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AN ITERATIVE METHOD FOR GENERALIZED MIXED VECTOR
EQUILIBRIUM PROBLEMS AND FIXED POINT OF NONEXPANSIVE
MAPPINGS AND VARIATIONAL INEQUALITIES

Shu-qiang Shan and Nan-jing Huang*

Abstract. In this paper, we study the problem of finding a common element
of the set of fixed points of a nonexpansive mapping, the set of solutions of the
generalized mixed vector equilibrium problem and the solution set of a variational
inequality problem with a monotone Lipschitz continuous mapping in Hilbert
spaces. We first consider an auxiliary problem for the generalized mixed vector
equilibrium problem and prove the existence and uniqueness of the solution for the
auxiliary problem. We then introduce an iterative scheme for finding a common
element of the set of fixed points of a nonexpansive mapping, the set of solutions
of the generalized mixed vector equilibrium problem and the solution set of a
variational inequality problem with a monotone Lipschitz continuous mapping.
The results presented in this paper can be considered as a generalization of some
known results due to Peng and Yao [16, 17].

1. INTRODUCTION

Let H be a real Hilbert space with winer product (-, -) and norm || - ||, respectively.
Let X be a nonempty closed convex subset of H. Let o : X x X — R = (—o00, +00)
be a bifunction and ¢ : X — RU{+o00} be a function. Let 7" : X — H be a nonlinear
mapping. The equilibrium problem EP(y) is to find € X such that

(1.1) p(r,y) >0, VyeX.

As pointed out by Blum and Oettli [2], EP() provides a unified model of several
problems, such as the optimization problem, fixed point problem, variational inequality
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and complementarity problem. Recently, Peng and Yao [16] studied the following
generalized mixed equilibrium problem: Find z € X such that

(1.2) (@, y) +¢(y) =)+ (Tz,y—2) >0, Vy € X.

Problem (1.2) is very general setting and it includes as special cases of Nash-
equilibrium problems, complementarity problems, fixed point problems, optimization
problems and variational inequalities (see, for example, [16, 17, 7, 10, 23] and the
references therein).

It is well known that the vector equilibrium problem provides a unified model of
several problems, such as the vector optimization problem, fixed point problem, vector
variational inequality and complementarity problem. Let Y be a Hausdorff topological
space and C be a proper, closed and convex cone of Y with intC # ().

The strong vector equilibrium problem (for short, SVEP(y)) is to find z € X
such that

(1.3) olz,y)eC, VyeX

and the weak vector equilibrium problem (for short, WV EP(y)) is to find x € X
such that

(1.4) o(z,y) & —intC, Vye X.
A mapping S : X — H is called nonexpansive, if
(1.5) 1Sz = Syl| < [le —yll, Ve, y e X.

We denote the set of all fixed points of S by F'(S), that is, F'(S) = {z € X : . = Sz}.
It is well known that if X C H is bounded, closed, convex and .S is a nonexpansive
mapping of X onto itself, then F'(S) is nonempty (see [24]).
Let A : X — H be a mapping. The classic variational inequality problem is to
find x € X such that

(1.6) (Az,y —z) >0, YyeX.

The solution of variational inequality problem is denoted by VI(A, X).
In this paper, we consider the following generalized mixed vector equilibrium prob-
lem (for short, GMV EP(p,4,T)): find x € X such that

where e € intC. We denote the set solution of problem (1.7) by
B:{a}GXcp(a:,y)—i—z/z(y)—z/z(a:)—l—e<Ta:,y—a:>GC, vyeX}

Some special cases of problem (1.7) are as follows:
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(D IfY=R,C=RT and e = 1, then GMV EP (1.7) reduces to the generalized
mixed equilibrium problem (1.2);

(2) If Yy =0and T = 0, then GMV EP (1.7) reduces to the classic vector equilib-
rium problem (1.3).

It is well known that the vector equilibrium problem provides a unified model of
several problems, for example, vector optimization, vector variational inequality, vector
complementarity problem, and vector saddle point problem ([4, 5, 13]). In recent years,
the vector equilibrium problem has been intensively studied by many authors (see, for
example, [1, 4, 5, 10, 11, 13, 6] and the references therein).

In 2002, Mondafi [14] introduced an iterative scheme of finding the solution of
nonexpansive mappings and proved a strong convergence theorem. In 2003, Insem and
Sosa [9] introduced some iterative algorithms for solving equilibrium problem in finite-
dimensional space and established the convergence of the algorithms. Recently, Huang
et al. [7] introduced the approximate method for solving the equilibrium problem and
proved the strong convergence theorem.

On the other hand, Takahashi and Toyodu [25] introduced a new iterative scheme
and proved a weak convergence theorem for finding an element of F'(S)NVI(A, X).
Takahashi and Takahashi [23] introduced an iterative scheme for finding a common
element of F'(S) and EP(yp). Recently, Peng and Yao [17] introduced an iterative
scheme for finding a common element of F'(S)NVI(A, X) and the set of solutions of
problem (1.2). For finding a common element of F'(S) and SVEP(y), Li and Wang
[11] introduced an iterative scheme and obtained a strong convergence theorem. In
recent years, many authors have intensively studied different types of iterative schemes
for finding an element of F/(S)NEP(p)NVT (A, X) (see, for example, [21, 18, 8, 28,
12] and the references therein). However, to the best of our knowledge, there are no
results concerned with the problems of finding a common element of the set of fixed
points of infinitely many nonexpansive mappings, the set of generalized mixed vector
equilibrium problem and the solution set of the variational inequality problem in finite
or infinite dimensional spaces.

