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ON ENTIRE SOLUTIONS OF A CERTAIN TYPE OF NONLINEAR
DIFFERENTIAL AND DIFFERENCE EQUATIONS

Jie Zhang and Liang-Wen Liao*

Abstract. In this paper, we investigate some analogous results on the existence
of entire solutions of a certain type of nonlinear differential and differential-
difference equations of the following form

fn(z) + Pd(f) = p1(z)eα1z + p2(z)eα2z,

where Pd(f) is a differential polynomial or differential-difference polynomial
in f(z). And we find out its entire solutions or prove that it has no entire
solution for some special Pd(f).

1. INTRODUCTION AND MAIN RESULTS

In this paper, a meromorphic function always means it is meromorphic in the
whole complex plane C. We assume that the reader is familiar with the standard
notations in the Nevanlinna theory. We use the following standard notations in value
distribution theory (see[2, 8]).

T (r, f), m(r, f), N (r, f), N(r, f), · · · .

And we denote by S(r, f) any quantity satisfying

S(r, f) = o{T (r, f)}, as r → ∞,

possibly outside of a set E with finite linear measure, not necessarily the same at
each occurrence. The order of a meromorphic function f(z) is defined as

ρ(f) = lim
r→∞

logT (r, f)
log r

.
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And the deficiency of a with respect to f(z) is defined by

Θ(a, f) = 1− lim
r→∞

N(r, 1
f−a)

T (r, f)
.

A differential polynomial in f(z) means that it is a polynomial in f(z) and its
derivatives with small functions of f(z) as coefficients. A differential-difference
polynomial in f(z) means that it is a polynomial in f(z), its derivatives and its
shifts f(z + c) with small functions of f(z) as coefficients. We shall use Pd(f)
to denote a differential polynomial in f(z) or a differential-difference polynomial
in f(z) with degree d. Furthermore, Nevanlinna’s value distribution theory of
meromorphic functions plays an important role in studying the growth and existence
of meromorphic solutions of the differential or differential-difference equations. For
instance, it is shown in [6] that the equation 4f 3(z) + 3f ′′(z) = − sin 3z has
exactly three nonconstant entire solutions, namely f1(z) = sin z, f2(z) =

√
3

2 cos z−
1
2 sin z, f3(z) = −

√
3

2 cos z−1
2 sin z. And Li-Yang in [6, 4] also considered a general

case as follows.

Theorem A. (see [6]). Let n ≥ 3 be an integer, Pn−3(f) be an algebraic
differential polynomial in f(z) of degree d ≤ n − 3, b(z) a meromorphic function
and λ, c1, c2 three nonzero constants. Then the equation

(∗) fn(z) + Pn−3(f) = b(z)(c1e
λz + c2e

−λz)

does not have any transcendental entire solution f(z) satisfying that T (r, b) =
S(r, f).

Theorem B. (see [4]). Let n ≥ 4 be an integer and Pd(f) denote an algebraic
differential polynomial in f(z) of degree d ≤ n−3. If p 1(z), p2(z) are two nonzero
polynomials and α1, α2 are two nonzero constants such that α1

α2
is not rational, then

the equation
fn(z) + Pd(f) = p1(z)eα1z + p2(z)eα2z

does not have any transcendental entire solution.

An important question is that the condition that the degree of Pd(f) satisfying
d ≤ n − 3 can be weaken? In this paper, we obtained

Theorem 1. Let n ≥ 3 be an integer and Pd(f) denote an algebraic differ-
ential polynomial in f(z) of degree d ≤ n − 2. If p 1(z), p2(z) are two nonzero
polynomials and α1, α2 are two nonzero constants such that α1

α2
�= ( d

n)±1, 1. Then
any transcendental entire solution of the following equation

(1) fn(z) + Pd(f) = p1(z)eα1z + p2(z)eα2z

f(z) satisfies that Θ(0, f) = 0.
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Remark 1. Comparing the proof of Theorem 1 and Theorem B, we can obtain
that Theorem B remains valid if the condition ”α1

α2
is not rational” is placed by

”α1
α2

�= ( d
n)±1, 1” and the latter condition is necessary. In fact, the equation (1) has

the entire solution f(z)=pe
α1
n

z if α1 =α2, Pd(f)=0, p1(z)+p2(z)=pn(z); or the
entire solution f(z)=(p2(z))

1
n e

α1
d

z if α1
α2

= d
n , Pd(f)=fd(z), p1

n(z)=p2
d(z).

We will give some examples to show that the case that Θ(0, f) = 0 in Theorem
1 does exist.

