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LOCAL ∆E
2 CONDITION IN GENERALIZED

CALDERÓN-LOZANOVSKIĬ SPACES

Pawel/ Kolwicz* and Agata Panfil*

Abstract. First we present the local ∆E
2 condition in generalized Calderón-

Lozanovskǐl spaces Eϕ and we discuss the relationships between the local and
the global ∆E

2 condition in such spaces. We also give a full characterisation
for a point of B(Eϕ) to have an order continuous norm. Then we apply
the main result to particular spaces, i.e. Calderón-Lozanovskǐl spaces and
Orlicz-Lorentz spaces.

1. INTRODUCTION

The geometry of Banach spaces is a part of functional analysis which has been
intensively developed recently [5, 9, 15]. The order continuity is one of the most
important tools in this subject area. It is natural to study this property in a local
point of view. This brings us to the notion of point of order continuity. On the other
hand, Calderón-Lozanovskǐl spaces, Eϕ, are one of important classes of Banach
lattices, especially due to their role in the interpolation theory [1, 6, 10, 16, 17].
The full criterion for a point of order continuity in Calderón-Lozanovskǐl spaces
has been established in [12]. In the paper we shall generalise this result to the
case of generalised Calderón-Lozanovskǐl spaces. It is worth mentioning that it
requires to apply new ideas and new methods in proofs in comparison to the non-
parameter case discussed in [12]. The main reason is that constants aϕ and bϕ

from the Calderón-Lozanovskǐl spaces become measurable functions aϕ(t), bϕ(t) in
generalised Calderón-Lozanovskǐl spaces.

It is worth mentioning that the local ∆E
2 (x) and the global ∆E

2 conditions are
applicable in relatively close areas. Namely the local ∆E

2 (x) condition is necessary
and sufficient in studying LLUM points in Eϕ (lower locally uniformly monotone
points), and the global ∆E

2 condition appears in criteria for ULUM points in Eϕ

(upper locally uniformly monotone points), see [12, 13].
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2. PRELIMINARIES

Throughout the paper R , R +, N denote the set of real, positive real and
positive integer numbers, respectively. Let (T, Σ, µ) be a σ-finite and complete
measure space. Denote by Ω the nonatomic part of T and by N the purely atomic
part of T . Hence the measure space (T, Σ, µ) can be written as the direct sum
(Ω, Σ ∩ Ω, µ|Ω)⊕ (N, Σ ∩ N, µ|N).

By L0 = L0(T ) we mean the set of all µ-equivalence classes of real valued
measurable functions defined on T . A Banach space, E = (E, ‖· ‖E) is a Köthe
space if E is a linear subspace of L0 and:

(i) if x ∈ E , y ∈ L0 and |y| � |x| µ-a.e., then y ∈ E and ‖y‖E � ‖x‖E ,
(ii) there exists a function x ∈ E that is positive on the whole T .

Every Köthe space is a Banach lattice under the natural partial order (x � 0 if
x(t) � 0 µ-a.e. in T ). Considering a Köthe space over the nonatomic (purely
atomic) part we say that E is a Köthe function space (resp. Köthe sequence space).

A point x ∈ E is said to have an order continuous norm if for any sequence
(xn) ⊂ E that 0 � xn � |x| and xn → 0 µ-a.e. we have ‖xn‖ → 0. It is clear
that in case of a Köthe sequence space the condition xn → 0 µ-a.e. is equivalent
to the condition xn → 0 pointwisely. We say a Köthe space E is order continuous
(E ∈ (OC) for short) if every element of E has an order continuous norm. Ea

stands for the subspace of order continuous elements of E . It is well known that
x ∈ Ea if and only if ‖xχAn‖E → 0 for any sequence (An) such that An → ∅, i.e.

An+1 ⊂ An for every n and µ

( ∞⋂
n=1

An

)
= 0.

Let ϕ denote an Orlicz function, i.e. a ϕ : R → [0,∞], which is convex, even,
vanishing and continuous at zero, left continuous on (0,∞) and not identically equal
to zero.

In the whole paper, if not stated otherwise, by ϕ we mean a Musielak-Orlicz
function, a generalisation of Orlicz function, i.e. a function ϕ : T × R → [0,∞]
such that ϕ(t, ·) is an Orlicz function for µ-a.e. t ∈ T and ϕ(·, u) is a Σ-measurable
function for every u ∈ R . We denote ϕ(t, x(t)) by (ϕ ◦ x)(t).

By a generalised Calderón-Lozanovski ľ space we mean

Eϕ =
{
x ∈ L0 : ϕ ◦ (lx) ∈ E for some l > 0

}
equipped with so called Luxemburg-Nakano norm defined by

‖x‖ϕ = inf
{
λ > 0: Iϕ

(x

λ

)
� 1
}

,

where Iϕ is a convex semimodular defined on L0 by

Iϕ(x) =
{ ‖ϕ ◦ x‖E if ϕ ◦ x ∈ E,

∞ otherwise.
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Let
aϕ(t) = sup {u > 0: ϕ(t, u) = 0} , bϕ(t) = sup {u > 0: ϕ(t, u) < ∞} .

In case of generalised Calderón-Lozanovskǐl spaces we assume without loss of
generality that the purely atomic part of T is the counting measure space (N , 2N , m)
(see [8] for argumentation).

We shall denote the function ϕ restricted to the purely atomic part (ϕ|N ) by
ϕa = (ϕi)i∈N . Analogously, ϕ restricted to the nonatomic part (ϕ|Ω) we denote by
ϕc. Hence ϕ = ϕc + ϕa for any measure space.

We say a Musielak-Orlicz function ϕc satisfies a global condition ∆E
2 (ϕc ∈ ∆E

2

for short) if there exist a constant K > 0 and a nonnegative, Σ-measurable function
f with ϕc ◦ (2f) ∈ E such that

ϕc(t, 2u) � Kϕc(t, u)

for µ-a.e. t ∈ Ω and u � f(t). We say that ϕc ∈ ∆E
2 (ε) for some ε > 0 if ϕc ∈ ∆E

2

with K = Kε, f = fε and ‖ϕc ◦ (2fε)‖E < ε. See [3] for equivalent formulations
of ∆E

2 condition.
We say ϕc ∈ ∆E

l for l > 1 if there exist a constant Kl > 0 and a nonnegative,
Σ-measurable function fl with ϕc ◦ (lfl) ∈ E such that ϕc(t, lu) � Klϕc(t, u) for
µ-a.e. t ∈ Ω and u � fl(t). We define a ∆E

l (ε) condition in analogous way as
∆E

2 (ε) condition.
We say that ϕc satisfies the ∆E

2 condition on a set A ⊂ Ω with µ(A) > 0 if
there is K > 0 and a nonnegative, Σ-measurable function f with supp(f) ⊂ A,
ϕc◦(2f) ∈ E such that ϕc(t, 2u) � Kϕc(t, u) for µ-a.e. t ∈ A and every u � f(t).
We shall write shortly ϕc ∈ ∆E

2

∣∣
A

.
Considering a Köthe sequence space E we say ϕa satisfies a global δE

2 condition
(ϕa ∈ δE

2 ) if there exist constants α, K > 0, sequences b = (bi)∞i=1 � 0 with
ϕa ◦ (2b) ∈ E+ and (di)∞i=1 with ‖ϕi(di)ei‖E = α, such that

(1) ϕi(2u) � Kϕi(u)

for every i ∈ N and u ∈ [bi, di]. Analogously as in case of function spaces we can
define a condition δE

2 (ε). For more details see [4].
We say ϕa satisfies δE

2 on a countable infinite set A ⊂ N (ϕ ∈ δE
2

∣∣
A

for short)
if there are α, K, sequences b = (bi)∞i=1 � 0 with ϕa ◦ (2b) ∈ E+ and (di)∞i=1 with
‖ϕi(di)ei‖E = α, such that ϕi(2u) � Kϕi(u) for every i ∈ A and u ∈ [bi, di].

