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SOME CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH
CONIC REGIONS

Young Jae Sim, Oh Sang Kwon, Nak Eun Cho and H. M. Srivastava*

Abstract. The purpose of the present paper is to introduce and investigate the
function classes k-SP(α, β) and k-UCV(α, β) of analytic functions associated
with conic regions in the open unit disk U, which generalize the function
classes defined and studied in a series of earlier papers by Kanas et al. [11,
12, 13, 14]. In particular, we consider the extremal problems for each of the
above-mentioned function classes. The Fekete-Szegö problem is also
considered for functions in the class k-SP(α, β). Moreover, we investigate
some mapping properties for each of the function classes k-SP(α, β) and
k-UCV(α, β).

1. INTRODUCTION

Let A denote the class of all analytic functions of the form:

(1) f(z) = z +
∞∑

n=1

anzn (z ∈ U).

We denote by S the class of functions f ∈ A that are univalent in U. Let us recall
the following definitions of the familiar classes of k-uniformly convex functions
and k-starlike functions as follows:

k-UCV :=
{

f : f ∈ S and �
(

1 +
zf ′′(z)
f ′(z)

)
> k

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ (z ∈ U; k � 0)
}

and

k-ST :=
{

f : f ∈ S and �
(

zf ′(z)
f(z)

)
> k

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ (z ∈ U; k � 0)

}
.

Received July 29, 2011.
Communicated by Jen-Chih Yao.
2010 Mathematics Subject Classification: Primary 30C45, 33E05.
Key words and phrases: Analytic functions, Univalent functions, Uniformly convex functions,
Uniformly starlike functions, Conformal mapping, Principle of subordination between analytic
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The function classes k-UCV and k-ST were introduced and investigated by Kanas
and Wiśniowska in [13] and [14], respectively (see also [11]). For a fixed k � 0,
the class k-UCV is defined purely geometrically as a subclass of univalent functions
which map the intersection of U with any disk centered at the point z = ζ (|ζ| < k)
onto a convex domain. The notion of k-uniform convexity is a natural extension
of that of the classical convexity. We observe that, if k = 0, then the center ζ is
the origin and the class k-UCV reduces to the class CV , which is the well-known
class of all convex functions in U, which are normalized as in (1). Moreover, for
k = 1, it coincides with the class UCV of uniformly convex functions introduced by
Goodman [4] and studied extensively by Rønning [24] (and independently by Ma
and Minda [19, 20]). The class k-ST is related to the class k-UCV by means of
the well-known Alexander transformation between the usual classes of convex and
starlike functions (see also [12-14 19, 24]). Some more interesting developments
involving the classes k-UCV and k-ST were presented by Lecko and Wiśniowska
[17], Kanas [6-10] and others [1, 2, 22, 23, 25] (see also [3], [26] and [27]).

We now introduce the subclasses k-UCV(α, β) and k-ST (α, β) of the univalent
function class S as follows.

Definition 1. Let α, β and k be nonnegative real numbers satisfying the
following inequalities:

0 � β < α � 1 and k(1 − α) < 1 − β.

Then a function f ∈ A is said to be in the class k-ST (α, β) if it satisfies the
condition:

(2) �
(

zf ′(z)
f(z)

)
− β > k

∣∣∣∣zf ′(z)
f(z)

− α

∣∣∣∣ (z ∈ U).

Definition 2. Let α, β and k be nonnegative real numbers satisfying the
following inequalities:

0 � β < α � 1 and k(1 − α) < 1 − β.

Then a function f ∈ A is said to be in the class k-UCV(α, β) if it satisfies the
condition:

(3) �
(

1 +
zf ′′(z)
f ′(z)

)
− β > k

∣∣∣∣1 +
zf ′′(z)
f ′(z)

− α

∣∣∣∣ (z ∈ U).

In particular, we note that the classes k-UCV(1, 0) and k-ST (1, 0) coincide with
the classes k-UCV and k-ST , respectively. Furthermore, the classes k-UCV(1, β)
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and k-ST (1, β) are the same as the classes studied by Nishiwaki et al. [23] and
Shams et al. [25].

In the present paper, we find the explicit form of functions in each of the general
classes k-UCV(α, β) and k-ST (α, β). We also consider the Fekete-Szegö problems
for the class k-ST (α, β). Moreover, we investigate some other interesting properties
and characteristics of the classes k-UCV(α, β) and k-ST (α, β).