Example 1. (see [4] Theorem 4). Let a, P1, P2, λ be non-zero constants. Then
the differential equation

f3(z) + af ′′ = P1e
λz + P2e

−λz

has transcendental entire solutions if and only if the condition P1P2+(aλ2/27)3 = 0
holds. Moreover if the condition holds, then the solutions are

f(z) = �je
λz
3 − (

aλ2

27�j
)e−

λz
3 , (j = 1, 2, 3),

where �j, (j = 1, 2, 3) are the cubic roots of P1.

Example 2. The differential equation

f4(z)− 64ff ′′ + 2 = ez + e−z

has a transcendental entire solution

f(z) = e
z
4 + e−

z
4 .

But for some special Pd(f) in Theorem 1, the equation (1) has no entire solution.

Theorem 2. Let a, P1, P2 be non-zero constants. Then the equation

(2) f3(z) + af ′(z) = P1e
λz + P2e

−λz

does not have any transcendental entire solution.

Corresponds to the Theorem 1, we also considered the case that the differential
polynomial Pd(f) is placed by differential-difference polynomial. And we obtained

Theorem 3. Let n ≥ 4 be an integer and Pd(f) denote an algebraic differential-
difference polynomial in f(z) of degree d ≤ n−3. If p 1(z), p2(z) are two nonzero
polynomials and α1, α2 are two nonzero constants with α1

α2
�= ( d

n)±1, 1, then the
equation (1) does not have any transcendental entire solution of finite order.

Theorem 4. Let P1, P2 and λ be non-zero constants. For the difference equa-
tion
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(3) f3(z) + a(z)f(z + 1) = P1e
λz + P2e

−λz,

where a(z) is a polynomial, we have
(i) if a(z) is not a constant, then the equation (3) does not have any transcen-

dental entire solution of finite order;
(ii) if a(z) is a nonzero constant, then the equation (3) admit transcendental

entire solutions of finite order if and only if the condition
e

1
3
λ = ∓1 and P1P2 = ±(

a

3
)3

holds, furthermore if the condition above holds, then the transcendental entire
solution of finite order of the equation (3) has the form as following

f(z) = �je
2kπiz − a

3�j
e−2kπiz or f(z) = �je

2kπiz+πiz +
a

3�j
e−(2kπiz+πiz) .

Theorem 2 and Theorem 4 show that there is no causal link between the exis-
tences of the solution of a differential equation and the corresponding differential-
difference equation.

2. LEMMAS

To prove our results, we need some lemmas.

Lemma 1. (see [3]). Let f(z) be a transcendental meromorphic solution of
finite order ρ of a difference equation of the form

H(z, f)P (z, f) = Q(z, f),

where H(z, f), P (z, f), Q(z, f) are difference polynomials in f(z) such that the
total degree of H(z, f) in f(z) and its shifts is n, and that the total degree of
Q(z, f) is at most n. If H(z, f) just contains one term of maximal total degree,
then for any ε > 0,

m(r, P (z, f)) = O(rρ−1+ε) + S(r, f)

holds possibly outside of an exceptional set of finite logarithmic measure.

Remark 2. Particularly, if H(z, f) = fn(z), then a similar conclusion holds
when P (z, f), Q(z, f) are differential-difference polynomials in f(z).

Lemma 2. (see [1]). Let f(z) be meromorphic and transcendental function in
the plane and satisfy

fn(z)P (f) = Q(f),

where P (f), Q(f) are differential polynomials in f(z) with functions of small prox-
imity related to f(z) as the coefficients and the degree of Q(f) is at most n, then

m(r, P (f)) = S(r, f).
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Lemma 3. (see [6]). Suppose that c is a non-zero constant and α is a noncon-
stant meromorphic function. Then the equation

f2(z) + (cf (n)(z))2 = α

has no transcendental meromorphic solution f(z) satisfying T (r, α) = S(r, f).

Lemma 4. (see [5]). Let m, n be positive integers satisfying 1
m + 1

n < 1. Then
there are no transcendental entire solutions f(z) and g(z) satisfy the equation

a(z)fn(z) + b(z)gm(z) = 1

with a(z), b(z) being small functions of f(z).

Lemma 5. (see [7]). Let f(z) be a nonconstant meromorphic function. Then

m(r,
f ′

f
) = O(log r), (r → ∞),

if f is of finite order, and

m(r,
f ′

f
) = O(log(rT (r, f))), (r → ∞),

possibly outside a set E of r with finite linear measure if f(z) is of infinite order.

