TAIWANESE JOURNAL OF MATHEMATICS
\ol. 16, No. 1, pp. 259-282, February 2012
This paper is available online at http://tjm.math.ntu.edu.tw

LOCAL AL CONDITION IN GENERALIZED
CALDERON-LOZANOVSKII SPACES

Pawel Kolwicz* and Agata Panfil*

Abstract. First we present the local AZ condition in generalized Calderon-
Lozanovskii spaces E, and we discuss the relationships between the local and
the global A% condition in such spaces. We also give a full characterisation
for a point of B(E,) to have an order continuous norm. Then we apply
the main result to particular spaces, i.e. Calderon-Lozanovskii spaces and
Orlicz-Lorentz spaces.

1. INTRODUCTION

The geometry of Banach spaces is a part of functional analysis which has been
intensively developed recently [5, 9, 15]. The order continuity is one of the most
important tools in this subject area. It is natural to study this property in a local
point of view. This brings us to the notion of point of order continuity. On the other
hand, Calderon-Lozanovskii spaces, E,, are one of important classes of Banach
lattices, especially due to their role in the interpolation theory [1, 6, 10, 16, 17].
The full criterion for a point of order continuity in Calderén-Lozanovskii spaces
has been established in [12]. In the paper we shall generalise this result to the
case of generalised Calderon-Lozanovskii spaces. It is worth mentioning that it
requires to apply new ideas and new methods in proofs in comparison to the non-
parameter case discussed in [12]. The main reason is that constants a ., and b,
from the Calderon-Lozanovskii spaces become measurable functions a.,(t), b,(t) in
generalised Calderon-Lozanovskii spaces.

It is worth mentioning that the local A (z) and the global A% conditions are
applicable in relatively close areas. Namely the local A (z) condition is necessary
and sufficient in studying LLUM points in E, (lower locally uniformly monotone
points), and the global AZ condition appears in criteria for ULUM points in E,,
(upper locally uniformly monotone points), see [12, 13].
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2. PRELIMINARIES

Throughout the paper R, R, N denote the set of real, positive real and
positive integer numbers, respectively. Let (7,3, 1) be a o-finite and complete
measure space. Denote by €2 the nonatomic part of T' and by N the purely atomic
part of 7. Hence the measure space (T, %, ) can be written as the direct sum
(szmgvu‘Q)@(szﬂNvu‘N)'

By L = L°(T) we mean the set of all u-equivalence classes of real valued
measurable functions defined on 7. A Banach space, £ = (E, |- ||z) is a Kothe
space if E is a linear subspace of L° and:

(i) ifre E,ye L% and |y| < |z| p-ae., theny € E and ||y||z < |2/ &
(ii) there exists a function = € E that is positive on the whole T'.

Every Kothe space is a Banach lattice under the natural partial order (z > 0 if
x(t) > 0 p-a.e. in T). Considering a Kothe space over the nonatomic (purely
atomic) part we say that F is a Kothe function space (resp. Kothe sequence space).

A point x € FE is said to have an order continuous norm if for any sequence
(zn,) C Ethat 0 < z,, < |z| and x,, — 0 p-a.e. we have ||z,| — 0. It is clear
that in case of a Kothe sequence space the condition x,, — 0 p-a.e. is equivalent
to the condition xz,, — 0 pointwisely. We say a Kothe space E is order continuous
(E € (0C) for short) if every element of E has an order continuous norm. E,
stands for the subspace of order continuous elements of E. It is well known that
x € E, if and only if ||xxa, ||z — 0 for any sequence (A,,) such that A,, — 0, i.e.

Ap+1 C A, for every n and ,u(ﬂ A )

Let » denote an Orlicz function, i.e. a ¢: R — [0, o], which is convex, even,
vanishing and continuous at zero, left continuous on (0, co) and not identically equal
to zero.

In the whole paper, if not stated otherwise, by ¢ we mean a Musielak-Orlicz
function, a generalisation of Orlicz function, i.e. a function ¢: T x R — [0, o]
such that o (t, -) is an Orlicz function for p-a.e. t € T and o(-, u) is a X-measurable
function for every u € R. We denote (¢, z(t)) by (¢ o x)(t).

By a generalised Calderon-Lozanovskii space we mean

= {2 € L% po(lz) € E for some | > 0}

equipped with so called Luxemburg-Nakano norm defined by
. x
lzll,, = 1nf{)\ >0: 1, <X> < 1},

where I, is a convex semimodular defined on L° by

_J llpozllp ifpozxek,
Ip(z) = { 00 otherwise.
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Let
ay(t) =sup{u > 0: p(t,u) =0}, by(t) =sup{u>0: ¢(t,u) < oco}.

In case of generalised Calderon-Lozanovskii spaces we assume without loss of
generality that the purely atomic part of 7" is the counting measure space (N, 2, m)
(see [8] for argumentation).

We shall denote the function ¢ restricted to the purely atomic part (¢|n) by
©a = (¢i)ien. Analogously, ¢ restricted to the nonatomic part (|n) we denote by
. Hence ¢ = ¢, + ¢, for any measure space.

We say a Musielak-Orlicz function (.. satisfies a global condition A ¥ (. € A¥
for short) if there exist a constant & > 0 and a nonnegative, ¥:-measurable function
f with .0 (2f) € E such that

@C(tv 2’LL) < K‘Pc(tv ’LL)

for u-ae. t € Qand u > f(t). We say that . € AZ(e) for some e > 0if p. € A¥
with K = K., f = f. and || o (2f2)||p < €. See [3] for equivalent formulations
of A¥ condition.