2. EXTREMAL FUNCTIONS IN THE CLASS P(pk,α,β)

Let us consider the function p(z) given by

p(z) =
zf ′(z)
f(z)

or p(z) = 1 +
zf ′′(z)
f ′(z)

.

We can thus rewrite the conditions (2) or (3) in the form:

k|p(z) − α| < �{p(z)} − β (z ∈ U).

It follows that the range of the function p(z) is a conic domain given by

Ωk,α,β = {w : w ∈ C and k|w − α| < �(w)− β}

or

Ωk,α,β =
{
w : w ∈ C and k

√
[�(w)− α]2 + [�(w)]2 < �(w)− β

}
,

where
0 � β < α � 1 and k(1 − α) < 1 − β.

We note that the conic domain Ωk,α,β is such that 1 ∈ Ωk,α,β and that its boundary
∂Ωk,α,β is a curve defined by

∂Ωk,α,β :=
{
w : w = u + iv and k2(u − α)2 + k2v2 = (u − β)2

}
.

In what follows, we need the principle of subordination between analytic
functions.

Definition 3. For two functions f(z) and g(z), analytic in U, f(z) is said to
be subordinate to g(z) in U, if there exists an analytic (Schwarz) function w(z) in
U, satisfying the following conditions:

w(0) = 0 and |w(z)| < 1 (z ∈ U),

such that
f(z) = g

(
w(z)

)
.
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We denote this subordination by

f(z) ≺ g(z) (z ∈ U).

In particular, if the function g(z) is univalent in U, then

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

We denote by P the family of normalized analytic and Carathéodory functions.
Furthermore, by pk,α,β ∈ P we denote the function such that

pk,α,β(U) = Ωk,α,β.

We denote also by P(pk,α,β) the following function class:

P(pk,α,β) := {p : p ∈ P and p(U) ⊂ Ωk,α,β}
= {p : p ∈ P and p(z) ≺ pk,α,β(z) (z ∈ U)} .

We thus find the following equivalence conditions for the function classes k-SP
and k-UCV:

f ∈ k-SP(α, β) ⇐⇒ zf ′(z)
f(z)

≺ pk,α,β(z) (z ∈ U)

and

f ∈ k-UCV(α, β) ⇐⇒ 1 +
zf ′′(z)
f ′(z)

≺ pk,α,β(z) (z ∈ U),

respectively.
We shall specify the functions pk,α,β, which are extremal for the class P(pk,α,β)

for nonnegative real numbers k, α and β. First of all, we take the function pk,α,β

for k = 0 as follows:

p0,α,β(z) =
1 + (1− 2β)z

1 − z
(z ∈ U)

Now, for k = 1, we shall give an explicit form of the function pk,α,β which maps
U onto the parabolic region:

Ω1,α,β =
{
w : w = u + iv and v2 < (α − β)(2u− (α + β))

}
.

It is well known from [16] that

w1(z) = − tan2

(
π

2
√

2(α − β)

√
z

)
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maps
D :=

{
w : w = u + iv and v2 < (α − β)(α− β − 2u)

}
conformally onto the open unit disk U. And the mapping

w2(w1) = α − w1

maps the domain Ω1,α,β onto the above-defined domain D. By composing the
mappings, we can obtain the following transformation:

w(z) = − tan2

(
π

2
√

2(α− β)

√
α − z

)
,

which maps Ω1,α,β onto the open unit disk U. If we let q(z) be the inverse function
of the function w(z), then we find that

q(z) = α +
2(α − β)

π2

(
log

1 +
√

z

1 −√
z

)2

.

In order to obtain p1,α,β(z) which satisfies the following normalization condition:

p1,α,β(0) = 1,

we have to solve the equation

p1,α,β(z) = q
(
u1(z)

)
= α +

2(α − β)
π2

(
log

1 +
√

u1(0)
1 −

√
u1(0)

)2

= 1,

where u1 is the Möbius transformation of the unit disk U onto itself. Solving the
above equation, we get

u1(z) =
z + ρ1

1 + ρ1z
,

where, for convenience,

ρ1 =
(

eA − 1
eA + 1

)2

and A =

√
1 − α

2(α − β)
π.