Lemma 6. (see [7]). Suppose that f1(z), f2(z), . . .fn(z), (n ≥ 2) are meromor-
phic functions and g1(z), g2(z), . . .gn(z)are entire functions satisfying the following
conditions

(i)
∑n

j=1 fj(z)egj(z) ≡ 0.

(ii) gj(z)− gk(z)are not constants for 1 ≤ j < k ≤ n.

(iii) For 1≤j≤ n, 1≤h<k≤n, T (r, fj)=o{T (r, egh−gk )}(r→∞, r �∈ E).

Then fj(z) ≡ 0, (j = 1, 2, . . .n).

3. THE PROOFS

3.1. Proof of theorem 1

Let f(z) be a transcendental entire solution of the equation (1) with Θ(0, f) > 0.
Then by differentiating both sides of the equation (1), we get

(4) nfn−1f ′ + (Pd(f))′ = (p1α1 + p1
′)eα1z + (p2α2 + p2

′)eα2z.

Eliminating eα1z, eα2z from the equations (1) and (4), we obtain

(5) (p1α1 + p1
′)fn − np1f

n−1f ′ + Qd(f) = βeα2z,
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and

(6) (p2α2 + p2
′)fn − np2f

n−1f ′ + Rd(f) = −βeα1z,

where

(7) β = (p1α1 + p1
′)p2 − (p2α2 + p2

′)p1,

(8) Qd(f) = (p1α1 + p1
′)Pd(f) − p1(Pd(f))′,

(9) Rd(f) = (p2α1 + p2
′)Pd(f) − p2(Pd(f))′.

By differentiating the equation (5) , we get

(10)
(β′ + βα2)eα2z = (p1α1 + p1

′)′fn + np1α1f
n−1f ′

−n(n − 1)p1f
n−2f ′2 − np1f

n−1f ′′ + (Qd(f))′.

By eliminating eα2z from the equation (5) and (10), we get

(11) fn−2{γf2 − np1γ2ff ′ + n(n − 1)p1βf ′2 + np1βff ′′} = Td(f),

where
γ1 = (β′ + βα2)(p′1 + p1α1) − β(p1

′ + p1α1)′,

γ2 = β′ + α1β + α2β,

and

(12) Td(f) = β(Qd(f))′ − (β′ + βα2)Qd(f).

And we set

(13) φ = γ1f
2 − np1γ2ff ′ + n(n − 1)p1βf ′2 + np1βff ′′,

which is a differential polynomial in f(z). We rewrite the equation (11) as the
following form

fn−2φ = Td(f).

It follows the fact that Td(f) is a differential polynomial in f(z) with degree at
most n − 2 and Lemma 2 that

T (r, φ) = m(r, φ) = S(r, f).

Now we claim φ ≡ 0. In fact, we rewrite the equation (13) as the following form

φ = f2A(z),
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where

A(z) = γ1 − np1γ2
f ′

f
+ n(n − 1)p1β(

f ′

f
)
2

+ np1β
f ′′

f
.

Then m(r, A) = S(r, f). If φ �≡ 0, then A �≡ 0. For any small ε > 0, we have

2T (r, f) = m(r, f2) = m(r,
φ

A
)

≤ m(r, φ) + m(r,
1
A

) ≤ S(r, f)+ T (r, A)

≤ S(r, f)+ N (r, A) ≤ S(r, f)+ 2N(r, 1
f )

≤ 2(1− Θ(0, f) + ε)T (r, f).

This is impossible for 0 < ε < Θ(0, f). Hence A ≡ 0, and Td(f) ≡ φ ≡ 0.
Next, we discuss two cases.

Case 1. Qd(f) �≡ 0. At this case, the equation (12) implies

(14) Qd(f) = c1βeα2z,

where c1 �= 0. We substitute (14) into (5) and get

(15) fn−1{(p1α1 + p1
′)f − np1f

′} = −(1 − 1
c1

)Qd(f).

Setting
ϕ = (p1α1 + p1

′)f − np1f
′

and noting that the degree of Qd(f) is at most n − 2, we get by Lemma 2

m(r, ϕ) = S(r, f) and m(r, fϕ) = S(r, f).

If ϕ �≡ 0, then

T (r, f) = m(r, f) ≤ m(r, fϕ) + m(r,
1
ϕ

) ≤ S(r, f) + T (r, ϕ) = S(r, f).

It is impossible. Thus ϕ ≡ 0. By the equation (15), we get c1 = 1 and Qd(f) =
βeα2z . On the other hand, we solute the equation ϕ ≡ 0 and get

(16) fn(z) = c2p1e
α1z.