We say ¢. € AF for I > 1 if there exist a constant K; > 0 and a nonnegative,
Y.-measurable function f; with . o (If;) € E such that ¢ (¢, lu) < Kjp.(t,u) for
p-ae t € Qandu > fi(t). We define a AF(¢) condition in analogous way as
A¥(¢) condition.

We say that ¢, satisfies the AZ condition on a set A € Q with u(A) > 0 if
there is K > 0 and a nonnegative, 3-measurable function f with supp(f) C A,
©e0(2f) € E such that ¢.(t, 2u) < K. (t,u) for y-a.e. t € Aandevery u > f(t).
We shall write shortly ¢. € AF| .

Considering a Kothe sequence space E we say ¢, satisfies a global §4° condition
(pa € 0F) if there exist constants , K > 0, sequences b = (b;)%°; > 0 with
g 0 (20) € Ey and (d;)5°, with ||p;(d;)e;|| p = o, such that

1) ©i(2u) < Kpji(u)

for every i € N and u € [b;, d;]. Analogously as in case of function spaces we can
define a condition 6% (¢). For more details see [4].

We say ¢, satisfies 62 on a countable infinite set A C N (p € 5§|A for short)
if there are o, K, sequences b = (b;)2; > 0 with p, 0 (2b) € E; and (d;)72, with
lpi(di)eill p = «, such that ¢;(2u) < K;(u) for every i € A and u € [b;, d;].

We say a Musielak-Orlicz function ¢ satisfies A% condition (¢ € A¥) provided
that . € AF and o, € 6%.

3. REesuLTs

Definition 1. Let x € E,. We say ¢ satisfies a local AF(z) condition with
respect to = (p € AF(x) for short) if for each I > 1 there holds
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H(p o (lx)XAchE — 0 as k — oo,

where

2 AL ={t € supp(x): lz(t)] < by(t) and @(t,1x(t)) > kp(t, 2(t))}.

Now we present an example showing that function ¢ may not fulfil the global
AF condition but it may satisfy the local AZ(x) condition for some = € E,, which
is the motivation key for Definition 1. The most convenient way to see the idea is
to consider the function without parameter.

Example 2. Consider the Orlicz function ¢(u) = 2% — 1, E = L'(0, o) and

) 0 fort € (0,1),
€T =
log, (t% +1) fort>1.

Clearly AF = Ay(R,),s0 o ¢ AF. Letl € N, > 1. Then

1\ I /1
Iw(lx):/<t—2+1> —1dt:/z <i>ﬁdt<oo.
1 1 =1

Let [ > 1 and notice that
Al = {t € supp(x): @(t,1z(t)) > kep(t, x(t))} .

Then u (ﬂ A%) =0and A}, c AL for any ¥ > k. Since
k>1

po (lxX%) <ypo(lz)e Lt = (Ll)a7

then
oo Gon), =0 o 6o

so p € Al (x).
Denote
A={teT:a,(t) =0}, Ai={teT:au(t)=0andb,(t) = oo},

3
©) B={teT:a,(t)>0}, Bi={teT:0<ay,(t) <b,(t)},

Remark 3. ([1, Prop. 5.1]). For any Musielak-Orlicz function ¢ both functions
ay(t) and b,(t) are ¥-measurable.

We will see later that the global A% condition implies the local A% (x) condition
for any « € E, (under some restrictions concerning the function ¢, see Lemma 7).
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Lemma 4. If u(B1) > 0 then ¢ AP (z) for some z € E,.

Proof. Assume that ;(B1) > 0. Let us first show that p(A;,) > 0 for some
lo > 1, where Aj, = {t € By: lpay(t) < by(t)}. Assume for the contrary that for
every [ > 1 the measure of 4; is zero that is for every [ > 1 there is a set C(l) of
measure zero such that la,(t) > b,(t) for every t € Bi\C(l). Therefore, taking a
sequence (I,,),—, such that /,, =1 +% for every n € N we get 1(C,) = 0 whence

1 (ioj Cn> = 0 and
n=1
(1 + %) ay(t) = by(t) forevery t € Bi\C.

Denote C' = |J C,,. Then for every n € N and ¢ € B;\C we have

n=1

1
by (t) > ay(t) > H—lb“’(t)'
n
Letting n — oo we conclude that a,(t) = b,(t) for p-a.e. t € By, a contradiction.
Take an element z = ag x4, . Notice, that for such z we have supp(z) =
Ay, = Aﬁf for every k € N. Indeed, Aﬁf C A, is obvious and the inequality

¢ o (loap)xa,, > kg oayxa,, = 0 holds for every & whence Ao 5 A, Therefore
for every k € N

Htp o (lox)x g || = H«P o (loag)xa,, HE >0,

where A! is from Definition 1.
The following two Lemmas apply some methods from Lemma 2 in [3] and
Lemma 2.1 in [4].

Lemma 5. Suppose u(Aq) > 0 where Ag = ANQ and A is defined in (3). If
Qe € A§|AQ with .o (2f) € E, then forevery I > 1 and e > 0, ¢, € AF(5)|AQ
with supp(fe;) C Aq.

