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THE CONTINUITY OF SOME OPERATORS ON HERZ-TYPE HARDY
SPACES ON THE HEISENBERG GROUP

Mingju Liu* and Shanzhen Lu

Abstract. In this paper, the authors give the boundedness of some multipliers
satisfying Michlin condition on Herz-type Hardy spaces on the Heisenberg
group.

1. INTRODUCTION AND MAIN RESULTS

The Heisenberg group H"™ is the lie group with underlying manifold H" =
C™ x R and multiplication (z,¢) - (2',t') = (z + 2/, t + t' + 2Im(z - Z’)), where
z = (21,29, ,2,) € C" If we identify C* x R with R?"*1 by z; = z; +
iTj4n, j =1,---,n, then the group law can be rewritten as (z1, 2, - - , Zan, t) -

n
(ylv Y2, 5 Yo, t/) = (1‘1 +Y1, T+ Yn, t+t' -2 Z(xjyj—I—n _ijj+n))7 The
7=1
reverse element of (z,¢) is (—z, —t) and we write the identity of H" as 0 = (0, 0).

0 0 0 0
Set X; = —+2zi n=, Xizn==——20iin=—,T=—,j=1,2,---

7 axj+ xj'f'natv Jtn afI,'j xj-f—natv atv] ) 4y , 1,
then X;, X1, T, is a basis for the left invariant vector fields on H".

. : 1 0
The corresponding complex vector fields are Z; = §(Xj —iXjn) = — +

0 1 0 0 02
’L'Zja, Zj = §(Xj +in+n) = a—zj — ’L'Zja, j=1--,n.

The dilation on the Heisenberg group is defined as follows: If » > 0,u =
(2,t) € H", we let ru = (rz,r%t), the homogeneous norm of u : |u| = (Jz* +
tH4 B(u,r) = {v € H" : [uv™!| < r} is the open ball with the center » and
radius . The Haar measure dVV on H"™ coincides with the Lebesgue measure on
C" x R which is denoted by dzdzdt. We note that |B((z,t),r)| = cr® (Q :=
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2n + 2, the homogeneous dimension of the Heisenberg group), where |B| denotes

the measure of B. Let J = (5!, ;% %) € Z% x Z" x Z,, where Z. denotes

the set of all nonnegative integers, we set h(J) = |5!| + |72| + 25°, where, if
n

it =Gt ), then 51 = >k If P(2,t) = D ay(z,t)” is a polynomial
k=1 J
where (z,¢)7 = 23" z7°t3" | then we call max{h(J) : a; # 0} the homogeneous
degree of P(z,t). The set of all polynomials whose homogeneous degree < s is
denoted by P,. Schwartz space on H" write as S(H").

Fix A > 0, let H be the Bargmann’s space:

Hy = {F holomorphic on C" : | F||?> = (%)”/ |F(C)|2e 2P d¢ < 400}
T Ccn

Then, H, is a Hilbert space and the monomials

a2l
Fox(Q) = %Ca,a = (1,00, , ) €LY
form an orthonormal basis for H,, where a! = aglas! - !, |a] = (a1, a9, -,
o) and (¥ = (¢S - (g, Suppose Wi » and W, are the closed operators on
‘H,, such that

WiaFax = (2(ar + 1)A)Y2F e, 2,

Wi\ Fox = (20, M) V2Fy e, 2, for A >0,
and
Wi =W, _,,
W/::A:Wk,—h for A <0,

where e = (0,---,1,---,0) € Z} with the 1 in the k—th position. Then

) (z,t) = exp™ exp(_z'W*‘Fz'W;r)

n
is an irreducible unitary representation of H™ on H,, where z- Wy = Z 2k Wi
k=1
The group Fourier transform of f € L'(H")NL?(H") is an operator-valued function
defined by
FN = | fz DIz )aV.
Hn

Obviously, ||f(A)|| < || f]|z:. Here, || - || denotes the operator norm. Similar as in
R, for f € L' N L?(H"), we also have



The Continuity of Some Operators on Herz-type Hardy Spaces on the Heisenberg Group 153

Plancherel Theorem.

. 2n—1 00 . "
1 £1Z2 = W/ 1FO) I —sIA A = (1 £ 1172,

where || - || —s denotes the Hilbert-Schmidt operator norm.

