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ALGORITHMS CONSTRUCTION FOR NONEXPANSIVE MAPPINGS
AND INVERSE-STRONGLY MONOTONE MAPPINGS

Yonghong Yao, Yeong-Cheng Liou and Chia-Ping Chen*

Abstract. In this paper, we construct two algorithms for finding a common
element of the set of fixed points of a nonexpansive mapping and the set
of solutions of the variational inequality for an a-inverse-strongly monotone
mapping in a Hilbert space. We show that the sequence converges strongly to
a common element of two sets under the some mild conditions on parameters.
As special cases of the above two algorithms, we obtain two schemes which
both converge strongly to the minimum norm element of the set of fixed points
of a nonexpansive mapping and the set of solutions of the variational inequality
for an a-inverse-strongly monotone mapping.

1. INTRODUCTION

Let C be a closed convex subset of a real Hilbert space H. Recall that a
mapping S of C into itself is called nonexpansive if

Sz — Syl < ||z — yl|,Vo,y € C.

We denote by F(S) the set of fixed points of S. Algorithms for nonexpansive
mappings have been studied in the literature, See, for instance [1-16]. A mapping
A of C into H is called monotone if

(Au — Av,u —v) > 0,Vu,v € C.

A is called a-inverse-strongly-monotone if there exists a positive real number «

such that
(Au— Av,u —v) > ol Au — Av|*, Yu,v € C.

It is well known that the variational inequality problem VI(C, A) is to find z* € C
such that
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(1.2) (Az*,v—2") > 0,Yv e C.

The variational inequality has been extensively studied in the literature. See, e.g.,
[17-21, 26-33] and the references therein.

For finding an element of F'(S) N VI(C, A) under the assumption that a set
C C H is closed and convex, a mapping S of C into itself is nonexpansive and
a mapping A of C into H is a-inverse-strongly monotone, Takahashi and Toyoda
[22] introduced the following iterative scheme:

(12) Tn+l = ﬁnxn + (1 - ﬁn)SPC(xn - )\nAxn)v n > 07

where {3,,} is a sequence in (0, 1) and {\,,} is a sequence in (0, 2«). They showed
that, if £'(S) N VI(C, A) is nonempty, then the sequence {z,,} generated by (1.2)
converges weakly to some z € F(S)NVI(C,A). We note that the scheme (1.2)
has only weak convergence. An interesting problem is:

Question 1.1. Could we construct an algorithm based on (1.2) such that the
constructed algorithm has strong convergence?

It is the first purpose in this paper that we will study the following algorithm
(1.3) Tyl = Pnn + (1 — Bn)SPo[(1 — an)(xn — AnAzy)],n > 0.

Remark 1.2. We should point out that the scheme (1.3) is similar to the scheme
(1.2). As far as we know, this appears to be the first time in the literature that the
scheme (1.3) is proposed. At the same time, we can show that the scheme (1.3) has
strong convergence. As a matter of fact, we will propose a general algorithm which
includes the algorithm (1.3) as a special case.

In 2005, liduka and Takahashi [23] further considered an iterative scheme for
nonexpansive mapping and a-inverse-strongly monotone mapping:

(1.4) Tpt1 = an® + (1 — ay) SPo(xy — A\yAzxy),n > 0,

where {a,} is a sequence in [0,1) and {\,} is a sequence in [0, 2«]. If {a,,} and
{A\n} are chosen so that \,, € [a, b] for some a,b with 0 < a < b < 2q,

o0 o0 o0
lim an:O,Zan:oo,Z\anH—an\ < oo and Z‘)‘”“_)‘”‘ < 00,
n—oo

n=1 n=1 n=1

then {x,,} defined by (1.4) converges strongly t0 FPr(s)nvr(c,a)(Z)-

It is the second purpose in this paper that we will introduce a unified algorithm
which includes (1.4) as a special case. Furthermore, we prove the strong conver-
gence of the proposed algorithm under some more weaker assumptions on algorithm
parameters.
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On the other hand, we also notice that it is quite often to seek a particular
solution of a given nonlinear problem, in particular, the minimum-norm solution.
For instance, given a closed convex subset C' of a Hilbert space H; and a bounded
linear operator R : H; — H,, where Hy is another Hilbert space. The C-constrained
pseudoinverse of R, R!,, is then defined as the minimum-norm solution of the
constrained minimization problem

Rg(b) = argg}réig | Rz — bl|
which is equivalent to the fixed point problem
x = Po(x — AR*(Rx — b))

where Pg is the metric projection from H; onto C, R* is the adjoint of R, A > 0
is a constant, and b € Hs is such that Pm(b) € R(C).

