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NON-CLASSICAL ORTHOGONALITY RELATIONS FOR CONTINUOUS
q-JACOBI POLYNOMIALS

Samuel G. Moreno* and Esther M. García-Caballero

Abstract. We consider the continuous q-Jacobi polynomials {P(α,β)
n (·|q)}∞n=0,

extending the variable and the parameters beyond classical considerations. For
those new allowed values of the parameters for which Favard’s theorem fails
to work, we construct inner products in which the presence of the Askey-
Wilson divided difference operator provides the q-Sobolev character of the
non-standard orthogonality for the corresponding family.

1. INTRODUCTION

In this paper, N, N0, R, and C will stand, respectively, for the sets of posi-
tive integers, the nonnegative integers, the real number set and the set of complex
numbers. P will denote the set of algebraic polynomials in one complex variable.
The notations and terminologies concerning the q-techniques that we will adopt in
the sequel are the customary ones. We refer the reader to [10] and [17] for further
details. We shall always assume 0 < q < 1. The so-called q-shifted factorial is
defined, for x ∈ R, by

(x; q)0 = 1, (x; q)n+1 =
n∏

k=0

(1−xqk), n ≥ 0, (x; q)∞ =
∞∏

k=0

(1−xqk).

For x1, x2, . . . , xm ∈ R, the q-multi-shifted factorial is defined by means of,

(x1, x2, . . . , xm; q)n =
m∏

k=1

(xk; q)n.

For a non-negative integer n, and for 0 ≤ k ≤ n, the q-binomial coefficient is
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n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

A basic hypergeometric (also, q-hypergeometric) series mφn is defined by

(1.1)
mφn

(
a1, . . . , am

b1, . . . , bn

∣∣∣∣ q; x)
=

∞∑
k=0

(a1; q)k · · · (am; q)k

(b1; q)k · · · (bn; q)k

(−1)(n−m+1)k

q(m−n−1)k(k−1)/2

xk

(q; q)k
.

We recall that the Askey-Wilson operator Dq : P → P (see [7]) is defined for
polynomials that can be viewed as symmetric Laurent polynomials p̂, defined by
means of p̂(z) =

∑k=n
k=−n ckz

k, where ck = c−k, which are related to polynomials
p in x = (z + z−1)/2 by p(x) = p

(
1
2(z + z−1)

)
= p̂(z). With this in mind, the

operator Dq is defined by

Dqp(x) =
δqp̂(z)
δqx̂(z)

, p ∈ P,

where x̂ stands for the symmetric Laurent polynomial defined by x̂(z) = (z +
z−1)/2, and where for each function f in the variable z, δqf(z) = f(q1/2z) −
f(q−1/2z). Therefore,

Dqp(x) =
2
(
p̂(q

1
2 z) − p̂(q−

1
2 z)
)

(q
1
2 − q−

1
2 )(z − z−1)

, p ∈ P.

If for each z ∈ C \ {0} we define θ = −iLog(z), then x = cos θ and the formula
for Dqp(x) can be rewritten

Dqp(x) =
p̂(q

1
2 eiθ) − p̂(q−

1
2 eiθ)

i(q
1
2 − q−

1
2 ) sin θ

, x, θ ∈ C, x = cos θ, p ∈ P.

In a previous contribution [13] we established orthogonality relations for the
families of big and little q-Jacobi polynomials having parameters for which Favard’s
theorem does not work. In the present paper, which can be considered as a short
follow-up of [13], we investigate the corresponding non-classical orthogonality re-
lations for the other celebrated q-analogues of the very classical Jacobi polynomials,
namely, the continuous q-Jacobi polynomials {P(α,β)

n (·|q)}∞n=0. The structure of the
paper is the following:

(1) Section 2 is devoted to introducing some basic facts about continuous q-
Jacobi polynomials.