Inspired and motivated by the works mentioned above, in this paper, we consider
the auxiliary problem of GMV EP(y, ) and prove the existence and uniqueness of
the solutions of auxiliary problem of GMV EP((p, 1) under some proper conditions.
By using the result for the auxiliary problem, we introduce an interactive scheme for
finding a common element of the set of fixed points of infinitely many nonexpansive
mappings, the set of generalized mixed vector equilibrium problem and the solution set
of the variational inequality problem with an a-inverse-strongly monotone mapping in
a real Hilbert space. The results presented in this paper improve and generalize some
known results of Peng and Yao [16, 17].
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2. PRELIMINARIES

A mapping
Px(z)={z€ X : |z —z| = inf ||z —y|}
yeX

is called the metric projection of H onto X. It is well known that, for all x € H, there
exists a unique nearest point in X, and Px is a nonexpansive mapping. Furthermore,
for all z € H and y € X, Px satisfies that

(2.1) (Px(x) = Px(y),z —y) > ||Px(2) = Px(y)|?
and

(2.2) (Px(z) —z, Px(y) —y) <0

with

(2.3) Iz = Px(2)* + ly = Px (w)|1* < [l — y]*.

A mapping A : H — X is said to be inverse strongly monotone with a modulus «
(in short, a-inverse-strongly monotone) if A satisfies

(24) <A[B—Ay,[13—y> ZCVHA[B—AyH% Va:,yeX,

where « is a positive real number (see [3]).
A mapping A : H — X is called a k-contraction mapping if there exists a positive
real number & € [0, 1) such that

(2.5) Az — Ay|| < kllz —yl, Vr,ye X.
It is well known that

(2.6) weVI(A X) < u=Px(p—Np), Vr,yeX.
A set-value mapping ® : H — 2 is called monotone if

(2.7) (f-=g,x—y)>0, Va,ycH, fec®x)ge d(y).

The mapping @ is called maximal monotone if the graph G(®) is not properly
contained in the graph of any other monotone mappings.

Let A: X — H be a monotone k—contraction mapping and Nxu be the normal
cone in X, that is,

Nxp={we H: (u—r,w)>0,Yve X}



An Iterative Method for Generalized Mixed Vector Equilibrium Problems 1685

Define
Ap+ Nxp, pexX
(I) — ) )
i { 0, pEX.

It is well known that ® is the maximal monotone and 0 € @y if and only if
we VI(A, X) (see, for example, [19]).

Let {B,,}>2, be a infinite family of nonexpansive mappings of X into itself and
let {k,}>2, be real numbers in [0, 1]. For any n = 0,1,2,---, define a mapping S,
of X into itself as follows:

Tnn+l = I,
Tnn — kanWn,n—i—l + (1 + kn>I;
Tnn—1 = kn—an—lwn,n + (1 + kn—1>I;

Tnm — kmBmWn,m—i—l + (1 + km>I;
Tnm—1 — km—le—lwn,m + (1 + km—1>I;

Tp2 = kaBamy, 3 + (1 + ko)1,
S, = Tl = leﬂTmQ + (1 + k1>I.

Such a mapping S,, is called the S—mapping generated by B, B,_1,---,B1 and
knu kn—l T k1 (See [20])

Remark 2.1. It is easy to see that S,, is nonexpansive, F'(B,) C F(S,) and
F(B,) C F(mpy) for every k > 1.

Lemma 2.1 ([20]). Let X be a nonempty closed convex subset of a strictly convex
Banach space E. Let { B, }22 ; be a sequence of nonexpansive mappings of X into itself
such that N°, F(B,,) # 0, and let {k, }°2°, be a real numbers such that k,, € [0, ]
for some 0 € (0,1). Then for every z € X, and m € N = {1,2,---}, the limit
limy, o0 T m@ €Xists.

Remark 2.2.  We denote 7,z = lim,, .o m,,»z. Using Lemma 2.1, one can

define a mapping S of X into itself as follows:

Sr = lim S,z = lim m, 1%
n—oo n—oo ’

for every € X. Such a mapping S is called the S-mapping generated by B;, Bs, - - -
and k1, ko, - - -. It is obvious that S : X — X is also nonexpansive.

If {x,} is a bounded sequence in X, we put C = {z,, : n =1,2,---}. It follows
from Lemma 2.1 that, for any given € > 0, there exists Ny € N such that, for every
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n > Ny,
sup || mx — || < e
zeC
and
| Sy — Syl = [|Tp12n — Ti2y|| < sup ||z — mz|| <e

zeC
It follows that

lim || Spxy, — Szy|| =0,  lim [[Spy12, — Spzy| = 0.
n—00 n—00

Lemma 2.2 ([20]). Let X be a nonempty closed convex subset of a strictly convex
Banach space E. Let {B,}>, be a sequence of nonexpansive mappings of X into
itself such that N3, F'(By,) # 0, and let {k,, }°2; be a real numbers such that k,, € [0, d]
for some 6 € (0,1). Then F(S) = N2, F(By,).

Definition 2.1 ([15]). Let E be a Banach space. We say that F satisfies the
Opial condition if, for any {z,} C E with x,, = = € E,

liminf ||z, — || < liminf||z, —y||, Vye€E, y#x.
n—oo n—oo

We know that Hilbert space H satisfies Opial condition (see, for example, [15]).

Definition 2.2 ([26, 13]). Let X and Y be two Hausdorff topological spaces, and
let E be a nonempty, convex subset of X and C be a proper, closed, convex cone of
Y with intC # . Let 0 be the zero point of Y, U(0) be the neighborhood set of 0,
U(zo) be the neighborhood set of zg, and f : £ — Y be a mapping.