It is therefore another interesting problem to invent some algorithms that can
generate schemes which converge strongly to the minimum-norm solution of a given
problem.

It is the third purpose in this paper that we want to construct some algorithms
for finding the minimum norm element of the set of fixed points of a nonexpansive
mapping and the set of solutions of the variational inequality for an «-inverse-
strongly monotone mapping.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || - || and let C
be a closed convex subset of H. It is well known that, for any « € H, there exists
a unigue ug € C such that

|lu — ug|| = inf{||lu — z|| : z € C}.
We denote ug by Pou, where Pg is called the metric projection of H onto C. The
metric projection Po of H onto C has the following basic properties:
(i) |Pex — Peyl| < |lz —y| for all .y € H;

(ii) (z —y, Pox — Poy) > ||Pox — Poyl|? for every z,y € H;

(iii) (x — Pox,y — Pcx) <0 forall z € H, y € C;

(iv) flz = ylI* > |lz — Pex||® + |ly — Pox|* forall z € H, y € C.
Such properties of Pc will be crucial in the proof of our main results. Let A be a

monotone mapping of C into H. In the context of the variational inequality problem,
it is easy to see from property (iv) that

¥ e VI(C,A) & x* = Po(z" — MNAz™),YA > 0.
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A set-valued mapping 7" : H — 2% is called monotone if, for all z,y € H, f € Tz
and g € Ty imply (z —y, f —g) > 0. A monotone mapping 7' : H — 2
is maximal if its graph G(T') is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping 7" is maximal if and only
if, for (z, f) € Hx H, (x—y, f—g) > 0 forevery (y,g) € G(T) implies f € Tx.
Let A be a monotone mapping of C into H and let Nov be the normal cone to C'
atv e C e,
Nev={we H : (v—u,w) >0,Yu e C}.
Define
Av+ New, ifveC,
Tv = .

{ 0, ifvédC.
Then T is maximal monotone and 0 € Tw if and only if v € VI(C,A) (see
[24]-[25)).

We need the following lemmas for proving our main results.

Lemma2.1. ([9]). Let{z,} and {y,} be bounded sequences in a Banach space
X and let {3,,} be asequencein [0, 1] with 0 < lim inf, o 3, < limsup,_, Bn <
1. Suppose z,,+1 = (1—05)yn+Lnxy, forall integers n > 0 and lim sup,, oo (||yn+1—
Ynll = ||Zns1 — 2n]|) < 0. Then, lim, oo |[yn — 2| = 0.

Lemma 2.2. ([5]). Assume {a,} is a sequence of nonnegative real numbers
such that
An+1 < (1 - P)/n)an + 5n7

where {~,,} is a sequence in (0,1) and {J,,} is a sequence such that
(1) Z?ﬂ Yn = O0;
(2) imsup, o 0/ <0 0F > |6,] < 00.

Then lim,,_, a, = 0.
3. MaIN REsuULTS

In this section we will state and prove our main results. Throughout, we assume
that:

(@) H is a real Hilbert space and C is a closed convex subset of H;

(b) A: C — H is an a-inverse-strongly monotone mappingand S : C — C'is a
nonexpansive mapping with F(S)NVI(C, A) # 0;

(€) {an} is a real number sequence in (0, 1) satisfying lim, .~ o, = 0 and
Yol an = 00; {By} is a real number sequence in (0,1) and {\,} is a
sequence in (0, 2«) satisfying A,, € [a, b] for some a, b with 0 < a < b < 2¢.
We assume the one of the following conditions is satisfied:
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(C1) 0 < liminf, 00 By < limsup,_,. Bn < 1 and lim, oo (Apy1 — A\p) = 0;

(C2) >0 lant1 — | < o0, limsup,, o Bn < 1, D07 [Bng1 — Bn| < o0 and
ZZO:O [Ant1 — An| < 00

(C3) limp oo 22 = 1, limsup,, . By < 1, limp oo 225552 = 0 and lim, .o

>\n+1_>\n _
Anti=An — ),

At the same time, we also need the following facts:
Q) fz*eF(S)NVI(C, A), then 2* = Po(z*— N\, Az*)=Sz* for all n>0;
(2) I — A\, A is nonexpansive and for all z,y € C

B (I =)z — (I = XAy < Jlz — y)* + An(An — 20)[| Az — Ayl|>.

