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A COMPLETE CLASSIFICATION OF BIFURCATION DIAGRAMS OF A

P -LAPLACIAN DIRICHLET PROBLEM II. GENERALIZED

NONLINEARITIES

Feng-Lin Wang and Shin-Hwa Wang*

Abstract. We study the bifurcation diagrams of classical positive solutions u with
‖u‖∞ ∈ (0,∞) of the p-Laplacian Dirichlet problem

{
(ϕp (u′(x)))′ + λfq,r(u(x)) = 0, − 1 < x < 1,

u(−1) = 0 = u(1),

where p > 1, ϕp (y) = |y|p−2
y, (ϕp (u′))′ is the one-dimensional p-Laplacian,

λ > 0 is a bifurcation parameter, and

fq,r(u) =

{
|1 − u|q , if 0 < u ≤ 1,

|1 − u|r , if u > 1,

with positive constants q and r.We give explicit formulas of bifurcation curves of
classical positive solutions on the (λ, ‖u‖∞)-plane. More importantly, for differ-
ent (p, q, r), we give a complete classification of all bifurcation diagrams. Hence
we are able to determine the (exact) multiplicity of classical positive solutions for

each (p, q, r, λ). Our results generalize the results of Lee et al. [J. Math. Anal.
Appl., 330 (2007), 276-290] with nonlinearity fq,r generalized from q = r > 0
to q, r > 0.

1. INTRODUCTION

This paper is a continuation of the paper by Lee et al. [4]. In the present paper, we

study the bifurcation diagrams of classical positive solutions u with ‖u‖∞ ∈ (0,∞) of
the p-Laplacian Dirichlet problem

(1.1)

{
(ϕp(u′(x)))

′ + λfq,r(u(x)) = 0, − 1 < x < 1,

u(−1) = 0 = u(1),
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where p > 1, ϕp(y) = |y|p−2 y, (ϕp(u′))
′
is the one-dimensional p-Laplacian, λ > 0

is a bifurcation parameter, and the nonlinearity

(1.2) fq,r(u) =

{
|1 − u|q , if 0 < u ≤ 1,

|1 − u|r , if u > 1,

with positive constants q and r. Notice that the nonlinearity fq,r(u) in the p-Laplacian
problem (1.1) satisfies hypotheses (H1)-(H3):

(H1) fq,r(u) ∈ C[0,∞) ∩ C∞([0, 1)∪ (1,∞)),
(H2) fq,r(1) = 0, fq,r(u) > 0 for u ≥ 0, u 6= 1,
(H3) fq,r(u) satisfies a locally Lipschitz condition of order p − 1 at u = 1− if and

only if q ≥ p − 1, and fq,r(u) satisfies a locally Lipschitz condition of order
p− 1 at u = 1+ if and only if r ≥ p− 1.

When p = 2, among other results, Smoller and Wasserman [9, Section 2, pp.
276-277] studied the exact multiplicity of positive solutions of the Laplacian Dirichlet

problem

(1.3)

{
u′′(x) + λf(u(x)) = 0, − 1 < x < 1,

u(−1) = 0 = u(1),

where the nonlinearity

f = f∗(u) = (u− 1)2(u− c), 0 < 1 < c <∞,

satisfies (H1′) f∗(u) ∈ C∞[0,∞) and (H2′) f∗(1) = f∗(c) = 0, f∗(u) > 0 for
u ∈ (0, 1)∪ (1, c), and f∗(u) < 0 for u ∈ (c,∞). (Cf. [7, Section 5] for numerical
simulations of (1.3) for similar general nonlinearities f .) Similarly, when p = 2 and
assuming that a general nonlinearity f satisfies (H2′) with f∗ replaced by f , and that
f is a locally Lipschitz continuous function on (0,∞), P. L. Lions [6, Section 3.2]
studied the existence and multiplicity of positive solutions of

{
∆u+ λf(u) = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded regular domain in RN , N ≥ 1.
For (1.1) with q = r > 0 and

fq,r(u) = fq,q(u) = |1 − u|q for 0 ≤ u <∞,

Lee et al. [4] studied (classified) bifurcation diagrams of (classical) positive solutions

of (1.1) and they gave the exact multiplicity of classical positive solutions for each

(p, q, r, λ); see [4, Theorem 2.1 and Corollary 2.2] for details.
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In this paper, we generalize [4, Theorem 2.1 and Corollary 2.2] to (1.1) for more

general nonlinearity fq,r in (1.2) with q, r > 0. We study (classified) bifurcation dia-
grams of (classical) positive solutions of (1.1) by modify the time-map method (quadra-

ture method) used in [4]. The next Proposition 1.1 on some properties of the corre-

sponding time map formula Tfq,r (α) of (1.1) slightly generalized [4, Proposition 1.1].
Proposition 1.1 mainly follows by applying similar arguments in the proofs of [3, Theo-

rems 2.1, 2.5-2.7 and 2.9-2.10] and by [5, Theorem 5.3]; we omit the proofs. (Note that,

for Proposition 1.1(i), it is well-known and easy to prove that Tfq,r (α) is strictly increas-
ing on (0, 1) since (p− 1)fq,r(u) − uf ′q,r(u) = (1 − u)q−1 [(p− 1)(1− u) + qu] > 0
on (0, 1) for p > 1, q > 0.)
Define

(1.4) Fq,r(u) =
∫ u

0
fq,r(t)dt =





1
q+1

[
1− (1− u)q+1

]
, if 0 < u ≤ 1,

1
q+1

[
q+1
r+1 (u− 1)r+1 + 1

]
, if u > 1,

and

Ifq,r =





(0,∞) , if limα→1−
∫ α
0

du

[Fq,r(α)−Fq,r(u)]1/p <∞,

(0, 1)∪ (1,∞) , otherwise.

Proposition 1.1. Consider (1.1) with constants p > 1 and q, r > 0. Then, given
λ > 0, there exists a unique (classical) positive solution to (1.1) with ‖u‖∞ = u(0) = α
if and only if

(1.5) Tfq,r (α) ≡
(
p− 1
p

)1/p ∫ α

0

du

[Fq,r(α) − Fq,r(u)]
1/p

= λ1/p for α ∈ Ifq,r .

Moreover, Tfq,r (α) satisfies

(i) Tfq,r (α) ∈ C((0, 1)∪ (1,∞)) and Tfq,r(α) is strictly increasing on (0, 1).

(ii) limα→0+ Tfq,r(α) = 0.

(iii)

lim
α→1−

Tfq,r(α) =





[
(p−1)(q+1)

p

]1/p
p

p−1−q , if q < p− 1,

∞, if q ≥ p− 1.
(iv)

lim
α→∞

Tfq,r (α) =





∞, if r < p− 1,
(p− 1)1/p π

p csc π
p , if r = p− 1,

0, if r > p− 1.
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2. MAIN RESULTS

The main results in this paper are next Theorems 2.1 and 2.2, and Corollary 2.3.