We say a Musielak-Orlicz function ϕ satisfies ∆E
2 condition (ϕ ∈ ∆E

2 ) provided
that ϕc ∈ ∆E

2 and ϕa ∈ δE
2 .

3. RESULTS

Definition 1. Let x ∈ Eϕ. We say ϕ satisfies a local ∆E
2 (x) condition with

respect to x (ϕ ∈ ∆E
2 (x) for short) if for each l > 1 there holds
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∥∥∥ϕ ◦ (lx)χAl
k

∥∥∥
E
→ 0 as k → ∞,

where

(2) Al
k = {t ∈ supp(x) : l|x(t)| < bϕ(t) and ϕ(t, lx(t)) > kϕ(t, x(t))} .

Now we present an example showing that function ϕ may not fulfil the global
∆E

2 condition but it may satisfy the local ∆E
2 (x) condition for some x ∈ Eϕ, which

is the motivation key for Definition 1. The most convenient way to see the idea is
to consider the function without parameter.

Example 2. Consider the Orlicz function ϕ(u) = 2u − 1, E = L1(0,∞) and

x(t) =

{
0 for t ∈ (0, 1),
log2

(
1
t2

+ 1
)

for t � 1.

Clearly ∆E
2 = ∆2(R +), so ϕ 
∈ ∆E

2 . Let l ∈ N , l > 1. Then

Iϕ(lx) =

∞∫
1

(
1
t2

+ 1
)l

− 1 dt =

∞∫
1

l∑
i=1

(
l

i

)
1
t2i

dt < ∞.

Let l > 1 and notice that

Al
k = {t ∈ supp(x) : ϕ(t, lx(t)) > kϕ(t, x(t))} .

Then µ

(⋂
k>l

Al
k

)
= 0 and Al

k′ ⊂ Al
k for any k′ > k. Since

ϕ ◦
(
lxχAl

k

)
� ϕ ◦ (lx) ∈ L1 =

(
L1
)
a

,

then ∥∥∥ϕ ◦
(
lxχAl

k

)∥∥∥
L1

→ 0 as k → ∞,

so ϕ ∈ ∆E
2 (x).

Denote

(3)
A = {t ∈ T : aϕ(t) = 0} , A1 = {t ∈ T : aϕ(t) = 0 and bϕ(t) = ∞} ,

B = {t ∈ T : aϕ(t) > 0} , B1 = {t ∈ T : 0 < aϕ(t) < bϕ(t)} ,

Remark 3. ([1, Prop. 5.1]). For any Musielak-Orlicz function ϕ both functions
aϕ(t) and bϕ(t) are Σ-measurable.

We will see later that the global ∆E
2 condition implies the local ∆E

2 (x) condition
for any x ∈ Eϕ (under some restrictions concerning the function ϕ, see Lemma 7).
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Lemma 4. If µ(B1) > 0 then ϕ /∈ ∆E
2 (x) for some x ∈ Eϕ.

Proof. Assume that µ(B1) > 0. Let us first show that µ(Al0) > 0 for some
l0 > 1, where Al0 = {t ∈ B1 : l0aϕ(t) < bϕ(t)}. Assume for the contrary that for
every l > 1 the measure of Al is zero that is for every l > 1 there is a set C(l) of
measure zero such that laϕ(t) � bϕ(t) for every t ∈ B1\C(l). Therefore, taking a
sequence (ln)∞n=1 such that ln = 1 + 1

n for every n ∈ N we get µ(Cn) = 0 whence

µ

( ∞∑
n=1

Cn

)
= 0 and

(
1 +

1
n

)
aϕ(t) � bϕ(t) for every t ∈ B1\Cn.

Denote C =
∞⋃

n=1
Cn. Then for every n ∈ N and t ∈ B1\C we have

bϕ(t) > aϕ(t) � 1
1 + 1

n

bϕ(t).

Letting n → ∞ we conclude that aϕ(t) = bϕ(t) for µ-a.e. t ∈ B1, a contradiction.
Take an element x = aϕχAl0

. Notice, that for such x we have supp(x) =
Al0 = Al0

k for every k ∈ N . Indeed, Al0
k ⊂ Al0 is obvious and the inequality

ϕ ◦ (l0aϕ)χAl0
> kϕ ◦ aϕχAl0

= 0 holds for every k whence Al0
k ⊃ Al0 . Therefore

for every k ∈ N ∥∥∥ϕ ◦ (l0x)χ
A

l0
k

∥∥∥
E

=
∥∥∥ϕ ◦ (l0aϕ)χAl0

∥∥∥
E

> 0,

where Al
k is from Definition 1.

The following two Lemmas apply some methods from Lemma 2 in [3] and
Lemma 2.1 in [4].

Lemma 5. Suppose µ(AΩ) > 0 where AΩ = A∩Ω and A is defined in (3). If
ϕc ∈ ∆E

2

∣∣
AΩ

with ϕc ◦ (2f) ∈ Ea then for every l > 1 and ε > 0, ϕc ∈ ∆E
l (ε)

∣∣
AΩ

with supp(fε,l) ⊂ AΩ.

Proof. Let f, K be from the definition of ∆E
2

∣∣
AΩ

condition. Let l > 1 and
ε > 0. Then there is p ∈ N that l � 2p and by ϕc ∈ ∆E

2

∣∣
AΩ

we get that

ϕc ◦ (lf) � ϕc ◦ (2pf) � Kp−1ϕc ◦ (2f) ∈ Ea,

whence
ϕc ◦ (lf) ∈ Ea.
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In addition

0 �
∥∥∥∥ϕc ◦

(
1
n

lf

)∥∥∥∥
E

�
∥∥∥∥1
n

ϕc ◦ (lf)
∥∥∥∥

E

=
1
n
‖ϕc ◦ (lf)‖E → 0 as n → ∞.

Hence there exists n0 ∈ N for which

(4)
∥∥∥∥ϕc ◦

(
1
n0

lf

)∥∥∥∥
E

� ε

2
.

Denote
A1 = {t ∈ AΩ : f(t) > 0} , A2 = {t ∈ AΩ : f(t) = 0} ,

Cm =
{

t ∈ A1 : ∀u∈R

1
n0

f(t) � u � f(t) ⇒ ϕc(t, lu)
ϕc(t, u)

� 2m

}
for m ∈ N .