Proof. Let f, K be from the definition of A§|AQ condition. Let [ > 1 and
€ > 0. Then thereis p € N that I < 2P and by ¢, € A§|AQ we get that

peo (If) < weo(2Pf) < Kp_l‘Pc o (2f) € E,

whence
weo (If) € E,.
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In addition

©c 0 (llf)
n

Hence there exists ng € N for which
1

Pec © <_lf>
no

A ={te Ag: f(t) >0}, Ay ={te Ag: f(t) =0},

CmZ{t€A1:VueR %f(t)<U<f(t)é%

1
0< < = —llpco(f)llp — 0asn— oo
B n

peo (1)

E

<
E

@ ‘

| M

Denote

<2m} for m € N.

x
Notice that C; € Cy, € C5 C ... As we will see (Al\ U Cm> = 0. Assume
m=1

for the contrary that
Jz <A1\ U Cm> = ( ﬂ Al\Cm> > 0.
m=1 m=1
Denoting C = [\ A1\C,, we get that
m=1

1 C tvl m
VeeoVmen Ju ek — f(t) < um < f(£) and et im) _ om
no (pc(t, um)

For a fixed t € C we have

1
0<—f(t)<um<f(t) <oo forall meN and M

o (pc(t, um)

On the other hand we claim, that b,,(t) = oo p-a.e. in Ag. Otherwise, there is a
set B C Agq suchthat 41(B) > 0and b,(t) < oo fort € B. Inaddition f(t) < b, (1)
for t € B since po (2f) € E. Then we can find an element f(¢) < u < by(t) such
that 2u > b,,(t), which contradicts the A§|AQ condition and proves the claim.

Moreover f(t) > 0 for ¢t € C and a,(t) = 0 for every t € Ag. Thus %
is a continuous function considered over a compact set [;—Of(t),f(t)}, whence
sup % < oo, a contradiction. Therefore u (Al\ U Cm> = 0.

ue| L7(1).5®) m=1

Let
T = e o (Lf)XA\Cm
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for m € N. Since .o (If) € E, we get that ||z,,|| ; — 0 as m — oo. Thus there
exists mg € N such that

(5) meoHE <

| ™

Define function

ﬁﬂﬂ=7%ﬂﬂM%Jﬂ+f@M&V%Jﬂ+f@M@@)

= L F X0y () + £ XAy (B

no

Then supp(f.;) = A1 C Aq. Inequalities (4) and (5) imply

1
Pc© <_lf> XCimg
no

For every u > f.;(t) we have

<e.

.

[pco (Lf)llg < ©c 0 (L)X A\ Crg

E

©e(t, lu) < max{KP, 2™} p.(t,u) if teCpy,
ety lu) < KP.(t,u) if te Aa\Cny,

Therefore, taking K. ; = max{KP?, 2™}, for u-a.e. t € A and every u > f.(¢)
we have

@C(tv lu) < Ke,l (pc(t, u)
Lemma 6. Suppose E|n — co{llen]lz}. Let Ay = A1 NN be an infinite

countable set where A; is defined in (3). If ¢, € 52E’AN with ¢, 0 (2b) € E,
then for every [ > 1 and ¢ > 0 there exist constants «.;, K. ; > 0 and sequences

ber = (871) " with 0 0 (1b0)ll < & AN ey = (d)32, With (ds) el = e
such that
pi(lu) < Kepi(u)

for every i € Ay and b5 < u < %,

Proof. Leta, K,b= (b;):2,, (d;);2, be from the definition of 5§|AN condition.
Take I > 1 and € > 0. We claim that for every p € N there is i, € Ay that

©a © (2PbXficay : i>i}) € Pa

Clearly for p = 1 it is obvious. If is enough to show the implication
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Fipean Pa© (2PbX(icay: izi}) € Fa
J

Jige Ay sio>ip Pa © (2p+le{z‘eAN - i>io}) € Ea.

By the assumption ¢, o (22bx(icay : i>i,}) € Ba C E — co{llenllg} there is
ig = 1ip that for every i > 4

©i (2P0;) |lei|| < a = ¢i(d;) [lei]| -
Thus b; < 2Pb; < d; for i > i and
$a © (2p+1bX{i€AN L isio}) S Kpg 0 <2pbx{ieAN : Z>Z~O}> €k,

which proves the claim. Therefore for any [ > 1 there are p such that 27 < [ < 2P+!
and i; € Ay such that

¢a o (Ibx{icay: izin}) € Ea = {colleill g}
Since p;i(d;) |lei|| p = o we find iz > i; such that
lb; < d; for ¢ >1s.

In addition there exists k € Ay, k& > i, that

S 3
(6) H (wm) ~ | <5
For every i = 1,2, ...,k there is &, > 0 such that b} < % and
3
sl < -
Denote b' = (b),05,...,b,,0,0,...). We have
i 3
@ loo )5 < D ll(@ithen) |, < 5
i—1
Let
A1:{1727"'7k}7 AQZAN\AI-
and define

K' =max sup
i€ Aq
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Notice that for every i € A; the function %lu“)) is continuous over the compact set

[b;, dT} , since by the assumption a., (i) =0 and b, (i) = oo for each i € Ay =.A; NN.

Thus sup %lu“)) is finite for every i € A;. But A; is a finite set, so K’ < oc.

d.
b<us

Define b.; = (bf’l>

o0

as follows
1

e b, forie Ay,
L b; forie As.

