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MASCHKE-TYPE THEOREM AND DUALITY THEOREM FOR WEAK
TWISTED SMASH PRODUCTS

Xiao-yan Zhou

Abstract. Let H be a weak Hopf algebra in the sense of Böhm and Szlachányi
[3] and A a weak H-bimodule algebra. Then in this paper we first intro-
duce the notion of a weak twisted smash product A � H and then find some
sufficient and necessary conditions making it into a weak bialgebra. Further-
more, we give a Maschke-type theorem for the weak twisted smash product
over semisimple weak Hopf algebra H , which generalizes the well-known
Maschke-type theorem in [5, 15, 17]. Finally, we obtain an analogue of the
duality theorem for the weak twisted smash products.

1. INTRODUCTION

Let H be a Hopf algebra with a bijective antipode S over a fixed field and let A
be an H-bimodule algebra. The twisted smash product A �H has been introduced
by Wang and Li [16] and further studied by Wang and Kim [15]. It contains a
usual smash product (Molnar [9]), a Drinfeld’s double (Drinfeld [8]) and a Doi-
Takeuchi’s double algebra (Doi and Takeuchi [7]), so it plays an important role in
quantum group theory.

In 1996, Böhm and Szlachányi [3] introduced and studied weak Hopf algebras
(or quantum groupoids) as a generalization of ordinary Hopf algebras and groupoid
algebras (see also Böhm et al. [2]). Shortly, the axioms of a weak Hopf algebra are
the same as the ones for a Hopf algebra, except that the coproduct of the unit, the
product of the counit and the antipode conditions are replaced by weaker properties.
We refer the reader to [11] and [12] for the further study.

The main aim of this article is to study the weak twisted smash product A �H
and to prove an analogue of the Maschke-type theorem (see [5]) and the duality
theorem (see [1] and [6]) for the classical Hopf algebras in the setting of weak
Hopf algebras.
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This paper is organized as follows.
In Section 2, we recall some definitions and basic results related to weak Hopf

algebras and weak module algebras.
In Section 3, we first introduce the notion of a weak twisted smash productA�H

and give a weak Drinfeld’s double as an example. Next we find some sufficient and
necessary conditions making it into a weak bialgebra (see Theorem 3.7), generalizing
the main result in [16]. Furthermore we give the sufficient conditions making A�H
into a weak Hopf algebra.

In Section 4, we give a Maschke-type theorem for the weak twisted smash
product A�H over a semisimple weak Hopf algebra H (see Theorem 4.5 and 4.6).

In Section 5, we prove an analogue of the duality theorem for the weak twisted
smash products: Let H be a finite dimensional weak Hopf algebra and A � H be
the weak twisted smash product. Then there is a canonical isomorphism between
the algebras (A � H)#H∗ and End(A � H)A.

2. BASIC DEFINITIONS AND RESULTS

In this section, we recall some basic definitions and results related to weak Hopf
algebras introduced by Böhm et al. [2][3] and also about weak module algebras
given by Caenepeel and Groot [4] that we will need later.

Throughout this paper, k denotes a fixed field, the tensor product ⊗ = ⊗k

and Hom are always assumed to be over k. If U and V are k-vector spaces,
TU,V : U ⊗V −→ V ⊗U will denote the flip map defined by TU,V (u⊗ v) = v⊗u,
for all u ∈ U and v ∈ V . For an algebra A and a coalgebra C, we have the
convolution algebra Conv(C,A) =Hom(C,A) as space, with the multiplication
given by

(f ∗ g)(c) = mA(f ⊗ g)∆C(c) = f(c1)g(c2),

for all f, g ∈ Hom(C,A), c ∈ C. Here we use the Sweedler’s notation (see Sweedler
[13]) for the comultiplication. Namely, ∆(c) = c1 ⊗ c2.

2.1. Weak bialgebras

Recall from Böhm et al. [2] and Böhm and Szlachányi [3] that a weak k-
bialgebra H is both a k-algebra (m, µ) and a k-coalgebra (∆, ε) such that ∆(hk) =
∆(h)∆(k), for all h, k ∈ H , and

∆2(1) = 11 ⊗ 121′1 ⊗ 1′2 = 11 ⊗ 1′112 ⊗ 1′2,(2.1)

ε(hkl) = ε(hk1)ε(k2l) = ε(hk2)ε(k1l),(2.2)

for all h, k, l ∈ H , where 1′ stands for another copy of 1. We summarize the
elementary properties of weak bialgebras. The maps εt, εs: H −→ H defined by

εt(h) = ε(11h)12; εs(h) = 11ε(h12)
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are called the target map and source map, and their images Ht and Hs are called the
target and source space. The source and target space can be described as follows:

Ht = {h ∈ H | εt(h) = h} = {h ∈ H | ∆(h) = 11h⊗ 12 = h11 ⊗ 12},
Hs = {h ∈ H | εs(h) = h} = {h ∈ H | ∆(h) = 11 ⊗ h12 = 11 ⊗ 12h}.

For all g, h ∈ H , we also have
εt(h)εs(g) = εs(g)εt(h),

and its dual property
εs(h1)⊗ εt(h2) = εs(h2) ⊗ εt(h1).

Finally εt(1) = εs(1) = 1 and
εt(h)εt(g) = εt(εt(h)g); εs(h)εs(g) = εs(hεs(g)).

This implies that Ht and Hs are subalgebras of H .

2.2. Weak Hopf algebras
A weak Hopf algebra H is a weak bialgebra together with a k-linear map

S : H −→ H (called the antipode) satisfying
S ∗ idH = εs, idH ∗ S = εt, S ∗ idH ∗ S = S,

where ∗ is the convolution product. It follows immediately that
S = εs ∗ S = S ∗ εt.