Notice that C1 ⊂ C2 ⊂ C3 ⊂ . . . . As we will see µ

(
A1\

∞⋃
m=1

Cm

)
= 0. Assume

for the contrary that

µ

(
A1\

∞⋃
m=1

Cm

)
= µ

( ∞⋂
m=1

A1\Cm

)
> 0.

Denoting C =
∞⋂

m=1
A1\Cm we get that

∀t∈C∀m∈N∃um∈R

1
n0

f(t) � um � f(t) and
ϕc(t, lum)
ϕc(t, um)

> 2m.

For a fixed t ∈ C we have

0<
1
n0

f(t)�um �f(t) < ∞ for all m∈N and
ϕc(t, lum)
ϕc(t, um)

→∞ as m→∞.

On the other hand we claim, that bϕ(t) = ∞ µ-a.e. in AΩ. Otherwise, there is a
set B ⊂ AΩ such that µ(B) > 0 and bϕ(t) < ∞ for t ∈ B. In addition f(t) < bϕ(t)
for t ∈ B since ϕ ◦ (2f) ∈ E . Then we can find an element f(t) < u < bϕ(t) such
that 2u > bϕ(t), which contradicts the ∆E

2

∣∣
AΩ

condition and proves the claim.

Moreover f(t) > 0 for t ∈ C and aϕ(t) = 0 for every t ∈ AΩ. Thus ϕc(t,lu)
ϕc(t,u)

is a continuous function considered over a compact set
[

1
n0

f(t), f(t)
]
, whence

sup
u∈
[

1
n0

f(t),f(t)
] ϕc(t,lu)

ϕc(t,u) < ∞, a contradiction. Therefore µ

(
A1\

∞⋃
m=1

Cm

)
= 0.

Let
xm = ϕc ◦ (lf)χA1\Cm
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for m ∈ N . Since ϕc ◦ (lf) ∈ Ea we get that ‖xm‖E → 0 as m → ∞. Thus there
exists m0 ∈ N such that

(5) ‖xm0‖E � ε

2
.

Define function

fε,l(t) =
1
n0

f(t)χCm0
(t) + f(t)χA1\Cm0

(t) + f(t)χA2 (t)

=
1
n0

f(t)χCm0
(t) + f(t)χAΩ\Cm0

(t).

Then supp(fε,l) = A1 ⊂ AΩ. Inequalities (4) and (5) imply

‖ϕc ◦ (lfε)‖E �
∥∥∥∥ϕc ◦

(
1
n0

lf

)
χCm0

∥∥∥∥
E

+
∥∥∥ϕc ◦ (lf)χA1\Cm0

∥∥∥
E

� ε.

For every u � fε,l(t) we have

ϕc(t, lu) � max{Kp, 2m0} ϕc(t, u) if t ∈ Cm0

ϕc(t, lu) � Kpϕc(t, u) if t ∈ AΩ\Cm0

Therefore, taking Kε,l = max{Kp, 2m0}, for µ-a.e. t ∈ AΩ and every u � fε,l(t)
we have

ϕc(t, lu) � Kε,l ϕc(t, u).

Lemma 6. Suppose E|N ↪→ c0{‖en‖E}. Let AN = A1 ∩ N be an infinite
countable set where A1 is defined in (3). If ϕa ∈ δE

2

∣∣
AN

with ϕa ◦ (2b) ∈ Ea

then for every l > 1 and ε > 0 there exist constants α ε,l, Kε,l > 0 and sequences
bε,l =

(
bε,l
i

)∞
i=1

with ‖ϕ ◦ (lbε,l)‖E � ε and dε,l = (di)∞i=1 with ϕi(di) ‖ei‖E = αε,l

such that
ϕi(lu) � Kε,lϕi(u)

for every i ∈ AN and bε,l
i � u � di

l .

Proof. Let α, K, b = (bi)∞i=1, (di)∞i=1 be from the definition of δE
2

∣∣
AN

condition.
Take l > 1 and ε > 0. We claim that for every p ∈ N there is ip ∈ AN that

ϕa ◦
(
2pbχ{i∈AN : i�ip}

) ∈ Ea.

Clearly for p = 1 it is obvious. If is enough to show the implication



266 Pawel/ Kolwicz and Agata Panfil

∃ip∈AN
ϕa ◦

(
2pbχ{i∈AN : i�ip}

) ∈ Ea

⇓
∃i0∈AN ,i0�ip ϕa ◦

(
2p+1bχ{i∈AN : i�i0}

) ∈ Ea.

By the assumption ϕa ◦ (2pbχ{i∈AN : i�ip}
) ∈ Ea ⊂ E ↪→ c0{‖en‖E} there is

i0 � ip that for every i � i0

ϕi (2pbi) ‖ei‖ � α = ϕi(di) ‖ei‖ .

Thus bi � 2pbi � di for i � i0 and

ϕa ◦
(
2p+1bχ{i∈AN : i�i0}

)
� Kϕa ◦

(
2pbχ{i∈AN : i�i0}

)
∈ Ea

which proves the claim. Therefore for any l > 1 there are p such that 2p � l � 2p+1

and i1 ∈ AN such that

ϕa ◦
(
lbχ{i∈AN : i�i1}

) ∈ Ea ↪→ {c0 ‖ei‖E}.

Since ϕi(di) ‖ei‖E = α we find i2 � i1 such that

lbi < di for i � i2.

In addition there exists k ∈ AN , k > i2, that

(6)
∥∥∥∥(ϕi(lbi)

)∞
i=k+1

∥∥∥∥
E

� ε

2
.

For every i = 1, 2, . . . , k there is b′i > 0 such that b′i < di
l and

∥∥ϕi(lb′i)ei

∥∥
E

� ε

2k
.

Denote b′ = (b′1, b
′
2, . . . , b

′
k, 0, 0, . . .). We have

(7)
∥∥ϕ ◦ (lb′)

∥∥
E

�
k∑

i=1

∥∥(ϕi(lb′i)ei

)∥∥
E

� ε

2
.

Let
A1 = {1, 2, . . . , k}, A2 = AN \ A1.

and define
K ′ = max

i∈A1

sup
b′i�u�di

l

ϕi(lu)
ϕi(u)

.
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Notice that for every i∈A1 the function ϕi(lu)
ϕi(u) is continuous over the compact set[

b′i,
di
l

]
, since by the assumption aϕ(i)=0 and bϕ(i)=∞ for each i∈AN =A1 ∩ N .

Thus sup
b′i�u�di

l

ϕi(lu)
ϕi(u) is finite for every i ∈ A1. But A1 is a finite set, so K ′ < ∞.

Define bε,l =
(
bε,l
i

)∞
i=1

as follows

bε,l
i =

{
b′i for i ∈ A1,

bi for i ∈ A2.

By (6) and (7) we get that ‖ϕa ◦ (lbε,l)‖E � ε. Notice that if i ∈ A2 and bε,l
i �

u � di
l then ϕi(lu) � Kpϕi(u) since 2p � l � 2p+1.

