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GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES AND
BANACH SPACES

Ming-Hsiu Hsu, Wataru Takahashi and Jen-Chih Yao*

Abstract. In this paper, we deal with a broad class of nonlinear mappings in a
Hilbert space and a Banach space called generalized hybrid which contains the
classes of nonexpansive mappings, nonspreading mappings, and hybrid map-
pings. Then, we prove fixed point theorems for these nonlinear mappings in
a Hilbert space and a Banach space. Furthermore, we obtain duality theorems
for nonlinear mappings in a Banach space.

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty subset of H . Then a
mapping T : C → H is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ C. The set of fixed points of T is denoted by F (T ). An important example
of nonexpansive mappings in a Hilbert space is a firmly nonexpansive mapping. A
mapping F is said to be firmly nonexpansive if

‖Fx − Fy‖2 ≤ 〈x − y, Fx − Fy〉
for all x, y ∈ C; see, for instance, Browder [5] and Goebel and Kirk [10]. It is
known that a firmly nonexpansive mapping F can be deduced from an equilibrium
problem in a Hilbert space; see, for instance, [4] and [8]. Recently, Kohsaka and
Takahashi [23], and Takahashi [31] introduced the following nonlinear mappings
which are deduced from a firmly nonexpansive mapping in a Hilbert space. A
mapping T : C → H is called nonspreading [23] if

(1.1) 2‖Tx− Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2

for all x, y ∈ C. Similarly, a mapping T : C → H is called hybrid [31] if

(1.2) 3‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − y‖2 + ‖Ty − x‖2
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for all x, y ∈ C. They proved fixed point theorems for such mappings; see also
Kohsaka and Takahashi [20], Iemoto and Takahashi [16] and Takahashi and Yao
[34]. Motivated by these mappings and results, Aoyama, Iemoto, Kohsaka and
Takahashi [2] introduced a class of nonlinear mappings called λ-hybrid containing
the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings
in a Hilbert space. Kocourek, Takahashi and Yao [21] also introduced a more broad
class of nonlinear mappings than the class of λ-hybrid mappings in a Hilbert space.
They called such a class the class of generalized hybrid mappings and then proved
general fixed point theorems and convergence theorems in a Hilbert space.

In this paper, we deal with a broad class of nonlinear mappings in a Hilbert
space and a Banach space called generalized hybrid which contains the classes of
nonexpansive mappings, nonspreading mappings, and hybrid mappings. Then, we
prove fixed point theorems for these nonlinear mappings in a Hilbert space and a
Banach space. Furthermore, we obtain duality theorems for nonlinear mappings in
a Banach space.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product 〈·, · 〉 and
norm ‖ · ‖, respectively. From [30], we know the following basic equalities. For
x, y, u, v ∈ H and λ ∈ R, we have

(2.1) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

and

(2.2) 2 〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

Let C be a nonempty closed convex subset of H and x ∈ H . Then, we know that
there exists a unique nearest point z ∈ C such that ‖x− z‖ = inf y∈C ‖x− y‖. We
denote such a correspondence by z = PCx. PC is called the metric projection of
H onto C. It is known that PC is nonexpansive and

〈x − PCx, PCx − u〉 ≥ 0

for all x ∈ H and u ∈ C; see [30] for more details.
Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the topological dual

space of E . We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a
sequence in E , we denote the strong convergence of {xn} to x ∈ E by xn → x and
the weak convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
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for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex
if δ(ε) > 0 for every ε > 0. A uniformly convex Banach space is strictly convex
and reflexive. Let C be a nonempty subset of a Banach space E . A mapping
T : C → E is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A
mapping T : C → E is quasi-nonexpansive if F (T ) �= ∅ and ‖Tx− y‖ ≤ ‖x− y‖
for all x ∈ C and y ∈ F (T ), where F (T ) is the set of fixed points of T . If
C is a nonempty closed convex subset of a strictly convex Banach space E and
T : C → C is quasi-nonexpansive, then F (T ) is closed and convex; see Itoh and
Takahashi [18]. Let E be a Banach space. The duality mapping J from E into 2E∗

is defined by
Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ E . Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be
Gâteaux differentiable if for each x, y ∈ U , the limit

(2.3) lim
t→0

‖x + ty‖ − ‖x‖
t

exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive
if and only if J is surjective, and E is strictly convex if and only if J is one-to-
one. Therefore, if E is a smooth, strictly convex and reflexive Banach space, then
J is a single-valued bijection. The norm of E is said to be uniformly Gâteaux
differentiable if for each y ∈ U , the limit (2.3) is attained uniformly for x ∈ U .
It is also said to be Fréchet differentiable if for each x ∈ U , the limit (2.3) is
attained uniformly for y ∈ U . A Banach space E is called uniformly smooth if the
limit (2.3) is attained uniformly for x, y ∈ U . It is known that if the norm of E

is uniformly Gâteaux differentiable, then J is uniformly norm to weak∗ continuous
on each bounded subset of E , and if the norm of E is Fréchet differentiable, then
J is norm to norm continuous. If E is uniformly smooth, J is uniformly norm to
norm continuous on each bounded subset of E . For more details, see [28, 29]. The
following results are also in [28, 29].