Clearly, u1(z) provides the required self-mapping of open unit disk U. Consequently,

p1,α,β(z) = α +
2(α− β)

π2

(
log

1 +
√

u1(z)
1 −

√
u1(z)

)2
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is the desired mapping of the unit disk U onto the parabolic region Ω1,α,β, with the
following normalization:

p1,α,β(0) = 1.

Next, for the case when 0 < k < 1, we shall give an explicit form of the
function which maps the unit disk U onto the hyperbolic region:

(4) Ωk,α,β =


w : w = u+iv and

(
u+ αk2−β

1−k2

)2

(
k2(α−β)2

(1−k2)2

) − v2(
(α−β)2

1−k2

) >1 (u>0)


 .

It is known from [13] that the transformation:

w1(z) =
1
2

[(
1 +

√
z

1 −√
z

)A(k)

+
(

1 −√
z

1 +
√

z

)A(k)
]

(z ∈ U),

where

(5) A(k) =
2
π

Arccos k,

maps U onto the domain G which is the interior of the right branch of the hyperbola
whose vertex is at the point k. We next observe that the mapping

w2(z) =
α − β

1− k2
z +

β − αk2

1 − k2

transforms the domain G onto the domain Ωk,α,β given by (4). Hence the function
h(z) defined by

h(z) := (w2 ◦ w1)(z)

=
α − β

2(1− k2)

[(
1 +

√
z

1−√
z

)A(k)

+
(

1 −√
z

1 +
√

z

)A(k)
]

+
β − αk2

1 − k2

=
α − β

1 − k2
cosh

(
A(k) log

1 +
√

z

1−√
z

)
+

β − αk2

1 − k2

where A(k) is given by (5), gives the desired mapping. Thus, in order to obtain the
function pk,α,β with the desired normalization:

pk,α,β(0) = 1,

we need to solve the following equation:

pk,α,β(0) = h
(
uk(0)

)
= 1,
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where uk is the Möbius transformation of the unit disk U onto itself. Hence we get

(
α − β

1 − k2

)
cosh

(
A(k) log

1 +
√

uk(0)
1−

√
uk(0)

)
+

β − αk2

1− k2
= 1,

which yields

uk(0) =: ρk =


exp

(
1

A(k)Arccosh B
)
− 1

exp
(

1
A(k)Arccosh B

)
+ 1




2

,

where A(k) is given by (5) and

B =
1

α − β
(1− k2 − β + αk2).

The automorphism uk(z) given by

uk(z) =
z + ρk

1 + ρkz

provides the required self-mapping of the unit disk U. Therefore, the mapping
pk,α,β(z) given by

pk,α,β(z) =
(

α − β

1 − k2

)
cosh

(
A(k) log

1 +
√

uk(z)

1 −
√

uk(z)

)
+

β − αk2

1 − k2
(z ∈ U)

is the desired mapping of the unit disk U onto the hyperbolic domain Ωk,α,β, given
by (4), with the following normalization:

pk,α,β(0) = 1.

Finally, we shall give the explicit representations for pk,α,β(z) for 1 < k < ∞.
The conformal mapping of the unit disk U onto the interior of the ellipse:

(6) Ωk,α,β =


w : w=u+iv and

(
u− αk2−β

k2−1

)2

(
k2(α−β)2

(k2−1)2

) +
v2(

(α−β)2

k2−1

)<1 (1<k<∞)




requires the use of the Jacobian elliptic functions. It is known from [21, p. 280]
that the Jacobian elliptic function sn(s, κ) transforms the upper half-plane and the
upper semidisk of {

s : |s| � 1√
κ

}
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onto the interior of a rectangle with vertices at

±K(κ) and ± K(κ) + iK ′(κ).

Here, and in what follows, K(κ) (0 < κ < 1) is Legendre’s complete elliptic
integral of the first kind defined by

(7) K(κ) =
∫ 1

0

dt√
(1 − t2) (1 − κ2t2)

(0 < κ < 1)

and

(8) K ′(κ) = K
(√

1− κ2
)

(0 < κ < 1)

is the complementary integral of K(κ). The mapping

z(w1) =
√

κ sn
(

2K(κ)
π

Arcsin
w1

c

) (
c :=

α − β

k2 − 1

)

maps conformally the elliptic domain:

E =


w : w = u + iv and

u2(
k2(α−β)2

(k2−1)2

) +
v2(

(α−β)2

k2−1

) < 1




onto the unit disk U. Its inverse

w1(z) =
(

α − β

k2 − 1

)
sin

(
π

2K(κ)

∫ z√
κ

0

dt√
(1 − t2) (1 − κ2t2)

)
,

where κ ∈ (0, 1) is so chosen that

(9) k = cosh
(

πK ′(κ)
4K(κ)

)
,

maps the unit disk U onto the elliptic domain E such that w 1(0) = 0. The shift
through the distance

αk2 − β

k2 − 1
to the right, that is,

w(w1) = w1 +
αk2 − β

k2 − 1
maps E onto Ωk,α,β. Hence

h(z) =
(

α − β

k2 − 1

)
sin

(
π

2K(κ)

∫ z√
κ

0

dt√
(1 − t2) (1 − κ2t2)

)
+

αk2 − β

k2 − 1
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maps the unit disk U onto the domain Ωk,α,β given by (6), but h(z) is not normalized.
By the above method using the Möbius transformation, we can easily show that
pk,α,β(z) given by

pk,α,β(z) =
(

α − β

k2 − 1

)
sin

(
π

2K(κ)

∫ u(z)√
κ

0

dt√
(1 − t2) (1 − κ2t2)

)
+

αk2 − β

k2 − 1
,

where

uk(z) =
z + ρk

1 + ρkz

and

ρk =
√

κ sn
[
2K(κ)

π
Arcsin

(
k2 − 1 − αk2 + β

α − β

)]
,

is the desired mapping.
Thus the functions which play the rôle of extremal functions for the class

P(pk,α,β) are obtained as in the following theorem.

Theorem 1. Let α, β and k be nonnegative numbers satisfying the following
inequalities:

0 � β < α � 1 and k(1− α) < 1 − β.

If p ∈ P(pk,α,β), then

p(z) ≺ pk,α,β(z) (z ∈ U),

where pk,α,β is the conformal mapping of the unit disk U onto the domain Ω k,α,β

such that

pk,α,β(z) =




1+(1−2β)z
1−z (k = 0)

α + 2(α−β)
π2

(
log 1+

√
uk(z)

1−
√

uk(z)

)2

(k = 1)(
α−β
1−k2

)
cosh

(
A(k) log 1+

√
uk(z)

1−
√

uk(z)

)
+ β−αk2

1−k2 (0 < k < 1)

α−β
k2−1

sin

(
π

2K(κ)

∫ uk(z)√
κ

0
dt√

1−t2
√

1−κ2t2

)
+ αk2−β

k2−1
(k > 1),

where A(k) is given in (5),

uk(z) =
z + ρk

1 + ρkz
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and

ρk =




(
eA−1
eA+1

)2
(k = 1)(

exp
(

1
A(k)

Arccosh B
)
−1

exp
(

1
A(k)

Arccosh B
)
+1

)2

(0 < k < 1)

√
κ sn

[
2K(κ)

π Arcsin C
]

(k > 1),

with

A =

√
1 − α

2(α − β)
π, B =

1
α − β

(1− k2 − β + αk2)

and

C =
1

α − β
(k2 − 1 − αk2 + β),

and K(κ), K ′(κ) and κ are defined by (7), (8) and (9), respectively.

3. THE FEKETE-SZEGÖ PROBLEM FOR THE FUNCTION CLASS k-SP(α,β)

In this section, we obtain the Fekete-Szegö inequality for functions in the class
k-SP(α, β) for k ∈ [0, 1]. In order to solve the Fekete-Szegö problem for the class
k-SP(α, β) (0 � k � 1), we need some coefficients of pk,α,β(z), which would
play the rôle of maximal function in that class. Obviously, if k = 0, we have

p0,α,β(z) = 1 + 2(1− β)z + 2(1 − β)z2 + · · · .

For k = 1, using the following equation (see [24]):(
log

1 +
√

z

1−√
z

)2

= 4
∞∑

n=1

(
n∑

m=1

1
4m − 4m2 + 4mn − 1 − 2n

)
zn,

we can obtain another expression for p1,α,β(z), that is,

p1,α,β(z) = α+
8(α − β)

π2

∞∑
n=1

(
n∑

m=1

1
4m − 4m2 + 4mn − 1 − 2n

)(
z + ρ1

1 + ρ1z

)n

.

