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GROWTH CONDITIONS AND BISHOP’S PROPERTY (β)

Michael M. Neumann

Abstract. We show that a certain logarithmic growth condition on a
bounded linear operator on a complex Banach space implies Bishop’s
property (β), and discuss several applications of this result in local spec-
tral theory.

1. Local Spectral Properties Revisited

A bounded linear operator T ∈ L(X) on a complex Banach space X is said
to have property (β) if, for every open subset U of the complex plane C and
every sequence of analytic functions fn : U → X for which (T − λ)fn(λ)→ 0
as n→∞ locally uniformly on U, it follows that fn(λ)→ 0 as n→∞, again
locally uniformly on U . In a slightly different, but equivalent version, this
condition was introduced by Bishop [5], in an attempt to develop a general
duality theory for operators on Banach spaces that should capture some of
the important features of the spectral theory of normal operators on Hilbert
spaces. The present note is to build on the recent progress in local spectral
theory related to Bishop’s property (β) and to exhibit some natural classes of
operators with this property.

Let H(U,X) denote the Fréchet space of all X-valued analytic functions on
an open subset U of C. It is easily seen that an operator T ∈ L(X) has property
(β) if and only if, for each open set U ⊆ C, the operator TU : H(U,X) →
H(U,X) given by (TUf)(λ) := (T − λ)f(λ) for all f ∈ H(U,X) and λ ∈ U is
injective and has closed range. This characterization intimates that property
(β) should be quite useful in connection with topological tensor products and
duality theory, but the precise role of this condition in local spectral was
determined only recently by Albrecht and Eschmeier [2].
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To describe the recent development, we need to recall a few notions. An
operator T ∈ L(X) is said to be decomposable if, for every open cover {U, V }
of C, there exist T -invariant closed linear subspaces Y and Z of X for which
Y + Z = X, σ(T |Y ) ⊆ U , and σ(T |Z) ⊆ V, where σ denotes the spectrum.
This simple definition of decomposability is equivalent to the slightly more
complicated original definition due to Foiaş. We refer to Colojoară and Foiaş
[6], Lange and Wang [13], and Vasilescu [20] for thorough discussions of the
theory of decomposable operators.

Given an operator T ∈ L(X) and a closed set F ⊆ C, let XT (F ) consist
of all x ∈ X for which there exists an analytic function f : C \ F → X with
the property that (T − λ)f(λ)X = x for all λ ∈ C \ F . Evidently, XT (F ) is a
linear subspace of X, but need not be closed. The operator T is said to have
the decomposition property (δ) if X = XT (U) + XT (V ) for every open cover
{U, V } of C. As observed in [3], an operator is decomposable if and only if it
has both properties (β) and (δ).

More importantly, Albrecht and Eschmeier [2] have recently established
that an operator has property (β) precisely when it is similar to the restric-
tion of a decomposable operator to one of its closed invariant subspaces, that
property (δ) characterizes the quotients of decomposable operators by closed
invariant subspaces, and that (β) and (δ) are, in a natural way, dual to each
other: an operator T ∈ L(X) has property (β) if and only if its adjoint
T ∗ ∈ L(X∗) on the topological dual space X∗ has property (δ), and the same
equivalence holds when the roles of (β) and (δ) are interchanged. These char-
acterizations require rather sophisticated tools from the theory of topological
tensor products, and complete Bishop’s quest for duality results in the ax-
iomatic spectral theory of operators on Banach spaces.

An obvious combination of the preceding results shows that an operator
T ∈ L(X) is decomposable precisely when both T and T ∗ have property (β).
This remarkable characterization of decomposability in purely analytic terms
was obtained earlier by Eschmeier and Putinar [9], and, in the reflexive case,
also by Lange [12]. It will be a useful tool in some of our applications.

To underline the significance of Bishop’s property (β), we mention the
important connections to sheaf theory and the spectral theory of several com-
muting operators from the recent monograph by Eschmeier and Putinar [10].
There are also interesting applications to invariant subspaces [10], harmonic
analysis [8], and the theory of automatic continuity [15].

Unfortunately, but perhaps not surprisingly, the direct verification of prop-
erty (β) in concrete cases tends to be a difficult task. It is therefore desirable
to have sufficient conditions for property (β) which are easier to handle. In
the following sections, we show that a certain natural growth condition implies
property (β), and discuss several consequences.
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2. A Logarithmic Growth Condition

Theorem 1. Let T ∈ L(X) be an operator on a Banach space X, let D
be a closed disc that contains the spectrum σ(T ) and has non-empty interior,
and let V be an open neighbourhood of D. Suppose that there exist a totally
disconnected compact subset E of the boundary of D, a locally bounded function
ω : V \ E → (0,∞), and an increasing function γ : (0,∞)→ (0,∞) such that
log ◦ γ has an integrable singularity at zero and

γ(dist(λ, ∂D))‖x‖ ≤ ω(λ)‖(T − λ)x‖ for all x ∈ X and λ ∈ V \ ∂D.

