+ c · d ≡ −1 (mod p).(2.6)

Multiplying both sides of (2.5) with a, we have a · b + a · b · c ≡ −a (mod p).
Comparing this with (2.4), we have

a · b · c ≡ 1 (mod p).(2.7)

Since b = F (a) and c = F 2(a), the three numbers a, F (a), F 2(a) form a
triplet. We now prove that d = a. This can be seen by multiplying both
sides of the equation in (2.3) with a · b, then we have 1 + d ≡ −a · b (mod p).
Comparing this with (2.4), we have d = a. As d = F 3(a), we find that

F 3(a) = a.(2.8)

The map F is therefore interesting, since every a ∈ G(1, p − 2) is a period-3
point of F , and 〈a, F (a), F 2(a)〉 is a 3-cycle for F and is certainly a triplet, as
a · F (a) · F 2(a) ≡ 1 (mod p).

We next prove (T3). It is known that any two distinct cycles are disjoint,
and so an a ∈ G(1, p − 2) must belong to one and only one 3-cycle for F .
As a result, the numbers in G(1, p − 2) can be divided into disjoint 3-cycles
for F . We complete the proof by showing that, for a prime p, there exists a
3-cycle-division on the set G(1, p−2). We then obtain the first triplet-division,
i.e., the 3-cycle-division, from the simple map F .

We easily check that, for instance, 〈1, p − 2, (p − 1)/2〉 is a 3-cycle for
F . Also 〈2, (p − 3)/2, (2p − 1)/3〉 is a 3-cycle for F if p = 6m − 1, and
〈2, (p− 3)/2, (p− 1)/3〉 is a 3-cycle for F if p = 6m+ 1. In general, if 〈a, b, c〉
is a 3-cycle for F , then 〈a+ 1, c− 1,−(a+ 2)∗〉 is a 3-cycle for F .

A 3-cycle for F should contain either three distinct numbers or three iden-
tical numbers. In the latter case, F has fixed points. If e is a fixed point of F ,
then F (e) = e, and we have the 3-cycle 〈e, e, e〉. We call 〈e, e, e〉 the identical
3-cycle. Since F (e) = e, then e · (1 + e) ≡ −1 (mod p), i.e.,

e2 + e+ 1 ≡ 0 (mod p).(2.9)
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As p ≥ 5, (2.9) is equivalent to

e3 ≡ 1 (mod p) and e 6= 1.(2.10)

This result is expected, since 〈e, e, e〉 is a 3-cycle for F and therefore must be
a triplet and hence e3 is congruent to one. From (2.10), we see that e is of
order 3. From Fermat’s little theorem, ep−1 ≡ 1 (mod p), and hence 3|(p− 1),
i.e., p = 3n + 1. Note that n must be even. Therefore, p must be a prime of
the type p = 6m+ 1. Consider then p = 6m+ 1, and let the two solutions of
(2.9) be e1 and e2. From (e1)3 ≡ 1 (mod p) and (e2)3 ≡ 1 (mod p), we have
(e1 · e2)3 ≡ 1 (mod p). Since e1 · e2 cannot be congruent to either e1 or e2, we
have

e1 · e2 ≡ 1 (mod p).(2.11)

From (2.10) and (2.11), we have: e2 ≡ (e1)2 = p − e1 − 1, and e1 ≡ (e2)2 =
p− e2 − 1. That is,

e1 + e2 = p− 1.(2.12)

We conclude that there are always two identical 3-cycles: 〈e1, e1, e1〉 and
〈e2, e2, e2〉 for a prime of the type p = 6m+ 1

We have the following corollaries:

Corollary 2.4. If p is a prime, then (p− 2)! ≡ 1 (mod p).

Proof. This is the well-known Wilson’s theorem. We may discuss this in
the following two cases:

(a) If p is a prime of the type p = 6m − 1, then G(1, p − 2) can be divided
into (2m − 1) 3-cycles and each 3-cycle is a triplet. Therefore we have
(p− 2)! ≡ (1)2m−1 ≡ 1 (mod p).

(b) If p is a prime of the type p = 6m + 1, then G(1, p − 2) can be divided
into (2m − 1) 3-cycles and two identical 3-cycles. Therefore (p − 2)! ≡
(1)2m−1 · e1 · e2 ≡ 1 (mod p).