First, in Theorem 2.1, we give explicit formulas of the time map Tfq,r(α) (= λ1/p)

of (1.1). Subsequently, in Theorem 2.2, for different (p, q, r), we give a classification
of bifurcation diagrams of (classical) positive solutions of (1.1) on the (‖u‖∞ , λ1/p)-
plane. Hence, in Corollary 2.3, we are able to determine the (exact) multiplicity of

(classical) positive solutions of (1.1) for each (p, q, r, λ). We note that Theorem 2.2
generalizes [4, Theorem 2.1], and Corollary 2.3 generalizes [4, Corollary 2.2]. We

also note that Theorem 2.2 and Fig. 1 suggest all possible bifurcation diagrams of

(classical) positive solutions of p-Laplacian problem (1.1) with fq,r(u) replaced by
general nonlinearities f satisfying the following hypotheses:

(H1′′) f(u) ∈ C[0,∞) ∩ C2([0, 1)∪ (1,∞)),
(H2′′) f(1) = 0, f(u) > 0 for u ≥ 0, u 6= 1, and limu→∞ f(u) = ∞,

(H3′) The convexity of f(u) keeps one sign on (0, 1) and on (1,∞), respectively.

Further studies on this problem are necessary.

We first recall some special functions and Euler’s constant used in the main results

as follows (see e.g. [10, pp. 44-45 and 56] and [8, pp. 34 and 184 ]):

(i) the gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt (x ∈ R\{0,−1,−2, · · ·}),

(ii) the psi function

ψ(x) =
d

dx
lnΓ(x), (x ∈ R\{0,−1,−2, · · ·}),

(iii) the hypergeometric function

(2.1) F (a, b; c; x) =
∞∑

n=0

(a)n(b)n

n!(c)n
xn,

where |x| < 1, a, b, c ∈ R, c 6= 0,−1,−2, . . . and Pochhammer’s symbol

(2.2) (a)n ≡
{

1, if n = 0,
a(a+ 1) · · ·(a+ n− 1), if n ≥ 1,

(iv) the generalized hypergeometric function

(2.3) PFQ(a1, a2, · · · , aP ; b1, b2, · · · , bQ; x) =
∞∑

n=0

(a1)n · · · (aP )n

n!(b1)n · · · (bQ)n
xn,

where P is the number of the numerator parameters ai ∈ R, Q is the number of
the denominator parameters bj ∈ R, bj 6= 0,−1,−2, . . . , and |x| < 1,
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(v) Euler’s constant

γ ≡ lim
n→∞

(
n∑

m=1

1
m

− lnn

)
≈ 0.5772.

Theorem 2.1. Consider (1.1) with constants p > 1 and q, r > 0. Then the following
assertions (A) and (B) hold:

(A) For 0 < α < 1,

(I) If q 6= p− 1, then

Tfq,r(α) =
[
(p− 1)(q + 1)

p

]1/p



Γ
(

p−1
p

)
Γ
(

q+1−p
pq+p

)

(q + 1)Γ
(

q
q+1

) (1 − α)(p−1−q)/p

− p

q + 1 − p
F

(
1
p
,
q + 1 − p

pq + p
;
pq + q + 1
pq + p

; (1− α)q+1

)]
.

(II) If q = p− 1, then

(2.4)
Tfq,r (α) =

(p− 1)1/p

p2

{
p

[
p ln

(
1

1 − α

)
− γ − ψ

(
p− 1
p

)]

−(1 − α)p
3F2

(
1, 1,

p+ 1
p

; 2, 2; (1− α)p

)}
.

(B) For α > 1,
Tfq,r(α)

=
[
(p− 1)(r+ 1)

p

]1/p

(α− 1)(p−1−r)/p

×


 1
α−1

F

(
1
p
,

1
q+1

;
q+2
q + 1

;−r+1
q+1

(α−1)−(r+1)

)
+

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)


 .

Remark 1. In (2.4), for p > 1, we have

γ + ψ

(
p− 1
p

)
= −

∞∑

j=0

(
1

p−1
p + j

− 1
j + 1

)
< 0

by applying Lemma 3.1(xv) stated below.

Theorem 2.2. ([See Figs. 1 and 2]). Consider (1.1) with constants p > 1 and
q, r > 0. Then the following assertions (A) and (B) hold:
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Fig. 1. Classified bifurcation diagrams Tfq,r(α) of (1.1). λ̄ = (p−1)(q+1)
p

(
p

p−1−q

)p

and

λ∞ = (p − 1)(π
p csc π

p )p. (a) (max{0, (p − 2)/2} < q = r < p − 1) or (r < q <

p − 1). (b) q = r = (p − 2)/2 > 0. (c1) (q = r < (p − 2) /2 and p > 2) or
(for some q, r with q < r < p − 1). (c2) (for some q, r with q < r < p − 1). (d)
q < r = p − 1. (e) q < p − 1 < r. (f) q ≥ p − 1 > r. (g) q ≥ r = p − 1. (h)
q ≥ p − 1 and r > p − 1.

(A) If q < p− 1, then

(I) If r < p− 1, then
(i) limα→0+ Tfq,r(α) = 0, limα→∞ Tfq,r (α) = ∞, and

(2.5)
limα→1− Tfq,r(α) =

[
(p− 1)(q + 1)

p

]1/p p

p− 1− q
≡ (λ̄)1/p ≡ Tfq,r (1) = lim

α→1+
Tfq,r (α).

(ii) Tfq,r (α) ∈ C(0,∞) and Tfq,r(α) is strictly increasing on (0, 1].
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Fig. 2. Classified bifurcation diagrams Tfq,r (α) of (1.1), drawn on the (p, r)-plane with
p > 1 and q, r > 0. (A) q < p − 1. (B) q ≥ p − 1.

(iii)

lim
α→1+

T ′
fq,r

(α)

=





−∞, if (max{0, (p− 2)/2} < q = r < p− 1)
or (r < q < p− 1), (see Fig. 1(a))

0, if q = r = (p− 2)/2 > 0, (see Fig. 1(b))

∞, if (q = r < (p− 2)/2 and p > 2) or (q < r < p− 1)
(see Fig. 1(c1) and (c2)).
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(iv) If (max{0, (p− 2)/2} < q = r < p − 1) or (r < q < p − 1), then
Tfq,r (α) has at least one critical point at some α∗, a local minimum,
on (1,∞). In particular, if max{0, (p− 2)/2} < q = r < p− 1, then
Tfq,q (α) has exactly one critical point at some α∗, a local minimum,
on (1,∞), and for fixed p > 1, the number α∗ = α∗(q) satisfies

(2.6) lim
q→(p−1)−

α∗(q) = ∞ and lim
q→(max{0,(p−2)/2})+

α∗(q) = 1.

(Note that numerical simulations suggest that, for fixed p > 1, α∗(q)
is a strictly increasing function of q ∈ (max{0, (p−2)/2}, p−1). But
we are not able to give a proof.)

(v) If q = r ≤ (p− 2)/2 and p > 2, then Tfq,r(α) is a strictly increasing
function on [1,∞).
(See Fig. 1(c1) and (c2), and see Remark 2 stated below for Tfq,r(α)
in the case q < r < p− 1.)

(II) If r = p− 1, then
(i) limα→0+ Tfq,r(α) = 0,

lim
α→∞

Tfq,r (α) = (p− 1)1/pπ

p
csc

π

p
≡ (λ∞)1/p,

lim
α→1−

Tfq,r (α) =
[
(p− 1)(q + 1)

p

]1/p p

p− 1 − q
≡ (λ̄)1/p ≡ Tfq,r(1),

and

lim
α→1+

Tfq,r(α) =
[
(p−1)(q+1)

p

]1/p p

p−1−q+(p−1)1/p π

p
csc

π

p

= lim
α→1−

Tfq,r (α)+ lim
α→∞

Tfq,r (α) (= (λ̄)1/p+(λ∞)1/p).