(2) In Section 3 we will give the two key tools for the main result: The first one
concerns with the iterative action of the Askey-Wilson divided difference operator
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on the continuous q-Jacobi polynomials; With respect to the second one, we will
include some technical details (see Proof of Proposition 2) concerning the obtention
of the roots of the continuous q-Jacobi polynomials with one parameter equals to a
negative integer (i.e., when the tree term recurrence relation breaks down), which are
totally different to the (direct but harder) ones used in [13] to factorize the big and
little q-Jacobi polynomials, when their first parameter is equal to q−N (N ∈ N) and
their last parameter does not belong to {qN−k}k≥2 (see [13, Propositions 2.3 and 4.3,
Corollary 2.2] for details). Although this latter direct computation can be applied
to factorize the continuous q-Jacobi polynomials P

(−N,β)
n (x|q), with n ≥ N ∈ N

and N − β − 1 /∈ N, which are one of the two families we are concerned with
in this work, it has turned out to be inapplicable to the second one, that is, to the
polynomials P

(α,−N)
n (x|q), with n ≥ N ∈ N and N − α − 1 /∈ N. The technique

developed in Section 3 has been successfully applied to solve this latter problem.
Furthermore, it has been also applied in the cases of the continuous and the discrete
q-ultraspherical polynomials [14]; moreover, it has led us to prove a result that can
be paraphrased in the following way (we hope to discuss it elsewhere):

Theorem 1. All the polynomials in the Askey-scheme (after extending their
parameters from its hypergeometric representation by simple algebraical manipu-
lations) are orthogonal in the whole range of their parameters. Specifically, they
become orthogonal for those cases for which the three term recurrence relation
breaks down.

Particular cases of the above theorem can be found disperse in the literature: see
[15, 18] for the Laguerre case, [16, 4, 2, 1] for the Jacobi case, [3, 8] for the Meixner
case, [5, 6] for the case of symmetric Meixner-Pollaczek polynomials, [9] for (not
necessarily symmetric) Meixner-Pollaczek polynomials with null parameter, [12]
for all the pathological cases of Meixner-Pollaczek polynomials and, finally, [8] for
classical families of polynomials which satisfy a discrete orthogonality with a finite
number of masses (i.e., the Hahn, Racah, dual Hahn and Krawtchouk polynomials).
We conjecture that Theorem 1 remains valid if “Askey-scheme” is changed by “q-
Askey-scheme”. The present paper, together with [13] and [14], can be considered
as initial steps in proving our conjecture.

(iii) We give our main result in Section 4, in which we state the orthogonality
of the continuous q-Jacobi polynomials for those outstanding cases in which the
Favard’s theorem does not work, that is, when their orthogonality, in principle,
can not be ensured. The kinds of inner products that we use are in fact discrete-
continuous bilinear forms, in which the discrete parts includes evaluations over
the common roots of the considered polynomials, and the continuous parts has a
weight with shifted parameters and acts over the product of the iterated Askey-
Wilson operator on the corresponding polynomials. The proof can be consider as an
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adapted modification of [11, Theorem 3]. For simplicity, we mimmic the structure
of the proofs of Theorems 3.1, 3.2, and 5.1 in [13], and to avoid duplicating similar
calculations, we include only the specific details relative to the case of the continuous
q-Jacobi polynomials considered here.

(iv) Finally, the particular case of the continuous q-Laguerre polynomials (which
are a limit case of the continuous q-Jacobi polynomials), is considered in Section 5.

2. ON THE CONTINUOUS q-JACOBI POLYNOMIALS

In their impressive contribution [7], R. Askey and J. Wilson introduced, after
giving a q-extension of the classical beta integral, a remarkable family of orthog-
onal polynomials (which carries four free complex parameters, other than q), with
the property that almost all the classical orthogonal polynomials are placed on its
boundary as special or as limit cases. The so-called Askey-Wilson polynomials
pn(·; a, b, c, d|q) are defined, when normalized to be monic, by means of ([17,
3.1.1, 3.1.5])

(2.1)
pn(x; a, b, c, d|q)

=
(ab, ac, ad; q)n

2nan(abcdqn−1; q)n
4φ3

(
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣q; q), n∈N0,

where the relation between the variables x and θ must be understood as follows: first
consider the complex variable z = x + (x2 − 1)1/2, where (x2 − 1)1/2 is chosen so
that it lies in the same quadrant as x, except for x ∈ [−1, 1], along which the plane
must be cut. Clearly, z �= 0 and z−1 = x − (x2 − 1)1/2, so that x = (z + z−1)/2.
Now define θ = −iLog(z) = −iLog(x + (x2 − 1)1/2), where Log stands for the
principal value of the complex logarithm function. Since z = eiθ , then we have

x = (eiθ + e−iθ)/2 = cos θ.