1=

By (6) and (7) we get that ||, o (Ibe;)||, < . Notice that if i € A and b5 <
uSs % then o; (lu) < KPp;(u) since 2P < 1 < 2P+,
Taking oo = o, K.; = max{KP? K’} and d.; = (d;)32, we obtain

wi(lu) < K¢ ppi(u)

for every i € Ay and u € [bf’l, %} what finishes the proof.

Lemma 7. (i) Let Ag = AN Q be a set of positive measure. If . € AF
with . o (2f) € E, then ¢. € AL (zxa,) for every z € E,,.

(7i) Let E|n — co{llen|| g} and Ay = A1 NN be an infinite countable set. If
©a € AﬂAN with ¢, o (2b) € E, then ¢, € AL (x4, ) for every x € E,.

L4g

Proof. Letx € E,.
(i) Take { > 1 and ¢ > 0. Applying Lemma 5 with K. ; and f.; we get

{t € supp(a) N Ag: (b)) > fea(t)} C Aa\AL,
for every k > K.; and consequently
Aq N A} C {t € supp(x) N Ag: |a(t)] < fea(t)}-
Therefore
® |

(i) Take I > 1 and ¢ > 0. Apply Lemma 6 with K., oy, by = (bi)iey,
de; = (di);=, and notice that for every = € E,, and [ > 0 there is i such that

Oc O (lw‘))(AQXA%C HE < ‘ pc o (lfe,l)XAQmAQHE <lweo (L)l < e

9) Pa © (lx)X{z‘eAN cizioy € B
Indeed, first take an element x € B(E,). Then ¢, 0 z € E — co{||e;| 5}, whence

pila(i)) leill g — 0 as i .
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Thus there is iy € Ay that for every i > iy we have

pi2(i)) lledll < e = @i(da) [leill

whence
x(i) < d; forevery i>i.

Denote
Ny = {’L =10 1‘(1) € [bz,dz]} and N, = {’L > 10: 1‘(1) < bz} .
By the 67 (<) condition we obtain that we have

@a o (lz)xn, < Koy 0a 0 TXN, -

In addition
wao (lIz)XNy, < K a0 bXN,-

Therefore ¢ o (lzx(icay : izio}) € E if v € B(E,).
Consider z € E, with |zf|, > 1, set u = R Take [ > 0. Then iz =
72}

|||, u and denoting Iy = I [|:]|, we get by previous reasoning that there is i, that
Pa © (lou)X{z‘eAN izig) € FE. Hence

Pa © (lx)X{z‘eAN 2izig} — Pa © (ZO'UJ)X{Z‘EAN iziy €F

what finishes the proof of statement (9).
Since E — co{||es||z} there is i1 > i( that

il (i) lleill < azp = @i(di) [leil] for every i >,

whence
lx(i) < d; for i>iy.

Therefore for every 2 € E there is an index i that the above inequality holds for
Let us divide the set AL N Ay into three subsets:

By =ALnAy Nn{i eN:i<ig},

By = AL nAy N{i e N:i>igand z(i) > b;},

By = AL nAy N{i e N:i>ipand z(i) < b;}.
Since B; is a finite set and a, (i) = 0 and b, (i) = oo for i € Ay then

Ky = max L(lx(l))

e ey -
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whence for every & > K, we get that B; = ().
Notice, that for every i € B, we get by Lemma 6 that

pi(lz(i)) < Kep pi(x(i)),

whence for every k£ > K. ; we get that By = {).
In addition Lemma 6 implies that

lpa o (1) xBs ]| < llpa o (10)xBsll <&

for every k € N. Summarising, for every k£ > max{ K, K.;} we obtain

(10) |

?a 0 (D)X, || = I0ae ()xaall < e.

Lemma 8. (i) Assume supp (E|g), = @ and u(A; NQ) > 0. Then ¢, €
AF| g ifand only if o € AF (xx4,n0) for every o € E,.

(ii) Suppose Ely — co{llen|z} and m(A; NN) = co. Then ¢, € 6F
if and only if ¢ € 67 (zx4,nn) for every z € E,,.

A1NN

Proof. Necessity of (i) and (ii) follows from Lemma 7.
(i) Sufficiency. Conversely suppose that ¢, & A§|A1m. We apply the element
[e.°]
T =Y gnXxs, constructed in Lemma 4 in [3]. We will show . & AY (2x4,n0)-
n=1
Take A > 1. There exists my € N such that A > 1 + m%) Notice that for every
t € B,,, where m > mg we have

et Xl > g (1 (14 ) olt)) > 27 gt a0).

Since the latest inequality holds for every ¢t € B,, we conclude that B,, C Agmﬂ
for every m > my. Therefore

|

(i) Sufficiency. The proof goes analogously as in (i). Suppose ¢, & 52E|A10N'
Construct an element z = (z(n));2, such that z = Y2~ | > -n up'e,, analo-
gously like in Lemma 2.4 in [4]. Let A > 1 and take m such that A > 1 + m%)
For every m > my and n € N,,, we have

eua) > o (14 ) o)) = (14 ) u) 2 2720 ),

e ()\UU)XA; - > |lpco (Ax)xB,,|lp =1 forevery m > my.

m—+1
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hence Ny, C A3, for every m > my. Finally

>1 forevery m >my

e

> | (earaty)

e

(wnra(n))

neAX

om+2 nENm

what finishes the proof.
Recall that in [12] the local A¥(z) condition has been formulated in a little
different way, namely the set Aﬁﬁ has been defined as follows

(12) Al = {t € supp(z): |z(t)] < by and p(lz(t)) > ke(z(t))} .