(ii) For fixed p > 1, then there exists a unique number q∗ = q∗(p) ∈
(0, p− 1) such that

(2.7) lim
α→1−

Tfq,r(α) − lim
α→∞

Tfq,r (α)




> 0, if q > q∗,

= 0, if q = q∗,
< 0, if q < q∗.

(iii) Tfq,r (α) ∈ C((0, 1) ∪ (1,∞)), Tfq,r(α) is continuous at 1−, and
Tfq,r (α) is strictly increasing on (0, 1] and is strictly decreasing on
(1,∞).

(iv)

lim
α→1+

T ′
fq,r

(α)

=





−∞, if max{0, (p−2)/2}<q<p−1,

−2(2−p)/p(p−1)1/p
Γ
(

2
p

)
Γ
(
p−1
p

)

Γ
(

1
p

) , if q=(p−2)/2>0,

0, if q < (p− 2)/2, p > 2.
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(III) If r > p− 1, then
(i) limα→0+ Tfq,r(α) = 0, limα→∞ Tfq,r (α) = 0,

lim
α→1−

Tfq,r (α) =
[
(p− 1)(q + 1)

p

]1/p p

p− 1 − q
≡ (λ̄)1/p ≡ Tfq,r(1),

and limα→1+ Tfq,r (α) = ∞.

(ii) Tfq,r (α) ∈ C((0, 1) ∪ (1,∞)), Tfq,r(α) is continuous at 1−, and
Tfq,r (α) is strictly increasing on (0, 1] and is strictly decreasing on
(1,∞).

(B) If q ≥ p− 1, then
(I) If r < p− 1, then

(i) limα→0+ Tfq,r(α) = 0 and limα→∞ Tfq,r(α) = ∞.
(ii) limα→1− Tfq,r(α) = ∞ = limα→1+ Tfq,r (α).

(iii) Tfq,r (α) ∈ C((0, 1)∪ (1,∞)). Moreover, Tfq,r(α) is strictly increas-
ing on (0, 1) and has exactly one critical point at some α∗, a local
minimum, on (1,∞).

(II) If r = p− 1, then

(i) limα→0+ Tfq,r(α) = 0 and limα→∞ Tfq,r (α) = (p − 1)1/p π
p csc π

p ≡
(λ∞)1/p.

(ii) limα→1− Tfq,r(α) = ∞ = limα→1+ Tfq,r (α).
(iii) Tfq,r (α) ∈ C((0, 1)∪(1,∞)).Moreover, Tfq,r(α) is strictly increasing

on (0, 1) and is strictly decreasing on (1,∞).

(III) If r > p− 1, then

(i) limα→0+ Tfq,r(α) = 0 and limα→∞ Tfq,r(α) = 0.
(ii) limα→1− Tfq,r(α) = ∞ = limα→1+ Tfq,r (α).
(iii) Tfq,r (α) ∈ C((0, 1)∪(1,∞)).Moreover, Tfq,r(α) is strictly increasing

on (0, 1) and is strictly decreasing on (1,∞).

Remark 2. ([See Fig. 1(c1) and (c2)]). In Theorem 2.2(A)(I), if q < r < p− 1,
then Tfq,r(α) is not necessarily a strictly increasing function of α on [1,∞). Actually,
for any fixed q < p− 1, if r → (p− 1)−, by (3.13) stated below, we compute and find
that

T ′
fq,r

(α = 2) → − (p− 1)1/p 1
q + 1

∫ 1

0

x
−q
q+1

(
1 + p

q+1x
)(p+1)/p

dx < 0.

So it is easy to see that Tfq,r(α) has at least two critical points on (1,∞). Hence (1.1)
has at least three positive solutions u with ‖u‖∞ > 1 for a certain range of λ > 0.
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Remark 3. ([See Fig. 1(a)]). Numerical simulations suggest that, In Theorem

2.2(A)(I)(iv), if r < q < p− 1, then Tfq,r(α) has exactly one critical point at some α∗,
a local minimum, on (1,∞). But we are not able to give a proof.

Corollary 2.3. [See Figs. 1 and 2]). Consider (1.1) with constants p > 1 and
q, r > 0. Then the following assertions (A)-(H) hold:

(A) If (max {0, (p− 2)/2} < q = r < p − 1) or (r < q < p − 1), then there exist
two positive numbers

λ∗ ≡
[

min
α∈(1,∞)

Tfq,r(α)
]p

<
(p− 1)(q + 1)

p

(
p

p− 1 − q

)p

= λ̄

such that

(I) Ifmax {0, (p− 2)/2} < q = r < p−1, then λ∗ =
[
minα∈(1,∞) Tfq,r(α)

]p =[
Tfq,r (α∗)

]p
and

(i) for 0 < λ < λ∗, (1.1) has exactly one positive solution u, which

satisfies ‖u‖∞ < 1,
(ii) for λ = λ∗, (1.1) has exactly two positive solutions u1 < u2, which

satisfy ‖u1‖∞ < 1 < ‖u2‖∞ ,
(iii) for λ∗ < λ < λ̄, (1.1) has exactly three positive solutions u1 < u2 <

u3, which satisfy ‖u1‖∞ < 1 < ‖u2‖∞ < ‖u3‖∞ ,
(iv) for λ = λ̄, (1.1) has exactly two positive solutions u1 < u2, which

satisfy ‖u1‖∞ = 1 < ‖u2‖∞ ,
(v) for λ > λ̄, (1.1) has exactly one positive solution u, which satisfies

1 < ‖u‖∞,
(vi) For fixed p > 1, the number λ∗ = λ∗(q) satisfies

limq→(p−1)− λ
∗(q) = (p− 1)

(
π
p csc π

p

)p
= λ∞, if p > 1,

limq→0+ λ∗(q) =
(

p
p−1

)p−1
, if 1 < p ≤ 2,

lim
q→( p−2

2 )+ λ∗(q) = 2p−1(p− 1), if p ≥ 2.

(II) If r < q < p− 1, then
(i) for 0 < λ < λ∗, (1.1) has at least one positive solution u, which

satisfies ‖u‖∞ < 1,
(ii) for λ = λ∗, (1.1) has at least two positive solutions u1 < u2, which

satisfy ‖u1‖∞ < 1 < ‖u2‖∞ ,
(iii) for λ∗ < λ < λ̄, (1.1) has at least three positive solutions u1 < u2 <

u3, which satisfy ‖u1‖∞ < 1 < ‖u2‖∞ < ‖u3‖∞ ,
(iv) for λ = λ̄, (1.1) has at least two positive solutions u1 < u2, which

satisfy ‖u1‖∞ = 1 < ‖u2‖∞ ,
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(v) for λ > λ̄, (1.1) has at least one positive solution u, which satisfies

1 < ‖u‖∞.

(B) If q = r = (p−2)/2 > 0, then for λ > 0, (1.1) has exactly one positive solution.
(C) (I) If q = r < (p − 2)/2, then for λ > 0, (1.1) has exactly one positive

solution.

(II) If q < r < p− 1, then for λ > 0, (1.1) has at least one positive solution.

(D) If q < r = p− 1, by (2.7), then

(I) If q > q∗, then

(i) for 0 < λ ≤ λ∞, (1.1) has exactly one positive solution u, which

satisfies ‖u‖∞ < 1,
(ii) for λ∞ < λ ≤ λ̄, (1.1) has exactly two positive solutions u1 < u2,

which satisfy ‖u1‖∞ ≤ 1 < ‖u2‖∞ ,

(iii) for λ̄ < λ <
[
(λ̄)1/p + (λ∞)1/p

]p
, (1.1) has exactly one positive

solution u, which satisfies ‖u‖∞ > 1,
(iv) for λ ≥

[
(λ̄)1/p + (λ∞)1/p

]p
, (1.1) has no positive solution.