(1) If for any V € U(0) in Y, there exists U € U(zg) such that
f(z) € f(zo) +V +C,Vx € UﬂE,

then f is called upper C' — continuous on xg. If f is upper C — continuous
for all x € FE, then f is called upper C' — continue on E.

(2) If for any V € U(0) in Y, there exists U € U(zg) such that
f(x) € f(xo) +V = C, Yz € U[)E,

then f is called lower C' — continuous on xg. If f is lower C' — continuous
for all x € E, then f is called lower C' — continuous on E.

(3) If for any z,y € E and t € [0, 1], the mapping [ satisfies
f(@) € fte+ (1 —t)y)+ Cor f(y) € f(te+ (1 -t)y) + C,

then f is called proper C — quasiconvex.
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(4) If for any x1, 29 € E and t € [0, 1], the mapping f satisfies
tf(@1) + (1 =) f(22) € ftar — (1 = t)w2) + C,

then f is called C' — convex.

Lemma 2.3 ([6]). Let X and Y be two real Hausdorff topological spaces, E' is a
nonempty, compact, convex subset of X, and C is a proper, closed, and convex cone
of Y. Assume that f : EXFE — Y and ® : E — Y are two vector mappings. Suppose
that f and @ satisfy

(1) f(z,xz) e C, forall x € E;

(2) ® is upper C — continuous on E;

(3) f(+,y) is lower C — continuous for all y € E;

4) f(z,-)+ ®() is proper C — quasiconvez for all x € E.

Then there exists a point x € F satisfies
F(z,y) € C\{0}, VyekFE,

where
F(r,y) = f(z,y) + (y) — ®(z), VYa,y€E.

Lemma 2.4 ([22]). Let {x,} and {w,} be bounded sequence in Banach space F,
and let {/3,,} be a sequence in [0, 1]. Let x,,41 = (1 — Bp)wn + Bnxy, for all integers
n>1.1If

lim sup([lwp41 — wpl| = |41 — 2nl]) <0
n—oo
and
0 < liminf 8, <limsup S, <1,
n—0o0 n—00
then limy, 0 ||wy, — 24| = 0.

Lemma 2.5 ([27]). Suppose that o, C [0, oo] and by, ¢,, C R satisfy the following
conditions:

(1) any1 < (1 —cp)ap +cpby, foralln=0,1,2,--;
(2) ¢ €[0,1] and Y02 | ¢, = 00;

(3) limsup,,_oc by <0 or 3.1 bye, is convergence.
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Then

lim o, = 0.
n—oo

For solving the generalized mixed vector equilibrium problem, we give the following
assumptions. Let H be a real Hilbert space with winner (-, -) and norm ||- ||, respectively.
Assume that X C H is nonempty, compact, convex subset and Y is a real Hausdorff
topological space, C C Y is a proper, closed, and convex cone. Let p: X x X — Y
and ¢ : X — Y be two mappings. For any z € H, define a mapping ¢, : X x X — Y
as follows:

6-(2,9) = pla.y) + V() = ¥(@) + ~ly— 0 - 2),

where r is a positive number in R and e € C. Let ¢,, ¢, 9 satisfy the following
conditions:

(Ay) forall z € X, p(x,z) =0;

(A2) ¢ is monotone, that is, ¢(x,y) + ¢(y,z) € —C for all z, y € X
(A3) ¢(-,y) is continuous for all y € X;

(Ag) @(z,-) is weakly continuous and C' — convex, that is,

th(IB, y1>+<1_t>gp<x7 y2> € cp(a:,tyl—l—(l—t)yg)—i-(}', V[B, Y1, Y2 € X7 vt € [07 1}7

(A5) ¢.(-,y) is lower C — continuous for all y € X and z € H;
(A6) ¥(-) is C' — convex and weakly continuous;

(A7) ¢.(x,-) is proper C — quasiconvex for all z € X and z € H.

Remark 2.3. Let Y = R, C = R, and e = 1. For any given y € X, if
©(+,y) is upper semicontinuous and 1) (-) is proper lower semicontinuous, then @ (-, y)
is lower C'—continuous. In fact, since ¢(-,y) is upper semicontinuous and () is
proper lower semicontinuous, for any ¢ > 0, there exists a 6 > 0 such that, for all
zeT ={x € X, ||z —xo|| <d}, we have

(I)Z(IIZ, y) < (I)Z(IB(), y) +¢,

where x is a point in X. This means ®,(-,y) is lower C'—continuous.

Remark 2.4. Let Y = R, C = R, and e = 1. Assume that ¢(x, ) and ¢ (-) are
two convex mappings. Then for any y;, y2 € X and t € [0, 1], we have
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(I)z(xa ty1 + (1 - t>y2>
= oz, ty1 + (1 = ya) + ¥ (tyr + (1 —t)y2) — ¥ ()
—i—%(tyl + (1 -ty —z,z—2)
< to(z,y1) + (1 =)z, y2) + o (y1) + (1 — )Y (y2) —tv(x) — (1 — )Y (x)

1—1¢
+_<y1—[L’,fE—Z>+T<y2—[L’,$_Z>

=< |

= t(p(z,y1) + ¥ (y1) — P (@) + %<y1 —z,x—z) + (1= t)(p(z,y2)

HU— () — 9(&) + (g — 7, 2)
1.2, 1) + (1= )2 (2, 7))

< max{®.(z,y1), P.(x,Y2)},

which implies that @, (z, ) is proper C'—quasiconvex.