The aim of this section is to introduce some iterative methods for solving our three
purposes in the first section. For these purpose, we first introduce the following
iterative method which is based on liduka and Takahashi’s algorithm (1.4).

Algorithm 3.1. For fixed v € H and given xy € C arbitrarily, define a sequence
{z,} iteratively by

(3.2) zp41 = Bnxn + (1 — Bn)Polanu + (1 — ay)SPo(x, — A\pAxy,)], ¥n > 0.
In particular, if we take u = 0, then (3.2) reduces to
(3.3) Tnt1 = Pnn + (1 — Bn) Po[(1 — an)SPo(zy, — ApAxy,)], Vn > 0.

We are now in a position to prove the strong convergence of the algorithm (3.2).
As a special case, we obtain the strong convergence of the algorithm (3.3) to the
minimum-norm element in F'(S) N VI(C, A).

Theorem 3.2.  The sequence {z,} defined by (3.2) converges strongly to
Pr(s)nvi(c,a)(u). 1fu =0, then sequence {x,,} defined by (3.3) converges strongly
to Pr(s)nvi(c,a)(0) which is the minimum norm element in F'(S) N VI(C, A).

Proof.  Set y,, = Polanu + (1 — o) SPo(z, — A\yAxy,)] for all n > 0. Pick
x* € F(S)NVI(C,A) to obtain,

lyn — 27| < llonu + (1 = om)SFo(2n — AnAzn) — 2|
< apllu—2*|| + (1 — an)||SPo(xn — AnAzy,) — SPo(z™ — A Az™)||
< apllu—2*|| 4+ (1 — an)[|(I = ApA)xy — (I — X A)x™|
< apflu =2+ (1 = ap)llzn — 27|
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From (3.2), we get

[#ns1 — &[] < Bullen — ™[ + (1= Bu)llyn — 27|
< Ballan—2" |+ (1= Bu)anllu — 2"+ (1 = o) (1 — ) 20 —27]|
= an(l = Bn)[u =27 +[1 = an(l = Bo)lllzn — 27|
< max{|u =z, [|n — 2"}
By induction, we can deduce that the sequence {z,} is bounded and so are {y, }
and {Az,}.

Next we will show ||z,,11 — || — 0. We will divide into two cases to prove
this fact.

Case 1. Assume the conditions (C1) is satisfied.
By the definition of y,,, we have

[Yn+1 — Yull = [[Pelonsivu+ (1 — any1)SPo(Tny1 — Any1ATp1)]
—Polanu + (1 — o) SPo(zn, — AAzy)]|]

< l(ans1 — an)u + (1 — any1)SPo(Tny1 — Anr1ATng1)
—(1 = ap)SPo(xy, — ApAxy)||
< Oén(H’U,H + HSPC(xn—I—l - )‘n—l—len—I—l)H)

+an([Jull + [|SPo(rn — AnAzn)||) + 1S Po(Znt1 — Ant1ATny1)
—SPo(xn — A\pAxy)||

an([lull + [[SPe(znt1 — A1 Azni1)]]) + an(||ull

+[SPe(zn — AAzn)l) + [(I = Ap1A)Tnp1

—(I = A1 A)xp|| + [Ang1 — Al Az

an([lull + [[SPo(znt1 — A1 Azpi1)]]) + an(||ull

+HISPe(zn — AAzn)l) + |21 — zoll + [Ang1 — Anl|| Az |-

IN

IN

It follows that

lm sup(||yn+1 — Ynll = l|[Tns1 — 2nl]) < 0.

n—oo

Therefore by Lemma 2.1, we obtain lim, ., ||y, — x| = 0. Consequently,

lim ||2p1 — @nll = lim (1= B,)]lyn — n|| = 0.
n—00 n—00

Case 2. Assume (C2) or (C3) is satisfied.
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From (3.2), we have
201 =zl < Bullzn — 21l + 180 = Bral(lzn—1ll + lyn—11])
L = Bo)llyn — yn—1
and

90— 1| < Jaw = oot + (1= ) [SPo(an — AnAy)
—SPc(xn_1 - )\n—len—l)H

"Han - an—l‘HSPC(xn—l - )\n—len—l)H

IN

|an — an—1[([[ull + |SPo(zn—1 — An—1Azn-1)]))
+(1 = ap)|[(Tn — AnAzp) — (Tn-1 — AnAzp_1)||
+An = Ap—a| | Azn—1 |
|an — an—1[([[ull + |SPo(zn—1 — An—1Azn-1)]))
+(1 = an)llzn — ||