Theorem 2.1. Let E be a Banach space and let J be the duality mapping on
E . Then, for any x, y ∈ E ,

‖x‖2 − ‖y‖2 ≥ 2〈x − y, j〉,
where j ∈ Jy.

Theorem 2.2. Let E be a smooth Banach space and let J be the duality mapping
on E . Then, 〈x−y, Jx−Jy〉 ≥ 0 for all x, y ∈ E . Further, if E is strictly convex
and 〈x − y, Jx− Jy〉 = 0, then x = y.

Let E be a smooth Banach space. The function φ : E × E → (−∞,∞) is
defined by
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(2.4) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E , where J is the duality mapping of E; see [1] and [19]. We have from
the definition of φ that

(2.5) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉
for all x, y, z ∈ E . From (‖x‖ − ‖y‖)2 ≤ φ(x, y) for all x, y ∈ E , we can see that
φ(x, y) ≥ 0. Further, we can obtain the following equality:

(2.6) 2〈x − y, Jz − Jw〉 = φ(x, w) + φ(y, z)− φ(x, z)− φ(y, w)

for x, y, z, w ∈ E . If E is additionally assumed to be strictly convex, then

(2.7) φ(x, y) = 0 ⇐⇒ x = y.

The following result was proved by Xu [36].

Theorem 2.3. (Xu [36]). Let E be a uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0,∞) → [0,∞) such that g(0) = 0 and

‖λx + (1 − λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖)
for all x, y ∈ Br and λ with 0 ≤ λ ≤ 1, where Br = {z ∈ E : ‖z‖ ≤ r}.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let µ
be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the value
of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ‖µ‖ = 1, where
e = (1, 1, 1, . . .). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞ xn ≤ µn(xn) ≤ lim sup

n→∞
xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have
µ(f) = µn(xn) = a. For a proof of existence of a Banach limit and its other
elementary properties, see [28].

3. GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES

Let C be a nonempty subset of a Hilbert space H and let λ ∈ R. Then, a
mapping T : C → H is called λ-hybrid [2] if
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‖Tx − Ty‖2 ≤ ‖x − y‖2

+ 2(λ − 1)〈x− Tx, y − Ty〉

for all x, y ∈ C. A mapping T : C → H is also called generalized hybrid [21] if
there are α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. Such a mapping is called an (α, β)-generalized hybrid mapping.
Recently, Hojo, Takahashi and Yao [11] proved the following result.

Lemma 3.1. (Hojo, Takahashi and Yao [11]). Let H be a Hilbert space and let
C be a nonempty subset of H . Let α and β be in R. Then, a mapping T : C → H

is (α, β)-generalized hybrid if and only if it satisfies that

‖Tx − Ty‖2 ≤ (α − β)‖x− y‖2

+ 2(α− 1)〈x− Tx, y − Ty〉 − (α − β − 1)‖y − Tx‖2

for all x, y ∈ C.

Using Hojo, Takahashi and Yao [11], we obtain that an (α, β)-generalized hybrid
mapping with α−β = 1 is a λ-hybrid mapping. Furthermore, we have the following
result for generalized hybrid mappings in a Hilbert space.

Theorem 3.2. Let C be a nonempty subset of a Hilbert space H and let T be
a generalized hybrid mapping of C into H , i.e., there are α, β ∈ R such that

(3.1) α‖Tx − Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. Then, the following hold:

(i) If α + β < 1, then T = I , where Ix = x for all x ∈ C;
(ii) if α = 0 and β = 1, then T satisfies that ‖Tx − y‖ = ‖Ty − x‖ for all

x, y ∈ C;
(iii) if α = 0 and β > 1, then T satisfies that

2‖x − y‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2

for all x, y ∈ C;
(iv) if β = tα + 1, −1 ≤ t < ∞ and α > 0, then T satisfies that

2‖Tx− Ty‖2 + 2t‖x − y‖2 ≤ (t + 1)‖Tx− y‖2 + (t + 1)‖Ty − x‖2

for all x, y ∈ C. In particular, T is nonexpansive for t = −1, nonspreading
for t = 0, and hybrid for t = − 1

2 ;
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(v) if β = tα + 1, −∞ < t < −1 and α < 0, then T satisfies that

2‖Tx− Ty‖2 + 2t‖x − y‖2 ≥ (t + 1)‖Tx− y‖2 + (t + 1)‖Ty − x‖2

for all x, y ∈ C.

Proof.

(i) Putting x = y in the inequality (3.1), we have (1 − α − β)‖x − Tx‖2 ≤ 0.
So, from α + β < 1 we have Tx = x for all x ∈ C and hence T = I .