(II) If q = q∗, then

(i) for 0 < λ ≤ λ∞, (1.1) has exactly one positive solution u, which

satisfies ‖u‖∞ ≤ 1,
(ii) for λ∞ < λ <

[
(λ̄)1/p + (λ∞)1/p

]p
, (1.1) has exactly one positive

solution u, which satisfies ‖u‖∞ > 1,
(iii) for λ ≥

[
(λ̄)1/p + (λ∞)1/p

]p
, (1.1) has no positive solution.

(III) If q < q∗, then

(i) for 0 < λ ≤ λ̄, (1.1) has exactly one positive solution u, which satisfies
‖u‖∞ ≤ 1,

(ii) for λ̄ < λ ≤ λ∞, (1.1) has no positive solution,
(iii) for λ∞ < λ <

[
(λ̄)1/p + (λ∞)1/p

]p
, (1.1) has exactly one positive

solution u, which satisfies ‖u‖∞ > 1,
(iv) for λ ≥

[
(λ̄)1/p + (λ∞)1/p

]p
, (1.1) has no positive solution.

(E) If q < p− 1 < r, then

(i) for 0 < λ ≤ λ̄, (1.1) has exactly two positive solutions u1 < u2, which
satisfy ‖u1‖∞ ≤ 1 < ‖u2‖∞ ,

(ii) for λ > λ̄, (1.1) has exactly one positive solution u, which satisfies ‖u‖∞ >

1.
(F) If q ≥ p− 1 > r, then there exists one positive number

λ∗ ≡
[

min
α∈(1,∞)

Tfq,r (α)
]p

=
[
Tfq,r(α

∗)
]p

such that
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(i) for 0 < λ < λ∗, (1.1) has exactly one positive solution u, which satisfies

‖u‖∞ < 1,
(ii) for λ = λ∗, (1.1) has exactly two positive solutions u1 < u2, which satisfy

‖u1‖∞ < 1 < ‖u2‖∞ ,

(iii) for λ > λ∗, (1.1) has exactly three positive solutions u1 < u2 < u3, which
satisfy ‖u1‖∞ < 1 < ‖u2‖∞ < ‖u3‖∞ .

(G) If q ≥ r = p− 1, then

(i) for 0 < λ ≤ λ∞, (1.1) has exactly one positive solution u, which satisfies
‖u‖∞ < 1,

(ii) for λ > λ∞, (1.1) has exactly two positive solutions u1 < u2, which satisfy
‖u1‖∞ < 1 < ‖u2‖∞ .

(H) If q ≥ p − 1 and r > p − 1, then for λ > 0, (1.1) has exactly two positive
solutions u1 < u2, which satisfy ‖u1‖∞ < 1 < ‖u2‖∞ .

3. PROOFS OF MAIN RESULTS

To prove Theorems 2.1 and 2.2, we need the next Lemma 3.1 on properties of

some special functions and on some formulas of some definite integrals. The proof of

Lemma 3.1 is given in Section 4.

Lemma 3.1. The following identities hold:

(i)
Γ(1 + x) = xΓ(x).

(ii)
Γ(x)Γ(1− x) =

π

sin xπ
(= π csc xπ) (x 6= 0,±1,±2, . . .).

(iii) For 0 < a < 1 and b > 0,
∫ 1

0

xb−1

(1 − x)a
dx =

Γ(b)Γ(1− a)
Γ(1 + b− a)

.

(iv) For 1 + βu > 0 and b > 0,
∫ u

0

xb−1

(1 + βx)adx =
ub

b
F (a, b; 1 + b;−βu).

(v)
F (a, b; c; x) = F (b, a; c; x).

(vi)

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.
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(vii)
F (0, b; c;x) = F (a, 0; c; x) = F (a, b; 0; x) = 1.

(viii) For |x| → ∞ and b > a,

F (a, b; c; x) ∼ Γ(c)Γ(b− a)
Γ(c− a)Γ(b)(−x)a

.

(ix) For x < 1,

F (a, b; c; x) = (1 − x)−aF (a, c− b; c;
x

x− 1
).

(x) For x < 1,

F (a, b+ 1; c; x)− F (a, b; c; x) =
ax

c
F (a+ 1, b+ 1; c+ 1; x).

(xi)
d

dx
F (a, b; c; x) =

ab

c
F (a+ 1, b+ 1; c+ 1; x).

(xii) For x < 1,

3F2 (a1, a2 + 1, a3; b1, b2; x)− 3F2 (a1, a2, a3; b1, b2; x)

=
a1a3x

b1b2
3F2 (a1 + 1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; x) .

(xiii) For b2 − a1 > 0 and b1 + b2 − a1 − a2 − a3 > 0,

3F2 (a1, a2, a3; b1, b2; 1)

=
Γ(b2)Γ(b1 + b2 − a1 − a2 − a3)
Γ(b2 − a1)Γ(b1 + b2 − a2 − a3)

× 3F2 (a1, b1 − a2, b1 − a3; b1, b1 + b2 − a2 − a3; 1) .
(xiv)

d

dx
3F2 (a1, a2, a3; b1, b2; x) =

a1a2a3

b1b2

× 3F2 (a1 + 1, a2 + 1, a3 + 1; b1 + 1, b2 + 1; x) .

(xv) For x 6= 0,−1,−2, . . . , the psi function

ψ(x) = −γ −
∞∑

j=0

(
1

x+ j
− 1
j + 1

)
.
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(xvi) For p > 1, q > 0 with q 6= p− 1, and k ≥ 1,

(3.1)

∫ k

1

dt

(tq+1 − 1)1/p

=
Γ

(
p−1
p

)
Γ

(
q+1−p
pq+p

)

(q+1)Γ
(

q
q+1

) − pk(p−1−q)/p

q+1−p
F

(
1
p
,
q+1− p

pq+p
;
pq+q+1

pq+p
; k−(q+1)

)
.

(xvii) For p > 1 and k ≥ 1,

(3.2)

∫ k

1

dt

(tp − 1)1/p

= 1
p2

{
p
[
p lnk−γ−ψ

(
p−1
p

)]
−k−p

3F2

(
1, 1, p+1

p ; 2, 2; k−p
)}

.

Proof of Theorem 2.1. (A) For 0 < α < 1,
(I) If q 6= p− 1, by (1.5), we compute that

Tfq,r (α) =
(
p− 1
p

)1/p ∫ α

0

du

[Fq,r(α) − Fq,r(u)]
1/p

=
[
(p−1)(q+1)

p

]1/p ∫ α

0

du

[(1−u)q+1−(1−α)q+1]1/p
(by (1.4))

=
[
(p− 1)(q + 1)

p

]1/p

(1 − α)(p−1−q)/p
∫ 1/(1−α)

1

dt

(tq+1 − 1)1/p
(3.3)

(by setting t = 1−u
1−α )

=
[
(p− 1)(q + 1)

p

]1/p



Γ
(

p−1
p

)
Γ
(

q+1−p
pq+p

)

(q + 1)Γ
(

q
q+1

) (1 − α)(p−1−q)/p

− p

q + 1 − p
F

(
1
p
,
q + 1 − p

pq + p
;
pq + q + 1
pq + p

; (1− α)q+1]
)]

by Lemma 3.1(xvi).