Although expressed as functions of z = eiθ, the Askey-Wilson polynomials
depend on the complex variable x due to the presence of the factor

(aeiθ; q)k(ae−iθ; q)k

=
k∏

i=1

(1− aeiθqi−1)(1− ae−iθqi−1) =
k∏

i=1

(1− a(eiθ + e−iθ)qi−1 + a2q2(i−1))

=
k∏

i=1

(1− 2axqi−1 + a2q2(i−1))

in the kth term (1 ≤ k ≤ n) of the terminating basic hypergeometric series in (2.1).
Several special cases of the monic Askey-Wilson polynomials are q-analogues

of the very classical monic Jacobi polynomials. The most important ones are
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(i) P
(α,β)
n (x|q) = pn(x; q

1
2
(α+ 1

2
), q

1
2
(α+ 3

2
),−q

1
2
(β+ 1

2
),−q

1
2
(β+ 3

2
)|q),

(ii) P
(α,β)
n (x; q) = pn(x; q

1
2 , qα+ 1

2 ,−qβ+ 1
2 ,−q

1
2 |q).

The first case is the choice of R. Askey and J. Wilson in [7], while the second one
was introduced by M. Rahman in [19] (both cases were originally considered with
a different normalization). These two specializations are not essentially different.
In fact, they are related by a quadratic transformation, derived from a formula due
to V.N. Singh [20], that reads

P (α,β)
n (x|q2) = P (α,β)

n (x; q).

See also [17, 0.6.33 and p. 85], where a different normalization is considered.
Both families, {P (α,β)

n (·|q)}∞n=0 and {P (α,β)
n (·; q)}∞n=0, are called monic continuous

q-Jacobi polynomials because each one of them becomes orthogonal with respect to
an absolutely continuous measure.

In what follows, we will be concerned with the monic version of the continuous
q-Jacobi polynomials just as originally introduced in [7].

For each n ∈ N0, the nth degree monic continuous q-Jacobi polynomial can be
defined in terms of the basic hypergeometric series 4φ3 by means of ([17, 3.10.1,
3.10.4])

(2.2)

P (α,β)
n (x|q)

=
(qα+1,−q

1
2
(α+β+1),−q

1
2
(α+β+2); q)n

2nq
n
2
(α+ 1

2
)(qα+β+1+n; q)n

·4φ3

(
q−n, qα+β+1+n, q

1
2
(α+ 1

2
)eiθ, q

1
2
(α+ 1

2
)e−iθ

qα+1,−q
1
2
(α+β+1),−q

1
2
(α+β+2)

∣∣∣∣∣ q; q
)

=
n∑

k=0

((−1)k

[
n

k

]
q

(qα+1+k,−q
1
2
(α+β+1)+k,−q

1
2
(α+β+2)+k; q)n−k

(qα+β+1+n+k; q)n−k

·2−nq(k(k+1)−2kn−(α+1
2
)n)/2

(
q

1
2
(α+ 1

2
)eiθ, q

1
2
(α+ 1

2
)e−iθ; q)k

)
, x=cos θ,

where the second representation follows after applying a similar procedure as the
one used in [13] for monic big and little q-Jacobi polynomials. We note that the
explicit representation (2.2) is meaningful for those values of the parameters α and
β such that −(α + β + 1) /∈ N. In the classical setting, in which the parameters
are restricted by the conditions α, β ≥ −1/2, the orthogonality relation is (see [17,
3.10.2, 3.10.4])
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(2.3)