If the antipode exists, then it is unique. The antipode S is both an anti-algebra and
an anti-coalgebra morphism. If H is a finite-dimensional weak Hopf algebra over
k, then S is automatically bijective and the dual H ∗ = Hom(H, k) has a natural
structure of a weak Hopf algebra with the structure operations dual to those of H .
Now we recall some properties about S.

By Böhm et al. [2], let H be a weak Hopf algebra. Then we have the following
conclusions:

(2.3) (1) εt ◦ S = εt ◦ εs = S ◦ εs, εs ◦ S = εs ◦ εt = S ◦ εt,
(2.4) (2) x1 ⊗ x2S(x3) = x1 ⊗ εt(x2) = 11x⊗ 12,

(2.5) (3) S(x1)x2 ⊗ x3 = εs(x1)⊗ x2 = 11 ⊗ x12,

(2.6) (4) x1 ⊗ S(x2)x3 = x1 ⊗ εs(x2) = x11 ⊗ S(12),

(2.7) (5) x1S(x2) ⊗ x3 = εt(x1) ⊗ x2 = S(11) ⊗ 12x,

(2.8) (6) x1y ⊗ x2 = x1 ⊗ x2S(y), for all y ∈ Hs,

(2.9) (7) x1 ⊗ zx2 = S(z)x1 ⊗ x2, for all z ∈ Ht.
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Let H be a weak Hopf algebra with a bijective antipode SH , then H cop is also
a weak Hopf algebra with antipode S−1 (here S−1 is the composite-inverse of the
antipode SH ). At this time

S−1(h2)h1 = S−1εs(h) = ε(h11)12 � ε̃t(h),

h2S
−1(h1) = S−1εt(h) = 11ε(12h) � ε̃s(h).

2.3. Weak (bi)module algebras

Let H be a weak Hopf algebra.
(i) Recall from [4], an algebra A is called a left weak H-module algebra if A

is left H-module via h⊗ a �→ h ⇀ a such that for all h ∈ H, a, b ∈ A,

h ⇀ (ab) = (h1 ⇀ a)(h2 ⇀ b),(2.10)

h ⇀ 1A = εt(h) ⇀ 1A.(2.11)

Following [4, Proposition 4.15], the Eq.(2.11) is equivalent to

(2.12) (a) h ⇀ 1A = ε̃s(h) ⇀ 1A;

(2.13) (b) εt(h) ⇀ a = (h ⇀ 1A)a;

(2.14) (c) ε̃s(h) ⇀ a = a(h ⇀ 1A);

(2.15) (d) εt(h) ⇀ (ab) = (εt(h) ⇀ a)b

(2.16) (e) ε̃s(h) ⇀ (ab) = a(ε̃s(h) ⇀ b),

for all h ∈ H and a, b ∈ A.

(ii) Similarly, an algebra A is called a right weak H-module algebra if A is
right H-module via a⊗ h �→ a ↼ h such that for all h ∈ H, a, b ∈ A,

(ab) ↼ h = (a ↼ h1)(b ↼ h2),(2.17)

1A ↼ h = 1A ↼ εs(h).(2.18)

Following [4, Proposition 4.15], the Eq.(2.13) is equivalent to

(2.19) (a) 1A ↼ h = 1A ↼ ε̃t(h);

(2.20) (b) a ↼ εs(h) = a(1A ↼ h);

(2.21) (c) a ↼ ε̃t(h) = (1A ↼ h)a;

(2.22) (d) (ab) ↼ εs(h) = a(b ↼ εs(h)) ;

(2.23) (e) (ab) ↼ ε̃t(h) = (a ↼ ε̃t(h))b,

for all h ∈ H and a, b ∈ A.
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(iii) Let A be an H-bimodule. If A is both a left weak H-module algebra and
a right weak H-module algebra, then A is called a weak H-bimodule algebra.

3. THE WEAK TWISTED SMASH PRODUCT BIALGEBRA A �H

In this section, we first introduce the notion of a weak twisted smash product
A � H and give a weak Drinfeld’s double as an example. Next we find some suf-
ficient and necessary conditions making it into a weak bialgebra, generalizing the
main constructions in [16] and [18]. Furthermore we give the sufficient conditions
making A � H into a weak Hopf algebra.

Definition 3.1. Let H be a weak Hopf algebra and A a weak H-bimodule
algebra with the left action ⇀ and the right action ↼. A weak twisted smash
product A � H of A and H is defined on the vector space A⊗H = {a⊗h ∈
A⊗H | a⊗h = 11 ⇀ a ↼ S(13)⊗ 12h} and the multiplication is given by

(a⊗h)(b⊗l) = a(h1 ⇀ b ↼ S(h3))⊗h2l,

for all a, b ∈ A, h, l ∈ H . The element a⊗h of A � H will usually be written as
a � h. It is not hard to show that the multiplication is well-defined and A�H is an
associative algebra with the unit 1A � 1H .

Example 3.2. Let H be a finite dimensional weak Hopf algebra with a bijective
antipode S. We define actions: h ⇀ f = f1〈f2, h〉, f ↼ h = f2〈f1, S−2(h1)〉,
for all h ∈ H, f ∈ H∗. Then it is easy to check (H∗,⇀,↼) is a weak H-
bimodule algebra. Now we define the weak Drinfeld’s double D(H) = H ∗⊗H =
{f⊗h ∈ H∗ ⊗ H | f⊗h = f2〈f1, S−1(13)〉〈f3, 11〉 ⊗ 12h} as vector space. The
multiplication is given by

(f � h)(g � l) = fg2〈g1, S−1(h3)〉〈g3, h1〉 � h2l.