Theorem 2.1. Let ¢, ¢ satisfy all the conditions (A;) — (A7). Define a mapping
T,(z) : H— X as follows:

T.(z) :{xeX:cp(x,y)+z/1(y)—z/1(a:)+§<y—a:,x—z> eC, VyeX}.

Then
(1) T, (2) # 0 for all z € H,
(2) T, is single-value;
(3) T, is firmly nonexpansive and
T (21) = Tr(22)|* < (Tp(21) = Tr(22), 21 — 22)
for all z1, 29 € H;
(4) F(T:) = GMVEP(¢, );
(5) GMV EP(y,) is closed and convex.

Proof. (1) Let f(z,y) = ¢.(x,y) and ®(z) = 0 for all z,y € X and z € H.
Then it is easy to check that f(x,y) and ®(y) satisfy all the conditions of Lemma 2.1.
Thus, there exists a point x € E such that

flz,y) +@(x)—@(y)eC, VyeX,zeH

and so T,.(z) # 0 for all z € H.
(2) For each z € H, T,.(z) # 0. Let w1, x2 € T,(2). Then

@8)  plery) Hly) — e+ g —wa—2) €0, WyeX
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and

@9 plezy)+ () — e+ ly—aaw2—2) €O, Wy X.

Letting y = 9 in (2.8) and y = x; in (2.9), adding (2.8) and (2.9), we have
o(z2, 1) + (21, T2) + §<a:2 —x1,21 — x9) € C.

By the monotonicity of ¢ and the property of C, we know that x; = x5 and so T}.(z)
is single-value.

(3) For any z1, 29 € H, let z1 = T,-(21) and o = T}-(22). Then

@10)  pleny) + Y —v@) + Sy —ma —a) €C, VyeX
and
@1) plaay) +y) —blas) + Sy —aamm =) €C, Wy e X,

Letting y = 22 in (2.10) and y = z; in (2.11), adding (2.10) and (2.11), we obtain
o(z2, 21) + (21, T2) + §<x2 —x1,21 — 22 — (21 — 229)) € C
Since ¢ is monotone and C' is a closed convex cone, we get
(T2 — 21,20 — 21) > (w2 — 1,02 — T1)

and so
1T(21) = Ti(22) || < (Tr(21) — Tr(22), 21 — 22),
which shows that 7). is firmly nonexpansive.
(4) Let x € F(T,). Then

p(a,y) +0(y) — (@) + Wy -wa—a) €0, VyeX

and so
p(z,y) +¢(y) —v@) e C, VyeX.

It follows that x € GMV EP(¢, ).
Conversely, if 2 € GMV EP(yp,), then

o(x,y) +(y) —Y(x)e C, Vye X

and so .
plz,y) +9(y) —v@) + —(y—z,z—2) €C, VyeX,
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which shows that = € F(T;).
(5) For any x1,z9 € F(T,) and t € [0, 1], we have

(2.12) e(x1,y) +¥(y) —v(21) € C

and

(2.13) P2, y) +¥(y) —v(22) € C

It follows from (2.12) and (2.13) that

(2.14) (I=t)p(y) € C+ (A —t)p(z1) — (1 —t)p(z1,y)
and

(2.15) t)(y) € C + th(xa) — to(za,y).

Since ¢ is monotone and v is C' — convex, adding (2.14) and (2.15), we have

by) € C+ A =0y(x1) = (1 =t)p(r,y) + 1 (r2) = tp(xa,y)
(2.16) C CH+yY((1=t)z +txa) + @y, (1 — t)zq + txg).

Thus, for any y € X, there exists a point e;(y) € C such that
(2.17) —o(y, (1 =)y +twz) = e1(y) — ¥(y) + (1 — )zy + tas).
Since ¢ is monotone, we get
—p(y, (1 —t)zy +tae) € C+ o((1 —t)z1 + tae, y).

Therefore, for any y € X, there exists a point ez(y) € C such that
(2.18) —p(y, (1 —t)z1 +tae) = e2(y) + (1 — t)x1 + tza, y).
Now (2.17) and (2.18) imply that

e1(y) — e2(y) = p((1 = )1 +two, y) + ¥(y) — ¥((1 = t)a1 + ta).
Since e1(y), e2(y) € C, we have

(1 =)oy + twe, y) + (y) — ((1 =)oy + tws) € C,

which shows that F'(T;.) is convex.
Let {z,,} C F(T;) with x,, — x¢. Then

Ty =Tr(xn), n=1,2,--
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Since T is firmly nonexpansive, we obtain xy = T;(x¢) and so GMVEP(¢, ) is
closed and convex. This completes the proof. ]

Remark 2.5. Theorem 2.1 improves and extends Lemma 2.3 of Peng and Yao
[16]. In fact, letting Y = R, C'= R and e = 1, we can get the same conclusions of
Lemma 2.3 in [16].

3. MaIN RESULTS

In this section, we will introduce an iterative scheme for finding a common el-
ement of the set of fixed points of a nonexpansive mapping, the set of solutions of
GMVEP(p,¢,T) and the solution set of the variational inequality problem for an
a—inverse-strongly monotone mapping in a real Hilbert space H.