1
2π

∫ 1

−1
P (α,β)

m (x|q)P (α,β)
n (x|q)w(α,β)(x|q)√

1 − x2
dx

=
1

22n

(q
1
2
(α+β+2)+n; q

1
2 )∞

(−q
1
2
(α+β+1)+n; q

1
2 )∞

1
(q1+n, qα+1+n, qβ+1+n; q)∞

· 1
(qα+β+1+n; q)n

δmn, m, n ∈ N0,

where

(2.4) w(α,β)(x|q) =
∣∣∣∣ (eiθ ,−eiθ ;q

1
2 )∞

(q
1
2 (α+ 1

2 )eiθ ,−q
1
2 (β+ 1

2 )eiθ ;q
1
2 )∞

∣∣∣∣2 , x = cos θ, θ ∈ [0, π].

We recall that for real parameters α and β such that −(α + β + 1) /∈ N, monic
continuous q-Jacobi polynomials satisfy the three term recurrence relation (see [17,
3.10.4, 3.10.3])

(2.5) P
(α,β)
n+1 (x|q) =

(
x − A

(α,β|q)
n

)
P

(α,β)
n (x|q)− B

(α,β|q)
n P

(α,β)
n−1 (x|q), n ≥ 0,

where

(2.6)

A(α,β|q)
n =

1
2

(
q

1
2
(α+ 1

2
) + q−

1
2
(α+ 1

2
)

−(1 − qα+1+n)(1−qα+β+1+n)(1+q
1
2
(α+β+1)+n)(1 + q

1
2
(α+β+2)+n)

q
1
2
(α+ 1

2
)(1− qα+β+1+2n)(1− qα+β+2+2n)

−q
1
2
(α+ 1

2
)(1 − qn)(1− qβ+n)(1 + q

1
2
(α+β)+n)(1 + q

1
2
(α+β+1)+n)

(1− qα+β+2n)(1− qα+β+1+2n)

)
,

(2.7)
B

(α,β|q)
n =

1
4

(1−qn)(1−qα+n)(1−qβ+n)(1−qα+β+n)
(1−qα+β−1+2n)(1−qα+β+2n)2(1−qα+β+1+2n)(
(1+q

1
2
(α+β−1)+n)(1+q

1
2
(α+β)+n)2 (1+q

1
2
(α+β+1)+n)

)
.

Note that the restriction α + β �= −1 is not necessary in the previous result
because when n = 1, the factor (1 − qα+β−1+2n) in the denominator of B

(α,β|q)
n ,

simplifies with the factor (1 − qα+β+n) in its numerator. Moreover, being N a
positive integer, if either α = −N (being also β /∈ {N − 2, N − 3, . . .}), or
β = −N (being α /∈ {N − 2, N − 3, . . .}), no orthogonality results can be deduced
from Favard’s theorem for the monic continuous q-Jacobi polynomials, due to the
fact that B

(−N,β|q)
N = B

(α,−N |q)
N = 0. The main objective of this paper consists

of giving orthogonality relations for these problematic values of the parameters for
which the three term recurrence relation breaks down.
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3. TWO STEPS TOWARD THE MAIN RESULT

Our first auxiliary result concerns with the very natural way in which the Askey-
Wilson divided difference operator Dq acts on the monic continuous q-Jacobi poly-
nomials.

Proposition 1. Let α, β be real numbers such that −(α + β + 1) /∈ N. For
each nonnegative integer n,

(3.1)

Dk
qP (α,β)

n (x|q)

=
(qn−k+1; q)k

(1− q)k
qk(k+1−2n)/4P

(α+k,β+k)
n−k (x|q), 0 ≤ k ≤ n + 1.

Proof. Monic continuous q-Jacobi polynomials verify the forward shift relation
(see [17, 3.10.7, 3.10.4])

DqP
(α,β)
n (x|q) =

1 − qn

1 − q
q(1−n)/2P

(α+1,β+1)
n−1 (x|q), n ≥ 0.

After k iterations, we get the desired result.