+An = An—1ll|Azpa |-

IN

Hence, we have
[Zn1 — 2ol < [1— (1 =Bn)anlllzn — za-1ll + lon — an—1|([|u]]
+HSP0(1‘TL_1 — )\n_len_l)H)
+18n = Bn-al(lzn-1ll + [yn-1)) + [An = An—1 || Az |-

This together with Lemma 2.2 imply that||z,,+1 — z,| — 0.
By the convexity of the norm and (3.1), we have

lyn — 2|1 = [|[Polanu + (1 — an) SPe(zn — AnAzn)] — 27|

v (u — ) + (1 — ) (SPo(zy — ApAzy,) — ) ||?

anllu — x| + (1 — an)||SPo(z, — M\pAzy,) — Sa*||?

anllu = 2*|* + (1 — an) || Po(zn — AnAzy) — 2|

anl|u — z*||* + (1 — o) || Py — MAzy) — Po(z* — Ay Az™)||?
anllu — x| + |[(zn — A\pAzy) — (2% — N\ Az™) ||?

anllu — z*|* + [|zn — %)% + A (An — 20)|| Az, — Az*||%

(AN | I VAN VAN VAN

IN

Hence, we obtain

|zn41 = 2(|* < Ballzn — 21 + (1 = Ba)llyn — 2|
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< Bullzn — 2| + (1= Ba)anllu — 2*|> + (1 = Bn) |20 — 2*||?
+(1 = Ba)An( Ay — 20)|| Ay, — Az™||?

= ||@n — 2| + (1 = Bp) o llu — 2*||?
+(1 = B) (A — 20) || Az, — Az¥|2.

It follows that
~(1 = Bn)al(b - 2a) | Az, — Az*|®
< lzn = 2|2 = lzner — 2| + (1 = Ba)anllu — 2|
< (lzn = 2|+ zne1 = 2) X (len =zt ]l) + (1= Ba)awnllu — 2|1

Since o, — 0 and ||z, — 41| — 0 @ n — oo, we obtain || Az, — Az*|| — 0 as
n — oQ.

Set z, = Po(xy, — AAx,) for all n > 0. From property (ii) of the metric
projection, we have

l2n — 2*1* = || Po(zn — AnAzn) — Po(z” — AnAz”)||?
< (g — MAxy) — (25 — \AZ™), 2, — ¥)

1 . . .
= Ll — M) — (@ = Mg A + [z —

—l(@n = AnAzn) = (27 = AnA™) — (2 — w*)H2}

< 5l =212 4z = 2712 ~ = 20) = A (A — A2}
< 3 {lon =212+ iz = "I = 7w = 20l

F2n (T = 2, AT — Az") = | An(Azy — Az") 2}
< 3 {lon =212+ iz = "I = 7w = 20l

220 = 2| Az, — Aa] }.
So, we obtain
lzn = 2*|* < Nz — 2(* = 2 — 20]|* + 22nllwn — 2a ||| Azy — Az*|
and hence
|01 —a*|1? < Bullzn — 2||* + (1 = Ba)llyn — =*|I?

< Ballzn —a*|* + (1 = Ba)lenllu — 21 + (1 = an)ll2n — 2*[|?]
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< Bullzn — 2||? + (1 = Ba) [anllu — 2|1 + (1 = an)(||l2n — 2*||?
—|l@n — an2 + 2An |20 — 20| Azn — Az™|))]
< lan = 2P + anllu = 2*[* = (1 = an) (L = Bp)l|lwn — 2ol
+2M\, ||z — 20| Az, — AT,
which implies that
(1 - )1~ B — 2
< lan = 27 = lznsr — |1 + anllu — 2|
+2M\ ||z, — 20 ||| Az — Az¥||
< (lzn = 2|+ zps1 = 2D |2ns1 — 2]l + anllu — 2|
+2M\, ||z — 20 |||| Az — AT

Since o, — 0, ||z, — zp41]| — 0 and ||Ax,, — Az*|| — 0 as n — oo, we have
|xn, — 2zn|| — 0 @s n — oco. At the same time, we note that

lyn — Sznll = || Polanu + (1 — a)Szn] — Po[Szn]|| < anllu — Sz,|| — 0.
Then we have