Denote by A¥(z) the definition with the above formula of AL. It is easy to see
that in the context of the criterion for a point of order continuity of £, (see Theorem
11) both of these formulations are equivalent. The following example shows the
differences between the two formulations as well as the fact that it should be assumed
in Lemma 7 in [12] that b, = oo instead of ¢(b,,) = oo.

Example 9. Let E be a Kothe space such that L>*° «— FE or (L*° + E and
E #+ L*™). Let ¢ be an Orlicz function defined by ¢(u) = 1= — 1. For such
function b, = 1. Obviously ¢ & AL since AF = Ay(c0) or AF = Ay (R ;). We
are about to show that ¢ € A¥(z) for every x € E,,.

Take 7 € E, and [ > 1. We apply the formula (11) from A’ in [12]. If t € AL

then |2 (t)| < 7 and

()

lx(t) x(t)
i) T e

whence

Consequently

I 1—x(t)
12 - >1
(12) k1= lx(t)
Since lz(t) < T we get that
1—az(t) 1 l

1—hﬁ)<1—1

Hence instead of (12) we can write

|~
~

|
—

(13)
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But for k > ;27 we have

I I
L B S |
1S EZ -1 "

-1

|~

P

a contradiction. Therefore, M(Aﬁﬁ) = 0 for sufficiently large k. Thus ¢ € AL ().

On the other hand consider such function ¢ and a particular Kothe function space
E = L'[0,1]. We will show that using a formula of the set A from Definition 1
there exists z € E,, for which ¢ ¢ AZ(z).

Take a sequence u,, — 3, 0 < u,, < 3 such that ¢(2u,) > 2" for every n € N.
Let (4,) C [0,1], A, N Ay, = 0 for every n # m and u(A4,) = 5. Take

00
Trog — E unXAn.
n=1

Then

Lo(a) = Setmntan <o (5) S g =+ (3).

L174>0ask—>oo.

whence zy € E,. We shall show H(p o (QxO)XAi

Fix k € N and take ng such that 2" > ke (). Then 20 > ke (u,,) for every
n € N and

U An € A% = {t € supp(ao): 2ao(t)] < 1 and p(20(t)) > kep(zo(t)} -

n=ng
Thus
oo @aolxae| =10 (Goo)xaz) = D w(2un)n(An) > Y 1=ox.
n=ng n=ng

Note also that for such function » we have ¢ € AZ(0), so in the function
case it suggests that it may happen ¢ € A¥ and ¢ ¢ AP (x) for some z. But
AF = AZ(0) concerns the case E — L* and consequently £, = {0}. Hence this
is a trivial case in the context of a point of order continuity in E,. On the other
hand L'[0, 1] - L.

Lemma 10. Suppose = € E, and ¢ € AL(z). If pox € E,, then po(Iz)xp, €
E, for every [ > 1, where By = {t € supp(x): l|z(t)] < b,(t)}.

The above Lemma is a generalisation of Lemma 9 in [12] and the proof goes
the same way.
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Theorem 11. Let E be a Kothe space and = € B(E,,). Then x € (E,,), if and
only if:
(i) pox € Ey;
(i) ¢ € A¥ (zxc), where C = {t € supp(z): a,(t) < |x(t)
(iii) For each m € N set

b

Cm:&emm@y%%@<MﬁM<%@}

c=cC,nQ, CY =C,NN.
Then for every m € N
po (may)xcs € Eq
and for every m € N, if card (C}} ) = R then there is iy = io(m) € N that

MapXc, n{izioy < boXcy, nfiziy @ @ o (mag)Xen nfizi} € o

(iv) p(supp(x) N D) =0, where D = {t € Q: b,(t) < oo};

; lz(i)] _
(v) hriré;.up b = 0

Proof. Necessity. (i) The proof goes analogous to the proof of Lemma 7 in [7].
(ii) The part of the proof that considers ¢ € A¥(xxc) goes analogically as in the
proof of Theorem 11 in [12].
(iv) Assume p{supp(z) N D} > 0. Let ©,, = {t € supp(z) N D: |z(t)| > = }.
There is mp € N such that (€,,,) > 0. Consider sequence () C €,,, such
that Qi = {t € Q2 by(t) < k}. There is ko for which p(€2;,) > 0. Indeed, in
opposite case for every k € N, u(€%) = 0, whence (2, \Q%) = p(2y) > 0.
Thus for every ¢t € Q,,,\$2; and every k € N we get b,(t) > k, a contradiction.

Take (Cp,)2; C Q, With 0 < 1(C,,) — 0 as n — oo. Define z,, = mLOXCn'
Then 0 < 2, < |z| and z, — 0 p-a.e. in . Take € > 0 and X such that
+ = (1 +€)komo. Hence

1 1
I, (Xxn> =1, <(1 —|—€)k0m0m—ox(;n) > I, ((14+¢)byxc,) = o0

and [|z,||, = A. Thus z ¢ (E,)
(v) Let us denote

a

(14) Ny ={i e N:by(i) < oco}.