Corollary 2.5. If 〈a, b, c〉 is a 3-cycle for F , then 〈a∗, c∗, b∗〉 is also a
3-cycle for F , where a∗, b∗, c∗ are, respectively, the associates of the numbers
a, b, c.
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Proof. This is directly derived from Theorem 2.3, as

a · (1 + b) ≡ −1 (mod p), therefore a∗ = p− 1− b,

b · (1 + c) ≡ −1 (mod p), therefore b∗ = p− 1− c,

c · (1 + a) ≡ −1 (mod p), therefore c∗ = p− 1− a.

We then easily check that F (a∗) = c∗, as a∗ · (1 + c∗) ≡ −1 (mod p). And
similarly, we have F (c∗) = b∗ and F (b∗) = a∗. Hence 〈a∗, c∗, b∗〉 is a 3-cycle
for F .

We call 〈a∗, c∗, b∗〉 the associate 3-cycle of 〈a, b, c〉. In general, a 3-cycle and
its associate 3-cycle are different; they are equal only when a = 1, b = p− 2,
and c = (p− 1)/2. Hence

〈1, p− 2, (p− 1)/2〉

is the only 3-cycle for F that is equal to its associate 3-cycle. We call 〈1, p−
2, (p− 1)/2〉 the self-associate 3-cycle. For p = 6m± 1, the number of 3-cycles
is 2m±1, which is odd, due to the existence of the self-associate 3-cycle. From
Corollary 2.5, we have (a+b+c)+(a∗+b∗+c∗) = 3(p−1), and the sum of the
numbers in the self-associate 3-cycle is 3(p− 1)/2. We can therefore calculate
the total sum of all the numbers in G(1, p− 2), which is trivially calculated to
be (p− 1)(p− 2)/2; as expected from 1 + 2 + 3 + · · ·+ p− 2.

3. The Triplet-Divisions of G(1, p− 2)

We now discuss the division of the numbers in G(1, p − 2) into disjoint
triplets 〈a, b, c〉. This can be obtained from the basic 3-cycle-division. We
write the 3-cycle-division of the set G(1, p− 2) as:

{〈ai, bi, ci〉|i = 1, 2, · · · , n},(3.1)

where 〈ai, bi, ci〉 represents the ith 3-cycle for F , and n = 2m±1 for p = 6m±1.
In what follows, the number aj is to mean that it is in fact “aj (mod p)”, a
number ∈ G(1, p− 2). We have the following theorem:

Theorem 3.1. For j a number relatively prime to p− 1,

{〈aji , b
j
i , c

j
i 〉|i = 1, 2, · · · , n}(3.2)

is a triplet-division of G(1, p− 2).
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Proof. Since 〈ai, bi, ci〉 is a 3-cycle for F , then ai · bi · ci ≡ 1, and hence
〈aji , b

j
i , c

j
i 〉 is a triplet, as aji · b

j
i · c

j
i = (ai · bi · ci)j ≡ 1. Also as j and p− 1 are

relatively prime, it is known that 1j , 2j , 3j , · · · , (p−2)j are just the permutation
of the numbers 1, 2, 3, · · · , p− 2. Hence, {〈aji , b

j
i , c

j
i 〉| i = 1, 2, · · · , n} represents

the division of the numbers in G(1, p− 2) into disjoint triplets, and hence is a
triplet-division of G(1, p − 2). The triplet-division in (3.2) with j = 1 is just
the 3-cycle-division.

The number of such j < p relatively prime to p−1 is known to be ϕ(p−1),
which is the Euler ϕ-function of p− 1. We have the following theorem:

Theorem 3.2. There are ϕ(p−1)/2 triplet-divisions for G(1, p−2) derived
from the 3-cycle-division.

Proof. Naively, we would think that there are ϕ(p − 1) different triplet-
divisions for the set G(1, p − 2), since in general the triplet-divisions in (3.2)
with j = j1 and j = j2 are different if j1 6= j2. However, we know that if j is
relatively prime to p− 1, so is p− 1− j. Hence if there is a triplet-division of
G(1, p− 2) in (3.2), there will be also a triplet-division

{〈ap−1−j
i , bp−1−j

i , cp−1−j
i 〉 | i = 1, 2, · · · , n}(3.3)

of G(1, p − 2). But (3.2) and (3.3) are equivalent. As (ai)j · ap−1−j
i ≡ 1,

therefore, ap−1−j
i = (a∗i )

j . Therefore (3.3) is equivalent to

{〈(a∗i )j , (b∗i )
j , (c∗i )

j〉 | i = 1, 2, · · · , n}

= {〈(a∗i )j , (c∗i )
j , (b∗i )

j〉 | i = 1, 2, · · · , n}.
(3.4)

However, as we know that 〈a∗, c∗, b∗〉 is also a 3-cycle for F , 〈(a∗i )j , (c∗i )
j , (b∗i )

j〉
are triplets that are already contained in (3.2). This then means that the
triplet-division in (3.3) is the same as the triplet-division in (3.2). Therefore
the number of different triplet-divisions obtained from the 3-cycle-division is
only ϕ(p− 1)/2.