Taking αε,l = α, Kε,l = max{Kp, K ′} and dε,l = (di)∞i=1 we obtain

ϕi(lu) � Kε,lϕi(u)

for every i ∈ AN and u ∈
[
bε,l
i , di

l

]
what finishes the proof.

Lemma 7. (i) Let AΩ = A ∩ Ω be a set of positive measure. If ϕc ∈ ∆E
2

∣∣
AΩ

with ϕc ◦ (2f) ∈ Ea then ϕc ∈ ∆E
2 (xχAΩ

) for every x ∈ Eϕ.
(ii) Let E|N ↪→ c0{‖en‖E} and AN = A1 ∩ N be an infinite countable set. If

ϕa ∈ ∆E
2

∣∣
AN

with ϕa ◦ (2b) ∈ Ea then ϕa ∈ ∆E
2 (xχAN

) for every x ∈ Eϕ.

Proof. Let x ∈ Eϕ.
(i) Take l > 1 and ε > 0. Applying Lemma 5 with Kε,l and fε,l we get

{t ∈ supp(x) ∩ AΩ : |x(t)| � fε,l(t)} ⊂ AΩ\Al
k,

for every k � Kε,l and consequently

AΩ ∩ Al
k ⊂ {t ∈ supp(x) ∩ AΩ : |x(t)| < fε,l(t)} .

Therefore

(8)
∥∥∥ϕc ◦ (lx)χAΩ

χAl
k

∥∥∥
E

�
∥∥∥ϕc ◦ (lfε,l)χAΩ∩Al

k

∥∥∥
E

� ‖ϕc ◦ (lfε,l)‖E � ε.

(ii) Take l > 1 and ε > 0. Apply Lemma 6 with Kε,l, αε,l , bε,l = (bi)
∞
i=1,

dε,l = (di)
∞
i=1 and notice that for every x ∈ Eϕ and l > 0 there is i0 such that

(9) ϕa ◦ (lx)χ{i∈AN : i�i0} ∈ E.

Indeed, first take an element x ∈ B(Eϕ). Then ϕa ◦ x ∈ E ↪→ c0{‖ei‖E}, whence

ϕi(x(i)) ‖ei‖E → 0 as i → ∞.
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Thus there is i0 ∈ AN that for every i � i0 we have

ϕi(x(i)) ‖ei‖ � αε,l = ϕi(di) ‖ei‖ ,

whence
x(i) � di for every i � i0.

Denote

N1 = {i � i0 : x(i) ∈ [bi, di]} and N2 = {i � i0 : x(i) < bi} .

By the δE
l (ε) condition we obtain that we have

ϕa ◦ (lx)χN1 � Kε,l ϕa ◦ xχN1 .

In addition
ϕa ◦ (lx)χN2 � Kε,l ϕa ◦ bχN2.

Therefore ϕ ◦ (lxχ{i∈AN : i�i0}) ∈ E if x ∈ B(Eϕ).
Consider x ∈ Eϕ with ‖x‖ϕ > 1, set u = x

‖x‖ϕ
. Take l > 0. Then lx =

l ‖x‖ϕ u and denoting l0 = l ‖x‖ϕ we get by previous reasoning that there is i0 that
ϕa ◦ (l0u)χ{i∈AN : i�i0} ∈ E . Hence

ϕa ◦ (lx)χ{i∈AN : i�i0} = ϕa ◦ (l0u)χ{i∈AN : i�i0} ∈ E

what finishes the proof of statement (9).
Since E ↪→ c0{‖ei‖E} there is i1 > i0 that

ϕi(lx(i)) ‖ei‖ � αε,l = ϕi(di) ‖ei‖ for every i � i1,

whence
lx(i) � di for i � i1.

Therefore for every x ∈ E there is an index i0 that the above inequality holds for
all i � i0.

Let us divide the set Al
k ∩ AN into three subsets:

B1 = Al
k ∩ AN ∩ {i ∈ N : i � i0},

B2 = Al
k ∩ AN ∩ {i ∈ N : i � i0 and x(i) � bi},

B3 = Al
k ∩ AN ∩ {i ∈ N : i � i0 and x(i) < bi}.

Since B1 is a finite set and aϕ(i) = 0 and bϕ(i) = ∞ for i ∈ AN then

K0 = max
i∈B1

ϕi(lx(i))
ϕi(x(i))

< ∞,
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whence for every k � K0 we get that B1 = ∅.
Notice, that for every i ∈ B2 we get by Lemma 6 that

ϕi(lx(i)) < Kε,l ϕi(x(i)),

whence for every k > Kε,l we get that B2 = ∅.
In addition Lemma 6 implies that

‖ϕa ◦ (lx)χB3‖ < ‖ϕa ◦ (lb)χB3‖ � ε

for every k ∈ N . Summarising, for every k > max{K0, Kε,l} we obtain

(10)
∥∥∥ϕa ◦ (lx)χAl

k∩AN

∥∥∥ = ‖ϕa ◦ (lx)χB3‖ < ε.

Lemma 8. (i) Assume supp (E|Ω)a = Ω and µ(A1 ∩ Ω) > 0. Then ϕc ∈
∆E

2

∣∣
A1∩Ω

if and only if ϕ ∈ ∆E
2 (xχA1∩Ω) for every x ∈ Eϕ.

(ii) Suppose E|
N

↪→ c0{‖en‖E} and m(A1 ∩ N ) = ∞. Then ϕa ∈ δE
2

∣∣
A1∩N

if and only if ϕ ∈ δE
2 (xχA1∩N ) for every x ∈ Eϕ.

Proof. Necessity of (i) and (ii) follows from Lemma 7.
(i) Sufficiency. Conversely suppose that ϕc 
∈ ∆E

2

∣∣
A1∩Ω

. We apply the element

x =
∞∑

n=1
gnχBn constructed in Lemma 4 in [3]. We will show ϕc 
∈ ∆E

2 (xχA1∩Ω).

Take λ > 1. There exists m0 ∈ N such that λ � 1 + 1
m0

. Notice that for every
t ∈ Bm, where m � m0 we have

ϕc(t, λx(t)) � ϕc

(
t,

(
1 +

1
m

)
x(t)

)
� 2m+1ϕc(t, x(t)).

Since the latest inequality holds for every t ∈ Bm we conclude that Bm ⊂ Aλ
2m+1

for every m � m0. Therefore∥∥∥ϕc ◦ (λx)χAλ
2m+1

∥∥∥
E

� ‖ϕc ◦ (λx)χBm‖E � 1 for every m � m0.