(ii) Let α = 0 and β = 1. Then we get that ‖x − Ty‖2 ≤ ‖Tx − y‖2 for all
x, y ∈ C. Replace x, y by y, x, respectively. We also have ‖y − Tx‖2 ≤
‖Ty − x‖2. This implies that ‖Tx − y‖ = ‖Ty − x‖ for all x, y ∈ C.

(iii) Let α = 0. Then we have that

‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1− β)‖x − y‖2

for all x, y ∈ C. Changing the role of x and y again, we also have

‖y − Tx‖2 ≤ β‖Ty − x‖2 + (1− β)‖x− y‖2.

Summing these two inequalities and then dividing by 1− β, we have

2‖x − y‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2

for all x, y ∈ C.
(iv) Let β = tα + 1. Then we have that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ (tα + 1)‖Tx− y‖2 − tα‖x − y‖2

for all x, y ∈ C. Changing the role of x and y again, we also have

α‖Ty − Tx‖2 + (1− α)‖y − Tx‖2 ≤ (tα + 1)‖Ty − x‖2 − tα‖y − x‖2.

Summing these two inequalities, we have

2α‖Tx− Ty‖2 + 2tα‖x− y‖2 ≤ (t + 1)α‖Tx− y‖2 + (t + 1)α‖Ty − x‖2.

Dividing by α > 0, we have

2‖Tx− Ty‖2 + 2t‖x − y‖2 ≤ (t + 1)‖Tx− y‖2 + (t + 1)‖Ty − x‖2

for all x, y ∈ C. In particular, T is nonexpansive for t = −1, nonspreading
for t = 0, and hybrid for t = −1

2 .
(v) By the same argument as in (iv), we have

2‖Tx− Ty‖2 + 2t‖x − y‖2 ≥ (t + 1)‖Tx− y‖2 + (t + 1)‖Ty − x‖2

if −∞ < t < −1 and α < 0. This completes the proof.
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4. GENERALIZED HYBRID MAPPINGS IN BANACH SPACES

Let E be a Banach space and let C be a nonempty subset of E . Then, a mapping
T : C → E is said to be firmly nonexpansive [6] if

‖Tx− Ty‖2 ≤ 〈x− y, j〉,
for all x, y ∈ C, where j ∈ J(Tx − Ty). It is known that the resolvent of an
accretive operator in a Banach space is a firmly nonexpansive mapping; see [6] and
[7]. Using Theorem 2.1, we have that for any x, y ∈ C and j ∈ J(Tx − Ty),

‖Tx−Ty‖2 ≤ 〈x − y, j〉
⇐⇒ 0 ≤ 2〈x− Tx − (y − Ty), j〉
=⇒ 0 ≤ ‖x − y‖2 − ‖Tx− Ty‖2

⇐⇒ ‖Tx − Ty‖2 ≤ ‖x − y‖2

⇐⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.
This implies that T is nonexpansive. We also have that for any x, y ∈ C and
j ∈ J(Tx − Ty),

‖Tx−Ty‖2 ≤ 〈x − y, j〉
⇐⇒ 0 ≤ 2〈x− Tx − (y − Ty), j〉
⇐⇒ 0 ≤ 2〈x− Tx, j〉+ 2〈Ty − y, j〉
=⇒ 0 ≤ ‖x − Ty‖2 − ‖Tx − Ty‖2 + ‖Tx − y‖2 − ‖Tx − Ty‖2

⇐⇒ 0 ≤ ‖x − Ty‖2 + ‖y − Tx‖2 − 2‖Tx− Ty‖2

⇐⇒ 2‖Tx− Ty‖2 ≤ ‖x − Ty‖2 + ‖y − Tx‖2.

This implies that T is a nonspreading mapping in the sense of (1.1). Furthermore
we have that for any x, y ∈ C and j ∈ J(Tx − Ty),

‖Tx−Ty‖2 ≤ 〈x − y, j〉
⇐⇒ 0 ≤ 4〈x − Tx − (y − Ty), j〉
⇐⇒ 0 ≤ 2〈x − Tx − (y − Ty), j〉+ 2〈x − Tx − (y − Ty), j〉
=⇒ 0 ≤ ‖x − y‖2−‖Tx − Ty‖2+‖x − Ty‖2+‖y − Tx‖2−2‖Tx−Ty‖2

⇐⇒ 3‖Tx− Ty‖2 ≤ ‖x − y‖2 + ‖x − Ty‖2 + ‖y − Tx‖2.

This implies that T is a hybrid mapping in the sense of (1.2). Thus, it is natural that
we extend a generalized hybrid mapping in a Hilbert space by Kocourek, Takahashi
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and Yao [21] to that of a Banach space as follows: Let E be a Banach space and
let C be a nonempty subset of E . A mapping T : C → E is called generalized
hybrid if there are α, β ∈ R such that

(4.1) α‖Tx − Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. We may also call such a mapping an (α, β)-generalized hybrid
mapping in a Banach space. We note that an (α, β)-generalized hybrid mapping is
nonexpansive for α = 1 and β = 0, nonspreading for α = 2 and β = 1, and hybrid
for α = 3

2 and β = 1
2 .