The second auxiliary result deals with the obtention of N common roots of the
polynomials P

(−N,β)
N+n (·|q) (and also, N common roots of the polynomials P

(α,−N)
N+n

(·|q)). For this purpose, we use a totally different technique that the one in [13].

Proposition 2. Fixed a positive integer N , let us define the N distinct points

xk =
1
2

(
q(2N−4k−1)/4 + q−(2N−4k−1)/4

)
, 0 ≤ k ≤ N − 1.

For all n ≥ N and for k ∈ {0, 1, . . . , N − 1},

P (−N,β)
n (xk|q) = 0, N − β − 1 /∈ N,(3.2)

P (α,−N)
n (−xk|q) = 0, N − α − 1 /∈ N.(3.3)

Proof. The first step in the proof consists of proving that the following factor-
izations hold for each n ≥ N :

(3.4)
P

(−N,β)
n (x|q)=P

(−N,β)
N (x|q)P (N,β)

n−N (x|q)
= (−1)N2−N q

N
4 (q

1
2 (1

2−N)eiθ, q
1
2 ( 1

2−N)e−iθ; q)NP
(N,β)
n−N (x|q),

where N − β − 1 /∈ N, and
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(3.5)
P

(α,−N)
n (x|q) = P

(α,−N)
N (x|q)P (α,N)

n−N (x|q)
= 2−Nq

N
4 (−q

1
2 ( 1

2−N)eiθ,−q
1
2 ( 1

2−N)e−iθ; q)NP
(α,N)
n−N (x|q),

where N −α−1 /∈ N. For this purpose, let us recall that monic continuous q-Jacobi
polynomials, with parameters α and β, fulfill the three term recurrence relation (2.5).
A direct computation on the coefficients A

(α,β|q)
n and B

(α,β|q)
n given by (2.6) and

(2.7) shows that for each k ≥ 0

A
(−N,β|q)
N+k = A

(N,β|q)
k ,(3.6)

B
(−N,β|q)
N+k = B

(N,β|q)
k .(3.7)

Now we use the principle of strong induction:
(i) For n = N we trivially get that P

(−N,β)
N (x|q) = P

(−N,β)
N (x|q)P (N,β)

0 (x|q).
(ii) Now suppose that for all k such that N ≤ k ≤ n we have P

(−N,β)
k (x|q) =

P
(−N,β)
N (x|q)P (N,β)

k−N (x|q). Using (2.5) with the choice α = −N , using also
(3.6) and (3.7), and taking into account the induction hypothesis, the expres-
sion for P

(−N,β)
n+1 (x|q) becomes

P
(−N,β)
n+1 (x|q)

=
(
x − A(−N,β|q)

n

)
P (−N,β)

n (x|q)− B(−N,β|q)
n P

(−N,β)
n−1 (x|q)

= P
(−N,β)
N (x|q)

((
x − A(−N,β|q)

n

)
P

(N,β)
n−N (x|q)− B(−N,β|q)

n P
(N,β)
n−1−N (x|q)

)
= P

(−N,β)
N (x|q)

((
x − A

(N,β|q)
n−N

)
P

(N,β)
n−N (x|q)− B

(N,β|q)
n−N P

(N,β)
n−N−1(x|q)

)
= P

(−N,β)
N (x|q)P (N,β)

n+1−N (x|q).

Note that the above computation is valid for n = N , because although the induction
hypothesis can not be used for P

(−N,β)
N−1 (x|q), the corresponding “correction” comes

from the fact that B
(−N,β|q)
N = P

(N,β)
−1 (x|q) = 0. So we have proved the first

equality of (3.4). The fact that

P
(−N,β)
N (x|q) = (−1)N2−Nq

N
4 (q

1
2
( 1
2
−N)eiθ, q

1
2
( 1
2
−N)e−iθ; q)N

is straightforward from (2.2).
The first part of the factorization (3.5) can be derived by slight modifications

of the argument above. To state the second part, first note that with the choice
β = −N and n = N in the first equality in (2.2), we obtain
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P
(α,−N)
N (x|q) =

(−q
1
2
(α+1−N),−q

1
2
(α+2−N); q)N

2Nq
N
2

(α+ 1
2
)

·3φ2

(
q−N , q

1
2
(α+ 1

2
)eiθ, q

1
2
(α+ 1

2
)e−iθ

−q
1
2
(α+1−N),−q

1
2
(α+2−N)

∣∣∣∣∣ q; q
)

.