By a simple calculation, we can find that

p1,α,β(z) = 1 + P1z + P2z
2 + · · · ,

where

P1 =
8
π2

(α − β)(1 − ρ2
1)

∞∑
n=1

(
n∑

m=1

nρn−1
1

4m − 4m2 + 4mn − 1 − 2n

)



Some Classes of Analytic Functions Associated with Conic Regions 397

and

P2 =
4
π2

(α − β)(1− ρ2
1)

∞∑
n=1

(
n∑

m=1

nρn−2
1 (n(1− ρ2

1) − (1 + ρ2
1))

4m − 4m2 + 4mn − 1 − 2n

)
.

Finally, in the case when 0 < k < 1, we need the expansion of the function

cosh
(

A(k) log
1 +

√
z

1 −√
z

)
.

In fact, Kanas (see [12] and [13]) found that the coefficients of this function are as
follows:

cosh
(

A(k) log
1 +

√
z

1 −√
z

)
= 1 +

∞∑
n=1

[
2n∑
l=1

2l

(
A(k)

l

)(
2n − 1
2n − l

)]
zn.

Using the above method for finding the coefficients for the case when k = 1, we
also find that

p1,α,β(z) = 1 + P1z + P2z
2 + · · · ,

where

P1 =
(α − β)(1− ρ2

k)
1 − k2

∞∑
n=1

[
nρn−1

k

2n∑
l=1

2l

(
A(k)

l

)(
2n − 1
2n − l

)]

and

P2 =
(α − β)(1 − ρ2

k)
2(1− k2)

·
∞∑

n=1

[
nρn−2

k

(
n(1 − ρ2

k) − (1 + ρ2
k)
) 2n∑

l=1

2l

(
A(k)

l

)(
2n − 1
2n − l

)]
.

The proof of our main result in this section is based upon the following lemma
given by Keogh and Merkes [15] (see also Ma and Minda [18]).

Lemma. (see [15] and [18]). Let

p(z) = 1 + c1z + c2z
2 + · · ·

be a function with positive real part in U. Then, for any complex number v,

|c2 − vc2
1| � 2 max {1, |1− 2v|} .

In particular, if v is a real parameter, then
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|c2 − vc2
1| �



−4v + 2 (v � 0)
2 (0 � v � 1)
4v − 2 (v � 1).

When v < 0 or v > 1, the equality holds true if and only if

p(z) =
1 + z

1 − z

or one of its rotations. If 0 < v < 1, then the equality holds true if and only if

p(z) =
1 + z2

1 − z2

or one of its rotations. If v = 0, then the equality holds true if and only if

p(z) =
(

1
2

+
λ

2

)
1 + z

1 − z
+
(

1
2
− λ

2

)
1 − z

1 + z
(0 � λ � 1)

or one of its rotations. If v = 1, then the equality holds true if p(z) is a reciprocal
of one of the functions such that the equality holds true in the case when v = 0.

Theorem 2. Let 0 � k � 1 and let the function f(z) given by (1) be in the
class k-SP(α, β). Then, for a complex number µ,

(10) |a3 − µa2
2| � 1

2
P1 max

{
1,

∣∣∣∣P2

P1
− P1 + 2µP1

∣∣∣∣
}

.

Furthermore, for a real parameter µ,

|a3 − µa2
2| �




1
2P2 + 1

2P 2
1 − µP 2

1 (µ � σ1)
1
2P1 (σ1 � µ � σ2)
−1

2P2 − 1
2P 2

1 + µP 2
1 (µ � σ2),

(11)

where

σ1 =
1

2P 2
1

(P 2
1 − P1 + P2)

and

σ2 =
1

2P 2
1

(P 2
1 + P1 + P2).

The result is sharp for a real parameter µ.
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Proof. We begin by showing that the inequalities (10) and (11) hold true for
f ∈ k-SP(α, β). Let us consider a function q(z) given by

q(z) =
zf ′(z)
f(z)

(z ∈ U).

Then, since f ∈ k-SP (α, β), we have the following subordination:

(12) q(z) ≺ pk,α,β(z) (z ∈ U),

where
pk,α,β(z) = 1 + P1z + P2z

2 + · · · .