On the other hand, Kocourek, Takahashi and Yao [22] extended a generalized
hybrid mapping in a Hilbert space to that of a Banach space as follows: Let E be a
smooth Banach space and let C be a nonempty subset of E . A mapping T : C → E
is called generalized nonspreading [22] if there are α, β, γ, δ ∈ R such that

(4.2)
αφ(Tx, Ty) + (1 − α)φ(x, Ty) + γ{φ(Ty, Tx)− φ(Ty, x)}

≤ βφ(Tx, y) + (1− β)φ(x, y) + δ{φ(y, Tx)− φ(y, x)}
for all x, y ∈ C, where φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E . We call
such a mapping an (α, β, γ, δ)-generalized nonspreading mapping. If E is a Hilbert
space, then φ(x, y) = ‖x − y‖2 for x, y ∈ E . So, we obtain the following:

(4.3)
α‖Tx − Ty‖2 + (1− α)‖x − Ty‖2 + γ{‖Tx− Ty‖2 − ‖x− Ty‖2}

≤ β‖Tx− y‖2 + (1− β)‖x− y‖2 + δ{‖Tx− y‖2 − ‖x − y‖2}
for all x, y ∈ C. This implies that

(4.4)
(α + γ)‖Tx− Ty‖2 + {1− (α + γ)}‖x− Ty‖2

≤ (β + δ)‖Tx− y‖2 + {1 − (β + δ)}‖x− y‖2

for all x, y ∈ C. That is, T is a generalized hybrid mapping in a Hilbert space.
The following is Kocourek, Takahashi and Yao fixed point theorem [22].

Theorem 4.1. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed convex subset of E . Let T be a generalized
nonspreading mapping of C into itself. Then, the following are equivalent:

(a) F (T ) �= ∅;
(b) {T nx} is bounded for some x ∈ C.

5. FIXED POINT THEOREMS

In this section, we prove a fixed point theorem for generalized hybrid mappings
in a Banach space. For proving the theorem, we need the following lemma; see, for
instance, [32] and [28].
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Lemma 5.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E , let {xn} be a bounded sequence in E and let µ be a mean on
l∞. If g : E → R is defined by

g(z) = µn‖xn − z‖2, ∀z ∈ E,

then there exists a unique z0 ∈ C such that

g(z0) = min{g(z) : z ∈ C}.
Using Lemma 5.1, we can prove the following theorem.

Theorem 5.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let T be a mapping of C into itself. Let {x n} be a bounded
sequence of E and let µ be a mean on l∞. If

µn‖xn − Ty‖2 ≤ µn‖xn − y‖2

for all y ∈ C, then T has a fixed point in C.

Proof. Using the mean µ on l∞, we can define g : E → R as follows:

g(y) = µn‖xn − y‖2, ∀y ∈ E.

From Lemma 5.1, there exists a unique z ∈ C such that

g(z) = min{g(y) : y ∈ C}.
So, we have

g(Tz) = µn‖xn − Tz‖2 ≤ µn‖xn − z‖2 = g(z).

Since a minimizer in C concerning the function g is unique and Tz ∈ C, we have
Tz = z and then z is a fixed point of T . This completes the proof.

In the case when E is a Hilbert space, we can also show the following fixed
point theorem for non-self mappings by using Lemma 5.1.

Theorem 5.3. Let C be a nonempty closed convex subset of a Hilbert space H

and let T be a mapping of C into H such that for any x ∈ C,

Tx ∈ {x + t(y − x) : y ∈ C, t ≥ 1}.
Let {xn} be a bounded sequence of H and let µ be a mean on l∞. If

µn‖xn − Ty‖2 ≤ µn‖xn − y‖2

for all y ∈ C, then T has a fixed point in C.
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Proof. Using the mean µ on l∞, we can define g : H → R as follows:

g(y) = µn‖xn − y‖2, ∀y ∈ H.

From Lemma 5.1, there exists a unique z ∈ C such that

g(z) = min{g(y) : y ∈ C}.

So, we have

g(Tz) = µn‖xn − Tz‖2 ≤ µn‖xn − z‖2 = g(z).