(II) If q = p− 1, we apply (3.3) and compute that

Tfq,r(α) = (p− 1)1/p

∫ 1/(1−α)

1

dt

(tp − 1)1/p
.

=
(p− 1)1/p

p2

{
p

[
p ln

(
1

1 − α

)
− γ − ψ

(
p− 1
p

)]

−(1 − α)p
3F2

(
1, 1,

p+ 1
p

; 2, 2; (1− α)p

)}
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by Lemma 3.1(xvii).

(B) For α > 1, by (1.5), we compute that

Tfq,r(α)

=
(

p − 1
p

)1/p ∫ α

0

du

[Fq,r(α) − Fq,r(u)]1/p

=
(

p − 1
p

)1/p
{∫ 1

0

du

[Fq,r(α) − Fq,r(u)]1/p
+

∫ α

1

du

[Fq,r(α) − Fq,r(u)]1/p

}

=
(

p−1
p

)1/p





∫ 1

0

du
[
(α−1)r+1

r + 1
−

(1 − u)q+1

q+1

]1/p
+
∫ α

1

du
[
(α−1)r+1

r+1
−

(u−1)r+1

r+1

]1/p





(by (1.4))

=
[
(p − 1)(r + 1)

p

]1/p





∫ 1

0

du
[
(α − 1)r+1 + r+1

q+1 (1 − u)q+1
]1/p

+
∫ α

1

du

[(α − 1)r+1 − (u − 1)r+1]1/p

}
(by simple calculation)

=
[
(p − 1)(r + 1)

p

]1/p

(α − 1)(p−1−r)/p





1
α − 1

∫ 1

0

dt
[
1 + r+1

q+1
(α−1)−(r+1)tq+1

]1/p
+

∫ 1

0

dt

(1 − tr+1)1/p





(by setting t =
1 − u

α − 1
in the first integral and t =

u − 1
α − 1

in the second integral)

=
[
(p−1)(r+1)

p

]1/p

(α − 1)(p−1−r)/p





1
α − 1

∫ 1

0

1
q+1

x
−q
q+1 dx

[
1 + r+1

q+1
(α − 1)−(r+1)x

]1/p
+

∫ 1

0

1
r+1x

−r
r+1 dx

(1 − x)1/p





(by setting x = tq+1 in the first integral and x = tr+1 in the second integral)

=
[
(p−1)(r+1)

p

]1/p

(α−1)(p−1−q)/p

{
1

α−1
F

(
1
p
,

1
q+1

;
q+2
q+1

;−r+1
q+1

(α−1)−(r+1)

)



1280 Feng-Lin Wang and Shin-Hwa Wang

+
1

r+1Γ
(

1
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)



 (by Lemma 3.1(iv) for the first integral and

Lemma 3.1(iii) for the second integral)

=
[
(p− 1)(r+ 1)

p

]1/p

(α− 1)(p−1−q)/p

{
1

α− 1
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r+ 1
q + 1

(α− 1)−(r+1)

)
+

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)





by applying Lemma 3.1(i). The proof of Theorem 2.1 is complete.

Proof of Theorem 2.2. (A) Suppose q < p− 1.
(I) (i) If r < p−1, then the results limα→0+ Tfq,r(α) = 0, limα→∞ Tfq,r (α) = ∞,

and limα→1− Tfq,r (α) =
[

(p−1)(q+1)
p

]1/p
p

p−1−q (≡ Tfq,r(1)) follow by Proposition
1.1(ii), (iv), and (iii), respectively. We prove (2.5) by Theorem 2.1(B). We compute

that

(3.4)

lim
α→1+

Tfq,r (α)

= lim
α→1+

{[
(p− 1)(r+ 1)

p

]1/p

(α− 1)(p−1−r)/p

×


 1
α−1

F

(
1
p
,

1
q+1

;
q+2
q+1

;−r+1
q + 1

(α−1)−(r+1)

)
+

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)







= lim
α→1+

{[
(p− 1)(r+ 1)

p

]1/p

(α− 1)(p−1−r)/p




(
q+1
r+1

)1/p
Γ
(

q+2
q+1

)
Γ
(

p−1−q
pq+p

)

Γ
(

pq+2p−q−1
pq+p

)
Γ
(

1
q+1

)
(α− 1)(p−1−r)/p

+
Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)





 (by Lemma 3.1(viii))

= lim
α→1+





[
(p− 1)(r+ 1)

p

]1/p




(
q+1
r+1

)1/p
Γ
(

q+2
q+1

)
Γ
(

p−1−q
pq+p

)

Γ
(

pq+2p−q−1
pq+p

)
Γ
(

1
q+1

)

+
Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α− 1)(p−1−r)/p





 (by simple calculation)
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(3.5)

=
[
(p− 1)(r+ 1)

p

]1/p

(
q+1
r+1

)1/p
Γ
(

q+2
q+1

)
Γ
(

p−1−q
pq+p

)

Γ
(

pq+2p−q−1
pq+p

)
Γ
(

1
q+1

)

(since limα→1+(α− 1)(p−1−r)/p = 0 for r < p− 1)

=
[
(p− 1)(q + 1)

p

]1/p 1
q+1Γ

(
1

q+1

)
Γ
(

p−1−q
pq+p

)

p−1−q
pq+q Γ

(
p−1−q
pq+p

)
Γ
(

1
q+1

) (by Lemma 3.1(i))

=
[
(p− 1)(q + 1)

p

]1/p p

p− 1 − q
= Tfq,r(1) = lim

α→1−
Tfq,r (α)

by Proposition 1.1(iii).

(I) (ii) For r < p − 1, we obtain that Tfq,r (α) ∈ C(0,∞) and Tfq,r (α) is strictly
increasing on (0, 1] by Proposition 1.1(i) and (3.5).
(I) (iii) For r < p− 1 and α > 1, by Theorem 2.1(B), we compute that

T ′
fq,r

(α)

=
d

dα

{[
(p− 1)(r+ 1)

p

]1/p

(α− 1)(p−1−r)/p

×


 1
α− 1

F


1
p
,

1
q + 1

;
q + 2
q + 1

;−r+ 1
q + 1

(α− 1)−(r+1) +
Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)









=
[
(p− 1)(r+ 1)

p

]1/p

×
{
−r + 1

p
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r + 1
q + 1

(α− 1)−(r+1)

)
(α− 1)−(p+1+r)/p

+
p− 1− r

p

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α− 1)−(r+1)/p +
(r+ 1)2

p(q + 2)(q + 1)

F

(
p+ 1
p

,
q + 2
q + 1

;
2q + 3
q + 1

;−r + 1
q + 1

(α− 1)−(r+1)

)
(α− 1)

−p−1−r
p

−r−1
}

(by Lemma 3.1(xi))

=
[
(p− 1)(r+ 1)

p

]1/p

×
{
−r + 1

p
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r + 1
q + 1

(α− 1)−(r+1)

)
(α− 1)−(p+1+r)/p
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+
p− 1− r

p

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α− 1)−(r+1)/p

+
r + 1
q + 1

[
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r + 1
q + 1

(α− 1)−(r+1)

)
(α− 1)−(p+1+r)/p

−F
(

1
p
,
q + 2
q + 1

;
q + 2
q + 1

;−r + 1
q + 1

(α− 1)−(r+1)

)]}
(by Lemma 3.1(x))

=
[
(p− 1)(r+ 1)

p

]1/p

×
{
−r + 1

p
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r+ 1
q + 1

(α − 1)−(r+1)

