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THE L(2, 1)-F -LABELING PROBLEM OF GRAPHS

Gerard J. Chang1 and Changhong Lu2

Abstract. In order to unify various concepts of distance-two labelings, we
consider a general setting of distance-two labelings as follows. Given a graph
H , an L(2, 1)-H-labeling of a graph G is a mapping f from V (G) to V (H)
such that dH(f(u), f(v)) ≥ 2 if dG(u, v) = 1 and dH(f(u), f(v)) ≥ 1 if
dG(u, v) = 2. Suppose F is a family of graphs. The L(2, 1)-F -labeling
problem is to determine the L(2, 1)-F -labeling number λF (G) of a graph G
which is the smallest number |E(H)| such that G has an L(2, 1)-H-labeling
for some H ∈ F . Notice that the L(2, 1)-F -labeling is the L(2, 1)-labeling
(respectively, the circular distance-two labeling) if F is the family of all paths
(respectively, cycles). The purpose of this paper is to study the L(2, 1)-F -
labeling problem.

1. INTRODUCTION

The problem of vertex labeling with a condition at distance two, studied by
Griggs and Yeh [12], is a variation of the T -coloring problem introduced by Hale
[13]. Suppose there is a number of transmitters. The problem is to assign a channel
to each transmitter such that interference is avoided. In order to avoid interference,
any two “close” transmitters must receive different channels, and any two “very
close” transmitters must receive channels that are at least two channels apart.

More precisely, we can construct the interference graph using the transmitters
as the vertices and pairs of “very close” transmitters as the edges. Two transmitters
are defined to be “close” if the corresponding vertices are of distance two. An
L(2, 1)-labeling of a graph G is a mapping f from the vertex set V (G) to the
set of all nonnegative integers such that |f(u) − f(v)| ≥ 2 if dG(u, v) = 1 and
|f(u) − f(v)| ≥ 1 if dG(u, v) = 2. A k-L(2, 1)-labeling is an L(2, 1)-labeling
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such that no label is greater than k. The L(2, 1)-labeling number λ(G) of G is
the smallest number k such that G has a k-L(2, 1)-labeling. L(2, 1)-labelings have
been extensively studied in the literature, see [3, 7, 8, 9, 11, 14, 15, 17, 18, 19].

There are several variations of the L(2, 1)-labeling problem, see [1, 2, 3, 4, 10,
16, 17, 21]). Among them, the L′(2, 1)-labeling problem was introduced by Chang
and Kuo [3]. The definitions of an L ′(2, 1)-labeling f , a k-L′(2, 1)-labeling f , and
the L′(2, 1)-labeling number λ′(G) are the same as those of an L(2, 1)-labeling f ,
a k-L(2, 1)-labeling f , and the L(2, 1)-labeling number λ(G), respectively, except
that the mapping f is required to be one to one.

Another variation of the L(2, 1)-labeling, called the k-circular-labeling was in-
troduced by Liu [16], see also [14, 20]. For a positive integer k, a k-circular-
labeling of a graph G is a function f from V (G) to {0, 1, 2, . . . , k − 1} such
that|f(u) − f(v)|k ≥ 2 if dG(x, y) = 1 and |f(u) − f(v)|k ≥ 1 if dG(x, y) = 2,
where |x|k = min{|x|, k− |x|} is the circular difference modulo k. The σ-number
σ(G) is the minimum k of a k-circular-labeling of G. Similarly, we can also define
σ′(G).

In order to unify these concepts, we introduce a more general setting called
the L(2, 1)-F -labeling as follows. Given a graph H , an L(2, 1)-H-labeling of a
graph G is a mapping f from V (G) to V (H) such that dH(f(u), f(v)) ≥ 2 if
dG(u, v) = 1 and dH(f(u), f(v)) ≥ 1 if dG(u, v) = 2. Notice that a graph may
have no L(2, 1)-H-labeling. For a graph G and a family F of graphs, let

Ω(F , G) = {H ∈ F : G has an L(2, 1)-H-labeling}.

The L(2, 1)-F -labeling number λF(G) of a graph G is the smallest number |E(H)|
for H ∈ Ω(F , G) provided Ω(F , G) �= ∅. The definitions of an L′(2, 1)-H-labeling
f , Ω′(F , G) and λ′

F(G) are the same as those of an L(2, 1)-H-labeling f , Ω(F , G)
and λ

(G)
F , respectively, except that the mapping f is required to be one to one.