Using the subordination relation (12), we see that the function h(z) given by

h(z) =
1 + p−1

k,α,β

(
q(z)

)
1 − p−1

k,α,β

(
q(z)

) = 1 + h1z + h2z
2 + · · · (z ∈ U)

is analytic and has positive real part in the open unit disk U. We also have

(13) q(z) = pk,α,β

(
h(z)− 1
h(z) + 1

)
(z ∈ U).

We find from the equation (13) that

a2 =
1
2
P1h1

and
a3 =

1
4
P1h2 −

1
8
P1h

2
1 +

1
8
P2h

2
1 +

1
8
P 2

1 h2
1,

which, together, imply that

a3 − µa2
2 =

1
4
P1(h2 − vh2

1),

where

v =
1
2

(
1 − P2

P1
− P1 + 2µP1

)
.

Therefore, our result follows immediately as an application of the above Lemma.

We will next show that the inequality (11) is sharp. By applying the above
Lemma again, for the case when µ < σ1 or µ > σ2, the equality holds true if and
only if

h(z) =
1 + z

1− z
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or one of its rotations. Hence f(z), which is the sharp function for this case, must
satisfy the following equation:

zf ′(z)
f(z)

= q(z) = pk,α,β

(
h(z) − 1
h(z) + 1

)
= pk,α,β(z).

By means of the above method, we can obtain the sharp functions for each of the
cases as follows:

f(z) = z exp

(∫ z

0

pk,α,β

(
g(t)

)
− 1

t
dt

)
,

where

g(t) =




t (µ < σ1 or µ > σ2)

t2 (σ1 < µ < σ2)

t(t+λ)
1+λz (µ = σ1)

− t(t+λ)
1+λz (µ = σ2)

or one of their rotations. Hence the proof of Theorem 2 is completed.

Remark 1. The Fekete-Szegö problem for the functions in the class k-SP(α, β),
which is restricted to the case which k > 1, remains still open.

4. FURTHER RESULTS FOR THE FUNCTION CLASSES k-SP(α, β) AND k-UCV(α, β)

In this section, we shall derive some results on the function classes k-SP(α, β)
and k-UCV(α, β). In Theorem 3 below, we first find a radius of k-UCV(α, β) for
functions f ∈ S .

Theorem 3. Let f ∈ S . Then f ∈ k-UCV(α, β) for all r � r0, where

(14) r0 =
2(k + 1)−

√
(3 + α2)k2 + (6 + 2αβ)k + 3 + β2

αk + β + k + 1
.

Proof. We know that, for f ∈ S and |z| = r < 1, the following sharp
inequaility holds true ([5, p. 15]):

(15)

∣∣∣∣zf ′′(z)
f ′(z)

− 2r2

1 − r2

∣∣∣∣ � 4r

1 − r2

or, equivalently,

(16)

∣∣∣∣
(

1 +
zf ′′(z)
f ′(z)

)
− 1 + r2

1 − r2

∣∣∣∣ � 4r

1 − r2
.
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The above condition (15) or (16) represents a disk intersecting the real axis at the
points (

1 + r2 − 4r

1− r2
, 0
)

and
(

1 + r2 + 4r

1 − r2
, 0
)

.

According to the developments presented in Section 2, we have to search for the
largest value of r = |z| such that the disk (16) lies completely inside the conic
domain Ωk,α,β. Since all conic domains have one vertex at the point(

αk + β

k + 1
, 0
)

,

it is necessary to fulfill the following condition:

1 + r2 − 4r

1 − r2
� αk + β

k + 1
.

This last inequality is satisfied for 0 � r � r0, with r0 given by (14). It suffices to
check that, for r0 given by (14), the disk (16) and the conic section ∂Ωk,α,β have
only one common point (u1, 0), where

(17) u1 =
1 + r2 − 4r

1 − r2
=

αk + β

k + 1
.

In fact, for the value of k determined by (17), one can see that the following system
of equations: (

u − 1 + r2

1− r2

)2

+ v2 =
16r2

(1 − r2)2

and
k2(u− α)2 + k2v2 = (u − β)2

has only one solution for u > 0. Thus, for r � r0, the disk (16) lies completely
inside the domain Ωk,α,β.

For the analytic functions

f1(z) = z +
∞∑

n=2

anzn and f2(z) = z +
∞∑

n=2

bnzn,

the Hadamard product (or convolution) (f1 ∗ f2)(z) of f1(z) and f2(z) is defined
by

(f1 ∗ f2)(z) = z +
∞∑

n=2

anbnzn.