1920 = znll < 1520 = ynll + llyn — 2nll + 20 — 2nll — 0.
Next we show that

(3.4) lim sup(u — 2o, 2, — 20) < 0,
n—oo

where zo = Pps)nvi(c,a) ().
To show it, we choose a subsequence {z,,} of {z,} such that

lim sup(u — 29, Sz, — 20) = lim (u — 2o, Sz, — 20)-
n—00 1—00
As {zy,,} is bounded, we have that a subsequence {z,; } of {z,, } converges weakly
to z. We may assume without loss of generality that z,, — z. Since ||Sz, — 2, | —
0, we obtain Sz,, — z as i — oo. By the similar argument as that of [23], we can
deduce z € F(S)NVI(C, A). Therefore,

lim sup(u — 29, 2z, — 20) = limsup(u — zg, Sz, — 20)
n—oo n—oo

lim (u — 20, Szp, — 20)
1—00

= (u— 20,2 — 20)
0.

IN
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It follows that

lim sup(u — 2, yn — 20) < 0.

n—oo

From property (iii) of the metric projection, we have

lyn = 200> = (yn — [ant + (1 = @) S20], 9 — 20)

+(an(u—20) + (1 —an)(Szn — 20), Yn — 20)
(an(u—20) + (1 — ) (S2zn — 20), Yn — 20)

(L = an)[[Szn = 20l lyn — 20l + o (u = 20, yn — 20)

IN N

1—«
< “(|lzn = 20l + llyn — 20l1*) + an{u = 20, yn — 20)
1—a, 9 9
< —5 (e = 20lI” +llyn = 20[I%) + @n(u = 20, yn — 20)-
Hence,
1y — 201> < (1 — an) |z — 201> + 200 (u — 20, yn — 20)-
Therefore,

201 = 201* < Bullzn = 201 + (1 = Ba) yn — 201
< Bulln — ZOH2 + (1= 8p)(1 — an)||2n — ZOH2
+2an (1 = Bn){u — 20, Yn — 20)
= [1—an(l = By)l||zn — ZOH2 + 20 (1 — Bn)(u — 20, Yn — 20)
= (1 —yn)[l2n — ZOH2 + On,

where v,, = (1 — 8, and 6, = (1 — B)an{2(u — 20, yn — 20) }. 1t is easily seen
that >, v» = oo and

lim sup 8y, /vy, = lim sup{2(u — 2o, yn — 20) } < 0.

n—oo n—oo

Hence, all conditions of Lemma 2.2 are satisfied. Therefore, we immediately deduce
that x,, — 20, yn — 20 and z, — zo. Finally, if we take u = 0, then 2y =
Pr(synvic,a)(0). This clearly implies that 2o is a minimum-norm element in
F(S)nVI(C,A). This completes the proof. |

Remark 3.3. If we take u € C' and 3, = 0 for all n > 0, then (3.2) reduces to
Tpt1 = apu+ (1 — ay)SPo(x, — A\yAzxy),¥n > 0

which is exactly (1.4) studied by liduka and Takahashi[23]. Therefore, Theorem
3.2 includes the main result in liduka and Takahashi [23] as a special case.
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Next, we introduce another interesting algorithm which is different from those
in the literature.

Algorithm 3.4. For fixed v € H and given xy € C arbitrarily, define a sequence
{z,} iteratively by
(35)  xpy1 = Bnxn+ (1= B)SPolanu+ (1 — ap)(zn — AnAzy)], Vn > 0.
In particular, if we take u = 0, then (3.5) reduces to
(3.6) xni1 = Bnxn+ (1= 5o)SPo[(1 — ap)(zy, — AnAzy)], Vn > 0.

Theorem 3.5. The sequence {x,} defined by (3.5) converges strongly to
Pr(s)nvi(c,a)(u). 1fu =0, then sequence {x,,} defined by (3.6) converges strongly
to Pr(synvi(c,)(0) which is the minimum norm element in F'(S) N VI(C, A).