The concept of L(2, 1)-H-labeling was first introduced by Fiala and Kratochv´l
[5] using the name H(2,1)-labeling, which is closely related to graph homomorphism
as follows. Given graphs G and H , a mapping f : V (G) → V (H) is a homomor-
phism if f(u)f(v) is an edge in H for every edge uv in G. A homomorphism f

is locally injective if for any vertex u in G, the neighborhood NG(u) is mapped
injectively into NH(f(u)). Fiala and Kratochvíl [5] observed that an H(2,1)-labeling
of G is precisely a locally injective homomorphsim from G to H, the complement
of H . Computational complexity on locally injective homomorphisms are studied
in [5, 6].

In this paper we study the L(2, 1)-F -labeling problem. Some general results
are applicable to the families of paths, cycles, stars and trees, which are denoted
by P , C, S and T , respectively. Notice that λP (G) = λ(G), λ′

P(G) = λ′(G),
λC(G) = σ(G) and λ′

C(G) = σ′(G).
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2. GENERAL PROPOSITIONS

In this section, we establish some general propositions for the L(2, 1)-F -labeling
problem.

Proposition 1. If F and G are two families of graphs with F ⊆ G and G is a
graph, then λG(G) ≤ λF(G) ≤ λ′

F (G) and λ′
G(G) ≤ λ′

F(G).

Proof. The first two inequalities follows from Ω ′(F , G) ⊆ Ω(F , G) ⊆ Ω(G, G)
and the third inequality follows from Ω′(F , G) ⊆ Ω′(G, G).

Proposition 2. If F is a family of connected graphs and G is a graph of
maximum degree ∆, then λF(G) ≥ ∆ + 1. Furthermore, if λF(G) = ∆ + 1, then
there is a tree H ∈ Ω(F , G) with ∆ + 2 vertices such that f(x) is a leaf in H for
any L(2, 1)-H-labeling f and any vertex x of degree ∆ in G.

Proof. Suppose H ∈ Ω(F , G) and λF(G) = |E(H)|. Choose an L(2, 1)-H-
labeling f of G. Let NG(x) = {y1, y2, . . . , y∆}. By definition, f(x), f(y1), f(y2),
. . . , f(y∆) are distinct and NH(f(x)) ∩ {f(y1), f(y2), . . . , f(y∆)} = ∅. As H is
connected, it has at least ∆ + 1 + |NH(f(x))| ≥ ∆ + 2 vertices and hence at least
∆ + 1 edges. This gives λF(G) ≥ ∆ + 1.

If λF(G) = ∆+1, then H has exactly ∆+2 vertices and ∆+1 edges, implying
that H is a tree. Also, |NH(f(x))| = 1 and so f(x) is a leaf.

An L(2, 1)-preserving from a graph H to a graph I is a mapping g from V (H)
to V (I) such that dH(x, y) ≥ i implies dI(g(x), g(y))≥ i for i = 1, 2.

Proposition 3. Suppose F and G are families of graphs. If there is a constant
c(F , G) such that for any H ∈ F there is some I ∈ G with |E(I)| ≤ |E(H)|+
c(F , G) and there is an L(2, 1)-preserving g from H to I , then λ G(G) ≤ λF(G) +
c(F , G) for any graph G.

Proof. Suppose H ∈ Ω(F , G) and λF (G) = |E(H)|. Let f be an L(2, 1)-H-
labeling of G. By definition, g◦f is an L(2, 1)-I-labeling of G. Thus, I ∈ Ω(G, G)
and so λG(G) ≤ |E(I)| ≤ |E(H)|+ c(F , G) = λF(G) + c(F , G).

Theorem 4. ([14]). For any graph G, we have λP(G)+1≤λC(G)≤λP(G)+2.

Proof. For any Cn ∈ C, we can choose Pn ∈ P such that there is a natural
L(2, 1)-preserving from Cn to Pn with |E(Pn)| = |E(Cn)| − 1. By Proposition 3,
λP(G) ≤ λC(G)− 1 which gives the first inequality.