Using the q-analogue of the Pfaff-Saalschütz summation formula ([17, 0.5.11])

3φ2

(
q−n, a, b

c, abc−1q1−n

∣∣∣∣ q; q) =
(a−1c, b−1c; q)n

(c, a−1b−1c; q)n
, n ∈ N0,

with a = q
1
2
(α+ 1

2
)eiθ, b = q

1
2
(α+ 1

2
)e−iθ , and c = −q

1
2
(α+1−N), the expression

above transforms to

P
(α,−N)
N (x|q) =

(−q
1
2
(α+2−N); q)N

2Nq
N
2

(α+ 1
2
)(−q−

1
2
(α+N); q)N

(−q
1
2
( 1
2
−N)eiθ,−q

1
2
( 1
2
−N)e−iθ; q)N .

We conclude this part by noting that (−q
1
2
(α+2−N); q)N/(q

N
2

(α+ 1
2
)(−q−

1
2
(α+N); q)N)

= qN/4.
The second (and last) step in the proof consist of proving (3.2) and (3.3). For

this aim, we take into account, as proved above, that for all n ≥ N , P
(−N,β)
n (x|q)

is a multiple of

(q
1
2
( 1
2
−N)eiθ, q

1
2
( 1
2
−N)e−iθ; q)N =

N−1∏
k=0

(1−q
1
2
( 1
2
−N+2k)eiθ)(1−q

1
2
( 1
2
−N+2k)e−iθ)

=
N−1∏
k=0

(1 − 2q
1
2
( 1
2
−N+2k) cos θ + q( 1

2
−N+2k)).

Imposing that (q
1
2
( 1
2
−N)eiθ, q

1
2
( 1
2
−N)e−iθ; q)N vanishes, we get the roots (of

P
(−N,β)
n (·|q), with n ≥ N )

xk =cos θk =
1 + q( 1

2
−N+2k)

2q
1
2
( 1
2
−N+2k)

=
1
2

(
q(2N−4k−1)/4+q−(2N−4k−1)/4

)
, 0≤k≤N−1.

To verify that the −xk’s are roots of P
(α,−N)
n (·|q) for n ≥ N , we use a similar

argument.
A final detail: The fact that the points xk are distinct is a consequence that

for a > 2, the equation a = x + x−1 has two roots x1, x2, related by x1x2 =
1. Therefore, the condition xk1 = xk2 for k1 �= k2 should imply, either 0 =
2N − 4k1 − 1 + 2N − 4k2 − 1 = 4(N − k1 − k2) − 2, which is not possible, or
0 = 2N − 4k1 − 1 − (2N − 4k2 − 1) = 4(k2 − k1), which implies k1 = k2, a
contradiction.
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4. Dq-SOBOLEV ORTHOGONALITY OF CONTINUOUS q-JACOBI POLYNOMIALS

Now we are in position to state the main result of this paper. We will give or-
thogonality results for the families of continuous q-Jacobi polynomials with allowed
parameters α, β such that the three term recurrence relation breaks down, i.e., when
α = −N1 or β = −N2, being N1, N2 ∈ N and α + β �= −2,−3, . . .. This will
complete the treatment of this kind of orthogonality results for the most celebrated
q-analogues of the very classical q-Jacobi polynomials.

For our aim we will apply the technique of our previous result [11, Theorem
3], using here the Askey-Wilson operator Dq instead of the derivative one. The
defined inner products will be called of type Dq-Sobolev because of the presence
of the Askey-Wilson divided difference operator in their definitions.

Theorem 2. Fixed a positive integer N , let us define the N distinct points

xk =
1
2

(
q(2N−4k−1)/4 + q−(2N−4k−1)/4

)
, 0 ≤ k ≤ N − 1.