Then T has property (β).

Since the increasing function log ◦ γ is Riemann integrable on each compact
interval in (0,∞), the integrability assumption of Theorem 1 means that the
improper Riemann integral

∫ c
0 log γ(t) dt converges for each c > 0. This condi-

tion is obviously fulfilled by a polynomial of the form γ(t) = tm for any integer
m ∈ N, and also by an exponential function of the form γ(t) = exp(−tα) for
any α ∈ (−1, 0).

The role of the exceptional set E and the function ω is to relax the growth
condition near certain points in the boundary of the spectrum. If E is empty,
then ω will be a positive constant.

For simplicity, we restrict ourselves, in Theorem 1, to the case of discs,
but it should be evident that the method of the following proof works also in
more general cases. The case of operators with real spectrum will be treated
in Theorem 3 below.

Our main tool will be Jensen’s inequality from classical complex analysis:
if the complex-valued function h is continuous on the closed unit disc and
analytic on the open unit disc, then

log |h(z)| ≤ 1
2π

∫ π

−π
log

∣∣heit)∣∣ Re
eit + z

eit − z
dt for all z ∈ C with |z| < 1 .

This estimate follows easily from the Poisson-Jensen formula, and expresses
the fact that log |h| is subharmonic; see Rudin [18] for details. We shall also
need the following well-known elementary properties of the Poisson kernel:

0 <
1− |z|
1 + |z|

≤ Re
eit + z

eit − z
≤ 1 + |z|

1− |z|
for |z| < 1 and − π ≤ t ≤ π .
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3. Proof of Theorem 1

Without loss of generality, we may assume that D is the closed unit disc.
Consider now an open set U ⊆ C and a sequence of functions fn ∈ H(U,X)
for which TUfn → 0 as n → ∞ locally uniformly on U. Since the resolvent
function is locally bounded on the resolvent set ρ(T ) := C \ σ(T ), and since

‖fn(λ)‖ ≤
∥∥(T − λ)−1∥∥ ‖(T − λ)fn(λ)‖ for all λ ∈ U \D,

we conclude that fn → 0 as n → ∞ locally uniformly on U \ D. Similarly,
from the conditions on ω and γ and from

‖fn(λ)‖ ≤ γ(dist(λ, ∂D))−1ω(λ) ‖(T − λ)fn(λ)‖ for all λ ∈ U ∩ int D,

we infer that fn → 0 locally uniformly also on U ∩ int D. Hence it remains
to be seen that every point in U ∩ ∂D has a neighbourhood on which the
sequence (fn)n∈N converges uniformly to zero.

Given any ζ ∈ U ∩ ∂D, we choose a δ ∈ (0, 1) for which the closed disc
∇(ζ, δ) := {λ ∈ C : |λ− ζ| ≤ δ} is contained in U ∩ V, and define εn :=
sup {‖(T − λ)fn(λ)‖ : λ ∈ ∇(ζ, δ)} for all n ∈ N. Then clearly εn → 0 as
n→∞. Also, let W := {z ∈ C : |eiz − ζ| ≤ δ}, and choose a real number a so
that ζ = eia.

Since E is a totally disconnected compact subset of ∂D, there exists an r ∈
(0, 1) for which ∇(a, r) ⊆W and ei(a+r), ei(a−r) /∈ E. Note that this condition
ensures that eiz /∈ E for all z ∈ ∂∇(a, r). Because ω is locally bounded on
V \E, we obtain a constant c > 0 with the property that ω(eiz) ≤ c for all z ∈
∂∇(a, r). Also, by the definition of εn, it is clear that ‖(T − eiz)fn(eiz)‖ ≤ εn
for all z ∈ ∂∇(a, r) and n ∈ N.

Finally, since an elementary calculation shows that |u| ≤ e |eu − 1| for all
u ∈ [−1, 1], we obtain, for every t ∈ [−π/2, π/2], the estimates

dist(ei(a±r e
it), ∂D) =

∣∣∣ | ei(a±r eit) | − 1
∣∣∣ =

∣∣e∓r sin t − 1
∣∣ ≥ r

e
|sin t| ≥ k |t|

with the constant k := (2 r)/(πe). For arbitrary n ∈ N, we may therefore
conclude from the main assumption of Theorem 1 that∥∥∥fn(ei(a±r e

it))
∥∥∥ ≤ c εn γ (k |t|)−1 for all non-zero t ∈

[
−π

2
,
π

2

]
.