By substituting the equation (16) into the equation (1), we get

(1− 1
c2

)fn(z) =
p2

β
Qd(f) − Pd(f),
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where p2
β Qd(f)−Pd(f) is a differential polynomial in f with degree at most n−2.

By Lemma 2 again, we deduce c2 = 1 and

fn(z) = p1e
α1z, Pd(f) = p2e

α2z.

Thus
f(z) = (p1)

1
n e

α1
n

z,

and
Pd(f) = h(e

α1
n

z),

where h(e
α1
n

z) is a polynomial of e
α1
n

z with degree d and the small functions of
h(e

α1
n

z) as its coefficients. Thus, by Lemma 6, we have dα1
n = α2, i.e. α1

α2
= n

d ,
which is a contradiction.

Case 2. Qd(f) ≡ 0. Then from the equation (8), we get

(p1α1 + p1
′)Pd(f) − p1(Pd(f))′ = 0.

If Pd(f) ≡ 0, then fn(z) = p1(z)eα1z + p2(z)eα2z. And we rewrite this equation
as the following form

1
p2

(f(z) · e−α2
n

z)n + (
−p1

p2
)(e

(α1−α2)z
m )m = 1,

where m is any positive integer. And Lemma 4 implies α1 = α2, which is a
contraction. Hence, Pd(f) �≡ 0. Thus we deduce that

(17) Pd(f) = c3p1e
α1z, c3 �= 0.

From the equation (1), we get

(18) fn(z) + (c3 − 1)p1e
α1z = p2e

α2z.

By Lemma 4 again, we get c3 = 1 and Pd(f) = p1e
α1z . Thus

(19) fn(z) = p2e
α2z.

Then f(z) = (p2)
1
n e

α2
n

z. By the same arguments as above, we have again dα2
n =

α1 and α1
α2

= d
n , which is a contradiction again. The proof of theorem 1 is

completed.

3.2. Proof of theorem 2

Suppose that f(z) is a transcendental entire solutions of the equation (2). By
differentiating the equation (2), we get

(20) 3f2f ′ + af ′′ = λP1e
λz − λP2e

−λz.
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By taking both squares of (2) and (20) and eliminating e±λz , we deduce

(21) 4λ2P1P2 = λ2(f3 + af ′)2 − (3f2f ′ + af ′′)2.

We set

(22) α = λ2f2 − 9f ′2.

It is obvious that α is an entire function. We set

Q(f) = 4λ2P1P1 − λ2a2f ′2 − 2aλ2f ′f3 + a2f ′′2 + 6af ′f ′′f2,

which is a differential polynomial in f(z) with degree 4. Then we rewrite (21) as
the following form

(23) f4α = Q(f).

By Lemma 2, we get m(r, α) = S(r, f) and T (r, α) = S(r, f). Thus, α is a small
function of f(z). We consider two cases.

Case 1. α ≡ 0. Then the equation (22) implies that f(z) = ce± 1
3
λz. By

substituting this into (2) and simple calculation, we get

(c3 − P1)eλz +
1
3
aλce

1
3
λz = P2e

−λz,

or
(c3 − P2)e−λz − 1

3
aλce−

1
3
λz = P1e

λz.

By Lemma 6, we get P1 = 0 or P2 = 0, which is a contradiction.

Case 2. α �≡ 0. Then Lemma 3 implies α is a non-zero constant. Thus

f ′(λ2f − 9f ′′) = 0.

Since f(z) is transcendental, then

(24) λ2f − 9f ′′ = 0.

The general solutions of the equation (24) are

(25) f(z) = c1e
1
3
λz + c2e

− 1
3
λz,

where c1, c2 are constants. Since α �≡ 0, we have c1c2 �= 0. Then by substituting
(25) into (2) and simple calculation, we get

(26)
(c1

3 − P1)eλz + (c2
3 − P2)e−λz + (3c1

2c2 +
aλc1

3
)e

1
3
λz

+(3c1c2
2 − aλc2

3
)e−

1
3
λz = 0.
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By Lemma 6, we deduce

c1
3 = P1, c2

3 = P2, 9c1c2 + aλ = 0, 9c1c2 = aλ.

Hence, c1c2 = 0. This is a contraction. The proof of theorem 2 is completed.

3.3. Proof of theorem 3

The proof of Theorem 3 is very similar to that of Theorem 1. We just give a
main framework of the proof.