Proof.  Set y, = Polanu + (1 — ay)(x,, — A\ Axy,)] for all n > 0. Take
x* e F(S)NVI(C,A). From (3.5), we have
lyn — 2| = [[Pelonu + (1 — an)(zn — AnAzy)] — Polz®™ — A\ Az’
lanu + (1 — o) (2, — ApAzy) — (2% — A\ Az™) ||
apllu — x* + M\ AZ™|| + (1 — ap)|[(xn — ApAzy,) — (25 — A Az™)||
an(flu — 2| + ]| Az™|]) + (1 — a2 — 27|

VAN VAN VAN

Hence, we get
[Zns1 — 2| < Bnllen — 27 + (1 = Ba)[[Syn — 27|
< Ballen — 2% + (1 = Ba)an(llu — 27| + bl Az"])
(1= Bn)(1 = an)lzn — 27|
= an(l = Bn)(lu = =*[ + b[[Az™||) + [1 = an(l = Bp)]l|lzn — 27
< max{|lu — 2| + bl Az”[|, [|zn — 27|}
By induction, we can deduce that the sequence {x,,} is bounded.

Next we will show ||z,,11 — || — 0. We will divide into two cases to prove
this fact.

Case 1. Assume (C1) holds. By (3.5), we have
[SYn+1 — Synll = [|Pclantru + (1 — ant1)(Tn1 — Anp1ATny1)]
—Polanu + (1 — ap)(zn — AAzy)]||
< (1 = ans1)(@nt1 — A1 ATnt1) — (1 = an)(zn — Az, ||
+(ant1 + o) |ull
< @nm1 = A1 Aznr — (@0 — A1 Azn) || 4 [An1 — Anl[[ Aza||
+api1 ([lull + |Tn+1 = Ant1AZn g1 ) +an((|ull + |20 — An Az, ||)
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< NZnt1 — zull + angr (Jull + [[2n41 — A1 Azn4a]])
tou ([|ull + llzn = AnAzpl]) + [Ant1 — Anl[|[ A2y ]|

It follows that

lim sup(||Syn+1 — Synll — [|[Tnt1 — znl]) < 0.

n—oo

Therefore by Lemma 2.1, we obtain lim,, ., |[Sy, — z,|| = 0. Consequently,

lim ||zp41 — zp| = lim (1 — B,)||Syn — x| = 0.
n—oo n—oo

Case 2. Assume (C2) or (C3) holds. From (3.5), we have

|Znt1 — @nll < Bullzn — Tp1ll + [8n — Bu-al(|zn-1 ]l + 1SYn-1])
+(1 = Bu)1Syn — Syn—1ll
< Ballzn = o1l + [Bn = Ba—al(lzn-1ll + [Syn-1l)
+(1 = Bn)lyn — Yn-1l|

and

[n = yn-1ll < [an — an—lllul + (1 — an) [(2n — ApAzn) — (-1

—An—1Az,1)||
+lan — an—1|||Tn-1 — An—1ATn_1]]

< lan — an—1|([[ull + [2n-1 — An—1Azn-1]])
+(1 — ap)|[(zn — AMnAzy) — (Tn—1 — AMAzp_1)]|
+[An = A1 Azn ||

< lan — an—1|([[ull + [2n-1 — An—1Azn-1]])
+(1 = an)llzn — zn-1 | + [An — A1 Azn—1]].

Hence, we have

[Znt1 — 2ol < [1— (1 = Bn)an]|zn — 21|
+lan — an—1|([[ull + [2n—1 — An—1Azn_1]])
+1Bn = Bral(llzn—1ll + 1Syn-1lD) + [An = An—1[| Azn - ].
This together with Lemma 2.2 imply that||z,,+1 — x| — 0. Next we will use

M > 0 to denote some possible constants appearing in the following.
For z* € F(S)NVI(C, A), we obtain
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ntr — 212
< Bullzn — 1‘*H2 + (1= Bu)l|Syn — 1‘*H2
< Ballwn =2 + (1 = Ba) lyn — 2|
= (1-Bn) | Pelanu+(1—an)(n—AnAz,)] _PC[x*_)‘nAx*]H2+ﬁonn_x*H2
< (1= B)llanu+(1 — ap)(zy — AAxy) — (2° — )‘nAx*)H2 + Bllzn — x*H2
< (1= 8n)[ll(zn — Andzy) — (2" — ApAz™)||

+an|u -z, + )‘nAanP + Bnllzn — x*H2
< Bllzn — x*H2 + (1= Bn)[[l(zn — AnAzy) — (27 — )‘nAx*)H2 + an M|
< Ballzn =& * + (1= Ba)[l|lzn — 2|1 + An(An — 20) [ Az, — Az™||* + 2, M]
= ||z, — x*H2 + A (1= Gn) (A — 20) || Ay, — Am*”2 + ap M.