)
(α− 1)−(p+1+r)/p

+
p− 1− r

p

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α− 1)−(r+1)/p

+
r + 1
q + 1

[
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r+ 1
q + 1

(α − 1)−(r+1)

)
(α− 1)−(p+1+r)/p

−F
(

1
p
, 0;

q + 2
q + 1

;
w

w − 1

)(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)−1/p
]}

(by Lemma 3.1(ix) for the last term where w ≡ − r+1
q+1 (α− 1)−(r+1))

=
[
(p− 1)(r+ 1)

p

]1/p

×
{
−r + 1

p
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r + 1
q + 1

(α− 1)−(r+1)

)
(α− 1)−(p+1+r)/p

+
p − 1 − r

p

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α− 1)−(r+1)/p

+
r + 1
q + 1

[
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r+ 1
q + 1

(α− 1)−(r+1)

)
(α− 1)−(p+1+r)/p

−
(

1 +
r + 1
q + 1

(α− 1)−(r+1)

)−1/p
]}

(by Lemma 3.1(vii) for the last term)

=
[
(p− 1)(r+ 1)

p

]1/p



p− 1− r

p

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α− 1)−(r+1)/p

+
(p− 1 − q)(r+ 1)

pq + q
F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r + 1
q + 1

(α− 1)−(r+1)

)

(α− 1)−(p+1+r)/p
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(3.6)
−r + 1
q + 1

(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)−1/p

(α− 1)−(p+1+r)/p

}

(by simple calculation)

(3.7)

=
[
(p− 1)(r+ 1)

p

]1/p



p− 1 − r

p

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α− 1)−(r+1)/p

−r+1
p
F

(
p+1
p
,

1
q+1

;
q+2
q+1

;−r+1
q+1

(α−1)−(r+1)

)
(α−1)−(p+1+r)/p

}

by showing that

(3.8)

(p− 1 − q)(r+ 1)
pq + q

F

(
1
p
,

1
q + 1

;
q + 2
q + 1

;−r + 1
q + 1

(α− 1)−(r+1)

)

−r + 1
q + 1

(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)−1/p

= −r + 1
p

F

(
p+ 1
p

,
1

q + 1
;
q + 2
q + 1

;−r+ 1
q + 1

(α− 1)−(r+1)

)
.

The proof of (3.8) is easy but tedious; we omit it. Then by (3.7), we compute that

(3.9)

lim
α→1+

T ′
fq,r

(α)

= lim
α→1+





[
(p−1)(r+1)

p

]1/p

p − 1 − r

p

Γ
(

r+2
r+1

)
Γ

(
p−1

p

)

Γ
(

pr+2p−r−1
pr+p

) (α − 1)−(r+1)/p

−r+1
p

F

(
p+1

p
,

1
q+1

;
q+2
q+1

;−r+1
q+1

(α − 1)−(r+1)

)
(α − 1)−(p+1+r)/p

]}

= lim
α→1+





[
(p − 1)(r + 1)

p

]1/p

p − 1 − r

p

Γ
(

r+2
r+1

)
Γ

(
p−1

p

)

Γ
(

pr+2p−r−1
pr+p

) (α − 1)−(r+1)/p

−r+1
p

F

(
1

q+1
,
p+1

p
;
q+2
q+1

;−r+1
q+1

(α−1)−(r+1)

)
(α−1)−(p+1+r)/p

]}

(by Lemma 3.1(v))

= lim
α→1+





[
(p − 1)(r + 1)

p

]1/p

p − 1 − r

p

Γ
(

r+2
r+1

)
Γ

(
p−1

p

)

Γ
(

pr+2p−r−1
pr+p

) (α − 1)−(r+1)/p

−r + 1
p

(
r + 1
q + 1

)− 1
q+1 Γ

(
q+2
q+1

)
Γ

(
pq+q+1

pq+p

)

Γ (1) Γ
(

p+1
p

) (α − 1)
−r−1

p + r−q
q+1








(by Lemma 3.1(viii))

= lim
α→1+





[
(p − 1)(r + 1)

p

]1/p

p − 1 − r

p

Γ
(

r+2
r+1

)
Γ

(
p−1

p

)

Γ
(

pr+2p−r−1
pr+p

) (α − 1)−(r+1)/p
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−r + 1
p

(
r + 1
q + 1

)− 1
q+1

1
q+1Γ

(
1

q+1

)
Γ

(
pq+q+1

pq+p

)

1
p
Γ

(
1
p

) (α − 1)
−r−1

p + r−q
q+1







(by Lemma 3.1(i))

= lim
α→1+





[
(p − 1)(r + 1)

p

]1/p

p − 1 − r

p

Γ
(

r+2
r+1

)
Γ

(
p−1

p

)

Γ
(

pr+2p−r−1
pr+p

) (α − 1)−(r+1)/p

−
(

r + 1
q + 1

) q
q+1 Γ

(
1

q+1

)
Γ

(
pq+q+1

pq+p

)

Γ
(

1
p

) (α − 1)
−r−1

p + r−q
q+1








(by simple calculation)

(3.10)

= lim
α→1+





[
(p − 1)(r + 1)

p

]1/p

(α − 1)−(r+1)/p


p − 1 − r

p

Γ
(

r+2
r+1

)
Γ

(
p−1

p

)

Γ
(

pr+2p−r−1
pr+p

)

−
(

r + 1
q + 1

) q
q+1 Γ

(
1

q+1

)
Γ

(
pq+q+1

pq+p

)

Γ
(

1
p

) (α − 1)
r−q
q+1








(by simple calculation)

(3.11) =





−∞, if (max{0, (p− 2)/2} < q = r < p − 1) or (r < q < p − 1),
0, if q = r = (p − 2)/2 > 0,

∞, if (q = r < (p − 2)/2 and p > 2) or (q < r < p − 1),

by some analysis of (3.10). The proof of (3.11) is easy but tedious; we omit it.

(I) (iv) For r < q < p − 1, Tfq,r(α) has at least one critical point at some α∗,

a local minimum, on (1,∞) since limα→1+ T ′
fq,r

(α) = −∞, limα→∞ Tfq,r(α) = ∞
and Tfq,r(α) is continuous on (0,∞). The rest part of (I)(iv) for max{0, (p− 2)/2}<
q = r < p− 1 is from [4, Theorem 2.1(A)(iv)].
(I) (v) This part for q = r ≤ (p−2)/2 and p > 2 is from [4, Theorem 2.1(A)(v)].
(II) (i) If r = p− 1, then the results limα→0+ Tfq,r (α) = 0, limα→∞ Tfq,r (α) =

(p− 1)1/p π
p csc π

p , and limα→1− Tfq,r(α) =
[

(p−1)(q+1)
p

]1/p
p

p−1−q (≡ Tfq,r(1)) fol-
low by Proposition 1.1(ii), (iv), and (iii), respectively. In addition, by applying (3.4),

we compute that

lim
α→1+

Tfq,r(α)

= (p− 1)1/p




(
q+1
p

)1/p
Γ
(

q+2
q+1

)
Γ
(

p−1−q
pq+p

)

Γ
(

pq+2p−q−1
pq+p

)
Γ
(

1
q+1

) +Γ
(
p+ 1
p

)
Γ
(
p− 1
p

)



= (p−1)1/p




(
q+1
p

)1/p
1

q+1Γ
(

1
q+1

)
Γ
(

p−1−q
pq+p

)

(
p−1−q
pq+p

)
Γ
(

p−1−q
pq+p

)
Γ
(

1
q+1

) +
1
p
Γ
(

1
p

)
Γ
(
p− 1
p

)


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(by Lemma 3.1(i))

=
[
(p− 1)(q + 1)

p

]1/p p

p− 1 − q
+ (p− 1)1/p1

p
Γ
(

1
p

)
Γ
(
p− 1
p

)

(by simple calculation)

=
[
(p−1)(q+1)

p

]1/p p

p−1−q+(p−1)1/pπ

p
csc

π

p
(by Lemma 3.1(ii))

= lim
α→1−

Tfq,r (α) + lim
α→∞

Tfq,r (α).