From Tz ∈ {z + t(y − z) : y ∈ C, t ≥ 1}, there are y ∈ C and t ≥ 1 such that
Tz = z + t(y − z). If t = 1, then we have Tz = y ∈ C. Since z is a unique
minimizer in C of the function g : C → R, we have z = y. So, we have Tz = z.
In the case of t > 1, we have from (2.1) that

µn‖xn − Tz‖2 = µn‖xn − (z + t(y − z))‖2

= µn‖xn − (ty + (1− t)z)‖2

= µn‖t(xn − y) + (1 − t)(xn − z)‖2

= µn{t‖xn − y‖2 + (1 − t)‖xn − z‖2 − t(1 − t)‖y − z‖2}
= tµn‖xn − y‖2 + (1− t)µn‖xn − z‖2 − t(1 − t)µn‖y − z‖2

≥ tµn‖xn − z‖2 + (1− t)µn‖xn − z‖2 − t(1− t)‖y − z‖2

= µn‖xn − z‖2 − t(1 − t)‖y − z‖2

and hence

−t(1 − t)‖y − z‖2 ≤ µn‖xn − Tz‖2 − µn‖xn − z‖2.

From µn‖xn − Tz‖2 ≤ µn‖xn − z‖2, we have that −t(1 − t)‖y − z‖2 ≤ 0. From
t > 1, we have ‖y− z‖2 ≤ 0. This means y = z and hence Tz = z + t(y− z) = z.
This completes the proof.

Using Theorem 5.2, we prove a fixed point theorem for generalized hybrid
mappings in a Banach space.

Theorem 5.4. Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E . Let α and β be in R. Let T : C → C be a
generalized hybrid mapping. Then the following are equivalent:

(a) F (T ) �= ∅;
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(b) {T nx} is bounded for some x ∈ C.

Proof. Let T : C → C be a generalized hybrid mapping, i.e., there exists
α, β ∈ R such that

(5.1) α‖Tx − Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. If F (T ) �= ∅, then {Tnz} = {z} for z ∈ F (T ). So, {Tnz} is
bounded. We show the reverse. Take z ∈ C such that {T nz} is bounded. Let µ be
a Banach limit. Then, we have that for any y ∈ C and n ∈ N,

α‖T n+1z − Ty‖2+(1 − α)‖T nz − Ty‖2

≤ β‖T n+1z − y‖2 + (1− β)‖T nz − y‖2.

Since {T nz} is bounded, we can apply a Banach limit µ to both sides of the
inequality. Then, we have

µn(α‖T n+1z − Ty‖2 + (1 − α)‖T nz − Ty‖2)

≤ µn(β‖T n+1z − y‖2 + (1− β)‖T nz − y‖2).

So, we obtain

αµn‖T n+1z − Ty‖2+(1− α)µn‖T nz − Ty‖2

≤ βµn‖T n+1z − y‖2 + (1 − β)µn‖T nz − y‖2

and hence

αµn‖T nz − Ty‖2+(1− α)µn‖T nz − Ty‖2

≤ βµn‖T nz − y‖2 + (1− β)µn‖T nz − y‖2.

This implies
µn‖T nz − Ty‖2 ≤ µn‖T nz − y‖2

for all y ∈ C. By Theorem 5.2, we have a fixed point in C.

Using Theorem 5.4, we can also prove the following fixed point theorems in a
Banach space.

Theorem 5.5. Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E . Let T : C → C be a nonexpansive mapping,
i.e.,

‖Tx − Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T

has a fixed point in C.
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Proof. In Theorem 5.4, a (1, 0)-generalized hybrid mapping of C into itself
is nonexpansive. By Theorem 5.4, T has a fixed point in C.

Theorem 5.6. Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E . Let T : C → C be a nonspreading mapping,
i.e.,

2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T

has a fixed point in C.

Proof. In Theorem 5.4, a (2, 1)-generalized hybrid mapping of C into itself
is nonspreading. By Theorem 5.4, T has a fixed point in C.

Theorem 5.7. Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E . Let T : C → C be a hybrid mapping, i.e.,

3‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2 + ‖x − y‖2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {T nx} is bounded. Then, T

has a fixed point in C.

Proof. In Theorem 5.4, a (3
2 , 1

2 )-generalized hybrid mapping of C into itself
is hybrid. By Theorem 5.4, T has a fixed point in C.

6. DUALITY THEOREMS

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty subset of E . Let T be a mapping of C into itself. Define a mapping T ∗

as follows:
T ∗x∗ = JTJ−1x∗, ∀x∗ ∈ JC,

where J is the duality mapping on E and J−1 is the duality mapping on E∗. The
mapping T ∗ is called the duality mapping of T ; see [35] and [12]. It is easy to show
that T ∗ is a mapping of JC into itself. In fact, for x∗ ∈ JC, we have J−1x∗ ∈ C
and hence TJ−1x∗ ∈ C. So, we have

T ∗x∗ = JTJ−1x∗ ∈ JC.

Then, T ∗ is a mapping of JC into itself. Further, we define the duality mapping
T ∗∗ of T ∗ as follows:

T ∗∗x = J−1T ∗Jx, ∀x ∈ C.

It is easy to show that T∗∗ is a mapping of C into itself. In fact, for x ∈ C, we
have

T ∗∗x = J−1T ∗Jx = J−1JTJ−1Jx = Tx ∈ C.