(ii) Sufficiency. The proof goes analogously as in (i). Suppose ϕa 
∈ δE
2

∣∣
A1∩N

.
Construct an element x = (x(n))∞n=1 such that x =

∑∞
m=1

∑
n∈Nm

um
n en, analo-

gously like in Lemma 2.4 in [4]. Let λ > 1 and take m0 such that λ � 1 + 1
m0

.
For every m � m0 and n ∈ Nm we have

ϕn(λx(n)) � ϕn

((
1 +

1
m

)
x(n)

)
= ϕn

((
1 +

1
m

)
um

n

)
� 2m+2ϕn (um

n ) ,
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hence Nm ⊂ Aλ
2m+2 for every m � m0. Finally∥∥∥∥∥

(
ϕn(λx(n))

)
n∈Aλ

2m+2

∥∥∥∥∥
e

�
∥∥∥∥(ϕn(λx(n))

)
n∈Nm

∥∥∥∥
e

� 1 for every m � m0

what finishes the proof.
Recall that in [12] the local ∆E

2 (x) condition has been formulated in a little
different way, namely the set Al

k has been defined as follows

(11) Al
k =

{
t ∈ supp(x) : l2|x(t)| < bϕ and ϕ(lx(t)) > kϕ(x(t))

}
.

Denote by ∆̃E
2 (x) the definition with the above formula of Al

k . It is easy to see
that in the context of the criterion for a point of order continuity of Eϕ (see Theorem
11) both of these formulations are equivalent. The following example shows the
differences between the two formulations as well as the fact that it should be assumed
in Lemma 7 in [12] that bϕ = ∞ instead of ϕ(bϕ) = ∞.

Example 9. Let E be a Köthe space such that L∞ ↪→ E or (L∞ 
↪→ E and
E 
↪→ L∞). Let ϕ be an Orlicz function defined by ϕ(u) = 1

1−u − 1. For such
function bϕ = 1. Obviously ϕ 
∈ ∆E

2 since ∆E
2 = ∆2(∞) or ∆E

2 = ∆2 (R +). We

are about to show that ϕ ∈ ∆̃E
2 (x) for every x ∈ Eϕ.

Take x ∈ Eϕ and l > 1. We apply the formula (11) from Al
k in [12]. If t ∈ Al

k

then |x(t)| < 1
l2

and

1
1 − lx(t)

− 1 > k

(
1

1− x(t)
− 1
)

whence
lx(t)

1 − lx(t)
> k

x(t)
1 − x(t)

.

Consequently

(12)
l

k
· 1− x(t)
1 − lx(t)

> 1.

Since lx(t) < 1
l we get that

1 − x(t)
1 − lx(t)

<
1

1 − 1
l

=
l

l − 1
.

Hence instead of (12) we can write

(13)
l

k
· l

l − 1
> 1
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But for k > l2

l−1 we have

l

k
· l

l − 1
<

l
l2

l−1

· l

l − 1
= 1,

a contradiction. Therefore, µ(Al
k) = 0 for sufficiently large k. Thus ϕ ∈ ∆̃E

2 (x).

On the other hand consider such function ϕ and a particular Köthe function space
E = L1[0, 1]. We will show that using a formula of the set Al

k from Definition 1
there exists x ∈ Eϕ for which ϕ 
∈ ∆E

2 (x).
Take a sequence un → 1

2 , 0 < un < 1
2 such that ϕ(2un) > 2n for every n ∈ N .

Let (An) ⊂ [0, 1], An ∩ Am = ∅ for every n 
= m and µ(An) = 1
2n . Take

x0 =
∞∑

n=1

unχAn .

Then
Iϕ(x0) =

∑
n

ϕ(un)µ(An) � ϕ

(
1
2

)∑
n

1
2n

= ϕ

(
1
2

)
,

whence x0 ∈ Eϕ. We shall show
∥∥∥ϕ ◦ (2x0)χA2

k

∥∥∥
L1


→ 0 as k → ∞.

Fix k ∈ N and take n0 such that 2n0 > kϕ
(

1
2

)
. Then 2n0 > kϕ(un) for every

n ∈ N and
∞⋃

n=n0

An ⊂ A2
k = {t ∈ supp(x0) : 2|x0(t)| < 1 and ϕ(2x0(t)) > kϕ(x0(t)} .

Thus
∥∥∥ϕ ◦ (2x0)χA2

k

∥∥∥
L1

= Iϕ

(
(2x0)χA2

k

)
�

∞∑
n=n0

ϕ(2un)µ(An) >
∞∑

n=n0

1 = ∞.

Note also that for such function ϕ we have ϕ ∈ ∆E
2 (0), so in the function

case it suggests that it may happen ϕ ∈ ∆E
2 and ϕ 
∈ ∆E

2 (x) for some x. But
∆E

2 = ∆E
2 (0) concerns the case E ↪→ L∞ and consequently Ea = {0}. Hence this

is a trivial case in the context of a point of order continuity in Eϕ. On the other
hand L1[0, 1] 
↪→ L∞.

Lemma 10. Suppose x ∈ Eϕ and ϕ ∈ ∆E
2 (x). If ϕ◦x ∈ Ea, then ϕ◦(lx)χBl

∈
Ea for every l > 1, where Bl = {t ∈ supp(x) : l |x(t)| < bϕ(t)}.

The above Lemma is a generalisation of Lemma 9 in [12] and the proof goes
the same way.
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Theorem 11. Let E be a Köthe space and x ∈ B(Eϕ). Then x ∈ (Eϕ)a if and
only if:

(i) ϕ ◦ x ∈ Ea;
(ii) ϕ ∈ ∆E

2 (xχC), where C = {t ∈ supp(x) : aϕ(t) < |x(t)|};
(iii) For each m ∈ N set

Cm =
{

t ∈ supp(x) :
1
m

aϕ(t) � |x(t)| � aϕ(t)
}

;

CΩ
m = Cm ∩ Ω, CN

m = Cm ∩ N .

Then for every m ∈ N

ϕ ◦ (maϕ)χCΩ
m
∈ Ea

and for every m ∈ N , if card
(
CN

m

)
= ℵ0 then there is i0 = i0(m) ∈ N that

maϕχCN
m ∩{i�i0} < bϕχCN

m ∩{i�i0} and ϕ ◦ (maϕ)χCN
m ∩{i�i0} ∈ Ea;

(iv) µ(supp(x) ∩ D) = 0, where D = {t ∈ Ω: bϕ(t) < ∞};
(v) lim sup

i∈N

|x(i)|
bϕ(i)

= 0.

Proof. Necessity. (i) The proof goes analogous to the proof of Lemma 7 in [7].
(ii) The part of the proof that considers ϕ ∈ ∆E

2 (xχC) goes analogically as in the
proof of Theorem 11 in [12].
(iv) Assume µ{supp(x) ∩ D} > 0. Let Ωm =

{
t ∈ supp(x) ∩ D : |x(t)| � 1

m

}
.

There is m0 ∈ N such that µ(Ωm0) > 0. Consider sequence (Ωk) ⊂ Ωm0 such
that Ωk = {t ∈ Ωm0 : bϕ(t) < k}. There is k0 for which µ(Ωk0) > 0. Indeed, in
opposite case for every k ∈ N , µ(Ωk) = 0, whence µ(Ωm0\Ωk) = µ(Ωm0) > 0.
Thus for every t ∈ Ωm0\Ωk and every k ∈ N we get bϕ(t) � k, a contradiction.