(II) (ii) If r = p− 1, let

(3.12)

G(p, q) ≡ lim
α→1−

Tfq,r (α) − lim
α→∞

Tfq,r(α)

=
[
(p− 1)(q + 1)

p

]1/p p

p− 1 − q
− (p− 1)1/p π

p
csc

π

p

which is easy to see that it is strictly increasing in q > 0. Also, for q = 0 and p > 1,

G(p, 0) =
(
p− 1
p

)1/p p

p− 1
− (p− 1)1/p π

p
csc

π

p
< 0;

see Fig. 3. Note that limp→1+ G(p, 0) = limp→∞G(p, 0) = 0.

Fig. 3. Graph of G(p, 0) =
(

p−1
p

)1/p
p

p−1
− (p − 1)1/p π

p
csc π

p
on (1, 200).

In addition, by (3.12), for fixed p > 1, we compute that
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lim
q→(p−1)−

G(p, q)

= lim
q→(p−1)−

{[
(p− 1)(q + 1)

p

]1/p p

p− 1 − q
− (p− 1)1/p π

p
csc

π

p

}
= ∞.

So, by applying the Intermediate Value Theorem, for fixed p > 1, there exists a unique
q∗ = q∗(p) ∈ (0, p− 1) such that

G(p, q) = lim
α→1−

Tfq,r(α) − lim
α→∞

Tfq,r (α)




> 0, if q > q∗,

= 0, if q = q∗,
< 0, if q < q∗.

(II) (iii) For r = p− 1, the results Tfq,r(α) ∈ C((0, 1)∪ (1,∞)) and Tfq,r (α) is
strictly increasing on (0, 1] follow by Proposition 1.1(i). For r = p− 1 and α > 1, by
(3.7), we compute that

T ′
fq,r

(α)

= − (p− 1)1/p F

(
p+ 1
p

,
1

q + 1
;
q + 2
q + 1

;− p

q + 1

(
1

α− 1

)p)
(α− 1)−2

= − (p− 1)1/p 1
q + 1

(α− 1)
p−2q−2

q+1

∫ (α−1)−(r+1)

0

x
−q
q+1

(
1 + p

q+1x
)(p+1)/p

dx

(by Lemma 3.1(iv))

< 0

for α > 1. Hence, for r = p− 1, Tfq,r(α) is strictly decreasing on (1,∞).
(II) (iv) For r = p− 1, by (3.10), we compute that

lim
α→1+

T ′
fq,r

(α)

= lim
α→1+


−(p− 1)1/p

(
p

q + 1

) q
q+1 Γ

(
1

q+1

)
Γ
(

pq+q+1
pq+p

)

Γ
(

1
p

) (α− 1)
p−2q−2

q+1




=





−∞, if max{0, (p− 2)/2} < q < p− 1,

−2(2−p)/p(p− 1)1/p
Γ
(

2
p

)
Γ
(

p−1
p

)

Γ
(

1
p

) , if q = (p− 2)/2 > 0,

0, if q < (p− 2)/2, and p > 2.

by simple calculation.

(III) (i) If r > p−1, then the results limα→0+ Tfq,r (α) = 0, limα→∞ Tfq,r(α) = 0,

and limα→1− Tfq,r (α) =
[

(p−1)(q+1)
p

]1/p
p

p−1−q (≡ Tfq,r(1)) follow by Proposition
1.1(ii), (iv), and (iii), respectively. In addition, by applying (3.4), we compute that
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lim
α→1+

Tfq,r(α)

= lim
α→1+





[
(p−1)(r+1)

p

]1/p




(
q+1
r+1

)1/p
Γ
(

q+2
q+1

)
Γ
(

p−1−q
pq+p

)

Γ
(

pq+2p−q−1
pq+p

)
Γ
(

1
q+1

)

+
Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α− 1)(p−1−r)/p







= ∞.

(III) (ii) For r > p − 1, the results Tfq,r(α) ∈ C((0, 1) ∪ (1,∞)) and Tfq,r (α)
is strictly increasing on (0, 1] follow by Proposition 1.1(i). For α > 1, by (3.7), we
compute that

(3.13)

T ′
fq,r

(α)

=
[
(p−1)(r+1)

p

]1/p



p−1−r

p

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

) (α−1)−(r+1)/p

−r+1
p
F

(
p+1
p
,

1
q+1

;
q+2
q+1

;−r+1
q+1

(α−1)−(r+1)

)
(α− 1)−(p+1+r)/p

}

=
[
(p− 1)(r+ 1)

p

]1/p

(α−1)−(r+1)/p




p− 1− r

p

Γ
(

r+2
r+1

)
Γ
(

p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)

− r + 1
pq + p

(α− 1)
r−q
q+1

∫ (α−1)−(r+1)

0

x
−q
q+1

(
1 + r+1

q+1x
) p+1

p

dx





(by Lemma 3.1(iv))
< 0

since r > p− 1. Hence Tfq,r(α) is strictly decreasing on (1,∞).

(B) Suppose q ≥ p− 1.

(I) (i) If r < p−1, then the results limα→0+ Tfq,r(α) = 0 and limα→∞ Tfq,r (α) =
∞ follow by Proposition 1.1(ii) and (iv), respectively.

(I) (ii) By Proposition 1.1(iii), limα→1− Tfq,r (α) = ∞. In addition, for r < p− 1
and α > 1, by Theorem 2.1(B), we compute that

(3.14)

lim
α→1+

Tfq,r (α)

= lim
α→1+

{[
(p − 1)(r + 1)

p

]1/p

(α − 1)(p−1−r)/p

×


 1

α−1
F

(
1
p
,

1
q+1

;
q+2
q+1

;−r+1
q+1

(α−1)−(r+1)

)
+

Γ
(

r+2
r+1

)
Γ

(
p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)








1288 Feng-Lin Wang and Shin-Hwa Wang

= lim
α→1+

{[
(p−1)(r+1)

p

]1/p

(α−1)(p−1−r)/p

×


 1

α−1
F

(
1

q+1
,
1
p
;
q+2
q+1

;−r +1
q+1

(α−1)−(r+1)

)
+

Γ
(

r+2
r+1

)
Γ

(
p−1
p

)

Γ
(

pr+2p−r−1
pr+p

)






(by Lemma 3.1(v))

= lim
α→1+





[
(p−1)(r+1)

p

]1/p

(

r+1
q+1

)−
1

q+1

Γ
(

q+2
q+1

)
Γ
(

q+1−p
pq+p

)

Γ(1)Γ(1
p
)

(α−1)
(p−1−q)(r+1)

pq+q

+
Γ

(
r+2
r+1

)
Γ

(
p−1

p

)

Γ
(

pr+2p−r−1
pr+p

) (α − 1)(p−1−r)/p






 (by Lemma 3.1(vii))

= ∞.