In Nikshych [12], there is another definition of weak Drinfeld’s double as follows:
D̂(H) = H∗ ⊗ H/kerJ as vector space, here J : H∗ ⊗ H → H∗ ⊗ H, J(f ⊗
h) = (ε ⊗ 1H)(f ⊗ h) = (f ⊗ h)(ε ⊗ 1H). We denote [f ⊗ h] the class of
f ⊗ h in D̂(H). The multiplication is same as D(H). We show that D(H) =
D̂(H) as: ∀ f⊗h ∈ D(H), (ε⊗1H)(f⊗h) = (11 ⇀ f ↼ S(13))⊗12h =
f⊗h, (f⊗h)(ε⊗1H) = f(h1 ⇀ ε ↼ S(h3))⊗h2 = f(11 ⇀ ε ↼ S(13))⊗12h =
(11 ⇀ f ↼ S(13))⊗12h = f⊗h, and we get f⊗h ∈ D̂(H). Conversely, if
[f ⊗h] ∈ D̂(H), then [f ⊗ h] = [ε⊗ 1H ][f ⊗ h] = [(11 ⇀ f ↼ S(13))⊗ 12h] and
[f ⊗ h] ∈ D(H). We obtain that the weak Drinfeld’s double is one kind of weak
twisted smash products.



2706 Xiao-yan Zhou

The following lemma is straightforward.

Lemma 3.3. Let A � H be a weak twisted smash product algebra. If A is a
weak bialgebra, then A � H is a coalgebra, whose comultiplication is given by

∆A�H(a � h) = a1 � h1 ⊗ a2 � h2,

and counit is given by
ε(a � h) = εA(a)εH(h),

for all a ∈ A and h ∈ H .

Lemma 3.4. Let A � H be a weak twisted smash product algebra. If A is a
weak bialgebra, then the comultiplication ∆ A�H is a multiplicative map if and only
if for all h ∈ H, b ∈ A,

(3.1)
(h1 ⇀ b ↼ S(h4))1 � h2 ⊗ (h1 ⇀ b ↼ S(h4))2 � h3

= 11(h1 ⇀ b1 ↼ S(h3)) � h21H1 ⊗ 12(h4 ⇀ b2 ↼ S(h6)) � h51H2.

Proof. As a matter of fact, for all a � h, b � g ∈ A � H , we have

(A)
∆A�H((a � h)(b � g)) = ∆A�H(a(h1 ⇀ b ↼ S(h3)) � h2g)

= a1(h1 ⇀ b ↼ S(h4))1 � h2g1 ⊗ a2(h1 ⇀ b ↼ S(h4))2 � h3g2,

(B)
∆A�H(a � h)∆A�H(b � g) = (a1 � h1)(b1 � g1)⊗ (a2 � h2)(b2 � g2)

= a1(h1 ⇀ b1 ↼ S(h3)) � h2g1 ⊗ a2(h4 ⇀ b2 ↼ S(h6)) � h5g2.

If (3.1) holds, then we obtain (A)
(3.1)
= a111(h1 ⇀ b1 ↼ S(h3)) � h21H1g1 ⊗

a212(h4 ⇀ b2 ↼ S(h6)) � h51H2g2 = a1(h1 ⇀ b1 ↼ S(h3)) � h2g1 ⊗ a2(h4 ⇀

b2 ↼ S(h6)) � h5g2 = (B). So ∆A�H is a multiplicative map.
Conversely, if ∆A�H((a � h)(b � g)) = ∆A�H(a � h)∆A�H(b � g), that is,

a1(h1 ⇀ b ↼ S(h4))1 � h2g1 ⊗ a2(h1 ⇀ b ↼ S(h4))2 � h3g2

= a1(h1 ⇀ b1 ↼ S(h3)) � h2g1 ⊗ a2(h4 ⇀ b2 ↼ S(h6)) � h5g2.

In the above equality, taking a = 1A and g = 1H , then we get

11(h1 ⇀ b ↼ S(h4))1 � h21H1 ⊗ 12(h1 ⇀ b ↼ S(h4))2 � h31H2

= (h1 ⇀ b ↼ S(h4))1 � h2 ⊗ (h1 ⇀ b ↼ S(h4))2 � h3

= 11(h1 ⇀ b1 ↼ S(h3)) � h21H1 ⊗ 12(h4 ⇀ b2 ↼ S(h6)) � h51H2.

So (3.1) holds. The proof is completed. �
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Lemma 3.5. Let A � H be a weak twisted smash product algebra. If A is a
weak bialgebra, then

(1) (∆A�H ⊗ idA�H)∆A�H(1A � 1H)
= (∆A�H(1A � 1H) ⊗ 1A � 1H)(1A � 1H ⊗ ∆A�H(1A � 1H)),

(2) (∆A�H ⊗ idA�H)∆A�H(1A � 1H)
= (1A � 1H ⊗ ∆A�H(1A � 1H))(∆A�H(1A � 1H) ⊗ 1A � 1H).