Theorem 3.1. Let X be a nonempty, compact, convex subset of a real Hilbert
space H. Assume that C' is a closed, convex cone of a real Hausdorff topological
space Y and e € C'is a fixed point. Let o : X x X — Y and ¢ : X — Y satisfy
(A1) — (A7). Let {B,}>2, be a sequence of nonexpansive mappings from X into H.
Let T : X — H be a m-inverse-strongly monotone mapping, A : X — H be a a-
inverse-strongly monotone mapping, where constants a, m € (0,00). Let f : X — X
be a contraction mapping with constant k& € [0,1) and for any n € N, Let S,, be the
S—mapping from X into itself generated by B,,, B,,_1, -+, B1 and ky, kn—1,- -, k1
with N>, F(B,) NGMVEP(p, 9, T)NVI(A,X) # 0. For zyp € X, suppose that
{zn}, {vn}, {pn} are generated by

Hn = Trn(xn - rnTxn>
Up = Px (Mn - A7L14Mn>

3.1 . Qq Tn
Wn =7 an($n> + msnyn

( Tnt+1 = ann + (1 - Bn)wn

foralln=0,1,2,---, where ay, + By, + v = 1 with ay, > 0, B, > 0,7, > 0, {\,,} is
a sequence in [0, b] and {r,} is a sequence in [0, d|, where b € [0, 2«) and d € [0, 2m).
Assume that {a, }, {Bn}, {7}, {\n} and {r,} satisfy the following conditions:

(1) limy—oo = 0, 222 @, = 00;

(2) liminfy_oe An > 0, iMoo [Ans1 — An| = 0;

(3) liminf, oo 7y > 0, limy, o0 [Tnt1 — Tn| = 0;

4) 0 < liminf,,_, B, < limsup,_ On < 1.

Then {z,}, {vn} and {u,} converge strongly to the point z* € N>, F(B,) N
GMVEP(¢,%,T)N VI(A, X), where

2" = Pree  P(By)nGMVEP(o,T)nVI(AX)f(27)-
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Proof.  Since the projection mapping P is nonexpasive and f is contractive, it is

easy to see that szozlF(Bn)QGMVEP(%%T)QVI(AX)f is a contraction mapping and so
there exists z* € X satisfies

Z*:Pmoo

n=1

F(Bu)NGMVEP(p,0,T)vI(AX) ] (27).
Letv € N2, F(B,) NGMVEP(p,¢, T)NVI(A, X). For each n, we have

v=T,, (v—r,Tv)=Sw

and so
= vI? = 1T, (20 — raT@n) = T, (v = raTv)|?
< |lxp —rpTxy — v+ rnTyH2
62 = ||lzn — V|* = 2ru@p — v, Ty, — TV) + 12| Ty, — Tv||?

< ||zpn — VH2 —2mry, || Tz, — TVH2 + riHTa:n — TVH2
= ||@y, — VH2 + r(rn — 2m)|| Tz, — TVH2
< an — vl

It follows from (2.6) that v = Px(v—\, Av). Since A is a a-inverse-strongly monotone
mapping and Px is a nonexpansive mapping, we get

v = v|I* = [|1Px (tn — AnApn) — Px (v = A Av)|?
S Hun - Anf4ﬂn —v+ ARAVH2
(3.3) ) )
< lpn = I + An(An = 20) [[Apn — Av|
< lpm = v1*.
Thus, (3.2) and (3.3) imply that

lvn = vl < lpn = v < lln = vl

Let .
Tl ) -

Obviously, we know that ||z1 — v|| < M. Suppose ||z, — v|| < M. Then

M = max{||z, — V||
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201 — vl

llon f(zn) + By + YnSntn — V|

an|[f(xn) = vl + Bullzn — Il + val Swvn — v

anl| f(zn) = FW) + anllf () = V[l + Bullzn — V]| + nllSnvm — V]
ankl|zn — vl + anll f(v) = vl + Bullzn — Il + Anllvn — v

(ank + Bn)l|zn — v + anll f(v) = VI +Anllzn — V]

(ank + Bn + )20 — vl + o[ f(v) — v

— (1= an(1 = k) n — ] + an(1 — L2

11—k
< (1= on(l— k)M + an(1— k)M
=M

ININ

IN

3.4

IN

and so ||z, 41 — v|| < M for all n € N. Furthermore, we know that {xz,,} is bounded

and so do {un}, {vn}, {fzn}, {Apn}, {Snvn}, {wn} and {Tz,}.
Next we prove that ||z,+1 — x| — 0. In fact, it follows from

Hn = Trn (xn - TnTIBn), HUn+1 = Trn+1 (xn—i—l - rn—l—leBn—l—l)

that, for any y € X,

(3.5) @ y) +(Y) = Y(pn) + e(TTn, y — fin) + r3<y ~ fins fin — ) € C

n

and

(P(Mn-f—la y) + w(y> - w(ﬂn-l—l) + €<Txn+la Y- Mn+1>
(3.6)

+ (Y = tnt1, pnt1 — Tny1) € C.

Tn+1

Letting y = ptn4+1 in (3.5) and y = pu,, in (3.6) and adding the above two inequalities,
we get

1 1
(3.7) e<Mn—|—1 — Hn, — (Mn —Tp+ TnTxn> - —(Mn—i—l —Tp41 T rn+1Txn+1>> eC.

n T'n+1
Since e € C and C is a closed convex cone, we obtain

,
(3.8)  (Mnt1 — Hns fn — Ty + 1 T2y — ﬁ(ﬂn—l—l — Tpp1 + 1T 2nq1)) >0,
n+

which implies that

<Mn+1 — My P — Pt 1+ Pngl — T + 1T Ty
3.9 Tn

(Mn—f—l — Tp+1 + Tn+1Tan+1>> Z 0
Tn+1
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and so

Hﬂn—i—l - MnH2 < <Mn+1 — HMn, Tn+1 — Tn

T'n

+ranBn - ranBn—l—l + (1 - ” )(Mn—l—l - xn+1>>

1 n+1
(3.10) < Ntntr = pallll@asr = raT i)

‘rn—l—l - rn‘R

—(xp — Ty +
T'n+1

)

where
R = sup{||pn+1ll + [[wnt1[| + [ Tzpall, n=0,1,2,--}

For any z, y € X and r € (0, 2d), we have

I(Z = rT)x = (I = rT)y|?
= ||z —y) = r(Tz ~ Ty)|*
= llo =yl = 2r(z —y, T = Ty) + r*|Tz — Ty|

(3.11)
< & =yl = 2rm||Tz — Ty|* + r*| Tz — Ty|®

IN

lz = ylI* +r(r — 2m)||Tz — Ty|*

IN

lz = ylI*.
From (3.10) and (3.11), we get

‘rn—l—l - rn‘ R.