(I) (iii) The results Tfq,r(α) ∈ C((0, 1)∪(1,∞)) and Tfq,r(α) is strictly increasing
on (0, 1) follow by Proposition 1.1(i). For α > 1, by (3.6), we compute that

(3.15)

T ′
fq,r

(α)

=
[
(p − 1)(r + 1)

p

]1/p




p − 1 − r

p

Γ
(

r+2
r+1

)
Γ

(
p−1

p

)

Γ
(

pr+2p−r−1
pr+p

) (α − 1)−(r+1)/p

+
(p−1−q)(r+1)

p(q+1)
F

(
1
p
,

1
q+1

;
q+2
q+1

;−r+1
q+1

(α−1)−(r+1)

)
(α−1)−(p+1+r)/p

−r + 1
q + 1

(
1 +

r + 1
q + 1

(α − 1)−(r+1)

)−1/p

(α − 1)−(p+1+r)/p

}

=
[
(p − 1)(r + 1)

p

]1/p

(α − 1)−(r+1)/p

{
p − 1 − r

p

∫ 1

0

dt

(1 − tr+1)1/p

+
(p − 1 − q)(r + 1)

p(q + 1)2
(α − 1)

r−q
q+1

∫ (α−1)−(r+1)

0

x
−q

q+1

(1 + r+1
q+1x)1/p

dx

−r + 1
q + 1

(
1 +

r + 1
q + 1

(α − 1)−(r+1)

)−1/p

(α − 1)−(p+1+r)/p

}

(by Lemma 3.1(iii) and (iv))

=
[
(p − 1)(r + 1)

p

]1/p

(α − 1)−(r+1)/p

{
p − 1 − r

p

∫ 1

0

dt

(1 − tr+1)1/p

+
(p − 1 − q)(r + 1)

p(q + 1)
(α − 1)

r−q
q+1

∫ (α−1)
−r+1

q+1

0

dy

(1 + r+1
q+1

yq+1)1/p

−r + 1
q + 1

(
1 +

r + 1
q + 1

(α − 1)−(r+1)

)−1/p

(α − 1)−1

}

(by setting x = yq+1 in the second integral)

≡
[
(p − 1)(r + 1)

p

]1/p

(α − 1)−(r+1)/pH̃(α)
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where

(3.16)

H̃(α) ≡ p− 1− r

p

∫ 1

0

dt

(1− tr+1)1/p

+
(p− 1− q)(r+ 1)

p(q + 1)
(α− 1)

r−q
q+1

∫ (α−1)
−r+1

q+1

0

dy

(1 + r+1
q+1y

q+1)1/p

−r + 1
q + 1

(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)−1/p

(α− 1)−1.

To determine the number of critical points of Tfq,r (α) on (1,∞) is equivalent to
determine the number of zeros of T ′

fq,r
(α) on (1,∞); that is, the number of zeros of

H̃(α) on (1,∞). We compute that

H̃ ′(α)

=
(p− 1 − q)(r + 1)

p(q + 1)2
(r − q)(α− 1)

r−q
q+1

−1
∫ (α−1)

−r+1
q+1

0

dy

(1 + r+1
q+1y

q+1)1/p

−(p− 1 − q)(r+ 1)2

p(q + 1)2

(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)−1/p

(α− 1)−2

+
r + 1
q + 1

(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)−1/p

(α− 1)−2

− (r+ 1)3

p(q + 1)2

(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)− p+1
p

(α− 1)−r−3 (by simple calculation)

=
(p− 1 − q)(r + 1)

p(q + 1)2
(r − q)(α− 1)

r−q
q+1

−1
∫ (α−1)

−r+1
q+1

0

dy

(1 + r+1
q+1y

q+1)1/p

+
r + 1
q + 1

(
r+ 1
p

− r− q

q + 1

)(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)−1/p

(α− 1)−2

− (r+ 1)3

p(q + 1)2

(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)− p+1
p

(α− 1)−r−3 (by simple calculation)

=
(q − p+ 1)(r+ 1)

p(q + 1)2
(q − r)(α− 1)

r−q
q+1

−1
∫ (α−1)

−r+1
q+1

0

dy

(1 + r+1
q+1y

q+1)1/p

+

[
(r + 1)2

p(q + 1)

(
1 +

r + 1
q + 1

(α− 1)−(r+1)

)−1/p

(α− 1)−2

]

×
[(

1 +
p(q − r)

(q + 1)(r+ 1)

)
− 1

q+1
r+1(α− 1)r+1 + 1

]
(by simple calculation)

> 0 for α > 1.
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So, for q ≥ p − 1 > r, H̃(α) is strictly increasing on (1,∞). In addition, we obtain
that limα→1+ H̃(α) < 0 and limα→∞ H̃(α) > 0 since limα→1+ T ′

fq,r
(α) = −∞ and

limα→∞ Tfq,r(α) = ∞. Hence, for fixed q ≥ p − 1, there exists exactly one number
α∗ = α∗(r) > 1 such that H̃(α∗) = 0. Therefore, Tfq,r(α) has exactly one critical
point at α∗, a local minimum, on (1,∞).

(II) (i) If r = p− 1, the results limα→0+ Tfq,r(α) = 0 and limα→∞ Tfq,r(α) =
(p− 1)1/pπ

p csc π
p follow by Proposition 1.1(ii) and (iv), respectively.

(II) (ii) limα→1− Tfq,r(α) = ∞ by Proposition 1.1(iii). In addition, limα→1+ Tfq,r

(α) = ∞ by applying (3.14).

(II) (iii) The results Tfq(α) ∈ C((0, 1)∪ (1,∞)) and Tfq(α) is strictly increasing
on (0, 1) follow by Proposition 1.1(i). For α > 1, T ′

fq,r
(α) < 0 follows easily by (3.15)

and (3.16) since q ≥ p− 1. Hence Tfq,r (α) is strictly decreasing on (1,∞).

(III) (i) If r > p−1, the results limα→0+ Tfq,r (α) = 0 and limα→∞ Tfq,r(α) = 0
follow by Proposition 1.1(ii) and (iv), respectively.

(III) (ii) limα→1− Tfq,r (α) = ∞ by Proposition 1.1(iii). In addition, limα→1+

Tfq,r(α) = ∞ by applying (3.14).

(III) (iii) The results Tfq(α) ∈ C((0, 1)∪(1,∞)) and Tfq(α) is strictly increasing
on (0, 1) follow by Proposition 1.1(i). For α > 1, T ′

fq,r
(α) < 0 follows easily by (3.15)

and (3.16) since q ≥ p− 1. Hence Tfq,r (α) is strictly decreasing on (1,∞).
The proof of Theorem 2.2 is now complete.

Proof of Corollary 2.3. The existence and (exact) multiplicity of positive solutions

in Corollary 2.3 follow straight from Theorem 2.2; we omit the details of the proof.

Corollary 2.3(A)(I)(vi) is from [4, Corollary 2.2(A)(vi)]. The ordering property of
positive solutions obtained in Corollary 2.3 can be proved easily; we omit the proofs.

Cf. [4, Proof of Corollary 2.2].

4. THE PROOF OF LEMMA 3.1

For Lemma 3.1(i)-(iii), (v)-(ix), (xi), and (xv), see [10, pp. 46-47, 54, 56, 368-369,

371]. For Lemma 3.1(iv), see [2, p. 333, formula 3.194.1]. For Lemma 3.1(xiii), see

[1, p. 62, formula 3.2.8]. Lemma 3.1(x), (xii) and (xiv) can be proved easily by (2.1)

and (2.3); we omit them. Finally, the proofs of Lemma 3.1(xvi) and (xvii) are easy but

tedious; we omit them.
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