Proof. We check (1) as follows:

(∆A�H ⊗ idA�H)∆A�H(1A � 1H)
= 11 � 1̃1 ⊗ 12 � 1̃2 ⊗ 13 � 1̃3,

(∆A�H(1A � 1H) ⊗ 1A � 1H)(1A � 1H ⊗ ∆A�H(1A � 1H))
= 11 � 1̃1 ⊗ (12 � 1̃2)(1′1 � 1̂1) ⊗ 1′2 � 1̂2

= 11 � 1̃1 ⊗ 12(1̃2 ⇀ 1′1 ↼ S(1̃4)) � 1̃31̂1 ⊗ 1′2 � 1̂2

= 11 � 1̃2 ⊗ 12(1̃1 ⇀ 1′1 ↼ S(1̃4)) � 1̃31̂1 ⊗ 1′2 � 1̂2

= 11 � 1̃1 ⊗ (1̃2 ⇀ 121′1 ↼ S(1̃4)) � 1̃31̂1 ⊗ 1′2 � 1̂2

= 11 � 1̃1 ⊗ (1̃3 ⇀ 121′1 ↼ S(1̃4)) � 1̃21̂1 ⊗ 1′2 � 1̂2

= 11 � 1̃1 ⊗ (12 ⇀ 121′1 ↼ S(13)) � 111̃21̂1 ⊗ 1′2 � 1̂2

= 11 � 1̃1 ⊗ (11 ⇀ 121′1 ↼ S(13)) � 121̃21̂1 ⊗ 1′2 � 1̂2

= 11 � 1̃1 ⊗ 121′1 � 1̃21̂1 ⊗ 1′2 � 1̂2

= 11 � 1̃1 ⊗ 12 � 1̃2 ⊗ 13 � 1̃3.

In a similar way, we can prove (2).

Lemma 3.6. Let A � H be a weak twisted smash product algebra. If A is a
weak bialgebra, then we have the following conclusions

(1) ε((a � x)(b � g)(c � p)) = ε((a � x)(b � g)1)ε((b � g)2(c � p)) if and only if

ε(a(x1 ⇀ b ↼ S(x5))(x2g1 ⇀ c ↼ S(x3g2))
= ε(a(x1 ⇀ b1 ↼ S(x3)))ε(x2g1)ε(b2(g2 ⇀ c ↼ S(g3))).(3.2)

(2) ε((a � x)(b � g)(c � p)) = ε((a � x)(b � g)2)ε((b � g)1(c � p)) if and only if

ε(a(x1 ⇀ b ↼ S(x5))(x2g1 ⇀ c ↼ S(x3g2))
= ε(a(x1 ⇀ b2 ↼ S(x3)))ε(x2g3)ε(b1(g1 ⇀ c ↼ S(g2))).(3.3)

Proof. (1) For all a � x, b � g, c � p ∈ A �H , we compute
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ε((a � x)(b � g)(c � p))

= ε((a(x1 ⇀ b ↼ S(x3)) � x2g)(c � p))

= ε(a(x1 ⇀ b ↼ S(x5))(x2g1 ⇀ c ↼ S(x4g3)))ε(x3g2p),

ε((a � x)(b � g)1)ε((b � g)2(c � p))

= ε((a � x)(b1 � g1))ε((b2 � g2)(c � p))

= ε(a(x1 ⇀ b1 ↼ S(x3)) � x2g1)ε(b2(g2 ⇀ c ↼ S(g4)) � g3p)

= ε(a(x1 ⇀ b1 ↼ S(x3)))ε(x2g1)ε(b2(g2 ⇀ c ↼ S(g4)))ε(g3p).

If ε((a � x)(b � g)(c � p)) = ε((a � x)(b � g)1)ε((b � g)2(c � p)), then by the
above discussion we obtain the following equality: ε(a(x1 ⇀ b ↼ S(x5))(x2g1 ⇀
c ↼ S(x4g3)))ε(x3g2p) = ε(a(x1 ⇀ b1 ↼ S(x3)))ε(x2g1)ε(b2(g2 ⇀ c ↼

S(g4)))ε(g3p). Taking p = 1H in the equality, we obtain (3.2) holds.
Conversely, if (3.2) holds, we get

ε((a � x)(b � g)(c � p))

= ε(a(x1 ⇀ b ↼ S(x5))(x2g1 ⇀ c ↼ S(x4g3)))ε(x3g2p)

= ε(a(x1 ⇀ b ↼ S(x5))(x2g1 ⇀ c ↼ S(x4g3)))ε(x3g212)ε(11p)

= ε(a(x1 ⇀ b ↼ S(x4))(x2g1 ⇀ c ↼ S(x3g2εt(p))))

= ε(a(x1 ⇀ b ↼ S(x4))(x2g1 ⇀ (c ↼ S(εt(p))) ↼ S(x3g2)))

(3.2)
= ε(a(x1 ⇀ b1 ↼ S(x3)))ε(x2g1)ε(b2(g2 ⇀ (c ↼ S(εt(p))) ↼ S(g3)))

= ε(a(x1 ⇀ b1 ↼ S(x3)))ε(x2g1)ε(b2(g2 ⇀ c ↼ S(g3εt(p))))

= ε(a(x1 ⇀ b1 ↼ S(x3)))ε(x2g1)ε(b2(g2 ⇀ c ↼ S(g4)))ε(g3p)

= ε((a � x)(b � g)1)ε((b � g)2(c � p)).

In a similar way, we can prove (2). The proof is completed.

The following is the main result in this section.

Theorem 3.7. Let A � H be a weak twisted smash product algebra. If A is
a weak bialgebra, then A � H is a weak bialgebra if and only if (3.1)-(3.3) are
satisfied.

In this case, if A and H are two weak Hopf algebras, and for all a ∈ A, x ∈ H ,

a1(εt(x) ⇀ S(a2)) � 1H = ε(x)(εt(a ↼ S(1H1))) � 1H2,(3.4)

(3.5)
S(x3) ⇀ εs(a) ↼ S2(x1) � S(x2)x4

= 11 � S(1H2)ε(a(x11H1 ⇀ 12 ↼ S(x2)))
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hold, then A � H is a weak Hopf algebra with an antipode

SA�H(a � x) = (1 � S(x))(S(a) � 1) = S(x3) ⇀ S(a) ↼ S(S(x1)) � S(x2).