So, T∗∗ is a mapping of C into itself. We know the following result in a Banach
space; see [9] and [35].
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Lemma 6.1. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty subset of E . Let T be a mapping of C into itself and let
T ∗ be the duality mapping of JC into itself. Then, the following hold:

(1) JF (T ) = F (T ∗);
(2) ‖T nx‖ = ‖(T ∗)nJx‖ for each x ∈ C and n ∈ N.

Let E be a smooth Banach space, let J be the duality mapping from E into
E∗ and let C be a nonempty subset of E . A mapping T : C → E is called
skew-generalized nonspreading if there are α, β, γ, δ ∈ R such that

(6.1)
αφ(Ty, Tx) + (1 − α)φ(Ty, x) + γ{φ(Tx, Ty)− φ(x, Ty)}

≤ βφ(y, Tx) + (1− β)φ(y, x) + δ{φ(Tx, y)− φ(x, y)}
for all x, y ∈ C, where φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E . We call
such a mapping an (α, β, γ, δ)-skew-generalized nonspreading mapping. Let T be
an (α, β, γ, δ)-skew-generalized nonspreading mapping. Observe that if F (T ) �= ∅,
then φ(Ty, u) ≤ φ(y, u) for all u ∈ F (T ) and y ∈ C. Indeed, putting x = u ∈
F (T ) in (6.1), we obtain

φ(Ty, u) + γ{φ(u, Ty)− φ(u, Ty)} ≤ φ(y, u) + δ{φ(u, y)− φ(u, y)}.
So, we have that

(6.2) φ(Ty, u) ≤ φ(y, u)

for all u ∈ F (T ) and y ∈ C. Further, if E is a Hilbert space, then φ(x, y) = ‖x−y‖2

for x, y ∈ E . So, from (6.1) we obtain the following:

(6.3)
α‖Ty − Tx‖2 + (1− α)‖Ty − x‖2 + γ{‖Tx− Ty‖2 − ‖x− Ty‖2}

≤ β‖y − Tx‖2 + (1− β)‖y − x‖2 + δ{‖Tx− y‖2 − ‖x − y‖2}
for all x, y ∈ C. This implies that

(6.4)
(α + γ)‖Tx− Ty‖2 + {1− (α + γ)}‖Ty − x‖2

≤ (β + δ)‖y − Tx‖2 + {1 − (β + δ)}‖y − x‖2

for all x, y ∈ C. That is, T is a generalized hybrid mapping [21] in a Hilbert space.
Now, we prove a fixed point theorem for skew-generalized nonspreading mappings
in a Banach space. Before proving the theorem, we need the following definition:
Let φ∗ : E∗ × E∗ → (−∞,∞) be the function defined by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉 + ‖y∗‖2

for x∗, y∗ ∈ E∗, where J is the duality mapping of E . It is easy to see that

(6.5) φ(x, y) = φ∗(Jy, Jx)

for x, y ∈ E .



142 Ming-Hsiu Hsu, Wataru Takahashi and Jen-Chih Yao

Theorem 6.2. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex.
Let T be a skew-generalized nonspreading mapping of C into itselt. Then, the
following are equivalent:

(a) F (T ) �= ∅;
(b) {T nx} is bounded for some x ∈ C.

Proof. Let T be a skew-generalized nonspreading mapping of C into itselt.
Then, there are α, β, γ, δ ∈ R such that

αφ(Ty, Tx)+(1− α)φ(Ty, x) + γ{φ(Tx, Ty)− φ(x, Ty)}
≤ βφ(y, Tx) + (1− β)φ(y, x) + δ{φ(Tx, y)− φ(x, y)}

for all x, y ∈ C. If F (T ) �= ∅, then φ(Ty, u) ≤ φ(y, u) for all u ∈ F (T ) and
y ∈ C. So, if u is a fixed point in C, then we have φ(Tnx, u) ≤ φ(x, u) for all
n ∈ N and x ∈ C. This implies (a) =⇒ (b). Let us show (b) =⇒ (a). Suppose
that there exists x ∈ C such that {T nx} is bounded. Then for any x∗, y∗ ∈ JC

with x∗ = Jx and y∗ = Jy and T ∗ = JTJ−1, we have from (6.5) that

αφ∗(T ∗x∗, T ∗y∗) + (1− α)φ∗(x∗, T ∗y∗) + γ{φ∗(T ∗y∗, T ∗x∗) − φ∗(T ∗y∗, x∗)}
= αφ∗(JTx, JTy)+(1− α)φ∗(Jx, JTy)+γ{φ∗(JTy, JTx)−φ∗(JTy, Jx)}
= αφ(Ty, Tx) + (1− α)φ(Ty, x) + γ{φ(Tx, Ty)− φ(x, Ty)}.

On the other hand, we have

βφ∗(T ∗x∗, y∗) + (1 − β)φ∗(x∗, y∗) + δ{φ∗(y∗, T ∗x∗) − φ∗(y∗, x∗)}
= βφ∗(JTx, Jy) + (1− β)φ∗(Jx, Jy) + δ{φ∗(Jy, JTx) − φ∗(Jy, Jx)}
= βφ(JTx, Jy) + (1 − β)φ(y, x) + δ{φ(Tx, y)− φ(x, y)}.