Then we have
—(1 = Bp)a(b—20)|| Az, — Az*|?
<l = 2*? = 2pgr — 2*[° + anM
< (lzn = 2% + [[#n41 — 27)) x (|zn — 2ngal]) + oM.

Since o, — 0 and ||z, — 41| — 0 @ n — oo, we obtain || Az, — Az*|| — 0 as
n — oQ.
From property (ii) of the metric projection %>, we have

lyn — 2|12
= || Pcfanu + (1 — o) (@ — ApAzy,) — Polz® — X\, Az*]|)?
< Aapu+ (1 — ap)(zy — AMAzy,) — (2% — N\ Ax™), yp, — 2™)

1 * * *
= 5{”(mn — MAxy) — (27 = M\ AT") — apfu— (I - )‘nA)xn]H2 + |y — H2

=[x —ApAxy) — (2" = XAz ) — (yn— 2" ) —ap [u— (I = N\ A) )] H2}

1 * *
< gllzn =2+ llgn — 2" + bt
(@ = ) = An(Azn = Az*) = anfu = (I = Ay A),] |}
1 * *
< 5{llzn = @12 + 1o — 212 + €M = |z — gl
+2X\ (T, — Yn, Axy — AZ™) 4+ 20 (U — Ty + A\ ATy, Ty — Yn)
—An( Az — Aa*) + el — (I = AnA)a] |}
< 1 K2 K12 _ 2 A —A * M
< gllen =2+ llyn =2 "= llen —ynlI"+(an+[| Azy — Az ) M ¢
So, we obtain
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lyn =21 < llzn — 277 = llzn = yall® + (an + [[Azn — Az*|) M

and hence , , ,
|Znt1 — 2|17 < Bullzn — 217 + (1 = Bu)llyn — 27|
< lzn — 212 = (1= Bu)llzn — ynll® + (an + || Az — Az™|)) M,

which implies that

(1= Bu)llzn — ynH2
<l = 22 = Nentr = *|* + (an + || Azp — Az* ()M
< an = zpaa |l < (len — 27 + [lzngr — 27 + (an + [ Azn — Az|[) M.
Since o, — 0, ||z, — zp41]| — 0 and ||Ax,, — Az*|| — 0 as n — oo, we have
|z, — ynl| — 0 @as n — oco. Then we have

lim Sy, — yall = 0.
n—oo
Next we show that

lim sup(u — 2o, yn — 20) < 0,

n—oo

where 20 = Pp(s)nvi(c,a)U-
To show it, we choose a subsequence {ys,, } of {zy,} such that

lim sup(u — 20, Syn — 20) = lim (u — 29, Syn, — 20)-
n—00 1—00
As {yy,} is bounded, we have that a subsequence {yy,; } of {y,, } converges weakly
to z. We may assume without loss of generality that y,, — 2. Since ||Sy, —yn|| —
0, we obtain Sy,, — z as i — co. Then we can obtain z € F'(S)NVI(C, A). In
fact, let us first show that z € VI(C, A).
Let

0,vé¢C.

Then T is maximal monotone. Let (v,w) € G(T'). Since w — Av € N¢w and
yn € C, we have (v — y,, w — Av) > 0. On the other hand, from y,, = Po[anu +
(1 —ap)(xn — AnAzy,)], we have (v —yy, yn — anu— (1 —ap ) (z, — A Azy,)) > 0,
that is,

Av + New,v € C,
Tv:{ ¢

Yn — In + Az, + %(mn — A\Ax, —u)) > 0.

<'U - ym )\n n

Therefore, we have
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<’U - yni7w>
Z <’U - yniv A’U>
Yni — Ty On;

)‘ni n;
)\ni )\ni
. — T [e7%%

M> - <’U — Ynis i(xm - )‘niAxni - ’U,)>
)\ni )\ni

yni - fI,'ni > _ ani

An, An,

7 7

= (U — Yn,, Av — Azy, —

(‘Tni - )\niAxni - u)>

—<’U - yniv

— (U = Yn,, (V= Yn;» (Tn; — An, Axp, — w)).

Note that ||y,, — xp,|| — 0, ||Ayn, — Azp,|| — 0 and «,, — 0. Hence we obtain
(v—z,w) > 0asi — oo. Since T is maximal monotone, we have z € T-10
and hence z € VI(C, A). Let us show that z € F'(S). Assume z ¢ F(S). From
Opial’s condition, we have
liminf ||y,, — z|| < liminf||y,, — Sz||
1—00 1—00
- hminf ”ynz - Syni + Syni - SZH
1—00
< liminf || Syn, — Sz||
1—00

< liminf ||y, — 2|.
1—00
This is a contradiction. Thus, we obtain z € F(S). Then we have

lim sup(u — 20, g — 20)
n—oo

= lim sup(u — 2o, Syn — 20)

n—oo
= lim (u — 20, Syn, — 20)
1—00
= (u— 20,2 — 20)
< 0.