Take (Cn)∞n=1 ⊂ Ωk0 with 0 < µ(Cn) → 0 as n → ∞. Define xn = 1
m0

χCn .
Then 0 � xn � |x| and xn → 0 µ-a.e. in Ωk0 . Take ε > 0 and λ such that
1
λ = (1 + ε)k0m0. Hence

Iϕ

(
1
λ

xn

)
= Iϕ

(
(1 + ε)k0m0

1
m0

χCn

)
> Iϕ ((1 + ε)bϕχCn) = ∞

and ‖xn‖ϕ � λ. Thus x /∈ (Eϕ)a.
(v) Let us denote

(14) N1 = {i ∈ N : bϕ(i) < ∞} .

Notice, that it is enough to prove that lim sup
i∈N1

|x(i)|
bϕ(i) = 0 when card(N1) = ℵ0.

Suppose that a = lim sup
i∈N1

|x(i)|
bϕ(i)

> 0 and card(N1) = ℵ0. There is a sequence
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(ik) ⊂ N1 with |x(ik)|
bϕ(ik) � a

2 . Let yk = |x(ik)| eik . Then yk � |x|, yk → 0

pointwisely. On the other hand, taking λ < a
2 we obtain yk

λ = |x(ik)|
λ � a

2λbϕ(ik)
so Iϕ( yk

λ ) = ∞. Therefore ‖yn‖ϕ � λ, so x /∈ (Eϕ)a.
(iii) (a) Notice that, by (iv) bϕ(t) = ∞ for µ-a.e. t ∈ Ω ∩ supp(x), whence
ϕ ◦ (maϕ)χCΩ

m
has finite values. Suppose conversely there is m ∈ N that ϕ ◦

(maϕ)χCΩ
m


∈ Ea. Then there are δ > 0 and a sequence (Dn)∞n=1 ⊂ CΩ
m of

pairwise disjoint sets with ‖ϕ ◦ (maϕ)χDn‖ � δ for each n. Setting zn = |x|χDn

we get 0 � zn � |x| and zn → 0 µ-a.e. Moreover, for l > m2

Iϕ(lzn) �
∥∥∥∥ϕ ◦

(
l

m
aϕ

)
χDn

∥∥∥∥
E

� ‖ϕ ◦ (maϕ)χDn‖E � δ,

whence ‖zn‖ϕ 
→ 0. Thus x 
∈ (Eϕ)a.
(b) Notice first that if for some m ∈ N there holds

(15) maϕχD � bϕχD ,

where card(D) = ℵ0 and D ⊂ CN
m , then for every i ∈ D we have

1
m

aϕ(i) � |x(i)| and bϕ(i) < ∞

whence together with (v)

maϕ(i) � m2 |x(i)| and lim sup
i∈D

|x(i)|
bϕ(i)

= 0.

Thus there is i0 = i0(m) that

maϕ(i) � m2 |x(i)| < bϕ(i)

for every i � i0, i ∈ D, a contradiction with (15).
Assume conversely there is m that card(CN

m ) = ℵ0 and ϕ◦(maϕ)χCN
m ∩{i�i0} 
∈

Ea where i0 = i0(m) is such that maϕ(i) < bϕ(i) for every i � i0, i ∈ CN
m . Then

following the reasoning in (a) we conclude that x 
∈ (Eϕ)a.
Sufficiency. Let 0 � xn � |x|, xn → 0 µ-a.e.. Set l > 1. We shall show that

Iϕ(lxn) → 0 in two steps.

1. We first prove that Iϕ

(
lxnχsupp(x) \C

) → 0. Take m > l. Then ϕ ◦
(lxnχCm) → 0 µ-a.e. as n → ∞ and

ϕ ◦
(
lxnχCΩ

m

)
� ϕ ◦

(
laϕχCΩ

m

)
� ϕ ◦

(
maϕχCΩ

m

)
∈ Ea.

Hence Iϕ

(
lxnχCΩ

m

)
→ 0 as n → ∞.
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Notice that (iii) implies that if card
(
CN

m

)
= ℵ0 then there is i0 = i0(m) that

ϕ ◦
(
lxnχCN

m ∩{i�i0}
)

� ϕ ◦
(
laϕχCN

m ∩{i�i0}
)

� ϕ ◦
(
maϕχCN

m ∩{i�i0}
)
∈ Ea.

Since the set CN
m ∩{i < i0} is finite then pointwise convergence of ϕ◦(lxn)χCN

m ∩{i<i0}
involves norm convergence. It proceeds also if the set CN

m is finite. Therefore
Iϕ

(
lxnχCN

m

)
→ 0 as n → ∞.

Additionally, denoting C′
m = (supp(x)\C)\Cm we get

Iϕ

(
lxnχC′

m

)
� Iϕ

(
lxχC′

m

)
< Iϕ

(
aϕχC′

m

)
= 0.

2. We now prove Iϕ(lxnχC) → 0. Denote

D1 = C ∩ Ω, D2 = C ∩ N , D21 = D2 ∩ (N \N1), D22 = D2 ∩ N1,

where N1 is defined in (14). Notice that (iv) involves that bϕ = ∞ µ-a.e. in
supp(x) ∩ Ω whence

lxnχD1∪D21 � lxχD1∪D21 < bϕχD1∪D21.

By (ii) and Lemma 10 we get ϕ ◦ (lx)χD1∪D21 ∈ Ea thus Iϕ (lxnχD1∪D21) → 0.
It is now enough to show Iϕ (lxnχD22) → 0 as n → ∞. It is obvious when

N1 is finite. Suppose card(N1) = ℵ0. (v) implies there is i0 ∈ N1 that for every
i � i0, i ∈ N1 we have l|x(i)|

bϕ(i) < 1. Indeed, otherwise we find a sequence (ik) ⊂ N1

satisfying l|x(ik)|
bϕ(ik) � 1 for all k and in consequence

lim sup
i∈N1

|x(i)|
bϕ(i)

� lim
k→∞

|x(ik)|
bϕ(ik)

� 1
l

> 0,

which contradicts with (v). Denote

D1
22 = {i ∈ D22 : i � i0} , D2

22 = {i ∈ D22 : i < i0} .

Clearly, Iϕ

(
lxnχD2

22

)
→ 0 since D2

22 is finite and ϕ ◦ (lxn)χD2
22

converges point-
wise to zero. Moreover, ϕ ◦ (lxn)χD1

22
also converges pointwise and by (ii) and

Lemma 10 we get

ϕ ◦ (lxn)χD1
22

� ϕ ◦ (lx)χD1
22

∈ Ea.