Suppose that f(z) is a transcendental entire solution with finite order ρ(f) = ρ

of the equation (1). By using the same arguments as those in Theorem 1, we
can get the corresponding equation (4)-(13) and fn−2φ = Td(f), where φ =
γ1f

2−np1γ2ff ′+n(n−1)p1βf ′2+np1βff ′′ and Td(f) is a differential-difference
polynomial in f(z) with total degree at most n − 3. By Lemma 1, we get

m(r, φ) = S(r, f) + O(rρ−1+ε) and m(r, fφ) = S(r, f)+ O(rρ−1+ε).

If φ �≡ 0, then

T (r, f) = m(r, f) ≤ m(r,
1
φ

) + m(r, fφ) ≤ T (r, φ) + S(r, f) + O(rρ−1+ε)

≤ m(r, φ) + S(r, f) + O(rρ−1+ε) = S(r, f)+ O(rρ−1+ε).

This is impossible. Hence, φ ≡ 0. Similarly, we can deduce ϕ = (p1α1 + p1
′)f −

np1f
′ ≡ 0. By using similar arguments to the remained part of the proof of Theorem

1, we can get our conclusion easily. We omit the detail.

3.4. Proof of theorem 4

Suppose that f(z) is a transcendental entire solution of the equation (3) with finite
order ρ(f) = ρ. By differentiating (3), we get

(27) 3f2(z)f ′(z) + a(z)f ′(z + 1) + a′(z)f(z + 1) = λP1e
λz − λP2e

−λz.

Similarly, by taking both squares of (3) and (27) and eliminating e±λz , we deduce

(28)
4λ2P1P2 = λ2(f3(z) + a(z)f(z + 1))2 − (3f2(z)f ′(z)+

a(z)f ′(z + 1) + a′(z)f(z + 1))2.

We set

(29) α(z) = λ2f2(z) − 9f ′2(z),
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which is a differential polynomial in f(z). Thus α(z) is an entire function. And
we set

Q(f) = 4λ2P1P1 − λ2a2(z)(f(z + 1))2 − 2a(z)λ2f(z + 1)f3(z)

(a′(z))2f2(z) + 6a′(z)f2(z)f ′(z + 1) + 2a(z)a′(z)f(z + 1)f ′(z + 1)

+a2(z)(f ′(z + 1))2 + 6a(z)f ′(z)f ′(z + 1)f2(z),

which is a differential-difference polynomial in f(z) with total degree 4. Then we
rewrite (28) as the following form

(30) f4α = Q(f).

By Lemma 1, we get

m(r, α) = S(r, f) + O(rρ−1+ε)

and T (r, α) = m(r, α) = S(r, f) + O(rρ−1+ε). Thus, α is a small function of
f(z). Next, we consider two cases.

Case 1. α ≡ 0. Then f(z) = ce±
1
3
λz. By substituting this into (3) and simple

calculation, we get

(c3 − P1)eλz + a(z)ce
λ
3 e

1
3
λz = P2e

−λz,

or
(c3 − P2)e−λz + a(z)ce−

λ
3 e−

1
3
λz = P1e

λz.

By Lemma 6, we get P1 = 0 or P2 = 0, which is a contradiction.

Case 2. α �≡ 0. Then Lemma 3 implies α is a non-zero constant. Thus

f ′(λ2f − 9f ′′) = 0.

Since f(z) is transcendental, then

(31) λ2f − 9f ′′ = 0.

The general solution of the equation (31) is

(32) f(z) = c1e
1
3
λz + c2e

− 1
3
λz,

where c1, c2 are both non-zero constants. Then by substituting (32) into (3) and
simple calculation, we get

(33)
(c1

3 − P1)eλz + (c2
3 − P2)e−λz + (3c1

2c2 + a(z)c1e
1
3
λ)e

1
3
λz

+(3c1c2
2 + a(z)c2e

− 1
3
λ)e−

1
3
λz = 0.
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By Lemma 6, we deduce

c1
3 = P1, c2

3 = P2, 3c1c2 + a(z)e
1
3
λ = 3c1c2 + a(z)e−

1
3
λ = 0.

Therefore, if a(z) is a nonconstant polynomial, then we can deduce a contraction
and the equation (3) does not admit any transcendental entire solutions of finite
order. And if a(z) is a nonzero constant a, then

e
1
3
λ = ∓1 and P1P2 = ±(

a

3
)3.

Thus, c1 can assume �j, (j = 1, 2, 3), where �j satisfies �j
3 = P1, (j = 1, 2, 3),

and c2 = ± a
3c1

. Hence, f(z) is of the following forms

f(z) = �je
2kπiz − a

3�j
e−2kπiz

or
f(z) = �je

2kπiz+πiz +
a

3�j
e−(2kπiz+πiz) .

The proof of theorem 4 is completed.
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