[na1 = pin| < [|2ngr — @nll +
Tn+1

On the other hand, it follows that

V1 — vall
= | Px(ptn+1 — A1 Apint1) — Px (i — AnApa) |
< 1 — A1 Apins1 — pin + An A ||
312) = ke = AnsrApnes = (n = AnrApin) = AngrApin = AnApn) |
< N (ns1 = AnprApnga) = (= A Apn) || 4 [Angr = Anl[| Ap|
< b1 = pall 4 [Angr = Anll[ Apn|

T — T
< Nowss — ol + T =1l gen - Al
Tn+1

where
K = sup{||f(zn) | + [|Snvull + [|zall + [[Apnll, n € N}
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Obviously, we get that
|wnt1 — wal|

Ant1 In+1 7%) Tn
= ||——f(x +——S Vg1 ——— f(xp) ——— S,V
Hl_ﬂn—i—lf( n+1> 1_Bn+1 n+1¥n+ 1_an( n) 1_571 ntn

On

Ant1 Hf([]jn+1> _ f(xn)H + Hf(xn)H ] ’ Ant1

T 1-6un 1= Bp1 1B
[ Snt1vn1ll - ’ | 1S, gt — S|
(3 13) l_ﬂn—I—l l_ﬂn 1_7n+1
) kCtn+1 ’ Qp41 7%)
< —————||xpe1 — x| + 2K —
1 _Bn—i—lH mt nH 1 _Bn—l—l 1 _Bn
1
+ (o = ll + 1S i1vn — Sovnll)
1-— Bn—f—l
kan-}—l + Yn+1 ’ Opt1 Qp,
< ————||lzpa1 — 20| + 2K —
1-— Bn—f—l H i nH 1-—- Bn—f—l 1-—- Bn
r -
1-— Bn—f—l Tn+1
and so
lwnt1 — wnll = [[Znr1 — 2nll
ant1(k—1) Qnt1 U

x — Tnl|| + 2K —
lonr =l 1=Bpt1 1—=0n

G4 =50

Tpal — T
i Yn+1 <‘ n+1 n‘R—FK‘/\n—l—l _ /\n‘ + HSn—HVn — SnVnH)
1= B T+l
It is easy to check that
-1
TR Gl B T 5 S Y
n—oo 1 — Bn—f—l n—oo 1 — Bn—f—l 1-—- Bn
and |
Tpal — T
lim ‘nﬂinR + K| Ag1 — M| + |Sns1vn — Snva|| = 0.
n—0oo Tn+1

It follows from (3.14) that

lim sup([|wn41 — wnll = [|#n41 — 2n|)) <0
n—oo

From Lemma 2.4, we have
lim ||wy, — 2] =0
n—oo
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and so
lim ||zp41 — 2n|| =0, lim [|vp41 — vl =0, lim ||pns1 — pal| = 0.
n—oo n—oo n—oo

Now, we prove that ||.S, v, — v,|| — 0. In fact, it follows that

[z = Savn|l < [|on — Sn—1vn-1ll + [|Snvn — Sp-1vn-1|
= [lan—1f(Tn-1) + Bn-1Zn—1 + Yn—15n-1Vn—1
—Sn_1Vn-1l| + [|Sntn — Sptn—1||
< Bnlllen—1 = Svnall + lom [l f (#n-1) = Sn-1vm]

+HVn - Vn—lH + HSnVn—l - Sn—lyn—IH

1— (8,
= (1= 7220 1)) fones = Sl

+Han-1|lf(Tn-1) = Sn—1vn-1]|

+HVn - Vn—lH + HSnVn—l - Sn—lyn—IH~

A

(3.15)

From the conditions of Theorem 3.1, we get

1—18,—
1_%(1_K>6[071]7 Z?:l(l_‘ﬂn—lbzoo
and
lim ||y —vp—1]| =0, lim |ap—1]|||f(zn-1) — Svp—1]] = 0.
n—00 n—00

Thus, we have

. HVn - Vn—lH + ‘an—l‘Hf(xn—l> - SVn—lH + HSnVn—l - Sn—lyn—IH o
lim =

0.
n— 00 1-— ‘Bn—l‘

From Lemma 2.5, we know that ||z,, — Sy, || — 0. It follows from (3.3) that

1 = v

= Hanf(xn> + ann + ’YnSnVn - VH2

< apl|f(zn) — VH2 + Bullzn — VH2 + Vol Snvn — VH2
(3.16) < apl|f(zn) — VH2 + Bullzn — VH2 + Ynllvn — VH2
< an|f(zn) = VI + Bullzn — vI* + vl — vI?

