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A NOTE ON HEAT KERNELS OF GENERALIZED HERMITE
OPERATORS

Sheng-Ya Feng

Abstract. In this note, the author obtains heat kernels for the generalised
Hermite operators L = −∆+〈Bx, x〉 where B is a (not necessarily symmetry)
semi-positive definite matrix.

1. INTRODUCTION

It is well known that the Hermite operators L = − d2

dx2 + λ2x2 and L =
− d2

dx2 −λ2x2 corresponding to harmonic oscillator and anti-harmonic oscillator play
an important role in many mathematical and physical problems (cf. [1, 3, 6, 7, 8]).
Hence seeking fundamental solutions of such operators becomes a basic and natural
problem.

The purpose of this paper is to consider the heat kernels for the generalised
operators taking the form L = −∆ + 〈Bx, x〉. In particular, one may concern that
B is a positive definite or a negative definite matrix. Recently, [5] obtained the
heat kernel for L with any n × n matrix B by using Hamiltonian formalism. The
most striking result they obtained is how the geodesics–solution of the Hamiltonian
system–behave for different B in terms of the eigenvalues of B + Bt. However,
the computation is rather complicated as long as the matrix B + Bt has negative
eigenvalues, especially when the dimension n is large.

In some special cases, one can get the explicit heat kernel without solving
Hamiltonian system. When B is semi-positive definite, a detailed discussion will
be presented in Section 2. In Section 3, resorting to the qualitative conclusion in
[5], one also reads off an explicit formulae if B is semi-negative definite.
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2. HEAT KERNEL FOR L IN R
n (B ≥ 0)

One may start with the positive definite case. Consider the generalised Hermite
operators of the following form

L = −∆ + 〈Bx, x〉
where B is a n × n (not necessarily symmetry) positive definite, 〈·, ·〉 denotes the
standard inner product in Euclidean space R

n. The Hamiltonian function associated
with L is

H (ξ, x) = −〈ξ, ξ〉+ 〈Bx, x〉
hence one obtains the corresponding Hamiltonian system

ẋ =
∂H

∂ξ
= −2ξ and ξ̇ = −∂H

∂x
= −(B + Bt)x

The geodesic x(s) between x0 and x in R
n satisfies the boundary problem

(2.1)

{
ẍ = Ax

x(0) = x0, x(t) = x

where A = 2(B + Bt) > 0. Since A is a symmetry positive definite matrix, one
can find an orthogonal matrix P such that PAP t = diag {λ1, . . . , λn} =: Λ, where
λj > 0 are eigenvalues of A. Set

y(s) = Px(s), y0 = y(0) = Px(0) = Px0, and y = y(t) = Px(t) = Px,

then problem (2.1) is equivalent to

(2.2)

{
ÿ = Λy

y(0) = y0, y(t) = y

According to [4], the energy function in y-variables is

Ey =
n∑

j=1

λj

[
y2
j +

(
y0
j

)2 − 2yjy
0
j cosh

(
tλ

1/2
j

)]

2 sinh2
(
tλ

1/2
j

)
Noticing that E = 1

2 (〈ẋ, ẋ〉 − 〈x, ẍ〉), one obtains

Ex =
1
2

(〈Pẋ, P ẋ〉 − 〈Px, P ẍ〉)

=
1
2

(〈ẏ, ẏ〉 − 〈y, ÿ〉)
= Ey

=
n∑

j=1

λj

[
y2
j +

(
y0
j

)2 − 2yjy
0
j cosh

(
tλ

1/2
j

)]

2 sinh2
(
tλ

1/2
j

)
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To move on, one needs some properties on the action function.

Proposition. For action function S = − ∫
Edt, the following equalities hold:

(2.3) |∇S|2 = 〈Ax, x〉+ 2Ex

(2.4) ∆S =
1
t
tr

[(
tA1/2

)
coth

(
tA1/2

)]
where ϕ(M)denotes functional calculus of continuous function ϕ on the symmetry
positive definite matrix M , and tr(M) denotes the trace of matrix M .