(i) For each β ≥ −N − 1/2 such that β /∈ {−N,−N + 1, . . . , N − 3, N − 2},
there exists a symmetric and positive definite matrix A 1 of order N such that the
family of monic continuous q-Jacobi polynomials {P (−N,β)

n (·|q)}∞n=0 is orthogonal
with respect to the inner product (·, ·) (N ;A1;β|q)

1 defined by

(4.1) (p1, p2)
(N ;A1;β|q)
1 =

(
(p1(xk))

N−1
k=0

)
A1

(
(p2(xk))

N−1
k=0

)t

+
1
2π

∫ 1

−1
(DN

q p1(x))(DN
q p2(x))

w(0,β+N)(x|q)√
1 − x2

dx, p1, p2 ∈ P.

(ii) For each α ≥ −N − 1/2 such that α /∈ {−N,−N + 1, . . . , N − 3, N − 2},
there exists a symmetric and positive definite matrix A 2 of order N such that the
family of monic continuous q-Jacobi polynomials {P (α,−N)

n (·|q)}∞n=0 is orthogonal
with respect to the inner product (·, ·) (N ;A2;α|q)

2 defined by

(4.2) (p1, p2)
(N ;A2;α|q)
2 =

(
(p1(−xk))

N−1
k=0

)
A2

(
(p2(−xk))

N−1
k=0

)t

+
1
2π

∫ 1

−1
(DN

q p1(x))(DN
q p2(x))

w(α+N,0)(x|q)√
1− x2

dx, p1, p2 ∈ P.

In both cases, w(0,β+N)(·|q) and w(α+N,0)(·|q) can be computed by formula (2.4).

Proof. We can proceed, step by step, as in the theorems in Sections 3 and 5
in [13], adjusting the obvious modifications imposed by the cases we are studying
here. So, maintaining the style of the current paper, we avoid duplicating similar
calculations to the ones in [13]. Just some details:
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(i) For i = 1, 2, matrix Ai equals C−1
i D2(C−1

i )t, where

C1 = (P (−N,β)
j (xk|q))N−1

j,k=0,

C2 = (P (α,−N)
j (−xk|q))N−1

j,k=0,

and D = (κjδjk)N−1
j,k=0 is an arbitrary nonsingular diagonal matrix of order N ,

being κ2
n ( 0 ≤ n ≤ N−1) equals the square of the norm of the corresponding

n-th continuous q-Jacobi polynomial.

(ii) When n ≥ N , we get

(P (−N,β)
n (·|q), P (−N,β)

n (·|q))(N ;A1;β|q)
1

=
qN(1+N−2n)/2

22(n−N)(1 − q)2N(q1+n; q)2∞
κ(n, N, β),

and also

(P (α,−N)
n (·|q), P (α,−N)

n (·|q))(N ;A2;α|q)
2

=
qN(1+N−2n)/2

22(n−N)(1− q)2N(q1+n; q)2∞
κ(n, N, α),

where κ(n, N, ·) is defined by means of

κ(n, N, γ) =
(q

1
2
(γ+2−N)+n; q

1
2 )∞

(−q
1
2
(γ+1−N)+n; q

1
2 )∞(qγ+1+n; q)∞(qγ+1+n; q)n−N

.

5. PARTICULAR CASE: THE CONTINUOUS q-LAGUERRE POLYNOMIALS

Monic continuous q-Laguerre polynomials P
(α)
n (·|q) are obtained from monic

continuous q-Jacobi polynomials P
(α,β)
n (·|q) by taking the limit β → ∞. Therefore,

taking the limit β → ∞ in all the results of Sections 2, 3 and 4 in which the
parameter β is free (i.e., wherever β is not equal to a fixed N ∈ N), we will
obtain similar results to above ones, now for the family of continuous q-Laguerre
polynomials. We will briefly summarize all these results, relating each of them with
the corresponding formula in the preceding sections.