Inversion Theorem.

o0 n+1
[ s nfonra = C s,

—00

For (A, m,a) € R* x Z" x Z'}, where R* = R\ {0}, we use the notations

m; = max{m;, 0}, m; = —min{m;, 0},

mt = (mf,mg, - ,m), m~ = (my,my, - ,m,).
The partial isometry operator W' (A) on H|y by

WA Fpx = (=060 it 5Fasm-rr  fOr A>0;
Wm(A) = W (=), for A<O.

o

Thus {W7J'(X) : m € Z", o € Z7} } is an orthonormal basis for the Hilbert-Schmidt
operators on 7, . Given a function f € L?(H") such that

f(z, t) = Z fm(rl, e T, 75)62‘(7’711491—|—~.._|_rrml9n)7 where = rjewf,
m,o

then, )
f()‘) - Z Rf()‘v m, (X)W;”()\),

where

Ry(A,m,a) = Hn ey, MU - 1 2 )aV,

and ™! is the Larguerre function of type |m| and degree |«
Let P be a polynomial in z;, z;, t on H", and we define the difference-differential
operator Ap acting on the Fourier transform of f ¢ L' n L?(H") by

Ap(D Ry(Am, ) WI(N) =D Rpp(A,m, a) W),

m,o
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namely, Apf(\) = P(/-)T()( A). In [1] and [2], the authors gave the explicit ex-
pressions for A;, A, and A; . For convenience, we shall write A{ H= = A7,

For more about the knowledge on the Heisenberg group, we refer the reader to
monograph [4,5,6]

In [1], Liu proved the following results.

Theorem A. ([1]). Let f € HP(H"),0 < p < 1. Then
IFWENI < Cllf v (2] + m) A TG

1 1
Theorem B. ([1]). LetO<p <1land T > Q(z—9 - 5) be even. If an operator
valued function M (\) = Z B(a, 0, ) W2()\) satisfies

a621

h(J)

IWaATM N[ r-s < C(2lal +n)A) "2, 0<h(J]) <,

then the right-multiplier 7'y, defined by
(Tu /)N = FO)M(N), [ e HP(H") N S(H")

can be extended to a bounded operator on H?(H™).

The above theorems are the extension of the analogy results in [3].

In this paper, we mainly generalize the above results to Herz-type Hardy spaces.
Before we state our main results, we first introduce some concepts of Herz-type
Hardy spaces.

Let us begin with the definition of the Herz spaces. In the whole paper, we let
By ={u € H": |u| < 2"} and E}, = By, \ Bx_ for k € Z, x, be the characteristic
function of the set Ex, C is a absolute constant independent of the main parameters
involved, but whose value may different from each occasion.

Definition 1.1. Let —co < a < 00,0 <p < 00,1 < g < o0,
(i) the homogeneous Herz spaces K" (H™) is defined by

Re(H) = {f € LL "\ {0}) « | Fll jegogazny < 0},

where

1/p
(o E{ > 2’f0‘pukaum(w} |

k=—oc0

(i) The nonhomogeneous Herz spaces K *(H") is defined by

KgP(H") = LU(H") 0 KPP (H"),
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where -
_ k
£l oe ey = 1L FxBo | Laqny + 2 IS Xk -
k=1

With the usual modifications made when p = oo or ¢ = oo.

Obviously , K9P (H") = K9P(H") = LP(H") for 0 < p < oo and Ko/ @I(H") =
L. (1) and Kq'YONEY) = AYH") for 0 < g < co. Here A?(H") is the
Beurling algebra.

Before we introduce the Herz-type Hardy spaces, we fix some notations. Let
¢ € S(H™) with supp ¢ C By, [yn ¢(2)dV (z) # 0 and ¢'(z) = t%(b(%) for any

t>0. Let
My(f)(x) = sup|f = ¢' (z)].
>0
Definition 1.2 Let 0 < p < 00,1 < g < oo and aeR.
(i) The homogeneous Herz-type Hardy spaces HK, P(H") is defined by
HEJP(H") = {f € §'(H") : My(f) € KgP(H")}.
Moreover, we defined HfHHKg,p(Hn) = HM¢(f)HKg,p(Hn).
(ii) The non-homogeneous Herz-type Hardy Space H K;*(H") is defined by
HEKZP(H") = {f € S'(H") : My(f) € K" (H")}.

Moreover, we define || f{|; gormny = [[Mo(f) | o gm)-
when p = oo and ¢ = oo, we just make the usual modifications.