Note the fact zop € F(S)n VI(C,A)and (1 — a,)A, > 0. Then, we have
20 = Polzo — (1 — an) M Azg] = Polanzo + (1 — an) (20 — AnAzo)].

By the property (ii) of the metric projection, we have
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[
= [[Polanu + (1 — an) (2 — MyAxy,)| — Poloamzo + (1 — ay) (20 — )\nAzo)]H2

< (an(u = 20) + (1 = an) (20 — AnAzy) — (20 — AnA20)), Yn — 20)
< (= an)|[(zn — AnAzy) — (20 — AnA20) || [lyn — 20l + an(u — 20, yn — 20)
< (1= an)llzn = 20l lyn — 20ll + n(u — 20, yn — 20)
1l—«
< (|22 = 20l* + lyn — 20lI*) + an (u = 20, yn — 20)-
Hence,
lyn — 201> < (1 = an)[|#n — 201 + 200w — 20, yn — 20)-
Therefore,

201 — 20|
< Bullzn = 20l” + (1 = Ba)llyn — 2ol
< Balln — ZOH2 + (1= 6,)(1 — an)l|2n — 20”2+2an(1_ﬂn)<u_207 Yn—20)
= [1 = an(1 = Ba)]llzn — 20/ + 20 (1 = Ba)(u = 20, Yn — 20)
= (1= y)[lzn — 20]* + 0,

where «,, = (1 — f)ay, and 0, = (1 — B)an{2{u — 20, yn — 20)}. It is easily seen
that > v, = oo and

lim sup 8y, /vy, = lim sup{2(u — 2o, yn — 20) } < 0.
n—oo n—oo
Hence, all conditions of Lemma 2.2 are satisfied. Therefore, we immediately deduce
that x, — 2o and y, — zo. Finally, if we take u = 0, then 20 = Pr(s)nv1(c,4)(0).
This clearly implies that z is a minimum-norm elementin F'(S)NVI(C, A). This
completes the proof. [ |

Remark 3.6. We note that the algorithm (3.2) is a natural extension of the algo-
rithm (1.4). We observe that the algorithm (3.2) contains two projection operators
Pc. However, projection operator P is only used once in algorithm (3.5). As far
as we know, this appears to be the first time in the literature that the scheme (3.5)
is studied.

As direct consequence of Theorem 3.2 and Theorem 3.5, we obtain the following
corollaries.

Corollary 3.7. The sequence {z,} defined by

Tn+l = ﬁnxn + (1 - ﬁn)PC[anu + (1 - Oén)PC(xn - )\nAxn)],Vn Z 07
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converges strongly to Py 7, 4)(u).
In particular, if we take « = 0, then the sequence {z,,} defined by

Tnt+1 = ﬁnxn + (1 - ﬁn)PC[(l - Oén)PC(xn - )\nAxn)],Vn > 07
converges strongly to Py ;¢ 4y(0) which is the minimum norm elementin VI (C, A).

Corollary 3.8. The sequence {z,} defined by
Tn+l = ﬁnxn + (1 - ﬁn)PC[Oénu + (1 - Oén)(xn - )\nAxn)],Vn Z 07

converges strongly to Py 7, 4)(u).
In particular, if we take « = 0, then the sequence {z,,} defined by

3.7 zpt1 = Bnxn + (1= Bn)Pol(l — an)(zy — \pAzxy,)], ¥n > 0,
converges strongly to Py ;¢ 4)(0) which is the minimum norm elementin VI (C, A).

Remark 3.9. We note in the literature, there exists a classical algorithm for
solving variational inequality (1.1):

Tny1 = Po(zy, — Mzxy,),n > 0.

However the operator A must be strongly monotone and Lipschitz continuous. It
is still an open problem: whether or not the strongly monotonicity or Lipschitz
continuity of the operator A can be dropped? In this article, we propose a general
algorithm (3.7) for solving variational inequality (1.1). We prove the strong con-
vergence of the algorithm (3.7) without the continuity assumption on the operator
A.
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