Proof. A direct computation shows that

S = −
∫

Edt

=
1
2t

n∑
j=1

(
tλ

1/2
j

)
coth

(
tλ

1/2
j

)
y2
j +

1
2t

n∑
j=1

(
tλ

1/2
j

)
coth

(
tλ

1/2
j

)(
y0
j

)2

− 1
t

n∑
j=1

tλ
1/2
j

sinh
(
tλ

1/2
j

)yjy
0
j

=
1
2t

〈√(
tΛ1/2

)
coth

(
tΛ1/2

)
y,

√(
tΛ1/2

)
coth

(
tΛ1/2

)
y

〉

+
1
2t

〈√(
tΛ1/2

)
coth

(
tΛ1/2

)
y0,

√(
tΛ1/2

)
coth

(
tΛ1/2

)
y0

〉

− 1
t

〈√
tΛ1/2

sinh
(
tΛ1/2

)y,

√
tΛ1/2

sinh
(
tΛ1/2

)y0

〉

=
1
2t

〈(
tA1/2

)
coth

(
tA1/2

)
x, x

〉
+

1
2t

〈(
tA1/2

)
coth

(
tA1/2

)
x0, x0

〉
− 1

t

〈
tA1/2

sinh
(
tA1/2

)x0, x

〉

hence,

(2.5)

∂xj S =
1
t

〈(
tA1/2

)
coth

(
tA1/2

)
x, ej

〉
− 1

t

〈
tA1/2

sinh
(
tA1/2

)x0, ej

〉

|∇S|2 =
n∑

j=1

(
∂xjS

)2

=
1
t2

[〈(
tA1/2

)
coth

(
tA1/2

)
x,

(
tA1/2

)
coth

(
tA1/2

)
x
〉

+

〈
tA1/2

sinh
(
tA1/2

)x0,
tA1/2

sinh
(
tA1/2

)x0

〉
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− 2

〈(
tA1/2

)
coth

(
tA1/2

)
x,

tA1/2

sinh
(
tA1/2

)x0

〉]

=
1
t2




n∑
j=1

[(
tλ

1/2
j

)
coth

(
tλ

1/2
j

)
yj

]2
+

n∑
j=1


 tλ

1/2
j

sinh
(
tλ

1/2
j

)y0
j




2

−2
n∑

j=1

t2λj coth
(
tλ

1/2
j

)
sinh

(
tλ

1/2
j

) yjy
0
j




=
n∑

j=1

λj cosh2
(
tλ

1/2
j

)
y2
j

sinh2
(
tλ

1/2
j

) +
n∑

j=1

λj

(
y0
j

)2

sinh2
(
tλ

1/2
j

) −
n∑

j=1

λj

[
y2
j +

(
y0
j

)2
]

sinh2
(
tλ

1/2
j

)

+
n∑

j=1

λj

[
y2
j +

(
y0
j

)2
]

sinh2
(
tλ

1/2
j

) − 2
n∑

j=1

λj coth
(
tλ

1/2
j

)
sinh

(
tλ

1/2
j

) yjy
0
j

=
n∑

j=1

λjy
2
j + 2Ex

= 〈Ax, x〉+ 2Ex

Differentiating equation(2.5) on xj once more, one has

∂2
xj

S =
1
t

〈(
tA1/2

)
coth

(
tA1/2

)
ej, ej

〉
.

Consequently,

∆S =
n∑

j=1

∂2
xj

S =
1
t
tr

[(
tA1/2

)
coth

(
tA1/2

)]
=

n∑
j=1

λ
1/2
j coth

(
tλ

1/2
j

)

One expects to find the heat kernel of L in the following form

K (x0, x, t) = V (t) eαS(x0,x,t)

where α is a real number to be chosen later. Then

(2.6) ∂tK = eαS
[
V ′ (t) − αEV (t)

]
and by use of the Proposition

∆eαS = αeαS
(
α|∇S|2 + ∆S

)
= αeαS


α 〈Ax, x〉+ 2αE +

n∑
j=1

λ
1/2
j coth

(
tλ

1/2
j

)(2.7)
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On the one hand, kernel K (x0, x, t) of the Heat operator P = ∂t + L =
∂t − ∆ + 〈Bx, x〉 satisfies PK = 0 for any t > 0; on the other hand, noticing that
〈Ax, x〉 = 4 〈Bx, x〉,

PK

= ∂tK − V (t)∆eαS + 〈Bx, x〉V (t) eαS

= K


V ′ (t)

V (t)
− α (1 + 2α)E − α2 〈Ax, x〉+ 〈Bx, x〉 − α

n∑
j=1

λ
1/2
j coth

(
tλ

1/2
j

)

= K


V ′ (t)

V (t)
− α (1 + 2α)E +

(
1 − 4α2

) 〈Bx, x〉 − α

n∑
j=1

λ
1/2
j coth

(
tλ

1/2
j

) .

