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A NOTE ON HEAT KERNELS OF GENERALIZED HERMITE
OPERATORS

Sheng-Ya Feng

Abstract. In this note, the author obtains heat kernels for the generalised
Hermite operators L = — A+ (Bx, «) where B is a (not necessarily symmetry)
semi-positive definite matrix.

1. INTRODUCTION

It is well known that the Hermite operators L = —Cji—gg + X222 and L =

—Cji—gg — 222 corresponding to harmonic oscillator and anti-harmonic oscillator play
an important role in many mathematical and physical problems (cf. [1, 3, 6, 7, 8]).
Hence seeking fundamental solutions of such operators becomes a basic and natural
problem.

The purpose of this paper is to consider the heat kernels for the generalised
operators taking the form L = —A + (Bx, z). In particular, one may concern that
B is a positive definite or a negative definite matrix. Recently, [5] obtained the
heat kernel for L with any n x n matrix B by using Hamiltonian formalism. The
most striking result they obtained is how the geodesics—solution of the Hamiltonian
system-behave for different B in terms of the eigenvalues of B + Bf. However,
the computation is rather complicated as long as the matrix B + B! has negative
eigenvalues, especially when the dimension n is large.

In some special cases, one can get the explicit heat kernel without solving
Hamiltonian system. When B is semi-positive definite, a detailed discussion will
be presented in Section 2. In Section 3, resorting to the qualitative conclusion in
[5], one also reads off an explicit formulae if B is semi-negative definite.
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2. Heat KerNEL FOR L IN R™ (B > 0)
One may start with the positive definite case. Consider the generalised Hermite
operators of the following form
L=—-A+ (Bz,x)
where B is a n x n (not necessarily symmetry) positive definite, (-, -) denotes the
standard inner product in Euclidean space R™. The Hamiltonian function associated

with L is
H(f,.’L’) = = <£7§> + <B5L',.’L'>
hence one obtains the corresponding Hamiltonian system

OH . OH
P == —2 = — =—(B+ B
T o€ & and ¢ 5 (B+ B")x
The geodesic z(s) between xy and x in R™ satisfies the boundary problem
S
@.1) A
z(0) =xg, z(t) =2z

where A = 2(B + B*) > 0. Since A is a symmetry positive definite matrix, one
can find an orthogonal matrix P such that PAP* = diag {\1,..., \n} =: A, where
Aj > 0 are eigenvalues of A. Set

y(s) = Px(s), yo =y(0) = Px(0) = Pzo, and y = y(t) = Px(t) = Pz,
then problem (2.1) is equivalent to
S A
2.2) y=
y(0) =y, y(t) =y
According to [4], the energy function in y-variables is

2 1/2
n Aj [yf + <ij> — 2yjyjo cosh <t)\j/ )]

j=1 2 sinh2 <t)\1/2>

J

E, =

Noticing that £ = % ((d, ) — (z, &)), one obtains

E, = = ((Pi, Pi) — (P, Pi))

(@9 — (v, )
n Aj [yf + <yjo>2 — Qyjyjo cosh <t)\}/2>]

2 sinh? <t)\1/2>

J

g NoI=No =

<.
I
—
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To move on, one needs some properties on the action function.

Proposition. For action function S = — [ Edt, the following equalities hold:
(2.3) |VS|? = (Az, z) + 2E,
1 1/2 1/2
(2.4) AS = —tr [(tA ) coth <tA )}

where (M )denotes functional calculus of continuous function ¢ on the symmetry
positive definite matrix M, and ¢r(M) denotes the trace of matrix M.

Proof. A direct computation shows that

1y (1A72) coth (11/7) 42 + 2% n (17)/%) coth (t1)"%) ()
1 5=l

1 A2
— 2 Wyjy?

/(A1) coth (A1/2)y, \/(2A172) coth (tA1/2)y>

W (EAV2) coth (¢A172) o, /(£A172) coth (tAl/Q)y0>

tAl/2 tA1/2
sinh (tAl/Z) Y sinh (tAl/Z) Yo

tA1/2> coth <tA1/2> T, x> + 2% <<tA1/2> coth <tA1/2> o, w0>

1 tAY/2
¢ \ sinh (tAl/Q) 10,

|
S
S
/7~

hence,
Og; S = % << A1/2> coth <tA1/2> x, ej> - % <S,mﬁf(l%/2)wo, ej>
VP =Y (0,9
(2.5) J’fl
) [< (tA1/2> coth <tA1/2> x, <tA1/2> coth <tA1/2> x>

tAl/Q tAl/Q
T\ Sinh (¢4172) 7 Sinh (¢4172) "
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—9 <<tA1/2> coth <tA1/2> * Slrﬂi/(l%ﬂ)mﬂ

1)< 1/2 1/2 0" Yy 2
-390 [(t)\j )coth<t)\j )yj} Z:: Smh@ /2)

Jj=1

n_12); coth <t)\1/2> .
- j=1 sinh <t)\1/2) yjyj}

n oA cosh? <t)\1/2> yjz n Aj <ij>2 n_Aj [yJQ + <yjo>2]

- ; sinh? <t)\1/2> + —7 sinh? <t)\1/2> - =1 sinh? <t)\1/2>

n A [ (%)2] n s coth (£A]%)

+j:1 sinh? <t)\1/2> - =1 sinh(t)\l/2>

i

n
- Z Ajys + 2,
j=1

= (Az,z) + 2E;
Differentiating equation(2.5) on x; once more, one has
1
ﬁng =7 <<tA1/2> coth <tA1/2> €j, ej> .