+An( A = 20) || Apn — Av|)?}
anl f(@n) = V| + 20 = VI? + YnAn(An = 20) || A, — Av|P?,

IN
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which implies that
YnAn (200 — Ap) (| A, — AVH2
(3.17) < anl|f(zn) = vI* + lzn = v]* = 2 — v
< gl f(zn) = VI + 21 — zall(lzn — V]| = 2nes = v]))
forn=0,1,2,---. Since

liminfy, >0, liminfA, >0, |zpy1 —znl—0, an—0, 2a—A, >0
n—oo

n—oo

and {z,} is bounded, it follows from (3.17) that ||Au, — Av|| — 0. Since v €
VI(A, X), we have

llvn — VH2 = ||Px(ptn — AnApn) — Px (v — /\nAV>H2

< <(Mn - /\nAMn> - (V - /\nAV>a Un — V>
1
. = 300 = AnAin) = (v = XA P + P
[ (kn = va) = An(Apn — Av)|*}
1
< Sl = vI? + llvn = VI = (i = va?
—2n{tn = Vi, Aty — Av) + A7 Apy, — Av|?)}
and so
Up —V 2 < HUn —V - Hn — Vp 2
(3.19) | [ 1= =1 |

20\ iy — Uiy Apty — AVY — N2 || Apty, — Av||?
From (3.19), we obtain

Zns1 —v]?

ln f(20) + Bnen + nSuvn — v

anlf(@n) = vI|* + Ballen = vII® + vl Sprm — v

an [ f(@n) = vI* + Ballen = vI® + yallvn - v)?

anllf(zn) = vI* + Ballzn = vII® + v {llin = vII® = llpn — vall?
+2\ (i — Uy Apiy — AV) — N2|| A, — Av|?}

I

IN

(3.20)

IN

IN

o | f(an) = VI + |20 = vI* = ol — v ®
+27n/\n<Mn — Vn, Aﬂn - AV> - ’)’n/\iHAun - AVH27

which implies that
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321) Yallbn = vall? < anll (@) =) + |20 —2nt1 || (|20 — ||+ | Zns1 — )
29 Anl| A = Av|l|| i — vl

Since liminf, oo v > 0, {z,}, {pn} and {v,,} are all bounded, av,, — 0, ||Au, —
Av|| = 0 and ||z, — ny1]| — 0, it follows from (3.21) that || — || — 0.
On the other hand, by the definition of {z,,}, we have

1 = v

= Hanf(xn> + ann + ’YnSnVn - VH2

< aull @) = VI + Bullen = VI + 30 Sun =
R e

< aull @) = vI® + Bullen = VI + 3l = 11

< anll ) = vI® + Bl — v

+yn{llzn = vI* + Xa(rn = 2m) || Tz, — Tv|*}

< anl| f(@n) = VII® + lzn = v|1* = yura(2m — ro)| T2y — Tv|f?
and so
YuTn (2m — )| Ty — T||?
(3.23) < gl f(zn) = v|* + o = VII* = [lzne — v

< anl|f(zn) = vI* + e = 2all(lon = vl = o = vl)

Since liminf,, o v, > 0, liminf, o7y, > 0, lim, oo y = 0, limy, o0 ||Tny1 —
Zn|| = 0, 2m — r,, > 0, both || f(x,) — v| and ||z, — V| — ||xnt+1 — v|| are bounded,
we get ||Tz,, — Tv|| — 0. By v =T, (v — r,Tv), we have

| fr — VH2 = T, (xn — rnTn) — Tp, (v — rnTV>H2
S <(xn - rnTxn> - (V - T’nTV>, Mn — V>

1
5 Ul = vI? + (20 = rnTn) = (v = raTw)|?

(3.24) )

_Hxn — Hn — rn(Txn - TV)H }

1

< gillan = VI + i = v = (len — pin )

_2rn<xn — Hn, T, — TV> + r?LHTxn - TVH2>}

and so
lpn = v)1? < Nlwn — VI = llon — pn)?

(3.25)

+27 (T — pin, Ty — TV) — 72| Ty, — T||?
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Now (3.4) and (3.25) imply that

201 — v
< apllf(wn) — VH2 + Bullwn — VH2 + Ynllvn — VH2
< anl|f(zn) = VI + Bullan — vII* + Yallpn — v

(3.26) < anl f(@n) = vII* + Bullzn — vII + w{llzn — vl = lpn — 2al?
+2rn<xn — pin, Ty — TV> - r?LHTxn - TVH2}

IN

anllf(@n) = VI® + llzn = vI* = vl — zal®

+2v, 0Ty, — i, Ty — TV)

and so
Yalltn = zall* < anll f(zn) = v|* + llzn = v|* = 20 — v
(3.27) +2v,rn(Ty — pn, Ty — TV)
< | f(xn) = VIIP + 297 (20 = pin, Tty — Tv)
Fllznt = zall(len = vl = llzni — vl
Since limy,—00 v = 0, limy, o0 [|Znt1 — @n|| = 0, @y — 0 and ||, — 2py1|| — O,

we know that ||y, — x,|| — 0. It follows from
1Snvn — vnll < [1Savn — @nll + |20 — pnll + | ptn — vall

that limy, o ||Sntn — V|| = 0 and so lim,, . || St — v, = 0.
Next we show that

limsup(f(z*) — 2", z, — 2*) <0,

n—oo
where z* is a fixed point of szozlF(Bn)QGMVEP(¢7¢7T)QVI(A7X)f. We choose a sub-

sequence {vy, } of {v,} such that

limsup(f(z*) — 2%, Svp, — 2%) = lm (f(2%) — 2%, vy, — 27).
n—00 100

Since {v,, } is bounded, there exists a weakly convergent subsequence Vn, of vy, such
that Vn;, — 20 Without loss of generality, we can assume that v,,, — zp. By the facts
that

lim ||Svy, —vp]| =0, lim ||y — ppl =0, lm |2, — p,| =0,
n—00 n—00 n—oo

we get
SVni 4ZO) Mnl 4ZO) xni 4ZO'
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Now we show that zyp € N2, F(B,) N GMVEP(p, ¢, T)NVI(A X). We
first prove that zp € NS, F'(B,). Assume that 29 ¢ NS, F'(B,) = F(S), that is,
20 # S(z0). Since x,, — 2o and H satisfies the Opial condition, we get

liminf ||z, — 2|
1—00
< liminf ||z, — Sz
1—00
< liminf([|an, — Sap,|| + [|S2n, — Szol)
1—00
< lim inf([|an, — Svp, || + [[Szn, — Svn, || + [|S2a, — Szol)
1—00
< hgéglf(me - SnzynzH + HSme - SanH + me - VnzH + stm - SZUH)