Thus Iϕ

(
lxnχD1

22

)
→ 0, n → ∞ what finishes the proof.
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4. APPLICATIONS

4.1. Calderón-Lozanovskiľ spaces

Corollary 12. ([12, Theorem 11]). Let E be a Köthe space, ϕ be an Orlicz
function and x ∈ B(Eϕ). Then x ∈ (Eϕ)a if and only if:
(i’) ϕ ◦ x ∈ Ea;
(ii’) ϕ ∈ ∆E

2 (xχC), where C = {t ∈ supp(x) : aϕ < |x(t)|};
(iii’) χAm ∈ Ea for every m ∈ N , where

Am =
{

t ∈ supp(x) :
1
m

� |x(t)| � aϕ

}
;

(iv’) ‖xχΩ‖ϕ > 0 implies bϕ = ∞;
(v’) If ‖xχΩ‖ϕ = 0 and bϕ < ∞ then |x(i)| → 0 as i → ∞.

Proof. Notice that it is enough to prove the equivalence of conditions of the
Corollary with the conditions of Theorem 11. Conditions (i’) and (ii’) are the same
as (i) and (ii) correspondingly.

Let us first show that conditions (iii’) to (v’) follow from (iii) to (v).
(iv’) Notice that if ‖xχΩ‖ϕ > 0 then µ(supp(x)∩Ω) > 0 and by (iv) we have that
µ(supp(x) ∩ D) = 0. Therefore µ(D) = 0 whence bϕ = ∞.
(v’) Let ‖xχΩ‖ϕ = 0 and bϕ < ∞. By (v) we get N1 = N and lim sup

i∈N

|x(i)|
bϕ

= 0

implies |x(i)| → 0 as i → ∞.
(iii’) Observe that if ‖xχΩ‖ϕ = 0 and bϕ < ∞ then by (v’) the set Am is finite for
every m ∈ N , whence χAm ∈ Ea. Thus together with (iv’) we may assume that
bϕ = ∞. Let m ∈ N and take n ∈ N such that n > maϕ, so aϕ

n < 1
m . Hence

aϕ

n
<

1
m

� |x(t)| � aϕ for every t ∈ Am.

Therefore (iii) implies Am ⊂ Cn and

0 < ϕ ◦ n

m
χAm � ϕ ◦ n

m
χCn < ϕ ◦ (naϕ)χCn ∈ Ea.

Finally χAm ∈ Ea.
Assume conditions (iii’) to (v’). We shall show they imply conditions (iii) to (v).

(iii) Observe that if ‖xχΩ‖ϕ = 0 and bϕ < ∞ then by (v’) the set Am is finite for
every m ∈ N whence together with (iv’) we can restrict to the case of bϕ = ∞.
Let n ∈ N and take m ∈ N that m > max

{
n, n

aϕ

}
. Then

1
m

<
aϕ

n
� |x(i)| � aϕ
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for every t ∈ Cn = CΩ
n ∪ CN

n , whence (iii’) involve Cn ⊂ Am and

0 � ϕ ◦ (naϕ)χCn < ϕ ◦ (naϕ)χAm ∈ Ea

for every n ∈ N . Therefore ϕ ◦ (naϕ)χCn ∈ Ea.
(iv) Let ‖xχΩ‖ϕ > 0. By (iv’) we get bϕ = ∞, whence µ(D) = 0. Finally
µ(supp(x) ∩ D) = 0.
(v) If card(N1) = ℵ0 then bϕ < ∞, so by (iv’) we get ‖xχΩ‖ϕ = 0. Thus by (v’)
x ∈ c0, whence lim sup

i∈N1

|x(i)|
bϕ(i) = 0.

4.2. Orlicz-Lorentz spaces

If E is a Lorentz function (sequence) space Λω (λω), then Eϕ is the corre-
sponding Orlicz-Lorentz function (sequence) space (Λω)ϕ ((λω)ϕ) equipped with
the Luxemburg-Nakano norm. We shall write shortly Λϕ,ω (λϕ,ω). Recall that the
function ω : [0, γ) → R + with γ = µ(T ) is called a weight function if it is nonneg-
ative, nonincreasing and locally integrable function with the Lebesgue measure m
not identically equal to zero. The space Λω consists of all functions x : [0, γ) → R

measurable with respect to m for which ‖x‖ω =
γ∫
0

x∗(t)ω(t)dt < ∞, where x∗ is

the nonincreasing rearrangement of x, i.e.

x∗(t) = inf {τ : dx(τ) � t} .

Recall that dx is a distribution function of x, i.e.

dx(τ) = µ ({t ∈ [0, γ) : |x(t)| > τ}) , τ � 0.

The Lorentz sequence space λω consists of all sequences x = (x(i))∞i=1 such

that
∞∑
i=1

x∗(i)ω(i) < ∞, where ω = (ω(i))∞i=1 is a weight sequence, a nonincreasing

sequence of nonnegative real numbers.

Remark 13. ([11]). The Lorentz function (sequence) space is order continuous

if and only if
∞∫
0

ω = ∞
(∑

i
ω(i) = ∞

)
.

Hence it is enough to discuss below only the case
∞∫
0

ω < ∞
(∑

i
ω(i) < ∞

)
.

Lemma 14. Let Λω be a Lorentz function space with
∞∫
0

ω(t)dt < ∞ and

x ∈ Λω. Then x ∈ (Λω)a if and only if dx(τ) < ∞ for every τ > 0.
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Proof. Necessity. Suppose for the contrary that there is τ > 0 that dx(τ) = ∞.
Denoting C = {t : |x(t)| > τ} we get m(C) = ∞. There is a sequence (Cn)∞n=1

of subsets of C that C =
∞∑

n=1
Cn, Cn ∩Cm = ∅, n 
= m and m(Cn) = ∞ for every

n ∈ N . Take a sequence xn = xχCn . Then 0 � xn � x and xn → 0 µ-a.e. On
the other hand

‖xn‖ω = ‖xχCn‖ω > τ ‖χCn‖ω = τ

∞∫
0

(χCn)∗(t)ω(t)dt = τ

∞∫
0

ω(t)dt = δ > 0.

Hence x 
∈ (Λω)a, a contradiction.
Sufficiency. Let dx(τ) < ∞ for all τ � 0. Take a sequence (xn) such that

0 � xn � |x| and xn → 0 µ-a.e. Properties of nonincreasing rearrangement (see
[14]) imply that x∗

n(τ) → 0 for all τ and

x∗
n(τ)ω(τ) � x∗(τ)ω(τ) ∈ L1 ∈ (OC).

Therefore x∗
n(τ)ω(τ) → 0 for every τ , whence

‖xn‖ω =

∞∫
0

x∗
n(t)ω(t)dt → 0, as n → ∞

what finishes the proof.

Remark 15. Let E be a symmetric Köthe sequence space. If x ∈ Ea then
x∗(i) → 0 as i → ∞.

Proof. Assume for the contrary that x∗(i) 
→ 0, i.e. there is δ > 0 and a
subsequence (ik)∞k=1 that

|x(ik)| � δ for every k ∈ N .

Define xn = |x|χ{in,in+1,...} and notice that 0 � xn � |x| for every n ∈ N and
xn → 0 pointwisely. On the other hand observe that

x∗
n(i) � δ for all n, i ∈ N ,

whence ‖xn‖E = ‖x∗
n‖E 
→ 0, so x 
∈ Ea.

Lemma 16. Let λω be a Lorentz sequence space with
∞∑
i=1

ω(i) < ∞ and x ∈ λω.