Proof. By Lemma 3.3−3.6, A � H is a weak bialgebra if and only if Eqs.
(3.1)-(3.3) are satisfied.

Next, we will show that A�H is a weak Hopf algebra with an antipode SA�H .
In fact, for all a ∈ A, x ∈ H , we have

S(a1 � x1)(a2 � x2)
= (S(x3) ⇀ S(a1) ↼ S(S(x1)) � S(x2))(a2 � x4)
= [(S(x5) ⇀ S(a1) ↼ S(S(x1)))(S(x4) ⇀ a2 ↼ S(S(x2)))] � S(x3)x6

= S(x3) ⇀ S(a1)a2 ↼ S(S(x1)) � S(x2)x4,

and while

(11 � 1H1)ε((a � x)(12 � 1H2))
= (11 � 1H1)ε(a(x1 ⇀ 12 ↼ S(x3)))ε(x21H2)
= 11 � εs(x2)ε(a(x1 ⇀ 12 ↼ S(x3)))
= 11 � S(1H2)ε(a(x11H1 ⇀ 12 ↼ S(x2))).

So S(a1 � x1)(a2 � x2) = (11 � 1H1)ε((a � x)(12 � 1H2)) if (3.5) holds.

(a1 � x1)S(a2 � x2)
= (a1 � x1)(S(x4) ⇀ S(a2) ↼ S(S(x2)) � S(x3))
= a1(x1S(x6) ⇀ S(a2) ↼ S(S(x4))S(x3)) � x2S(x5)
= a1(x1S(x5) ⇀ S(a2) ↼ S(εt(x3))) � x2S(x4)
= a1(x1S(x4) ⇀ S(a2) ↼ S(12)) � 11x2S(x3)
= a1(1′1x1S(x2) ⇀ S(a2) ↼ S(12)) � 111′2
= a1(11εt(x) ⇀ S(a2) ↼ S(13)) � 12

= a1(11 ⇀ (εt(x) ⇀ S(a2)) ↼ S(13)) � 12

= (11 ⇀ a1(εt(x) ⇀ S(a2)) ↼ S(13)) � 12

= a1(εt(x) ⇀ S(a2)) � 1H ,

and while

ε((11 � 1H1)(a � x))(12 � 1H2)
= ε(11(1H1 ⇀ a ↼ S(1H3)) � 1H2x)(12 � 1H4)
= ε(11(1H1 ⇀ (a ↼ S(1′H1)) ↼ S(1H3)) � 1H2x)(12 � 1′H2)
= ε(1H1 ⇀ 11(a ↼ S(1′H1)) ↼ S(1H3) � 1H2x)(12 � 1′H2)
= ε(11(a ↼ S(1′H1)) � x)(12 � 1′H2)
= ε(x)(εt(a ↼ S(1′H1)) � 1′H2).
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So (a1 � x1)S(a2 � x2) = ε((11 � 1H1)(a � x))(12 � 1H2) if (3.4) holds.
Moreover, for all a ∈ A, x ∈ H , we have

S(a1 � x1)(a2 � x2)S(a3 � x3)
= S(a1 � x1)ε((11 � 1H1)(a2 � x2))(12 � 1H2)
= S(a1 � x1)(a2(εt(x2) ⇀ S(a3)) � 1H)
= (S(x3) ⇀ S(a1) ↼ S2(x1) � S(x2))(a2(εt(x4) ⇀ S(a3)) � 1H)
= (S(x5)⇀S(a1)↼S2(x1))(S(x4)⇀a2(εt(x6)⇀S(a3))↼S2(x2))�S(x3)
= S(x3) ⇀ S(a1)a2(εt(x4) ⇀ S(a3)) ↼ S(S(x1)) � S(x2)
= S(11x3) ⇀ S(a1)a2(12 ⇀ S(a3)) ↼ S(S(x1)) � S(x2)
= S(12x3) ⇀ S(a1)a2(11 ⇀ S(a3)) ↼ S(S(x1)) � S(x2)
= S(11x3) ⇀ (12 ⇀ S(a1)a2S(a3)) ↼ S(S(x1)) � S(x2)
=S(x3)S(11)12 ⇀ S(a) ↼ S(S(x1)) � S(x2)

= S(x3) ⇀ S(a) ↼ S(S(x1)) � S(x2) = S(a � x).

Thus A � H is a weak Hopf algebra.

Corollary 3.8. (1) If H is an ordinary Hopf algebra, then A � H is a twisted
smash product constructed by Wang and Li [16]. If A and H are two Hopf algebras,
then we get Theorem 3.6 is exactly the Theorem 1.7 in [16].

(2) If A is a left weak H-module algebra and the right action is trivial, then
we denote A � H = A#H . The multiplication is turned into (a#h)(b#l) =
a(h1 · b)#h2l. So A�H is the weak smash product constructed in [10] and we get
the results in Zhang and Zhu [18].

The following proposition is obvious.

Proposition 3.9. Let A � H be a weak twisted smash product, then A and H
are subalgebras of A � H with inclusion maps i : A → A � H, a �→ a � 1 H , and
j : H → A�H, h �→ 1A �h respectively. Furthermore, i and j are algebra maps.