On the other hand, for any Pn ∈ P , we can choose Cn+1 ∈ C such that there
is an L(2, 1)-preserving from Pn to Cn+1 with |E(Cn+1)| = |E(Pn)| + 2. By
Proposition 3, λC(G) ≤ λP(G) + 2 as desired.
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Theorem 5. Suppose F is a family of trees. For any graph G, we have
λS(G) ≤ λF(G) + 1. In particular, λS(G) ≤ λT (G) + 1.

Proof. For any H ∈ F of n vertices, we can choose K1,n ∈ S such that
there is an L(2, 1)-preserving from H to K1,n by mapping the vertices of H to
the leaves of K1,n bijectively. As |E(K1,n)| = |E(H)| + 1, by Proposition 3,
λS(G) ≤ λF(G) + 1 as desired.

Proposition 6. If F is a family of graphs which has a graph H of maximum
degree b and ∆+b+1 vertices, then λF (G) ≤ |E(H)| for any tree G of maximum
degree ∆.

Proof. Order the vertices of G into v1, v2, . . . , vn such that for each i>1 there
is exactly one j < i with vivj ∈ E(G). We label the vertices of G one by one
from v1 to vn. After v1, v2, . . . , vi−1 having been labeled, it is possible to choose a
vertex of H to label vi so that the distance constraints hold. This is always possible
because the only labeled neighbor of vi forbids at most b + 1 labels and the labeled
distance-two neighbors of vi forbid at most ∆−1 labels, and in total at most ∆+ b

labels forbidden while H has ∆ + b + 1 vertices.

Theorem 7. ([12]). If G is a tree of maximum degree ∆, then λP(G) = ∆+1
or ∆ + 2.

Proof. The result follows from Proposition 2 and Proposition 6 with b=2.

Proposition 8. If F is a family of r-regular graphs in which there is a graph
of 
 (∆+r+1)r

2 � edges, then λF (G)=
 (∆+r+1)r
2 � for any tree G of maximum degree

∆.

Proof. Suppose H ∈Ω(F , G) and λF(G)= |E(H)|. Let f be an L(2, 1)-H-
labeling of G. Choose a vertex x of degree ∆ in G with NG(x) = {y1, y2, . . . , y∆}.
By definition, f(x), f(y1), f(y2), . . . , f(y∆) are distinct and NH(f(x)) ∩ {f(y1),
f(y2), . . . , f(y∆)} = ∅. As H is r-regular, it has at least ∆ + 1 + |NH(f(x))| =
∆ + r + 1 vertices and hence at least 
 (∆+r+1)r

2 � edges. This gives that λF(G) ≥

 (∆+r+1)r

2 �.
On the other hand, suppose G is a tree of maximum degree ∆. Order the vertices

of G into v1, v2, . . . , vn such that for each i > 1 there is exactly one j < i with
vivj ∈ E(G). Since H has 
 (∆+r+1)r

2 � edges, it has at least ∆ + r + 1 vertices.
We label the vertices of G one by one from v1 to vn. After v1, v2, . . . , vi−1 having
been labeled, it is possible to choose a vertex of H to label vi so that the distance
constraints hold. This is always possible because the only labeled neighbor of vi

forbids at most r + 1 labels and the labeled distance-two neighbors of vi forbidden
at most ∆− 1 labels, and so totally at most ∆ + r labels forbidden while H has at
least ∆ + r + 1 vertices.
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We remark that the same arguments as in the proof of Proposition 8 also lead
to a slightly general result for the lower bound part: If F is a family of graphs of
minimum degree r, then λF(G) ≥ 
 (∆+r+1)r

2 �.

Theorem 9. ([16]). If G is a tree of maximum degree ∆, then λC(G) = ∆+3.

Proof. The result follows from Proposition 8 by using r = 2.

Theorem 10. If G is a tree with maximum degree ∆, then λT (G)=λS(G) =
∆ + 1.

Proof. By Propositions 1 and 2, ∆+1 ≤ λT (G) ≤ λS(G). On the other
hand, suppose G is a tree of maximum degree ∆. Order the vertices of G into
v1, v2, . . . , vn such that for each i > 1 there is exactly one j < i with vivj ∈ E(G).
Consider the tree K1,∆+1 ∈ S . We label the vertices of G one by one from v1 to
vn by using the leaves of K1,∆+1. After v1, v2, . . . , vi−1 having been labeled, it is
possible to choose a leaf of K1,∆+1 to label vi so that the distance constraints hold.
This is always possible because the only labeled neighbor or distance-two neighbors
of vi forbidden at most ∆ leaves of K1,∆+1 while K1,∆+1 has ∆ + 1 leaves.