Then x ∈ (λω)a if and only if x∗(i) → 0 as i → ∞.
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Proof. Necessity. Follows from Remark 15.
Sufficiency. Take a sequence (xn) such that 0 � xn � |x| and xn → 0

pointwisely, i.e. for every i ∈ N

(16) xn(i) → 0 as n → ∞.

Notice also, that x∗(i) → 0 implies

(17) x(i) → 0 as i → ∞.

Indeed, otherwise, if x /∈ c0 then there is δ > 0 and infinite sequence (ik) that
|x(ik)| � δ for every k ∈ N . Thus x∗(i) > δ for every i ∈ N which contradicts
with the assumption x∗ ∈ c0.

In addition 0 � xn � x implies that

(18) 0 � x∗
n � x∗ for every n ∈ N .

Therefore x∗(i) → 0 involves x∗
n(i) → 0 as i → ∞ for all n, whence for every

n ∈ N

(19) xn(i) → 0 as i → ∞.

We shall show that x∗
n(i) → 0 as n → ∞ for every i ∈ N . Suppose conversely

that there is i0 that x∗
n(i) 
→ 0. Then there is δ > 0 and a subsequence

(
x∗

nk
(i0)
)∞
k=1

that x∗
nk

(i0) � δ for every k ∈ N . By (19), for every k ∈ N we can find i ∈ N

that |xnk
(i)| = x∗

nk
(i0). Denote Ik =

{
i ∈ N : |xnk

(i)| = x∗
nk

(i0)
}

and I =
⋃
k

Ik.

Consider two cases. If the set I is countably infinite then

0 < δ � xnk
(i) � |x(i)| for every i ∈ I,

which contradicts with (17). If I is a finite set then there is j0 ∈ I that

xnk
(j0) � δ

for infinitely many k which contradicts with (16). Therefore x∗
n → 0 poinwisely

and so does x∗
nω for all n.

Observe that by (18), for every n ∈ N

x∗
nω � x∗ω ∈ l1 ∈ (OC).

Finally ‖xn‖ω = ‖x∗
n‖ω =

∞∑
i=1

x∗
n(i)ω(i) → 0.

Notice, that sufficiency of Lemma 16 does not hold for a symmetric Köthe
sequence space in general. It is shown in the following example.
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Example 17. Recall that given a weight sequence ω, the Marcinkiewicz se-
quence space mω is defined by

mω =
{

x ∈ l0 : ‖x‖ = sup
i

ω(i)x∗∗(i) < ∞
}

,

where x∗∗(i) = 1
i

i∑
k=1

x∗(k).

Consider the space mω with ω(i) =
√

i for i ∈ N . Then for every i ∈ N

we have ω(i)x∗∗(i) = 1√
i

i∑
k=1

x∗(k). Consider now a sequence x ∈ mω defined by

x(i) =
√

i−√
i − 1 for i � 1. Then x∗ = x by concavity of function f(u) =

√
u.

Clearly,

(20) x∗(i) → 0 as i → ∞.

Take a sequence xn = |x|χ{i�n}. Then 0 � xn � |x|, xn → 0 poinwisely and

x∗∗
n (i) =

1
i

i∑
k=1

x∗
n(k) =

1
i

i+n∑
k=n

x∗(k) =
1
i

(
−√

n − 1 +
√

i + n
)

for n ∈ N , whence

‖xn‖ = sup
i

1√
i

(√
i + n −√

n − 1
)

� lim
i→∞

√
i + n −√

n − 1√
i

= 1

for n ∈ N . Therefore x 
∈ (mω)a and x∗(i) → 0 as i → ∞.

Corollary 18. Let E be a Lorentz function space Λω and x ∈ B (Λϕ,ω). Then
|x| ∈ (Λϕ,ω)a if and only if:

(i) If
∞∫
0

ω(t)dt < ∞ then dϕ◦x(τ) < ∞ for every τ � 0;

(ii) ϕ ∈ ∆Λω
2 (xχC), where C = {t ∈ supp(x) : aϕ < |x(t)|};

(iii) m(Ak) < ∞ for every k ∈ N , where Ak =
{
t ∈ supp(x) : 1

k � |x(t)| � aϕ

}
;

(iv) bϕ = ∞.

Proof. Necessity. Condition (i) follows from Corollary 12, Remark 13 and
Lemma 14. Conditions (ii) and (iv) follows from Corollary 12.

(iii) Let k ∈ N . By Corollary 12 we have χAk
∈ (Λω)a. In case of

∞∫
0

ω = ∞

we get m(Ak) < ∞ since otherwise (χAk
)∗ = χ[0,∞] /∈ Λω. If

∞∫
0

ω < ∞ we also
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obtain m(Ak) < ∞ because in opposite case, taking τ = 1
2 we get dχAk

( 1
2 ) = ∞,

a contradiction with Lemma 14.
Sufficiency. We apply Corollary 12. It is enough to discuss (i’) and (iii’).

(i’) If
∞∫
0

ω < ∞ then we apply Lemma 14. In case of
∞∫
0

ω = ∞ we apply

Remark 13.
(iii’) Notice that m(Ak) < ∞ implies that dχAk

(τ) < ∞ for every τ > 0. Then
by Lemma 14 we obtain χAk

∈ (Λω)a.

Corollary 19. Let E be a Lorentz sequence space λω and x ∈ B (λϕ,ω). Then
|x| ∈ (λϕ,ω)a if and only if:

(i) If
∞∑
i=0

ω(i) < ∞ then (ϕ ◦ x)∗(i) → 0 as i → ∞;

(ii) ϕ ∈ ∆λω
2 (xχC), where C = {i ∈ supp(x) : aϕ < |x(i)|};

(iii) If bϕ = ∞ then xχ{i∈N : x(i)�aϕ} ∈ c0;
(iv) If bϕ < ∞ then x ∈ c0.

Proof. Necessity. Condition (i) follows from Corollary 12, Remark 13 and
Lemma 16. Conditions (ii) and (iv) follows from Corollary 12.
(iii) By Corollary 12 we have χAm ∈ (Λω)a, hence together with Lemma 16 we get
that (χAm)∗ ∈ c0, whence m(Am) < ∞ for each m ∈ N . Thus xχ{i∈N : x(i)�aϕ} ∈
c0.

Sufficiency. We apply Corollary 12 in analogous way as in the proof of Corollary
18.

(i’) If
∞∑
i=0

ω(i) < ∞ then Lemma 16 implies that ϕ◦x ∈ (λω)a. If
∞∑
i=0

ω(i) = ∞
then we apply Remark 13.

(iii’) Notice that (iii) implies that for every m ∈ N there is i0 ∈ N that
|x(i)| < 1

m for all i � i0, whence the set Am is finite and χAm ∈ Ea.
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31(3) (2005), 883-912.

12. P. Kolwicz and R. Pl/uciennik, Local ∆E
2 condition as a crucial tool for local structure
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ment. Math. Prace Mat., 26 (1986) 247-256.

Pawel/ Kolwicz
Institute of Mathematics
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