Theorem 3.10. Let A � H be a weak twisted smash product and M a vector
space over k. Then M is a left A �H-module if and only if M is a left A-module
and a left H-module such that

h · (a ·m) = (h1 ⇀ a ↼ S(h3)) · (h2 ·m),(3.6)

for all a ∈ A, h ∈ H and m ∈M .

Proof. Let (M,⇀) be a left A � H-module. We define

a ·m = (a � 1H) ⇀m, h ·m = (1A � h) ⇀m.
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Then M is a left A-module and left H-module by Proposition 3.9. Moreover,

h · (a ·m) = (1A � h) ⇀ ((a � 1H) ⇀m)
= (h1 ⇀ a↼ S(h3) � h2) ⇀m

= ((h1 ⇀ a ↼ S(h3) � 1H)(1A � h2)) ⇀m

= (h1 ⇀ a↼ S(h3)) · (h2 ·m).

Conversely, we define (a � h) ⇀m = a · (h ·m). It is easy to check (1A � 1H) ⇀
m = m. Now we prove

[(a � h)(b � g)] ⇀m

= [a(h1 ⇀ b ↼ S(h3)) � h2g] ⇀ m

= a(h1 ⇀ b ↼ S(h3)) · (h2g ·m)
= a · [(h1 ⇀ b ↼ S(h3)) · (h2 · (g ·m))]
(3.6)
= a · (h · (b · (g ·m)))
= (a � h) ⇀ (b · (g ·m))
= (a � h) ⇀ ((b � g) ⇀m).

This shows M is a left A � H-module.

4. THE MASCHKE-TYPE THEOREM FOR A � H

In this section, we will give a Maschke-type theorem for the weak twisted smash
productA�H over a semisimple weak Hopf algebra H , which extends the Maschke-
type theorem in [5, 15, 17].

The following lemma given in Böhm et al. [2] is needed in the sequel.

Lemma 4.1. The following conclusions on the weak Hopf algebra H are
equivalent:

(1) H is semisimple;
(2) There exists a normalized right integral x ∈ H , that is, for all h ∈ H ,

xh = xεs(h), and εs(x) = 1.

Lemma 4.2. Let H be a weak Hopf algebra with invertible antipode S and
A � H a weak twisted smash product. Then

ha = (h1 ⇀ a ↼ S(h3))h2,(4.1)

ah = h2(S−1(h1) ⇀ a ↼ S2(h3)).(4.2)
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Here ha we denote (1 � h)(a � 1) and ah = (a � 1)(1 � h) as in Proposition 3.9.

Proof. We get (4.1) by straightforward computation.
Next we prove (4.2) holds.

h2(S−1(h1) ⇀ a ↼ S2(h3))
(4.1)
= (h2S

−1(h1) ⇀ a ↼ S2(h5)S(h4))h3

= (S−1(εt(h1)) ⇀ a ↼ S2(h4)S(h3)) � h2

= (11 ⇀ a ↼ S(h2S(h3))) � 12h1

= (11 ⇀ a ↼ S(εt(h2))) � 12h1

= (11 ⇀ a ↼ S(1′2)) � 121′1h
= (11 ⇀ a ↼ S(13)) � 12h

= a � h = ah,

for all a ∈ A and h ∈ H .
Let x be a right integral of H . In the following proposition, we assume that the

following formula holds in A � H , for all a ∈ A,

S(x1) ⊗ (x2 ⇀ a ↼ S(x4))x3 = S(x2) ⊗ (x3 ⇀ a ↼ S3(x1))x4.(4.3)

Proposition 4.3. Let H be a finite dimensional weak Hopf algebra, and A�H
a weak twisted smash product, and x a right integral in H . Assume that W and
V are (left) A � H-modules and λ : V → W is a left A-module map. If the right
integral x satisfying the Eq. (4.3), then λ̃ : V →W, v �→ S(x1) · λ(x2 · v) is a left
A � H-module map.

Proof. We only need to prove λ̃ is both a left H-module map and a left
A-module map.

Because x is a right integral, we get x1h1 ⊗ x2h2 = ∆(xh) = ∆(xεs(h)) =
x1 ⊗ x2εs(h) and

x1h1 ⊗ x2h2 ⊗ h3 = x1 ⊗ x2εs(h1) ⊗ h2.(4.4)

For all g ∈ H, v ∈ V , since S is bijective, there exists h ∈ H such that
S(h) = g. Now we have

g · (λ̃(v)) = S(h) · (λ̃(v))
= S(h1)h2S(h3) · (λ̃ · v)
= S(h1)εt(h2)S(x1) · λ(x2 · v)

(2.8)
= S(h1)S(x1) · λ(x2εt(h2) · v)
= S(x1h1) · λ(x2h2S(h3) · v)
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(4.4)
= S(x1) · λ(x2εs(h1)S(h2) · v)
= S(x1) · λ(x2S(h1)h2S(h3) · v)
= S(x1) · λ(x2S(h) · v)
= S(x1) · λ(x2g · v) = λ̃(g · v).

So λ̃ is a left H-module map.
On the other hand, for all a ∈ A, v ∈ V , we compute

a · (λ̃(v)) = aS(x1) · λ(x2 · v)
(4.2)
= S(x2)(x3 ⇀ a↼ S3(x1)) · λ(x4 · v)
= S(x2) · λ((x3 ⇀ a↼ S3(x1))x4 · v) (λ is a leftA-linear map)

(4.3)
= S(x1) · λ((x2 ⇀ a↼ S(x4))x3 · v)

(4.1)
= S(x1) · λ(x2a · v) = λ̃(a · v),

that is, λ̃ is a left A-module map.
By the above discussion, we know that λ̃ is a left A � H-module map.