In the following theorem, by using the Hadamard product (or convolution), we
present a necessary and sufficient condition for a function f ∈ S to be in the class
k-UCV(α, β).
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Theorem 4. Let 0 < k < ∞. A function f ∈ S is in the class k-UCV(α, β) if
and only if

1
z

(f ∗ Gt)(z) �= 0 (z ∈ U)

for all

t � k(α − β)
1 + k

such that (
t

k

)2

− (t + β − α)2 � 0,

where

Gt(z) =
z

[1− C(t)](1− z)2

(
1 + z

1 − z
− C(t)

)
(z ∈ U)

and

C(t) = t + β ± i

√(
t

k

)2

− (t + β − α)2.

Proof. Let 0 < k < ∞. Assume that f ∈ S and

p(z) = 1 +
zf ′′(z)
f ′(z)

(z ∈ U).

Since p(0) = 1, it follows that

f ∈ k-UCV(α, β) ⇐⇒ p(z) �∈ ∂Ωk,α,β (z ∈ U),

where, as before,

∂Ωk,α,β =
{
w : w = u + iv and k2(u − α)2 + k2v2 = (u − β)2

}
.

We note for ∂Ωk,α,β that

∂Ωk,α,β = C(t) = t + β ± i

√(
t

k

)2

− (t + β − α)2 ,

where (
t

k

)2

− (t + β − α)2 � 0.

Since

z

(1− z)2
∗ f(z) = zf ′(z) and

z(1 + z)
(1 − z)3

∗ f(z) = zf ′(z) + z2f ′′(z),
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we have
1
z

(f ∗ Gt)(z) =
f ′(z)

1 − C(t)

(
1 +

zf ′′(z)
f ′(z)

− C(t)
)

.

Thus, finally, we obtain

1
z

(f ∗ Gt)(z) �= 0 ⇐⇒ p(z) �∈ ∂Ωk,α,β

⇐⇒ f(z) ∈ k-UCV(α, β),

as asserted by Theorem 4.

Theorem 5. The function

k(z) =
z

1 − λz
(z ∈ U)

is in the class k-UCV(α, β) if and only if

|λ| � −(k + β) +
√

(k + β)2 − [k(1 + α) + (1 + β)][k(1− α) − (1− β)]
k(1 + α) + β + 1

.

Proof. Simple calculation and the definition of the function class k-UCV(α, β)
would show that the condition k(z) ∈ k-UCV(α, β) is equivalent to the following
inequality:

k

∣∣∣∣1 − α + (1 + α)λz

1 − λz

∣∣∣∣ < �
(

1 + λz

1 − λz

)
− β (z ∈ U).

Since each of the following inequalities:∣∣∣∣1 − α + (1 + α)λz

1 − λz

∣∣∣∣ � 1− α + (1 + α)|λz|
1 − |λz| (z ∈ U)

and
1 − β − (1 + β)|λz|

1 + |λz| � �
(

1 + λz

1 − λz

)
− β (z ∈ U)

holds true, it suffices to show that

(18) [k(1 + α) + (β + 1)] |λz|+2(k+β)|λz|+k(1−α)−(1−β) < 0 (z ∈ U).

Moreover, the inequality (18) is satisfied if

[k(1 + α) + (β + 1)] |λ|+ 2(k + β)|λ|+ k(1− α) − (1 − β) � 0.
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Hence we can obtain the bound of the modulus of λ as follows:

(19) |λ| � −(k+β)+
√

(k+β)2−[k(1+α)+(1+β)] [k(1−α)−(1−β)]
k(1+α)+β+1

.

Conversely, if we assume that k(z) ∈ k-UCV(α, β), then

k

∣∣∣∣1 − α + (1 + α)λz

1 − λz

∣∣∣∣ < �
(

1 + λz

1 − λz

)
− β (z ∈ U).

Upon letting z → 1−, we can obtain the inequality (19) by simple calculations.
Our proof of Theorem 5 is thus completed.

Corollary 1. The function

k(z) =
z

(1− λz)2

is in the class k-SP(α, β) if and only if

|λ| � −(k + β) +
√

(k + β)2 − [k(1 + α) + (1 + β)] [k(1 − α) − (1 − β)]
k(1 + α) + β + 1

.