Our main results as follows:

Theorem 1.1. Let0 < p < 00,9 < 8 < 00,7 > 3 is even, M()\) =
> B, 0,0)WJ()) satisfies

aczn
IWSNA M) -5 < C((2lal +m)IA) 5, 0< () <.
Then, the right-multiplier T, defined by
(TN = FOM), | e HEYPE") N SH")
can be extended to a bounded operator on H K5 (H").

Theorem 1.2. Let f € HKSP(H"),0 < p < 00,1 < ¢ < oo and 8 >
~ 1
Q1= 1/g), then [ FNWIN| < ClS Iy o gamy (2l +m) A2 FHA=TD),
Our results are also true for the non-homogeneous Herz-type Hardy Space
HKgP(H") and we omit the details here.
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2. ProoF oF THE MAIN THEOREMS

We first state definitions of atom and molecule about Herz-type Hardy spaces
on H".

Definition 2.1.  Let1 < ¢ < 00,Q(1 — 1/¢q) < a < oo and non-negative
integer s > [ + Q(1/¢ — 1)].
(1) A function a(z) on H™ is called a central («, g, s)-atom, if it satisfies
(i) supp a C B(0,r) ={x € H" : |z| < r};
(ii) llal aguny < [B(0, 1)~/
(iii) /a( )xPdz=0, §is a multi-index with 5= (J1, Jo, I), 28 = (21, 29, )"

= 2 2! for all |B] = J1 + Jo + 21 < s.

(2) A function a(z) on H™ is called a central («, ¢, s)—atom of restrict type , if
it satisfied (ii) (iii) and (i)’ suppa C B(0,r), r>1.

Definition 2.2. Let1 < ¢ < 00,Q(1 —1/q) < a < oo, non-negative integer
s> [a+Q(1/g—1)],e > max{s/Q,a/Q+1/qg—1},a=1—-1/¢g—a/Q +¢€ and
b=1-1/q+e

(1) Afunction M € L(H") is called a central («, g, s, €)—molecule, if it satisfies

. a/b 1—a/b
(i) Ry(M) i= M2 0 10120 @) 15842 <

© /M(x)xﬂdx/(x) —0, forall |f]<s.
(2) A function M € LI(H") is called a central («, g, s, e)—molecule of restrict
type , if it satisfies (i) (ii) and (iii) [|M[|paqm) < 1.

Then we have the decomposition theorem of Herz-type Hardy spaces.

Proposition 2.1. Let0 <p < oo,1 < g <ooand Q(1—1/q) < a < oo, then
the following three conditions are equivalents:

(1) fe HKSP;

(2) f(z) =" Z Arar(z), where each ay is central («, g, s)—atoms with the

k=—oc0

o0
support By, and »  [A[P < co. Moreover

k=—o0

> /
gy ~ it (3 )™

k=—00

where the infimum is taken over all above decompositions of f;
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o0
3 =5 u;M;, where each M is a dyadic central (a, g, s, €)-molecule
W} J
J=—0o0 -

with Ry(M;) < ¢ < oo, ¢ is independent of M, and > |u;[P < oc.
j=—00
you can find (1) < (2) in [7], by the procedure of [3], we can prove (1) < (3).
Here, we omit it.

Their exists similar results on non-homogeneous Herz-type Hardy spaces.

Lemma 2.1. Let a be a (8, q, s)-atom with the center 0.

For ¢ > 2, we have

h(D+Q(E-3)
(1) 1a7al z2 < Cllall pygany
For 1 < ¢ < oo, we have

L) +Q/ )

(ii) A’a(\)] < CHaHLq(Hn ;

. o L(s+14Q/q")
(iii) [A7a(NWIA)| < C((2lal + n)| A2 DD !!Lq(%n) ;

where 1/¢' +1/q = 1.

Proof. Suppose supp a C B(0,r).
When ¢ > 2,

1Al 2 = ()7 a()] 2y < Cr" ) lall p2gany
< Cr"lla]| pageay| B0, )| /2719,
e
For |B(0,7)| < HaHLqﬁ(Hn), then
JA M+l_l
[A%all 2 < CIB(0,r)| @ "2 4 |al| agn

(28,
<Cllallpagny  * Nallzogn)

D4R
S CHaHLq(Hn) !
This proves (i).

For (ii), since 1 < ¢ < oo,
Ia%a)) = 107a0)] < ClIC)Y al) g amy
< Crh|al| g1 gny

< O™ |la|| pageny| BO, )[4



158 Mingju Liu and Shanzhen Lu

J

) 1
< CIB(0,7)| @ "7 ||| Lagan)
(

h(J) 1
M4
< Cllall,7? ™ llal Lo

h<J>+—O7
1-—51
< C”aHLq(Hn)
We now prove (iii).
i)k (2 Wy —z- W)
Set u = (z,t), p(z,t) = Z ( k') . ( T \) )
2k-+1<s—h(J) ’ ’
By the vanishing property of atom,

ATa(\) = (-)Ta()(N) = /n(% t) a2, t)(IIx(2, 1)) — p(z, 1)) dV ().