Lemma 4.4. If H is a finite dimensional weak Hopf algebra and H ∗ is uni-
modular, then the equation (4.3) holds.

Proof. Following from [14, Corollary 6.5], we have l2 ⊗ l1 = l1 ⊗ S2(l2a−1),
where l is a left integral and a is the distinguished group-like element of H ; our
hypothesis that H∗ is unimodular implies a = 1, hence l2 ⊗ l1 = l1 ⊗ S2(l2).
Replacing the left integral l with a right integral x, where l = S(x), we get x1⊗x2 =
x2 ⊗ S2(x1). This follows x1 ⊗ x2 ⊗ x3 ⊗ x4 = x2 ⊗ x3 ⊗ x4 ⊗ S2(x1) and we
immediately get the equation (4.3) holds.

We can now obtain our version of Maschke’s Theorem.

Theorem 4.5. Let H be a finite dimensional weak Hopf algebra such that H is
semisimple and H ∗ is unimodular and let A�H be a weak twisted smash product.
Assume that V is a left A � H-module and W an A � H-submodule of V . If W is
a summand of V as A-module, then W is a summand of V as A � H-module.

Proof. Let λ : V →W be an A-module projection map. Define

λ̃ : V →W, v �→ S(x1) · λ(x2 · v).

By Proposition 4.3 and Lemma 4.4, λ̃ is a left A � H-module map, where x is
a normalized right integral of H in Lemma 4.1.
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Next, we need only to show that λ̃ is a projection, that is, for any w ∈ W ,
λ̃(w) = w.

In fact, for any w ∈W ,

λ̃(w) = S(x1) · λ(x2 ·w)
= S(x1) · (x2 · w) (since λ |W = id)
= (S(x1)x2) · w = εs(x) · w
= 1 · w = w.

The proof is completed.

Theorem 4.6. Let H be a finite dimensional weak Hopf algebra such that H is
semisimple and H ∗ is unimodular and let A�H be a weak twisted smash product.

(1) Let V be an A � H-module. If V is completely reducible as an A-module,
then V is completely reducible as an A � H-module.

(2) If A is semisimple Artinian, then so is A � H .

Proof. (1) is immediately from Theorem 4.5.
(2) follows from (1), using the fact that an algebra is semisimple Artinian if and

only if every module is completely reducible.

5. THE DUALITY THEOREM FOR A � H

In this section, we will prove an analogue of the Blattner-Cohen-Montgomery’s
duality theorem for weak twisted smash products, which extends the main result
given by Nikshych [10].

Throughout this section, we will always assume H is a finite dimensional weak
Hopf algebra, A a weak H-bimodule algebra and the following equation holds:

a ↼ h1 ⊗ h2 = a ↼ h2 ⊗ h1, ∀ a ∈ A, h ∈ H.(5.1)

First, we define a left H∗-module algebra A � H via the formula

ϕ · (a � h) = a � (ϕ ⇀ h) = 〈ϕ, h2〉a � h1,

for all ϕ ∈ H∗, h ∈ H and a ∈ A.
Moreover, we can also define a right H∗

t -module on A � H by

(a � h) · ϕ′ = 〈S−1
H∗(ϕ′), h2〉a � h1 = 〈ϕ′, S−1(h2)〉a � h1,

for all ϕ′ ∈ H∗
t .

Now we will construct a canonical isomorphism between the weak smash prod-
uct algebra (A � H)#H∗ and the endomorphism algebra End(A � H)A, where the
right A-module on A � H is the multiplication, i.e., (a � h) · b = (a � h)(b � 1H).
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Lemma 5.1. The map α : (A � H)#H∗ → End(A �H)A defined by

α((x � h)#ϕ)(y � g) = (x � h)(y � (ϕ ⇀ g)) = (x � h)(y � 〈ϕ, g2〉g1),
is a homomorphism of algebras, for any x, y ∈ A, h, g ∈ H, ϕ ∈ H ∗.

Proof. Firstly, we need to check that α is well-defined.
In fact, for any ξ ∈ H∗

t , we need to compute that

α((x � h)#ξϕ)(y � g)
= x(h1 ⇀ y ↼ S(h3)) � h2(ξϕ ⇀ g)
= x(h1 ⇀ y ↼ S(h3)) � h2(ξ ⇀ 1H)(ϕ ⇀ g)
= x(h1 ⇀ y ↼ S(h2)) � h3(ξ ⇀ 1H)(ϕ ⇀ g)
= x(h1(ξ ⇀ 1H)1 ⇀ y ↼ S(h2(ξ ⇀ 1H)2)) � h3(ξ ⇀ 1H)3(ϕ ⇀ g)
= x(h1(ξ ⇀ 1H)1 ⇀ y ↼ S(h3(ξ ⇀ 1H)3)) � h2(ξ ⇀ 1H)2(ϕ ⇀ g)
= x((h(ξ ⇀ 1H))1 ⇀ y ↼ S((h(ξ ⇀ 1H))3)) � (h(ξ ⇀ 1H))2(ϕ ⇀ g)
= (x � h(ξ ⇀ 1H))(y � ϕ ⇀ g)
= α((x � h(ξ ⇀ 1H))#ϕ)(y � g)
= α((x � S−1

H∗(ξ) ⇀ h)#ϕ)(y � g)
= α((x � h) ↼ ξ#ϕ)(y � g).

Secondly, we know that Imα ⊆ End(A �H)A :

α((x � h)#ϕ)((y � g) · w)
= α((x � h)#ϕ)(y(g1 ⇀ w ↼ S(g3)) � g2)
= (x � h)(y(g1 ⇀ w ↼ S(g3)) � ϕ ⇀ g2)
= (x � h)(y(g1 ⇀ w ↼ S(g3)) � 〈ϕ, g3〉g2)
= (x � h)(y � (ϕ ⇀ g))(w � 1H)
= (α((x � h)#ϕ)(y � g)) · w.