Notice, that it is enough to prove that lim sup%(%l = 0 when card(N7) = No.
1€N7
Suppose that ¢ = lim sup%(%| > 0 and card(Ny) = Ng. There is a sequence
1€N7
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(ix) € Ny with 2Bl > 2 Let g = [2(is)] es. Then yp < af, yx — 0

pointwisely. On the other hand, taking A < § we obtain % = 'm(;—’“)' > g5by(ix)
S0 I,(%:) = oo. Therefore [y, ||, > A, so z ¢ (Ey),.

(iii) (a) Notice that, by (iv) b,(t) = oo for p-ae. t € QN supp(x), whence
Qo (maw)xcﬁ has finite values. Suppose conversely there is m € N that p o
(mag)Xxce & Eq. Then there are 6 > 0 and a sequence (Dy)p2; C C of
pairwise disjoint sets with ||¢ o (may)xp, || = 0 for each n. Setting z, = |z| xp,
we get 0 < z, < |z| and 2z, — 0 p-a.e. Moreover, for [ > m?

> |[p o (may)xp,| 5 = 9,

I (l2,) > H(p o (%ag,) XDp

E
whence ||z, /0. Thus z & (E,),.
(b) Notice first that if for some m € N there holds

(15) MmapXp = bgoXDv
where card(D) =R and D C CL, then for every i € D we have

%%(i)g\x(i)\ and b, (i) < oc

whence together with (v)

mag(i) < m?|z(@)| and limsup Ol _ g
€D bgo(")

Thus there is ig = ig(m) that
may(i) < m® |z(i)| < by(4)

for every i > iy, ¢ € D, a contradiction with (15).

Assume conversely there is m that card(CY ) = Rq and po(mag)Xen nfizioy &
E, where ig = ig(m) is such that ma (i) < b,(i) for every i > iy, i € CY . Then
following the reasoning in (a) we conclude that = ¢ (E,),,.

Sufficiency. Let 0 < z,, < |z|, ,, — 0 p-a.e.. Set [ > 1. We shall show that
I,(lz,,) — 0 in two steps.

1. We first prove that I, (lznXsupp(z) \c) — 0. Take m > I. Then ¢ o
(lzpxc,,) — 0 p-a.e. asn — oo and

Qo (lanC,f}) <po (laszC{}L) <po (manC{}L) e E,.

Hence I, (lxnx(;@ — 0 asn — oo.
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Notice that (iii) implies that if card (C}} ) = Ry then there is iy = io(m) that

o (lznXeon nfizigy ) S Y0 (lapXen nfiziy | < @0 (MapXen niizig) ) € Ea-
m { } m { } m

Since the set C N{i < ¢} is finite then pointwise convergence of o(ln)Xem nfi<io}
involves norm convergence. It proceeds also if the set ¢ is finite. Therefore
I, <lfI,'nXC§L> — 0 as n — oo.

Additionally, denoting C;, = (supp(x)\C)\C,, we get

Ly (lenxey,) < Iy (lexey,) < 1o (apxcy,) = 0.
2. We now prove I,(lz,xc) — 0. Denote
Di=CnQ, Dy=CNN, D21:D2ﬂ(N\N1), Doy = Dy N Ny,

where Ny is defined in (14). Notice that (iv) involves that b, = oo p-a.e. in
supp(z) N Q@ whence

lanD1UD21 < lxXD1UD21 < bsOXD1UD21'

By (ii) and Lemma 10 we get ¢ o ({x)xp,up,, € Eq thus I, (Iz,XD,uDy ) — O.
It is now enough to show I, (lzp,Xp,,) — 0 @ n — oo. It is obvious when
Ny is finite. Suppose card(N1) = Nq. (v) implies there is iy € N that for every

1 > 19, 2 € N1 we have lll)z—((?)' < 1. Indeed, otherwise we find a sequence (i;) C Ny

satisfying %“Z))' > 1 for all £ and in consequence

by (4
lim sup \x(z)\ > lim ‘x(lk)‘
ieNy  byp(i)  k—oo by (i)

= - >0,

which contradicts with (v). Denote
Dy ={i € Doy:i>ig}, D3y=1{i€ Doyy:i<ip}.

Clearly, I, <lanD§2> — 0 since D3, is finite and ¢ o (lar:n)XD%2 converges point-
wise to zero. Moreover, ¢ o (l%)XD;Q also converges pointwise and by (ii) and
Lemma 10 we get

@o (lxn)XD;2 Spo (lx)XD;2 € E,.

Thus I, <lanD%2> — 0, n — oo what finishes the proof.
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4. APPLICATIONS

4.1. Calderon-Lozanovskii spaces

Corollary 12. ([12, Theorem 11]). Let E be a Kothe space, ¢ be an Orlicz
function and « € B(E,). Then = € (E,),, if and only if:
(I") pox € Ey;
(i) ¢ € ALY (zxc), where C = {t € supp(z): a, < |z(t)
(iii’) xa,, € E, for every m € N, where

b

1
Am = {t € supp(z): — < |z(t)] < aw};
(iv') [lzxall, > 0 implies b, = oo;

(V) If lzxall, = 0 and by, < oo then |z (i)| — 0 as i — oc.

Proof. Notice that it is enough to prove the equivalence of conditions of the
Corollary with the conditions of Theorem 11. Conditions (i’) and (ii’) are the same
as (i) and (ii) correspondingly.