Consequently,

AS - Zas = L [(14172) corn (14177)] = jﬁ;w coth (1A/7)

One expects to find the heat kernel of L in the following form
K (zg,x,t) = V (t) e*S@0a)
where « is a real number to be chosen later. Then
(2.6) K = e [V (t) — aEV (t)]
and by use of the Proposition
Ae™S = qe®d (a]VS|? + AS)
(2.7)

S |a(Az,z) +20E + Y A}/ coth (tA}/Q)
j=1

I
Q
3
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On the one hand, kernel K (z¢,z,t) of the Heat operator P = 0, + L =
0y — A+ (Bux, z) satisfies PK = 0 for any ¢ > 0; on the other hand, noticing that
(Az,z) = 4 (Bzx, x),

PK

= 0K — V (t) Ae® + (B, z) V (t) e

_ V@ 2 172 1/2
=K D a(l+2a)E —ao” (Az,z) + (Bx,x) — ajEl A;' " coth <t)\j )
_ |V (® 5 . 1/2 1/2
=K | o+ 20) B+ (1 - 402) (Bx, z) —a?lej coth <t)\j )

Let o = —% and V (t) satisfy the transport equation

| /(t) 1 & 1/2 1/2
20 5 jEl )\j cot <t)\j )
Cj

n
P ——— —— Hence kernel K has the form
3=1 sinnl/2 (tx;”)

Integration yields V' (t) =[]
m—S
j=1 sinh!/2 <t)\1/2>

J

K (fI,'Q, x, t) =

_1
4t

e <(tA1/2) coth(tAl/Q)m,m>+<(tA1/2) coth(tAl/Q)mo,a:0>—2< Sin}f@%/g)mo,m>:|

. N 1,2 .
Since kernel K becomes Gaussian We‘@'m >l if B — 0, one may compare
7y
1

(4rt)™/?

A 1/4
Cj = 1672 '

Theorem. Let B be a nxn positive definite matrix, then A=2 (B+B?) is a
symmetry positive definite matrix whose Jordan normal form is denoted by diag{ 1,
..., A} With A; > 0. The kernel of the heat operator P = 9; — A + (Bz, x) is

the volume element V' (¢) with to establish the parameters

1/2
Kot = — (T —2

o, Tyl) = ———75 Y ————

(28) (47Tt)n/2 j=1 smh <t)\j1/2>
. = {«tAl/Q) coth(tAY/2)z,z ) (tAY/?) coth(tAY/2)zg,20)-2 “}fé%/f/g)xomﬂ
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1/2
smh(t)\l/Q)
(tAY/2) coth (tA'/?) and mﬁé:ilﬁm) in equation (2.8) should be replaced by their
corresponding limiting forms. Specifically, if

Remark. The form of K is still valid if B > 0, but the terms

PAP" = A =diag {\1,..., A\, 0,...,0}
with A; > 0,7 =1,...,mand \; =0,l =m +1,...,n, then the volume element
nooa? LV
Wy L ry
and

<tA1/ 2) coth <tA1/ 2)
— P'diag { (tA}/ ) coth <t)\1/2> . (tAi,P) coth <t)\%2> 1, 1} P:

tAL/2 _ AL/ tan
W:Ptdlag 72 RN 172 717...,1 P.
sinh (t ) sinh <t)\ ) sinh <t)\m )

3. OPEN QUESTION

If B has negative eigenvalues, the energy function E is not well defined on
singular regions which are of zero measure in 2n+1 dimensional Lebesgue measure
(cf. [5]). So far the only way to establish the singular regions is to solve the
Hamiltonian system, which requires heavy computations for large n .

Here one conjectures that the kernel has the following form. In particular, for
the same reason mentioned in the Remark above, it is sufficient to formulate the
case B <O0.

Conjecture. Let B < 0and A = 2 (B + B*) ~ diag{\1,..., A\, } with X; < 0.
Then one kernel of the heat operator P = 9; — A + (Bz, x) is

n 1/2 (—ayl/2
1 : t( )\ )1/2 e<725in(t?_14)1/2)$07m>
(47Tt)n/ j—=1 sin <t( )1/2>

e~ [{(H=)2) cot(t(=A)/*)aa)+((t(=A4)"/?) cot(t(—A)"/?)z0,20)]

K (fI,'Q, xZ, t) =

ae. (zg,z,t) € R" x R" x R,
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