Now, fix an integer n ∈ N for which εn < 1/c, and consider an arbitrary
functional ϕ ∈ X∗ with ‖ϕ‖ ≤ 1. Since Jensen’s inequality applies to the
function hn given by hn(z) := ϕ(fn(ei(a+ r z))) for all z ∈ ∇(0, 1), we obtain

log
∣∣∣ϕ(fn(ei(a+ r z)))

∣∣∣ ≤ 1
2π

∫ π

−π
log

∥∥∥fn(ei(a+ r eit))
∥∥∥Re

eit + z

eit − z
dt
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for all z ∈ C with |z| < 1. To proceed further, we restrict z to the condition that
|z| ≤ 1/2, and split the integral on the right-hand side of the last inequality
into two parts.

For |t| ≤ π/2, we obtain directly from the preceding estimates that∫ π/2

−π/2
log

∥∥∥fn(ei(a+ r eit))
∥∥∥Re

eit + z

eit − z
dt

≤
∫ π/2

−π/2
(log(c εn)− log γ (k |t|)) Re

eit + z

eit − z
dt

≤
1− 1

2

1 + 1
2

π log(c εn) +
1 + 1

2

1− 1
2

2
∫ π/2

0
|log γ (k t)| dt

≤ π

3
log(c εn) + 6L ,

where L stands for the last integral. For the integral over the union of the
remaining intervals [−π,−π/2] and [π/2, π], a simple change of variables leads
to exactly the same estimates. We conclude that

log
∣∣∣ϕ(fn(ei(a+ r z)))

∣∣∣ ≤ 1
3

log(c εn) + 2L for all z ∈ ∇(0, 1/2) ,

and therefore, by the Hahn-Banach theorem, that∥∥∥fn(ei(a+ r z))
∥∥∥ ≤ c 1/3 ε 1/3

n e 2L for all z ∈ ∇(0, 1/2).

It follows that fn → 0 uniformly on the neighbourhood {eiz : |z − a| ≤ r/2}
of ζ, and hence that fn → 0 locally uniformly on U, as desired.

4. Examples and Applications

Theorem 1 entails that all isometries have Bishop’s property (β). Indeed,
if T ∈ L(X) is an isometry on a Banach space X, then

|1− |λ|| ‖x‖ ≤ ‖(T − λ)x‖ for all λ ∈ C and x ∈ X.

This inequality is immediate when |λ| ≤ 1, and follows from a straightforward
norm estimate for the geometric series of the resolvent function when |λ| > 1.
Thus Theorem 1 applies with the choice γ(t) := t for all t > 0, E = ∅, and
ω(λ) := 1 for all λ ∈ C. This simple special case of Theorem 1 is essentially due
to Tornehave, and may be found in [14]. For an alternative proof, we note that,
by a result of Douglas [7], every isometry may be extended to an invertible
isometry on some larger Banach space, and that every invertible isometry is,
by Proposition 5.1.4 of [6], generalized scalar, and therefore decomposable.
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This shows that every isometry is the restriction of a decomposable operator,
and hence has property (β).

As a more substantial application, we mention the Cesàro operator Cp on
the classical Hardy space Hp(D) for 1 ≤ p < ∞, where D denotes the open
unit disc. This operator is given by

(Cpf)(λ) :=
1
λ

∫ λ

0

f(ζ)
1− ζ

dζ for all f ∈ Hp(D) and λ ∈ D ,

and has been studied, in this or equivalent versions, by many authors. The
work of Siskakis [19] contains the basic facts about the spectral properties of
the Cesàro operator. In [16], the results of Siskakis [19] are combined with a
certain special case of Theorem 1 to show that the Cesàro operator Cp has
property (β) whenever 1 < p <∞. Here the exceptional set E plays a crucial
role, while the growth function is simply γ(t) = t for all t > 0. In the classical
Hilbert space case, p = 2, it is known from Kriete and Trutt [11] that the
Cesàro operator C2 is, in fact, subnormal. However, rather different methods
are needed to settle property (β) for Cp when p 6= 2. Moreover, it remains an
intriguing open problem whether this result extends to the case where p = 1.

We now address the question under which conditions the assumptions of
Theorem 1 will actually entail decomposability. It turns out that a certain
strengthened version of decomposability is appropriate in this context. A
decomposable operator T ∈ L(X) is said to be strongly decomposable if the
restriction T |XT (F ) is decomposable for every closed set F ⊆ C; see for
instance [13]. This definition makes sense, since it is well-known that, for
every decomposable operator T ∈ L(X) and every closed set F ⊆ C, the
space XT (F ) is a T -invariant closed linear subspace of X. An example due
to Albrecht [1] shows that, in general, decomposable operators need not be
strongly decomposable. On the other hand, the work of Bacalu [4] reveals
that, for large classes of operators, these two notions coincide.