We give an example. If p = 17, then ϕ(p − 1)/2 = 4. There should then
be four different ways for performing the triplet-division for G(1, p− 2). The
basic 3-cycle–division (with j = 1) and the triplet-division with j = 15 are:
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〈1, 15, 8〉 〈1, 8, 15〉

〈2, 7, 11〉 〈9, 5, 14〉

〈3, 10, 4〉 〈6, 12, 13〉

〈5, 9, 14〉 〈7, 2, 11〉

〈6, 13, 12〉 〈3, 4, 10〉

3-cycle-division Triplet-division with j = 15

We see the triplet-division with j = 15 is the same as the 3-cycle division.
Other triplet-divisions for G(1, p− 2) obtained from the basic 3-cycle-division
are:

〈1, 9, 2〉 〈1, 2, 9〉 〈1, 8, 15〉

〈8, 3, 5〉 〈15, 11, 10〉 〈9, 12, 3〉

〈10, 14, 13〉 〈5, 6, 4〉 〈11, 5, 13〉

〈6, 15, 7〉 〈14, 8, 12〉 〈10, 2, 6〉

〈12, 4, 11〉 〈7, 13, 3〉 〈14, 4, 7〉

j = 3, 13 j = 5, 11 j = 7, 9

For another example, consider p = 19. Then ϕ(p − 1)/2 = 3. The 3-cycle-
division and the other two triplet-divisions are:

〈1, 17, 9〉 〈1, 9, 17〉

〈2, 8, 6〉 〈10, 12, 16〉

〈3, 5, 14〉 〈13, 4, 15〉

〈4, 13, 15〉 〈5, 3, 14〉

〈10, 16, 12〉 〈2, 6, 8〉

〈7, 7, 7〉 〈11, 11, 11〉

〈11, 11, 11〉 〈7, 7, 7〉

3-cycle-division Triplet-division with j = 17
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〈1, 6, 16〉 〈1, 5, 4〉

〈13, 12, 5〉 〈14, 8, 9〉

〈15, 9, 10〉 〈2, 16, 3〉

〈17, 14, 2〉 〈6, 10, 13〉

〈3, 4, 8〉 〈15, 17, 12〉

〈7, 7, 7〉 〈11, 11, 11〉

〈11, 11, 11〉 〈7, 7, 7〉

j = 5, 13 j = 7, 11

4. The Fk-map on the Set G(1, p− 1|p− k)

If we are interested in dividing numbers into disjoint triplets 〈ak, bk, ck〉
such that ak · bk · ck ≡ k3 (mod p), then we can generalize the above discussion
to the set

G(1, p− 1 | p− k) = {1, 2, 3, · · · , p− k − 1, p− k + l, · · · , p− 1},

where 1 ≤ k ≤ p−1. The set G(1, p−1 | p−k) contains numbers from 1 to p−1,
except the number p−k. For k = 1, G(1, p−1 | p−1) = G(1, p−2). By similar
discussions in Section 2, we can then define a map Fk : G(1, p − 1 | p − k) →
G(1, p− 1 | p− k) such that

Fk(ak) = bk ,

where ak · (k+ bk) ≡ −k2 (mod p), or bk ≡ −k2 · a∗k− k (mod p). And we have

(T1) Any ak ∈ G(1, p− 1 | p− k) is a period-3 point of Fk, i.e., F 3
k (ak) = ak.

(T2) Each 3-cycle for Fk, (ak, Fk(ak), F 2
k (ak)), is a triplet with

ak · Fk(ak) · F 2
k (ak) ≡ k3 (mod p)

(T3) The numbers in G(1, p− 1 | p− k) can be divided into 3-cycles for Fk.

Finally, if (a, b, c) is a 3-cycle for F , then (k·a, k·b, k·c) and (k·a∗, k·c∗, k·b∗)
are 3-cycles for Fk, where, for instance, k · a means k · a (mod p).
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