Let us first show that conditions (iii”) to (v’) follow from (iii) to (v).

(iv’) Notice that if ||z xql|, > 0 then p(supp(x) N§2) > 0 and by (iv) we have that
p(supp(x) N D) = 0. Therefore p(D) = 0 whence b, = oc.
(V) Let [lzxall, = 0 and b, < co. By (v) we get N; = N and lirylesNup%gf)l =0
implies |z(i)| — 0 as i — oo.
(iii”) Observe that if ||z xql|, = 0 and b, < oo then by (v’) the set Ay, is finite for
every m € N, whence x4,, € E,. Thus together with (iv’) we may assume that
b, = oco. Let m € N and take n € N such that n > ma,, so & < . Hence

1

%o o = < Jz(t)| < a, forevery teA,.
n m

Therefore (iii) implies A,, C C,, and

n n
0<@o—xa, <po—xc, <go(nay)xc, € Ea.
m m

Finally xa,, € Eq.

Assume conditions (iii”) to (v’). We shall show they imply conditions (iii) to (V).
(iii) Observe that if [[zxq||, = 0 and b, < oo then by (v*) the set A, is finite for
every m € N whence together with (iv’) we can restrict to the case of b, = oo.

Let n € N and take m € N that m > max {n, %} Then
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forevery t € G, = cg U CL', whence (iii’) involve C,, C A,, and

0 < SO © (na’@)XCn < QO © (na’@)XAm € Ea

for every n € N. Therefore ¢ o (na,)xc, € Eq.

(iv) Let [[zxall, > 0. By (iv’) we get b, = oo, whence p(D) = 0. Finally
p(supp(z) N D) = 0.

(V) If card(N1) = R then by, < oo, so by (iv’) we get [[xxql|, = 0. Thus by (v’)

: lz(9)] _
T € cg, whence lim sup —4 = 0.
ien, e

4.2. Orlicz-Lorentz spaces

If £ is a Lorentz function (sequence) space A, (\,), then E, is the corre-
sponding Orlicz-Lorentz function (sequence) space (Aw), ((Aw),) equipped with
the Luxemburg-Nakano norm. We shall write shortly A, ., (A,.). Recall that the
function w: [0,7) — R4 with v = p(7T') is called a weight function if it is nonneg-
ative, nonincreasing and locally integrable function with the Lebesgue measure m
not identically equal to zero. The space A,, consists of all functions z: [0,7) — R

-
measurable with respect to m for which |jz|| , = [ 2*(t)w(t)dt < oo, where z* is
0

the nonincreasing rearrangement of z, i.e.
2*(t) =1inf {7: d (1) < t}.
Recall that d,, is a distribution function of z, i.e.

do(m) = p({t € [0,7): [z()| > 7}), 7=0.

The Lorentz sequence space A, consists of all sequences z = (z(7)):2; such
that ioj x*(i)w(i) < oo, where w = (w(4)):2, is a weight sequence, a nonincreasing
sequze:nlce of nonnegative real numbers.

Remark 13. ([11]). The Lorentz function (sequence) space is order continuous

o0

if and only if Ofw =0 (ZZ: w(i) = oo)

o0
Hence it is enough to discuss below only the case [ w < oo (Z w(t) < oo).
0 i

Lemma 14. Let A, be a Lorentz function space with [ w(t)dt < oo and
0
x € A. Then z € (Ay), if and only if d,(7) < co for every 7 > 0.
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Proof. Necessity. Suppose for the contrary that there is 7 > 0 that d,(7) = .
Denoting C' = {t: |x(t)| > 7} we get m(C) = oo. There is a sequence (C),)>°

n=1

of subsets of C' that C = > C,,, C,NCyp, =0, n # m and m(C,,) = oo for every
n=1

n € N. Take a sequence z,, = xx¢c,. Then 0 < z, < z and z,, — 0 p-a.e. On
the other hand

Joall, = loxe o > 7le.ll =7 [ (e Ot =7 [ ()it =5 >0,
0 0

Hence z ¢ (Ay),, @ contradiction.

Sufficiency. Let d,(7) < oo for all 7 > 0. Take a sequence (x,) such that
0 <z, < |z| and z,, — 0 p-a.e. Properties of nonincreasing rearrangement (see
[14]) imply that «(7) — 0 for all 7 and

% (Mw(r) < 2 (7)w(r) € L € (0C).

Therefore z} (7)w(7) — 0 for every 7, whence
o0

el = /x (Dw(t)dt — 0, as n — oo

n

0

what finishes the proof.

Remark 15. Let E be a symmetric Kothe sequence space. If x € E, then
x* (i) — 0as i — oo.

Proof.  Assume for the contrary that z*(i) 4 0, i.e. thereis 6 > 0 and a
subsequence (ix)7° , that

|z(ix)| =0 forevery keN.

Define x, = || X{i,,in,1,...} @nd notice that 0 < z,, < [z| for every n € N and
x, — 0 pointwisely. On the other hand observe that

xp (i) =9 forall n,ieN,
whence ||z, || = ||z} g 7~ 0, S0 = & E,.

o0
Lemma 16. Let A\, be a Lorentz sequence space with >~ w(i) < coand z € A,,.
i=1
Then z € (\,), if and only if 2*(i) — 0 as i — oo.
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Proof. Necessity. Follows from Remark 15.
Sufficiency. Take a sequence (z,) such that 0 < z,, < |z| and z, — 0
pointwisely, i.e. for every i € N

(16) zn(i) =0 as n— oo.
Notice also, that z*(i) — 0 implies
) (i) — 0 as i — oo.