For any positive integer k, the kth power of a graph G is the graph Gk with
V (Gk) = V (G) and E(Gk) = {uv : 1 ≤ dG(u, v) ≤ k}. The chromatic number
χ(G) of G is the minimum number of colors needed to color the vertices of G so
that adjacent vertices receive different colors.

Theorem 11. If G is a graph, then λ
(G)
S = χ(G2).

Proof. Suppose c : V (G2) → {1, 2, . . . , χ(G2)} is a proper χ(G2)-coloring
of G2. Choose K1,χ(G2) ∈ S with leaves v1, v2, . . . , vχ(G2). The mapping f on
V (G) defined by f(x) = vc(x) for x ∈ V (G) is then an L(2, 1)-K1,χ(G2)-labeling.
Hence, λS(G) ≤ χ(G2).

On the other hand, for any L(2, 1)-K1,λS(G)-labeling f of G, we may assume
without loss of generality that f(x) is a leaf of K1,λS(G). It is then easy to see that
f is a proper λS(G)-coloring of G2, if we identify the names of the vertices in G2

with the names of the leaves in K1,χ(G2). This gives that χ(G2) ≤ λS(G).

3. HAMILITONICITY

Graph hamiltonicity has a close relation with distance-two labeling. We now
establish relation between hamiltonicity and L(2, 1)-F -labeling.

Proposition 12. If F is a family of graphs and G is a graph, then for any
H ∈ F with |V (H)| = |V (G)| we have that H ∈ Ω′(F , G) if and only if H is a
spanning subgraph of G c.
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Proof. Suppose H ∈ Ω′(F , G). Since |V (H)| = |V (G)|, G has a bijective
L′(2, 1)-H-labeling f . For any edge uv in H , f−1(u)f−1(v) is not an edge in G,
or equivalently, f−1(u)f−1(v) is an edge in Gc. Thus, H is a spanning subgraph
of Gc if we consider the mapping f−1.

Suppose H is a spanning subgraph of Gc. Define mapping f : V (G) → V (H)
by f(v) = v for v ∈ V (G). It is easy to check that f is an L′(2, 1)-H-labeling of
G.

As λ′
P(G) = λ′(G) and λ′

C(G) = σ′(G), Proposition 12 then gives the following
two consequences.

Theorem 13. ([3]). For any graph G, we have that λ ′(G) = |V (G)|−1 if and
only if Gc has a Hamiltonian path.

Theorem 14. ([16]). For any graph G, we have that σ ′(G) = |V (G)| if and
only if Gc has a hamiltonian cycle.

Suppose f is an L(2, 1)-H-labeling of G. An H-hole of f is a vertex v in H

with f−1(v) = ∅.

Proposition 15. If F is a family of connected graphs of maximum degree 2
and G is a graph, then H ∈ Ω(F , G) with |V (H)| ≥ |V (G)| if and only if
H ∈ Ω′(F , G).

Proof. We only need to prove the only if part. Suppose f is an L(2, 1)-H-
labeling with fewest H-holes. Let M = {u ∈ V (H) : |f−1(u)| ≥ 2}. In order to
get H ∈ Ω′(F , G), we only have to prove that M = ∅. Suppose to the contrary that
M is not empty. Since |V (H)| ≥ |V (G)|, we know that there also exist H-holes.

Claim 1. Any H-hole v has exactly two neighbors v′ and v′′ which are in M .

Proof of Claim 1. Suppose to the contrary that either v has exactly one neighbor
v′ or else v has two neighbors v′ and v′′ with v ′′ /∈ M . Choose a vertex u ∈ M

nearest to v, and a shortest v-u path v0, v1, . . . , vm, where v0 = v, v1 = v′ and
vm = u. Notice that for the case when v has two neighbors we may assume v1 = v′

for otherwise just interchanging the role of v′ and v′′. Also, it is possible that m = 1
and v′ = u.