Since T is skew-generalized nonspreading, we have that

αφ∗(T ∗x∗, T ∗y∗) + (1 − α)φ∗(x∗, T ∗y∗) + γ{φ∗(T ∗y∗, T ∗x∗) − φ∗(T ∗y∗, x∗)}
≤ βφ∗(T ∗x∗, y∗) + (1− β)φ∗(x∗, y∗) + δ{φ∗(y∗, T ∗x∗) − φ∗(y∗, x∗)}.

This implies that T ∗ is a generalized nonspreading mapping of JC into itself. We
know from Lemma 6.1 and Theorem 4.1 that T∗ has a fixed point in JC. We also
have from Lemma 6.1 that F (T∗) = JF (T ). Therefore F (T ) is nonempty. This
completes the proof.

Using Theorem 6.2, we have the following fixed point theorems in a Banach
space.
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Theorem 6.3. (Dhompongsa, Fupinwong, Takahashi and Yao [9]). Let E be
a smooth, strictly convex and reflexive Banach space and let C be a nonempty
closed subset of E such that JC is closed and convex. Let T : C → C be a
skew-nonspreading mapping, i.e.,

φ(Ty, Tx) + φ(Tx, Ty) ≤ φ(y, Tx) + φ(x, Ty)

for all x, y ∈ C. Then, the following are equivalent:

(a) F (T ) �= ∅;
(b) {T nx} is bounded for some x ∈ C.

Proof. Putting α = β = γ = 1 and δ = 0 in (6.1), we obtain that

φ(Ty, Tx) + φ(Tx, Ty) ≤ φ(y, Tx) + φ(x, Ty)

for all x, y ∈ C. So, we have the desired result from Theorem 6.2.

Theorem 6.4. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex.
Let T : C → C be a mapping such that

2φ(Ty, Tx) + φ(Tx, Ty) ≤ φ(y, Tx) + φ(x, Ty) + φ(y, x)

for all x, y ∈ C. Then, the following are equivalent:

(a) F (T ) �= ∅;
(b) {T nx} is bounded for some x ∈ C.

Proof. Putting α = 1, β = γ = 1
2 and δ = 0 in (6.1), we obtain that

2φ(Ty, Tx) + φ(Tx, Ty) ≤ φ(y, Tx) + φ(x, Ty) + φ(y, x)

for all x, y ∈ C. So, we have the desired result from Theorem 6.2.

Theorem 6.5. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex.
Let T : C → C be a mapping such that

αφ(Ty, Tx) + (1 − α)φ(Ty, x) ≤ βφ(y, Tx) + (1 − β)φ(y, x)

for all x, y ∈ C. Then, the following are equivalent:

(a) F (T ) �= ∅;
(b) {T nx} is bounded for some x ∈ C.
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Proof. Putting γ = δ = 0 in (6.1), we obtain that

αφ(Ty, Tx) + (1 − α)φ(Ty, x) ≤ βφ(y, Tx) + (1 − β)φ(y, x)

for all x, y ∈ C. So, we have the desired result from Theorem 6.2.

As a direct consequence of Theorem 6.5, we have Kocourek, Takahashi and Yao
fixed point theorem [21] in a Hilbert space.

Theorem 6.6. (Kocourek, Takahashi and Yao [21]). Let C be a nonempty
closed convex subset of a Hilbert space H and let T : C → C be a generalized
hybrid mapping, i.e., there are α, β ∈ R such that

(6.6) α‖Tx − Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. Then, the following are equivalent:

(a) F (T ) �= ∅;
(b) {T nx} is bounded for some x ∈ C.

Proof. We know that φ(x, y) = ‖x − y‖2 for all x, y ∈ C in Theorem 6.5.
So, we have the desired result from Theorem 6.5.

7. SOME PROPERTIES OF SKEW-GENERALIZED NONSPREADING MAPPINGS

Let E be a smooth Banach space. Let C be a nonempty subset of E . Let
T : C → C be a mapping. Then, p ∈ C is called an asymptotic fixed point of T
[26] if there exists {xn} ⊂ C such that xn ⇀ p and limn→∞ ‖xn −Txn‖ = 0. We
denote by F̂ (T ) the set of asymptotic fixed points of T . Matsushita and Takahashi
[25] also gave the following definition: An operator T : C → C is relatively
nonexpansive if F (T ) �= ∅, F̂ (T ) = F (T ) and

φ(y, Tx) ≤ φ(y, x)

for all x ∈ C and y ∈ F (T ). The following theorems are also in Kocourek,
Takahashi and Yao [22].

Theorem 7.1. Let E be a strictly convex Banach space with a uniformly
Gâteaux differentiable norm, let C be a nonempty closed convex subset of E and
let T be a generalized nonspreading mapping of C into itself. Then F̂ (T ) = F (T ).