< liminf |z,, — 20l
1— 00

which is a contradiction. Thus, 29 € N2, F(B,). Next, we show that zy €
GMVEP(p,¢,T). In fact, since u,, = T, (v, — 7, Txy,), we have

Ok, y) + 0 (y) = Y (pn) + e{Trp, y — pin)

e
+r—<y—umﬂn—$n>€a VyGXa
n

(3.28)

which implies that

0 € (Y, ) — {¥(Y) — Y (pn) + e(Tzn, y — 1n)

3.29
3-29) +r3<y—un,un—xn>}+C, Vy € X.

Let yy = (1 —t)zo + ty for all t € (0,1]. Since y € X and zp € X, we get y; € X
and now (3.28) shows that

et — by Tys) € 0(Yts ;) — (W () — Y (pin;)) — e(TTp;, Yt — pin;)
e
—r—<yt — s Png — Tng) + (Y — ping, Tye) + C

n;
= (P(yt; Mnl> + €<yt - /’Lniu Tyt - T/’L’L> + €<yt - /’Lniu Tﬂnl - Txnl>

—( () — ¥ (tn,)) — €Yt — fin,, u> el

ng

(3.30)

By the fact ||, — ,,|| — 0 and the properties of T and ¢, we have

o — X
HTﬂni - Tme — 0, Mmr = — 0, (v — gy Thin; — Txni> — 0.
-

7

and so

(3.31) e{yr — 20, Tyt) € ©(yt, 20) — (Y (ye) — ¥ (20)) + C.
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It follows from (A1), (A4) and (Ag) that

to(ye,y) + (1 =)oy, 20) + t(y) + (1 — )1 (20) — ¥ (ye)
€ o, y) +(ys) — Y(ye) + C
= C,

which implies that

(332 —tle(yey) +¥(y) — ()] — (1 =Dy, 20) + P(20) — P (we)] € =C.
From (3.30) and (3.31), we get
—tle(ye,y) + ¢ (y) = v(w)] € (1= 1)y, 20) + P(20) = P(ye)] = C
€ (I —=t)e(yt — 20, Ty) — C
and so
—tle(ye, y) + ¥ (y) — ()] — e(1 =)ty — 20, Tyr) € —=C.

It follows that

oy, y) +9(y) — Y (ye) +e(1 — ) (yt — 20, Tyr) € C.

Letting ¢ — 0, we obtain
e(20,y) + ¥(y) —¥(20) + e(T20,y —20) €C, VyeX
and so z9g € GMV EP(p,v,T). Now, we show that zg € VI(A, X). Define

_ AM+NXM; MGX,
(I)“_{(D, pé X

Then we know that ® is a maximal monotone mapping (see [19]). Letting (u,w) €
G(®), we have

<M — Vn, w> Z 0
and so

(u— zp,w) > 0.
Since v, = Px (pn — AnAuy,) and w — Ap € Nxp, we have (u — vy, w — Au) > 0.
Furthermore,

<M - Vni7w> > <M — Vn;s AM>
Un; — Hn,;
A,

7

Vni _Mnl >
o

7

= <M_Vni7 Ap— Ayni>+<u_yni7 Avp, — Auni>_<u_yni7

Vni - Mnl >
SV

7

> <M_ VnivAVni - Auni> - <M_ Vngs
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Since A is a Lipschitz continuous mapping and ||, — v, || — 0, we get
<M — 20, w> >0
and so zg € VI(A, X). From (3.28), we have

limsup(f(z*) — 2%, z, — 2*) = limsup(f(2*) — 2%, Spvn — 2%)
n—00 n—00

= lim (f(z*) — 2%, Szp, — %)

1—00
= (f(z")— 2", 20— 2%) <0.
It follows that

1 = 217

<anf(xn> + ann + ’YnSnVn - Z*a Tn+l1 — Z*>

an(f(zn) = f(2%), np1 — 27) + o (f(27) = 2% 2nga — 27)

IN

1 * * 1 * *
+5Bn(lenss = 2711 + lon = 271%) + S ([1Snvm = 27 + wnsr — 2"[1%)

IN

Sl ) = FEP + zais = 17 + anlF () = 2, nss — 20)
50 = a)(lznsr = =1 + flz — =)
< Sllnes =212 4+ 21— an(1 = Bl — I + @ () = 2%, s — 27,
which implies that
st = 1 < (1= an(l = K)]llen — 2 + 2an( (%) = 2,211 = 7).
Since limy, o0 o = 0, 272 ; v, = 00 and

limsup(f(z*) — z*, z, — 2*) <0,

n—00
It follows from Lemma 2.5 that
[2n — 27| = 0
and so
lttn = 2" = 0, flvn — 27| = 0.
This completes the proof. ]

Remark 3.2. Theorem 3.1 extends and improves Theorem 3.1 of Peng and Yao
[17].
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