(i) Definition as a basic series (2.2)
Let −α /∈ N. For each n ∈ N0 we define the nth degree monic continuous
q-Laguerre polynomial P

(α)
n (·|q) by

P (α)
n (x|q)=

(qα+1; q)n

2nq
n
2
(α+ 1

2
)

3φ2

(
q−n, q

1
2
(α+ 1

2
)eiθ, q

1
2
(α+ 1

2
)e−iθ

qα+1, 0

∣∣∣∣q; q) , x=cos θ.
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(ii) Orthogonality relation (2.3)
For α ≥ −1/2,

1
2π

∫ 1

−1
P (α)

m (x|q)P (α)
n (x|q)w(α)(x|q)√

1 − x2
dx

=
1

22n

1
(q1+n, qα+1+n; q)

δmn, m, n ∈ N0,

where

w(α)(x|q) =

∣∣∣∣∣ (eiθ,−eiθ; q
1
2 )∞

(q
1
2
(α+ 1

2
)eiθ; q

1
2 )∞

∣∣∣∣∣
2

, x = cos θ, θ ∈ [0, π].(5.1)

(iii) Generalized monic continuous q-Laguerre polynomials (2.2)
Let α ∈ R. For each n ∈ N0 we define the nth degree generalized monic
continuous q-Laguerre polynomial P

(α)
n (·|q) by

P (α)
n (x|q) =

n∑
k=0

(−1)k

[
n

k

]
q

(qα+1+k; q)n−k

·2−nq(k(k+1)−2kn−(α+1
2
)n)/2(q

1
2
(α+ 1

2
)eiθ, q

1
2
(α+ 1

2
)e−iθ; q)k,

where x = cos θ.
(iv) Three term recurrence relation (2.5), (2.6), (2.7)

P
(α)
n+1(x|q) =

(
x − A(α|q)

n

)
P (α)

n (x|q)− B(α|q)
n P

(α)
n−1(x|q), n ≥ 0,

where A
(α|q)
n = q

1
2
(α+ 1

2
)+n(1 + q

1
2 )/2 and B

(α|q)
n = (1 − qn)(1 − qα+n)/4.

When −α ∈ N, no orthogonality results can be deduced from Favard’s theo-
rem.

(v) Iterated forward shift operator (3.1)
For n ∈ N0 and α ∈ R,

Dk
qP (α)

n (x|q) =
(qn−k+1; q)k

(1− q)k
qk(k+1−2n)/4P

(α+k)
n−k (x|q), 0 ≤ k ≤ n + 1.

(vi) Factorization (3.4)
For fixed N ∈ N, and for all n ≥ N ,

P (−N)
n (x|q) = P

(−N)
N (x|q)P (N)

n−N (x|q)
= (−1)N2−Nq

N
4 (q

1
2
( 1
2
−N)eiθ, q

1
2
( 1
2
−N)e−iθ; q)NP

(N)
n−N (x|q).
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(vii) Evaluations on the lattice points (3.2)

For fixed N ∈ N

P (−N)
n (xk|q) = 0, n ≥ N, 0 ≤ k ≤ N − 1.

where

xk =
1
2

(
q(2N−4k−1)/4 + q−(2N−4k−1)/4

)
, 0 ≤ k ≤ N − 1.(5.2)

(viii) Dq-Sobolev orthogonality (Theorem 2)

Theorem 3. For each positive integer N there exists a symmetric and po-
sitive definite matrix A of order N such that the family of monic continuous q-
Laguerre polynomials {P (−N)

n (·|q)}∞n=0 is orthogonal with respect to the inner
product (·, ·)(N ;A|q)

1 defined by

(p1, p2)
(N ;A|q)
1 =

(
(p1(xk))

N−1
k=0

)
A
(
(p2(xk))

N−1
k=0

)t

+
1
2π

∫ 1

−1
(DN

q p1(x))(DN
q p2(x))

w(0)(x|q)√
1 − x2

dx, p1, p2 ∈ P,

where the xk’s are given by (5.2) and w(0)(x|q) is the case α = 0 of (5.1).
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