Set HWN be the subspace of H,y; spanned by {W2()) : |o| < N}. Remark that
z- Wy —z- W, is bounded from M, to Hj\ " and whose bound < ((2|a| +

1Al
n)|A|)*/?|z|. Then we get
IA%GWEW] < C2lal +m) AN [ (a0 a(e. 0]aviw)
Hn

ARt 0, 6)[dV (u)

n

SE+)
a(H")
ﬁ(s+1+ %)
7(H")

< C(2lal +m) A2 faf

< C((2la] +n)ADz MDD qf|
Then we finish the proof of lemma 2.1.
Proof of Theorem 1.1. We only need to prove if a is a dyadic central (53, ¢, 7
1)—atom, then Tysaisa (p, ¢, [B+Q(1/q—1)],7/Q—1/2)—moleculeand Ra(Tsa)
<C.

If a is a dyadic central (3, ¢, 7 — 1)—atom supported on B(0,2/),j € 7Z, then
a(x) satisfies:

(1) supp a C B(0,27),
8 .
(@) lallpage) < 1B(0,29) & < C2-,
)

3 /()x‘]dx:() forall  h(J)<s.
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We need to prove Tysaisa (0, q, [+ Q(1/q—1)],7/Q — 1/2)—molecule and
satisfies the following conditions:

(1) ITwrall oqany < C2797,
(2) llall gy laC)] - 120 1y (ony < C < o0,
(3) /a(x)x‘]dV(x):O, for all h(.J) < [+ Q(1/q— 1)].
According to plancherel Theorem,
[ Taallp2ny = [|a(A)M(A)| 2
= (B [ vt garar)

gn—1 o0 _ " 1/2
<C(Zr [Nl sharan)
= Cllallz
< Clall 2.

Because |(z,t)|” < C(|t| + ||?)7/? and 7 is an integer, we have
I 17 Tar (@)l 2y < CN(=? + 1) *Tarall L2 gaamy
< Cl[ ({1 + [¢)7/2Tara) |l 22

<C Z 1A (Tara)| 2
h(J)=

<C Z 1A (@M)|l c2

h(J)=

<C Z (A7 &) (A7 M) 2.

h(J)+h(J")=T
Next, we consider
[(A7a) (AT M)l|g2 for A(J) +h(J") =T

If h(J') =7, from (i) of Lemma 2.1, we get

h(J)

I(A7a)M]|z2 < ClAa] 2 < CHaHLz(Hn < CHaHLz(Hn
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Suppose 0 < h(J') < , then
(A7 &) (A" M (V)72

<cf” T AT AM)AT MO)E A

535> / IA7 GOV ONAY M) A"dA

€T keeo 2V <(2laltn) A <24+

<C 3y Z/ IA7 &)W PIIWE AT M) 15— IA"dA.

acZn keso 2k <(2lal+m)| N <24+

Fix ko such that 250 < |a||*,” < 2%+ by (iii) of Lemma 2.1, we have

> D

an" k——oo

<cy >

an" k=—o0
2(1-5 (s+1+Q/2))
< Ollal gy > Z
an" k=—o0

(2la] +m) ANV (2fal + m)A) T AN

/ AT GNWEN WL NAT M3 gIA"dA.
2k < (2]ar|+n)||A]| <2k+1

/ AT @MW 2(2lal + n) AT A dA
2k<(2|a|+n)|)\|<2k+1

/2k<(2|a|+n)|A|§2k+1
ko
2(1—-L(s+14+Q/2))
< Cllall} s et > >
0(621 k=—oc0

/ (2] + n) AT IR D Ay
2k <(2]a]+n) | N <2k 41

L(2r+Q) n
< Clal ™ z / A

o - <(@lal+n)|A|<2k+1

L(27+Q)
< Clallpaginy &Y

ani

5(27+Q) (2\a\+w) 2(k+1)n

an" k=—oc0 (2\a\+ )
L(274+Q)
< Clallpaginy 0 Y

Q€L k=—
5(27+Q)
< Clla HL?(HW 9ko(n+1)

ko 9(k+1)n
/ i
o 2k<(2|a|+n)|A|§2k+1 (2]a|+n)

ko 9(k+1)(n+1)
- (2la] + ) D)