Finally, for any x, x′, y ∈ A, h, h′, g ∈ H, ϕ, ϕ′ ∈ H∗,

α[((x � h)#ϕ)((x′ � h′)#ϕ′)](y � g)
= α((x � h)(x′ � (ϕ1 ⇀ h′))#ϕ2ϕ

′)(y � g)
= (x � h)(x′ � (ϕ1 ⇀ h′))(y � (ϕ2ϕ

′ ⇀ g))
= (x � h)(ϕ · ((x′ � h′)(y � (ϕ′ ⇀ g))))
= α((x � h)#ϕ) ◦ α((x′ � h′)#ϕ′)(y � g),

so, α is a homomorphism of algebras.
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Let {fi} be a basis of H and {ψi} be the dual basis of H ∗, i.e., such that
〈fi, ψj〉 = δij for all i, j. Then we have identities

∑
i

fi〈h, ψi〉 = h,
∑

i

〈fi, ϕ〉ψi = ϕ,

for all h ∈ H and ϕ ∈ H∗, moreover the element of
∑

i fi ⊗ ψi ∈ H ⊗H∗ does
not depend on the choice of {fi}.

Let us define a linear map β : End(A � H)A → (A � H)#H∗ by

T �→
∑

i

[T (1A � fi2)(1A � S
−1(fi1))]#ψi.

Lemma 5.2. The maps α and β are inverse of each other.

Proof. We need to check that

β ◦ α = id(A�H)#H∗ and α ◦ β = idEnd(A�H)A
.

For all x ∈ A, h ∈ H and ϕ ∈ H∗, we compute

β ◦ α((x � h)#ϕ)

=
∑

i

[α((x � h)#ϕ)(1A � fi2)(1A � S
−1(fi1))]#ψi

=
∑

i

[(x � h)(1A � ϕ ⇀ fi2)(1A � S
−1(fi1))]#ψi

=
∑

i

(x(h1 ⇀ 1A ↼ S(h3)) � h2(ϕ ⇀ fi2))(1A � S
−1(fi1))#ψi

=
∑

i

(x(11 ⇀ 1A ↼ S(1′2)) � 121′h(ϕ ⇀ fi2))(1A � S
−1(fi1))#ψi

=
∑

i

((11 ⇀ x↼ S(13)) � 12h(ϕ ⇀ fi2))(1A � S
−1(fi1))#ψi

=
∑

i

(x � h(ϕ ⇀ fi2))(1A � S
−1(fi1))#ψi

=
∑

i

[x(h1fi2 ⇀ 1A ↼ S(h3fi4)) � h2fi3S
−1(fi1)]#ψi〈ϕ, fi5〉

=
∑

i

(x � hfi2S
−1(fi1))#ψi〈ϕ, fi3〉 =

∑
i

(x � h11)#ψi〈ϕ, 12fi〉

= (x � h11)#ϕ2〈ϕ1, 12〉 = (x � h(ϕ1 ⇀ 1))#ϕ2

= (x � S−1
H∗(εt(ϕ1)) ⇀ h)#ϕ2 = S−1

H∗(εt(ϕ1)) · (x � h)#ϕ2

= (x � h) · εt(ϕ1)#ϕ2 = (x � h)#ϕ.
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Also, for every T ∈ End(A � H)A, y ∈ A, g ∈ H , we have

α ◦ β(T )(y � g)

=
∑

i

α[T (1A � fi2)(1A � S
−1(fi1))#ψi](y � g)

=
∑

i

T (1A � fi2)(1A � S
−1(fi1))(y � 〈ψi, g2〉g1)

= T (1A � g3)(1A � S
−1(g2))(y � g1)

= T (1 � g5)(S−1(g4) ⇀ y ↼ g2 � S
−1(g3)g1)

= T (1 � g4)(S−1(g3) ⇀ y ↼ g2 � S
−1(εs(g1)))

= T (1 � g3)(S−1(g21′2) ⇀ y ↼ g11′112 � S
−1(11))

= T (1 � g3)(11 ⇀ (S−1(g2) ⇀ y ↼ g1) ↼ S(13) � 12)

= T (1 � g3)(S−1(g2) ⇀ y ↼ g1 � 1H)

= T ((1 � g3)(S−1(g2) ⇀ y ↼ g1 � 1H))

= T ((g3S−1(g2)) ⇀ y ↼ (g1S(g5)) � g4)

= T (11 ⇀ y ↼ g1S(g3) � 12g2) = T (11 ⇀ y ↼ g1S(g2) � 12g3)

= T (11 ⇀ y ↼ S(1′1) � 121′2g) = T (11 ⇀ y ↼ S(1′2) � 121′1g)

= T (11 ⇀ y ↼ S(13) � 12g) = T (y � g).

So we get α and β are inverse of each other.

We now have the main result of this section as follows.

Theorem 5.3. Let H be a finite dimensional weak Hopf algebra and A � H
be a weak twisted smash product satisfying Eq. (5.1). Then there is a canonical
isomorphism between the algebras (A � H)#H ∗ and End(A � H)A.

Remark 5.4. If A is a left weak H-module algebra and the right action is
trivial. Then A � H is the weak smash product and from Theorem 5.3 we get the
duality for weak smash product. There is a canonical isomorphism between the
algebras (A#H)#H∗ and End(A#H)A. We can find the results in Nikshych [10,
Throrem 3.3].
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