Remark 2. If, in Corollary 1 above, we put

k = 1, α = 1 and β = 0,

then we can obtain the result by Rønning [24].

Theorem 6. Let k � 1 and let α and β be nonnegative real numbers satisfying
the following inequality:

(20) 2k2(1− α) � (1 − β)(2− β).

Then the function

f(z) = z + anzn (n ∈ N
∗ := N \ {1}; N = {1, 2, 3, · · ·})

is in the class k-SP(α, β) if and only if

|an| � ζ0 (n ∈ N
∗),

where ζ0 ∈ (0, 1) is the smallest root of the following quadratic equation in x :[
k2(n − α)2 − (n − β)2

]
x2 + 2

[
(n − β)(1− β) − k2(1 − α)(n − α)

]
x

+ k2(1− α)2 − (1− β)2 = 0 (n ∈ N
∗).
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Proof. It suffices to show that the following inequality:

(21) k

∣∣∣∣zf ′(z)
f(z)

− α

∣∣∣∣ � �
(

zf ′(z)
f(z)

)
− β (z ∈ U)

holds true for |z| = 1. Let us set

|an| = r and anzn−1 = reiξ.

Then (21) for this function f(z) would yield

k

∣∣∣∣1 + nreiξ

1 + reiξ
− α

∣∣∣∣ < �
(

1 + nreiξ

1 + reiξ

)
− β

⇐⇒ k

∣∣∣∣1 − α + (n − α)reiξ

1 + reiξ

∣∣∣∣ <
1

|1 + reiξ|2
[
1 + (n + 1)r cos ξ + nr2

]
− β

⇐⇒ k2(1 − α)2 + 2(1 − α)(n − α)r cos ξ + (n − α)2r2

<

[
1 + (n + 1)r cos ξ + nr2

]2
1 + 2r cos ξ + r2

− 2β(1 + (n + 1)r cos ξ + nr2)

+ β2(1 + 2r cos ξ + r2)

⇐⇒ k2(1 − α)2 + k2(n − α)2r2 < g(ξ),

where the function g(ξ) is defined by

g(ξ) :=

[
1 + (n + 1)r cos ξ + nr2

]2
1 + 2r cos ξ + r2

− 2β
[
1 + (n + 1)r cos ξ + nr2

]
+ β2(1 + 2r cos ξ + r2)− 2k2(1 − α)(n − α)r cos ξ.

By using the hypothesis of Theorem 4, we can show that the minimal value g(π)
is given by

g(π) =

[
1 − (n + 1)r + nr2

]2
(1− r)2

+ β2(1 − r)2 − 2β
[
1 − (n + 1)r + nr2

]
+ 2k2(1 − α)(n − α)r

= (1− nr)2 + β2(1− r)2 − 2β
[
1− (n + 1)r + nr2

]
+ 2k2(1− α)(n − α)r.

Hence we have to solve the following inequality:

(22)
k2(1 − α)2 + k2(n − α)2r2 < (1 − nr)2 + β2(1 − r)2

−2β
[
1− (n + 1)r + nr2

]
+ 2k2(1− α)(n − α)r.
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We now show the existence of r ∈ (0, 1) which satisfies the inequality (22). For
this purpose, we define a real-valued function G(x) on [0, 1] by

G(x) =
[
k2(n − α)2 − n2 − β2 + 2βn

]
x2

+ 2
[
n + β2 − β(n + 1)− k2(1 − α)(n − α)

]
x

+ k2(1 − α)2 − 1− β2 + 2β.

Then
G(0) = k2(1− α)2 − (1− β)2 < 0

under the constraints on α, β and k as specified in Definition 1, and

G(1) = (k2 − 1)(n − 1)2 > 0.

Hence there exists ζ0 ∈ (0, 1) such that

G(ζ0) = 0 (0 < ζ0 < 1).

The assertion of Theorem 6 now follows easily.

Corollary 2. Let the real numbers k, α and β and the function f(z) be defined
as in Theorem 6. Then f(z) ∈ k-UCV(α, β) if and only if

|an| � 1
nζ0

(n ∈ N
∗; 0 < ζ0 < 1).

Proof. We can easily deduce Corrollary 2 by using the Alexander
transformation in Theorem 6.

Remark 3. If, in Corollary 2, we put

k = 1, α = 1 and β = 0,

then we can obtain the result given earlier by Rønning [24].
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