L(27+Q)
< Cllallpaginy  llall ¥,

2—2
< Cllall 308y
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By (i) of Lemma 2.1, we have

/ AT &) W2 ZIWINAT M) 13— s A" dX.
aezwk ot 2k < (2]a|+n)||A|<2F+1

<cy > 1A GO [2((2la] + m)A) ") A[dA.
2k < (2]|a|+n) || A | <2k+1

a€ZY k=ko+1
o
ey Y A7 G- dr2 )
Q€LY k=ko+1 7 2" <(2lal+n)[|A[<27H

<c Y 2 [ aTa slaay
k=ko+1 -

(oo}
< CHAJ'&(A)H%Q Z 9—kh(J")
k=ko+1
<02 k‘()h(J”)H H2 2h(J)/B

hJ'")/B 2-2n(J") /B
< Cllal gzl N3z

2-2
< Cllaljagly

From the above estimates, we get

1-8/7 T
Ro(Taa) := | Tasall 2 o I Tvga()] - |17y < € < 00,

Finally, we prove the cancelation property of Tj;a.
From (iii) of Lemma 2.1, if h(J") + h(J") < [3 — Q/2], then

IA7 @)W AT MW _s

< CIIAT MWLM IPIWE AT M)

— , // 2(1— (T—1+1+Q/2))
< C(2lal +m)ANTHREI((2)a] +0) M) al| 2 gny

5(T+Q/2)

(H™)

5(2T+Q)

(H™)

< C((2la] + ) ADTHIITI D ] 7,

= C((2la] +n) AT g HLz
SC‘)\‘T h(J") h(J”)'

Hence A”7(a(A\)M (M) — 0 as A — 0 in the sense of weak convergence.
This implies

/ Tara(z,8)(2, ) dV(u) = 0 for 0< h(J) < [3—Q/2].
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Then we finish the proof of Theorem 1.1.

Proof. Proof of Theorem 1.2. By (ii) of Lemma 2.1,

. . 1-£(1-1/q)
la)Wa NI < llaN)] < Cllall oy

If [lal| Laqny < C((2]a] +n)|A[)7/?, then
la) WAV < C((2]a] +n)[A)2FHQA/a=1),
If J|al|aguny > C((2]a] + n)|A[)P/2, by (iii) of Lemma 2.1,

1-5(s+1+Q/4)

laWENI < C((2lal +n) A2 flall o g,

<cC
< O((2la] + m)ANFED ((2]al] +n)|A|) F7F /)
< O((2]a] + n)|A)z@RA/=D),

Then we done.

3. APPLICATIONS

n

1 _ _ ) .
Let £ =~ Z(Zka + Z1Z;) be the sub-Laplacian on H", then £ admits a

k=1
00

spectral resolution £ = AdE (M), where E()) is spectral measure. According
0
to the Littlewood-Paley-Stein theory [8], if

F) = /0 T e Mg (s)ds

for some ¢ € L>°(0, c0), then the operator f(£) = / F(AN)dE()) is bounded on
0
LP(H"), 1<p < oo.
An easy computation shows that the operator
L) =Y (@lal+n)AYWIN).
a€Zl

If f is a bounded Borel measurable function on [0, co), one may define the operator
f(£) by f(£) :/ F(N)dE()). Clearly m(£) is bounded on L?(H").

. 0 . . .
As a simple corollary of Theorem 1.1, the following corollary is convenient for
application.
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Corollary 3.1. Let p, 7, 3 as Theorem 1. Suppose f is a function of C'7 (R*)
such that |fU)(r)] < Cor for 0 < j < 7. Set M(\) = > f((2lo] +
a621
n)|ANWO(N), then, the multiplier Ty, defined by (Tarf)(A) = FA)M(A) is
bounded on H K5P(H™).

Example 1. The potential integral operators £ and (I + £)%, t € R, are the
right-multipliers defined respectively by

—

(£1) (V) = > (@lal+n) A W)
a621
and . A
(T+ L) (A) = Y (1+ 2lal+n) A)WIN)
a621

are bounded operators on HKQﬂ’p(H”), where 3, p as in Theorem 1.1.

Example 2. The Riesz transforms defined as R; = Zj£‘% and Rjin =

ij‘%, j = 1,---,n are bounded operators on Hkg’p(H”), where 3,p as in
Theorem 1.1.
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