Theorem 2. Under the assumptions of Theorem 1, the following asser-
tions are equivalent:

(a) T is strongly decomposable;
(b) T is decomposable;
(c) σ(T ) ⊆ ∂D ;
(d) D ∩ ρ(T ) is non-empty.

Proof. Evidently, the growth condition of Theorem 1 ensures that T − λ
is bounded below for all λ ∈ V \ ∂D, and therefore that the approximate
point spectrum σap(T ) is contained in ∂D. Hence the implication (b) ⇒ (c)
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is immediate from the fact that the spectrum of any decomposable operator
coincides with its approximate point spectrum; see Corollary 2.1.4 of [6].

Moreover, since ∂σ(T ) is always contained in σap(T ), we see that either
σ(T ) ⊆ ∂D or σ(T ) = D. This establishes the equivalence (c) ⇔ (d).

To verify that (c) implies (b), suppose that σ(T ) ⊆ ∂D. Then the growth
condition assumes the form

γ(dist(λ, ∂D))
∥∥(T − λ)−1∥∥ ≤ ω(λ) for all λ ∈ V \ ∂D .

Moreover, the adjoint operator T ∗ satisfies σ(T ∗) = σ(T ) and

γ(dist(λ, ∂D))
∥∥(T ∗ − λ)−1∥∥ ≤ ω(λ) for all λ ∈ V \ ∂D .

Hence Theorem 1 ensures that both T and T ∗ have property (β). By the
result of Eschmeier and Putinar [9] mentioned in Section 1, we conclude that
T is decomposable. Thus (c) ⇒ (b).

It remains to show that the equivalent conditions (b), (c), and (d) imply
that T is actually strongly decomposable. To this end, consider an arbitrary
closed set F ⊆ C, and observe that the restriction T |XT (F ) satisfies the
assumption of Theorem 1. Moreover, it follows from Proposition 1.3.8 of
[6] that σ(T |XT (F )) ⊆ σ(T ) ⊆ ∂D. Consequently, the preceding part of
the proof yields the decomposability of T |XT (F ). Thus T is indeed strongly
decomposable.

Theorem 2 applies directly to the case of isometries and shows that a non-
invertible isometry cannot be decomposable, although we have seen above that
all isometries have Bishop’s property (β).

We conclude with the canonical counterpart of Theorems 1 and 2 for op-
erators with real spectrum. The same approach may be used to handle the
more general case of operators whose spectrum is contained in a Jordan curve,
but we leave the details to the interested reader.

Theorem 3. Let T ∈ L(X) be an operator on a Banach space X with
real spectrum, and consider a totally disconnected compact subset E of σ(T )
and an open neighbourhood V of σ(T ) in C. Suppose that ω : V \E → (0,∞)
is a locally bounded function and that γ : (0,∞) → (0,∞) is an increasing
function such that log ◦ γ has an integrable singularity at zero and

γ(|Im λ|)
∥∥(T − λ)−1∥∥ ≤ ω(λ) for all λ ∈ V with Im λ 6= 0 .

Then T is strongly decomposable.

Proof. As in the proof of Theorem 1, an application of Jensen’s inequality
implies that T has property (β). Since γ(|Im λ|) ‖(T ∗ − λ)−1‖ ≤ ω(λ) for all

293



294 Michael M. Neumann

λ ∈ V with Im λ 6= 0, we infer that also T ∗ has property (β). Again by the
result of Eschmeier and Putinar [9], it follows that T is decomposable. Since
the same reasoning applies to the restriction T |XT (F ) for an arbitrary closed
set F ⊆ C, we conclude that T is actually strongly decomposable.

Theorems 2 and 3 are related to Theorems 5.3.6 and 5.4.3 of Colojoară
and Foiaş [6], but our methods are rather different. In fact, in the classical
approach, growth conditions are often employed to construct a functional cal-
culus on a suitable algebra of functions with partitions of unity. Details of
the latter method may be found in [6] and [20]. Here, our main intention is
to show that Bishop’s property (β) plays a natural role in this context, while
keeping the technicalities at a minimal level. For further results on growth
conditions and decomposability, we refer, for instance, to Radjabalipour [17].
Related results in the perturbation theory of operators on Hilbert spaces are
contained in the monograph [13].

We finally note that the theory of generalized scalar operators is domi-
nated by quite restrictive polynomial growth conditions [6]. It is therefore
appropriate that Theorem 1 requires only a logarithmic growth condition, but
it remains open to which extent this condition can be further weakened.
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