First, any vertex x ∈ f−1(u) is adjacent/equal to a vertex in f−1(v′) (or f−1(v′′)
if v′′ exists), for otherwise re-labeling x to v give a new L(2, 1)-H-labeling with
fewer H-holes. Also, no two vertices in f−1(u) are adjacent/equal to a same
vertex in f−1{v′, v′′}. So, in fact v′′ exists and f−1(u) = {u1, u2} such that
u1 is adjacent/equal to a vertex in f−1(v′) but no vertex in f−1(v′′) and u2 is
adjacent/equal to a vertex in f−1(v′′) but no vertex in f−1(v′).
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Now define a function f ′ : V (G) → V (H) by

f ′(w) =




v0, if w = u1;
vm−i, if f(w) = vi with 1 ≤ i ≤ m − 1;
f(w), otherwise.

We now check that f ′ is an L(2, 1)-F -labeling. Suppose f ′ is not an L(2, 1)-F -
labeling. Then there are vertices x and y in G such that either dG(x, y) = 1 but
dH(f ′(x), f ′(y)) ≤ 1 or dG(x, y) = 2 but dH(f ′(x), f ′(y)) = 0. By the definition
of f ′, dH(f ′(x), f ′(y)) = 0 implies dH(f(x), f(y)) = 0 which further implies that
dG(x, y) ≥ 3. Therefore, it is only possible that dG(x, y) = dH(f ′(x), f ′(y)) = 1
and so dH(f(x), f(y)) ≥ 2. By the definition of f ′ again, one of f′(x) and f ′(y),
say f ′(x), is in {v0, v1, v2, . . . , vm−1} while f ′(y) is not. So, either f ′(x) = v0 = v

with f ′(y) = v′′ or f ′(x) = vm−1 with f ′(y) = vm = u. For the former case,
u1 = x is adjacent to vertex y ∈ f−1(v′′), a contradiction. For the latter case,
u2 = y is adjacent to to vertex x ∈ f−1(v′), a contradiction.

Since |V (H)| ≥ |V (G)|, every H-hole has exactly two neighbors in M (by
Claim 1), and every vertex in M has at most two neighbors that are H-holes
(since the maximum degree of H is 2), we have that H has exactly |M | holes and
|f−1(u)| = 2 for each u ∈ M . Consequently, H is a cycle v1, v2, . . . , v2n, v1 such
that vi is an H-hole for each odd i and f−1(vj) = {xj−1, xj} for each even j,
where indices are taken modulo 2n. For j = 2, 4, . . . , 2n − 2, since neither xj−1

nor xj is adjacent to both xj+1 and xj+2 in G, without loss of generality we may
assume that xj−1 is not adjacent to xj+1 and xj is not adjacent to xj+2. Define
function f ′′ : V (G) → V (H) by

f ′′(xi) =

{
v� i

2
�, if i is odd;

v2n− i
2
+1, if i is even.

It is straightforward to check that f ′′ is an L′(2, 1)-F -labeling from V (G) into
V (H), and so H ∈ Ω′(F , G).

Applying Propositions 12 and 15 to the family P (respectively, C) we have
the following result in [11] (respectively, [16]). Notice that part (1) of these two
theorems are directly from the propositions. Part (2) of the theorems follows from
part (1). For Theorem 16, this is because “the smallest number of vertex-disjoint
paths needed to cover the vertices of Gc is r” if and only if “Gc ∧ (r− 1)K1 has a
Hamiltonian path but Gc ∧ (r − 2)K1 does not, where G ∧ H is the join of G and
H . We can use similar arguments for Theorem 17.
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Theorem 16. ([11]). (1) λ
(G)
P ≤ |V (G)|−1 if and only if Gc has a Hamiltonian

path.
(2) For integer r > 1, we have λ

(G)
P = |V (G)|+r−2 if and only if the smallest

number of vertex-disjoint paths needed to cover the vertices of G c is r.

Theorem 17. ([16]). (1) λ
(G)
P ≤ |V (G)| if and only if Gc is Hamiltonian.

(2) For integer r > 0, we have λC(G) = |V (G)| + r if and only if G c is not
Hamiltonian and the smallest number of vertex-disjoint paths needed to cover the
vertices of Gc is r.
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