Theorem 7.2. Let E be a smooth and strictly convex Banach space, let C be
a nonempty closed convex subset of E and let T be a generalized nonspreading
mapping of C into itself such that F (T ) is nonempty. Then F (T ) is closed and
convex.
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Theorem 7.3. Let E be a strictly convex Banach space with a uniformly
Gâteaux differentiable norm, let C be a nonempty closed convex subset of E and
let T be a generalized nonspreading mapping of C into itself such that F (T ) is
nonempty. Then, T is relatively nonexpansive.

Let E be a smooth Banach space and let C be a nonempty subset of E . Let
T : C → C be a mapping. Then, p ∈ C is called a generalized asymptotic fixed
point of T [15] if there exists {xn} ⊂ C such that Jxn ⇀ Jp and limn→∞ ‖Jxn −
JTxn‖ = 0. We denote by F̌ (T ) the set of generalized asymptotic fixed points of
T . From Takahashi and Yao [35], we also know the following result.

Theorem 7.4. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty subset of E . Let T be a mapping of C into itself and let
T ∗ be the duality mapping of JC into itself. Then the following hold:

(1) JF̂ (T ) = F̌ (T ∗);
(2) JF̌ (T ) = F̂ (T ∗).

Using Theorem 7.1, we have the following result.

Theorem 7.5. Let E be a smooth, strictly convex and reflexive Banach space
such that E ∗ has a uniformly Gâteaux differentiable norm, let C be a nonempty
closed subset of E such that JC is closed and convex and let T be a skew-
generalized nonspreading mapping of C into itself. Then F̌ (T ) = F (T ).

Proof. The inclusion F (T ) ⊂ F̌ (T ) is obvious. Thus we only need to show
F̌ (T ) ⊂ F (T ). Let u ∈ F̌ (T ) be given. Then we have a sequence {xn} of C such
that Jxn ⇀ Ju and limn→∞ ‖Jxn − JTxn‖ = 0. Since T : C → C is a skew-
generalized nonspreading mapping, as in the proof of Theorem 6.2, T∗ = JTJ−1

is a generalized nonspreading mapping of JC into itself. Putting x∗
n = Jxn and

u∗ = Ju, we have from Jxn ⇀ Ju and limn→∞ ‖Jxn−JTxn‖ = 0 that x∗
n → u∗

and limn→∞ ‖x∗
n − T ∗x∗

n‖ = 0. Then, we have u∗ ∈ F̂ (T ∗). We know from
Theorem 7.1 that F̂ (T ∗) = F (T ∗). So, we have u∗ ∈ F (T ∗) and hence u∗ = T ∗u∗.
This implies that Ju = JTJ−1Ju. So, we have u = Tu and hence u ∈ F (T ).
Therefore, F̌ (T ) = F (T ). This completes the proof.

From Inthakon, Dhompongsa and Takahashi [17], we also know the following
result; see also Ibaraki and Takahashi [15].

Theorem 7.6. (Inthakon, Dhompongsa and Takahashi [17]). Let E be a smooth,
strictly convex and reflexive Banach space and let C be a nonempty closed subset of
E such that JC is closed and convex. If T : C → C is a generalized nonexpansive
mapping such that F (T ) is nonempty, then F (T ) is closed and JF (T ) is closed
and convex.
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Using Theorem 7.6 and (6.2), we have the following result.

Theorem 7.7. Let E be a smooth, strictly convex and reflexive Banach space,
let C be a nonempty closed subset of E such that JC is closed and convex and let
T be a skew-generalized nonspreading mapping of C into itself such that F (T ) is
nonempty. Then T is generalized nonexpansive. Furthermore, F (T ) is closed and
JF (T ) is closed and convex.

Proof. We have from (6.2) that φ(u, Ty) ≤ φ(u, y) for all u ∈ F (T ) and
y ∈ C. So, T is generalized nonexpansive. From Theorem 7.6, F (T ) is closed and
JF (T ) is closed and convex.

Using Theorems 7.5 and 7.7, we have the following result.

Theorem 7.8. (Takahashi and Yao [35]). Let E be a smooth and reflexive
Banach space and E ∗ has a uniformly Gâteaux differentiable norm. Let C be a
closed subset of E such that JC is closed and convex and let T : C → C be a
skew-nonspreading mapping, i.e.,

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(x, Ty) + φ(y, Tx)

for all x, y ∈ C. If F (T ) is nonempty, then the following hold:

(1) F̌ (T ) = F (T );
(2) JF (T ) is closed and convex;
(3) F (T ) is closed;
(4) T is generalized nonexpansive.

Proof. An (α, β, γ, δ)-skew-generalized nonspreading mapping T of C into
itself such that α = β = γ = 1 and δ = 0 is a skew-nonspreading mapping. From
Theorems 7.5 and 7.7, we have the desired result.
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