Let α = −1
2 and V (t) satisfy the transport equation

V ′ (t)
V (t)

= −1
2

n∑
j=1

λ
1/2
j coth

(
tλ

1/2
j

)

Integration yields V (t) =
∏n

j=1
Cj

sinh1/2
(
tλ

1/2
j

) . Hence kernel K has the form

K (x0, x, t) =


 n∏

j=1

Cj

sinh1/2
(
tλ

1/2
j

)



× e
− 1

4t

[
〈(tA1/2) coth(tA1/2)x,x〉+〈(tA1/2) coth(tA1/2)x0,x0〉−2

〈
tA1/2

sinh(tA1/2)
x0,x

〉]

Since kernel K becomes Gaussian 1

(4πt)n/2 e−
1
4t
|x−x0|2 if B → 0, one may compare

the volume element V (t) with 1

(4πt)n/2 to establish the parameters

Cj =
(

λj

16π2

)1/4

.

Theorem. Let B be a n×n positive definite matrix, then A=2
(
B+Bt

)
is a

symmetry positive definite matrix whose Jordan normal form is denoted by diag{λ 1,
. . . , λn} with λj > 0. The kernel of the heat operator P = ∂t − ∆ + 〈Bx, x〉 is

(2.8)
K (x0, x, t) =

1

(4πt)n/2


 n∏

j=1

tλ
1/2
j

sinh
(
tλ

1/2
j

)



1/2

×e
− 1

4t

[
〈(tA1/2) coth(tA1/2)x,x〉+〈(tA1/2) coth(tA1/2)x0,x0〉−2

〈
tA1/2

sinh(tA1/2)x0,x

〉]
.
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Remark. The form of K is still valid if B ≥ 0, but the terms
tλ

1/2
j

sinh
(
tλ

1/2
j

) ,(
tA1/2

)
coth

(
tA1/2

)
and tA1/2

sinh(tA1/2) in equation (2.8) should be replaced by their
corresponding limiting forms. Specifically, if

PAP t = Λ = diag {λ1, . . . , λm, 0, . . . , 0}

with λj > 0, j = 1, . . . , m and λl = 0, l = m + 1, . . . , n, then the volume element

n∏
j=1

tλ
1/2
j

sinh
(
tλ

1/2
j

) =
m∏

j=1

tλ
1/2
j

sinh
(
tλ

1/2
j

) ,

and(
tA1/2

)
coth

(
tA1/2

)
= P tdiag

{(
tλ

1/2
1

)
coth

(
tλ

1/2
1

)
, . . . ,

(
tλ1/2

m

)
coth

(
tλ1/2

m

)
, 1, . . . , 1

}
P ;

tA1/2

sinh
(
tA1/2

) = P tdiag


 tλ

1/2
1

sinh
(
tλ

1/2
1

) , . . . ,
tλ

1/2
m

sinh
(
tλ

1/2
m

) , 1, . . . , 1


P.

3. OPEN QUESTION

If B has negative eigenvalues, the energy function E is not well defined on
singular regions which are of zero measure in 2n+1 dimensional Lebesgue measure
(cf. [5]). So far the only way to establish the singular regions is to solve the
Hamiltonian system, which requires heavy computations for large n .

Here one conjectures that the kernel has the following form. In particular, for
the same reason mentioned in the Remark above, it is sufficient to formulate the
case B < 0 .

Conjecture. Let B < 0 and A = 2
(
B + Bt

) ∼ diag {λ1, . . . , λn} with λj < 0.
Then one kernel of the heat operator P = ∂ t − ∆ + 〈Bx, x〉 is

K (x0, x, t) =
1

(4πt)n/2


 n∏

j=1

t (−λj)
1/2

sin
(
t (−λj)

1/2
)



1/2

e

〈
(−A)1/2

2 sin(t(−A)1/2)
x0,x

〉

× e−
1
4t [〈(t(−A)1/2) cot(t(−A)1/2)x,x〉+〈(t(−A)1/2) cot(t(−A)1/2)x0,x0〉]

a.e. (x0, x, t) ∈ R
n × R

n × R
+.
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