Indeed, otherwise, if = ¢ ¢ then there is § > 0 and infinite sequence (i) that
|z(ig)| = o for every k € N. Thus z*(i) > ¢ for every i € N which contradicts
with the assumption x* € ¢g.

In addition 0 < z,, < = implies that

(18) 0<zf <xz* forevery neN.

k
n
Therefore z*(i) — 0 involves z (i) — 0 as ¢ — oo for all n, whence for every
n €N

(19) (i) =0 as i— oo.

We shall show that x7 (i) — 0 as n — oo for every i € N. Suppose conversely
that there is 7o that =7, (i) /> 0. Then thereis § > 0 and a subsequence (z;; (z’o)):o:1
that z;, (io) > 0 for every k € N. By (19), for every k € N we can find i € N
that |z, (i) = =}, (io). Denote Iy = {i € N': |z, (i)| =z}, (io)} and I = LkJIk.

Consider two cases. If the set I is countably infinite then
0<6< (i) <|z(i)] forevery iel,
which contradicts with (17). If I is a finite set then there is j, € I that
Tny, (Jo) > 6

for infinitely many & which contradicts with (16). Therefore z — 0 poinwisely
and so does z}w for all n.
Observe that by (18), for every n € N

riw < rfwell € (00).
Finally [[zn[l, = llz7ll, = > 25 (D)w(i) — 0.

i=1
Notice, that sufficiency of Lemma 16 does not hold for a symmetric Kothe
sequence space in general. It is shown in the following example.
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Example 17. Recall that given a weight sequence w, the Marcinkiewicz se-
guence space my, is defined by

my, = {x cl: x| = supw(i)z™ (i) < oo} ,

where 2**(i) = + 3° a*(k).
k=1
Consider the space m,, with w(i) = v/ for i € N. Then for every i € N
we have w(i)z**(i) = % >~ x*(k). Consider now a sequence = € m,, defined by
Y k=1

2(i) =Vi—+/i—1 fori > 1. Then 2* = z by concavity of function f(u) = /u.
Clearly,

(20) (i) — 0 as i— oo.
Take a sequence z,, = |x| X{i>n}- Then 0 < z,, < ||, 2, — 0 poinwisely and

i+n

2 (i) = %Zx;(lﬂ) _ % S (k) = % (~va—T+vitn)
k=1 k=n

for n € N, whence

1 Vi —vn—1
||| = sup —= <\/i—|—n— Vn — 1) > lim ven . r =1
i Vg 1—00 Vg

for n € N. Therefore z ¢ (m,,), and z*(i) — 0 as i — oo.

Corollary 18. Let E be a Lorentz function space A, and z € B (A,,,). Then
|z| € (Aypw), if and only if:

(i) If [w(t)dt < oo then dyoy(T) < oo for every 7 > 0;
0

(ii) ¢ € AD* (zxc), where C = {t € supp(z): a, < |=(t)|};
(iii) m(Ax) < oo forevery k € N, where A, = {t € supp(z): 1 < |2(t)| < ay};

(iv) b, = oo.

Proof. Necessity. Condition (i) follows from Corollary 12, Remark 13 and
Lemma 14. Conditions (ii) and (iv) follows from Corollary 12.

(iii) Let k € N. By Corollary 12 we have y4, € (A,),. In case of [w = oo
0

we get m(Ag) < oo since otherwise (x4,)" = X(o,00] & Aw- If [ w < 00 we also
0
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obtain m(Ay) < oo because in opposite case, taking 7 = 1 we get dXAk(%) = 00,
a contradiction with Lemma 14.
Suff|C|ency We apply Corollary 12. It is enough to discuss ( ") and (iii’).

(i) If fw < oo then we apply Lemma 14. In case of fw = oo we apply

Remark 13
(iii*) Notice that m(Ax) < oo implies that d,, (1) < oo for every 7 > 0. Then
by Lemma 14 we obtain x4, € (Ay),.

Corollary 19. Let E be a Lorentz sequence space A\, and € B (A, ). Then
|z| € (Apw), if and only if:

(i) If io: w(i) < oo then (pox)*(i) — 0 as i — oo;
i=0
(ii) ¢ € A (zxc), where C = {i € supp(z): a, < |z(i)

("l) If b%" = oo then xx{ieN: z(i)<ap} € Co,
(iv) If b, < oo then z € co.

b

Proof. Necessity. Condition (i) follows from Corollary 12, Remark 13 and
Lemma 16. Conditions (ii) and (iv) follows from Corollary 12.
(iii) By Corollary 12 we have x4,, € (A.),, hence together with Lemma 16 we get

that (xa,,)" € co, whence m(A,,) < oo for each m € N. Thus zx{ien : (i)<a,} €
Co.

Sufficiency. We apply Corollary 12 in analogous way as in the proof of Corollary
18.

(i) If Z w(i) < oo then Lemma 16 implies that pox € (A,,),. If Z w(i) =

then we apply Remark 13.

(iii”) Notice that (iii) implies that for every m € N there is iy € N that
|lz(i)| < L for all i > iy, whence the set A, is finite and x 4,, € E,.
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